JP4301408B2 - Impact sound insulation type double structure - Google Patents

Impact sound insulation type double structure Download PDF

Info

Publication number
JP4301408B2
JP4301408B2 JP2004210609A JP2004210609A JP4301408B2 JP 4301408 B2 JP4301408 B2 JP 4301408B2 JP 2004210609 A JP2004210609 A JP 2004210609A JP 2004210609 A JP2004210609 A JP 2004210609A JP 4301408 B2 JP4301408 B2 JP 4301408B2
Authority
JP
Japan
Prior art keywords
floor
viscoelastic
impact sound
double structure
double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004210609A
Other languages
Japanese (ja)
Other versions
JP2006028931A (en
Inventor
幹記 矢入
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2004210609A priority Critical patent/JP4301408B2/en
Publication of JP2006028931A publication Critical patent/JP2006028931A/en
Application granted granted Critical
Publication of JP4301408B2 publication Critical patent/JP4301408B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Floor Finish (AREA)

Description

本発明は衝撃音遮断型二重構造に関し、とくに構造物の床基盤の上又は下に間隙を介してパネル材を支持した二重床又は天井の衝撃音遮断性能を向上する構造に関する。   The present invention relates to an impact sound insulation type dual structure, and more particularly to a structure for improving the impact sound insulation performance of a double floor or ceiling in which a panel material is supported above or below a floor base of a structure via a gap.

アパート・マンション等の集合住宅において、図7に示すように、コンクリートスラブ等の床基盤2上に高さ調節可能な弾性台座13付き支持脚10によってパーティクルボード等の床板3を支持し、床板3上にフローリング材等の仕上げ材を敷設する二重床が広く採用されている。二重床構造は、仕上げ材を床基盤2上に直接敷設する直貼り構造に比し均一な高さの床面を容易に得ることができ、床下の空隙6により配管・配線等の工事が容易となり、弾性台座13により適当な歩行感が得られると共に床基盤2への直接的な衝撃が防止できる等の利点がある。しかし二重床構造は、上・下階の床衝撃音を十分に遮断できない場合があり、とくに衝撃力の大きい重量床衝撃音(例えば、上階での重量物の落下音や人の飛跳ね音等)に対する遮断性能が直貼り構造に比し10dB程度も低下することがある。なお、衝撃力の小さい軽量床衝撃音(例えば、上階での軽量物の落下音や椅子等の移動音等)に対する二重床構造の遮断性能は比較的良好であり、また絨毯・畳等の柔らかい仕上げ材を使用することで比較的容易に高めることができる。   In apartment houses such as apartments and condominiums, as shown in FIG. 7, a floor board 3 such as a particle board is supported on a floor base 2 such as a concrete slab by a support leg 10 with an elastic pedestal 13 whose height can be adjusted. Double floors on which flooring materials and other finishing materials are laid are widely used. The double-floor structure can easily obtain a floor surface with a uniform height compared to the direct-bonding structure in which the finishing material is laid directly on the floor base 2, and the work such as piping and wiring is performed by the gap 6 under the floor. There is an advantage that an appropriate feeling of walking can be obtained by the elastic base 13 and a direct impact to the floor base 2 can be prevented. However, the double floor structure may not be able to sufficiently block the floor impact sound on the upper and lower floors, and particularly heavy floor impact sound with a large impact force (for example, the falling sound of heavy objects on the upper floor and the jumping of people) The blocking performance against sound, etc.) may be reduced by as much as 10 dB compared to the direct attachment structure. The double floor structure has relatively good shielding performance against light floor impact sounds with low impact force (for example, falling sounds of lightweight objects on the upper floor and moving sounds of chairs, etc.), and carpets, tatami mats, etc. Can be improved relatively easily by using a soft finish.

二重床構造における重量床衝撃音の遮断性能低下のメカニズムは完全には明らかにされていないが、一般的には二重床を構成する各要素すなわち弾性台座13の弾性・空隙6の弾性(空気バネ)・床板3の剛性・床板3の質量等によって構成される共振系(以下、二重床の共振系ということがある。)による床衝撃音の増幅が原因であり、とくに31.5〜250Hz帯域の増幅が重量床衝撃音の遮断性能低下の主な原因であると考えられている。重量床衝撃音の増幅を床基盤2の厚さの増大等の対策によって抑えることも考えられるが、このような対策は構造上の負荷が過大となるため実現が難しく、また構造部材の設計変更は容易でない。このため、重量床衝撃音の増幅を抑える他の様々な対策が提案されている。   The mechanism of the heavy floor impact sound cutoff performance degradation in the double floor structure is not completely clarified, but in general, the elements constituting the double floor, that is, the elasticity of the elastic base 13 and the elasticity of the gap 6 ( This is due to the amplification of floor impact sound due to the resonance system (hereinafter referred to as the double floor resonance system) composed of the rigidity of the floor board 3, the mass of the floor board 3, etc. It is considered that the amplification of the band is the main cause of the decrease in the performance of blocking the heavy floor impact sound. Although it is conceivable to suppress the amplification of heavy floor impact sound by measures such as increasing the thickness of the floor base 2, such measures are difficult to implement due to excessive structural loads, and structural design changes Is not easy. For this reason, various other measures for suppressing amplification of heavy floor impact sound have been proposed.

例えば特許文献1は、二重床の床板3と二重床周囲の壁との間に僅かな隙間を設け、空隙6の空気抜きを確保することにより空気バネの影響を小さく抑えて衝撃音の増幅を抑える遮音床構造を開示する。ただし特許文献1の構造は、床面積が比較的小さい場合は有効であるが、床面積が大きくなると空気抜きの効果が相対的に小さくなって衝撃音の遮断効果があまり期待できない。また、床板3の周囲に設けた隙間が建築意匠上の問題となるので、床板3の周囲の仕上げが難しく施工に手間がかかる等の問題点もある。最近の集合住宅では柱や梁のない大空間が形成できる大型スラブの利用が増える傾向にあり、広い床面積の二重床にも簡単に適用できる重量床衝撃音の遮断技術が望まれている。   For example, in Patent Document 1, a slight gap is provided between the floor 3 of the double floor and the wall around the double floor, and the air is released from the gap 6, thereby suppressing the influence of the air spring and amplifying the impact sound. Disclosed is a sound insulation floor structure that suppresses noise. However, the structure of Patent Document 1 is effective when the floor area is relatively small. However, when the floor area is large, the effect of removing air is relatively small, and the effect of blocking the impact sound cannot be expected. Moreover, since the clearance gap provided in the circumference | surroundings of the floor board 3 becomes a problem on an architectural design, there is also a problem that finishing of the circumference of the floor board 3 is difficult and time-consuming work is required. Recently, there is a tendency to increase the use of large slabs that can form large spaces without pillars and beams, and there is a need for heavy floor impact sound insulation technology that can be easily applied to double floors with large floor areas. .

比較的広い床面積の二重床にも適用可能な衝撃音遮断技術として、特許文献2は、支持脚10の弾性台座13の硬度を柔らかくすることにより重量床衝撃音の増幅を防止する方法を提案している。また特許文献3は、二重床構造の床板3と仕上げ材との間に金属粉末含有アスファルトシート等の質量の大きい制振遮音性シートを敷設し、二重床の共振系全体の質量や剛性を大きくすることで重量床衝撃音の増幅を防止する方法を提案している。   As an impact sound blocking technique applicable to a double floor having a relatively large floor area, Patent Document 2 discloses a method for preventing amplification of heavy floor impact sound by softening the hardness of the elastic base 13 of the support leg 10. is suggesting. Further, Patent Document 3 lays a large mass damping and sound insulation sheet such as a metal powder-containing asphalt sheet between the floor plate 3 having a double floor structure and the finishing material, and the mass and rigidity of the entire double floor resonance system. We propose a method to prevent amplification of heavy floor impact sound by increasing

特開2002−349052号公報JP 2002-349052 A 特開2003−268962号公報JP 2003-268932 A 特開平10−259658号公報Japanese Patent Laid-Open No. 10-259658 特開2000−179134号公報JP 2000-179134 A 永田穂編著「音響工学講座3『建築音響』第4章音響材料」コロナ社、1988年3月発行、p68-73Edited by Ho Nagata, “Acoustics Engineering Lecture 3, Architectural Acoustics, Chapter 4 Acoustic Materials”, Corona, March 1988, p68-73

後述する図8(A)に示すように二重床構造が理想的な一質点系の共振系を形成する場合は、特許文献2又は3の方法により共振周波数を十分低域にシフトさせることができるため、床衝撃音の遮断性能の向上が期待できる。しかし、前述したとおり実際の二重床の共振系は複雑であり、31.5〜250Hz程度の広帯域で重量床衝撃音の増幅が起こっているため、特許文献2及び3の方法では単純に共振周波数を十分低域にシフトさせることができず、重量床衝撃音の遮断性能を向上することが困難な場合がある。   When the double floor structure forms an ideal one-mass point resonance system as shown in FIG. 8A described later, the resonance frequency can be shifted to a sufficiently low range by the method of Patent Document 2 or 3. As a result, it is expected to improve the floor impact sound blocking performance. However, as described above, the actual double floor resonance system is complex, and the heavy floor impact sound is amplified in a wide band of about 31.5 to 250 Hz. Therefore, the methods of Patent Documents 2 and 3 simply set the resonance frequency. It may not be possible to shift to a sufficiently low range, and it may be difficult to improve the performance of blocking heavy floor impact sound.

また特許文献2の方法は、弾性台座13が柔らか過ぎると荷重印加時に床板3及び支持脚10の撓み(変位)が大きくなり、床板3の納まり部分のズレ・床板3上の家具等の傾きが発生してしまう。従って、共振周波数を十分な低域までシフトさせることができず、重量床衝撃音の遮断性能の向上を図ることは難しい。特許文献3の方法も、構造上の過大な負荷とならない常識的な範囲で制振遮音性シートの重量や剛性を大きくする程度では、二重床構造の共振周波数を十分低域にシフトさせることができず、重量床衝撃音の遮断に対応することができない。重量床衝撃音の増幅が起こる帯域は、構造物の主体構造や二重床の構造・構成等によって変わり得る。様々な構造物及び二重床に対応するためには、広帯域の重量床衝撃音を遮断できる必要がある。   In the method of Patent Document 2, if the elastic pedestal 13 is too soft, the bending (displacement) of the floor board 3 and the support leg 10 becomes large when a load is applied, and the displacement of the storage part of the floor board 3 and the inclination of the furniture on the floor board 3 and the like. Will occur. Accordingly, it is difficult to shift the resonance frequency to a sufficiently low range, and it is difficult to improve the performance of blocking heavy floor impact sound. The method of Patent Document 3 also shifts the resonance frequency of the double floor structure to a sufficiently low range as long as the weight and rigidity of the vibration-damping and sound-insulating sheet are increased within a common sense that does not cause an excessive load on the structure. It is not possible to cope with the interruption of heavy floor impact sound. The band in which the heavy floor impact sound is amplified can vary depending on the main structure of the structure, the structure / configuration of the double floor, and the like. In order to cope with various structures and double floors, it is necessary to be able to block broadband heavy-weight floor impact sounds.

そこで本発明の目的は、広帯域に亘り重量床衝撃音を遮断できる衝撃音遮断型二重構造を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide an impact sound cutoff type double structure capable of blocking a heavy floor impact sound over a wide band.

本発明者は、図7のような二重床構造において、損失をほとんど持たない空隙6(空気層)に減衰力を与え、二重床の共振系における床振動の伝達率を小さく抑えることに注目した。一般に、バネ定数k及び損失係数ηを有する弾性体(以下、粘弾性体という。)と質量mとで形成される一質点系のバネ−質量共振系は図8(A)のようにモデル化することができ、その振動伝達率Tは同図(B)のグラフのように表されることが知られている(非特許文献1参照)。   In the double floor structure as shown in FIG. 7, the inventor gives a damping force to the gap 6 (air layer) having almost no loss, and suppresses the floor vibration transmissibility in the double floor resonance system. noticed. In general, a one-mass spring-mass resonance system formed by an elastic body (hereinafter referred to as viscoelastic body) having a spring constant k and a loss coefficient η and a mass m is modeled as shown in FIG. It is known that the vibration transmissibility T can be expressed as shown in the graph of FIG.

図8(B)のグラフから分かるように、粘弾性体の損失係数ηが空気のように小さいときは、床衝撃音の周波数ωが二重床構造の共振周波数ω0とほぼ同じ場合(周波数比ω/ω0≒1の場合)に振動伝達率Tが大きくなって床衝撃音が増幅され、床衝撃音の周波数ωが共振周波数ω0よりも十分大きい場合(周波数比ω/ω0>21/2の場合)は振動伝達率Tが小さくなって床衝撃音が遮断される。特許文献2及び3の方法は、二重床構造の共振周波数ω0を低域側へシフトさせることにより、シフト前の共振周波数ω0に近い周波数ωの重量床衝撃音の振動伝達率Tを小さくする技術ということができる。ただし実際の二重床構造では、同図のモデルのように単独の共振周波数ω0のみで床衝撃音の増幅が起こるのではなく、上述したように広帯域で床衝撃音の増幅が発生する。 As can be seen from the graph of FIG. 8B, when the loss coefficient η of the viscoelastic body is as small as air, the frequency ω of the floor impact sound is almost the same as the resonance frequency ω 0 of the double floor structure (frequency When the ratio ω / ω 0 ≈1) and the vibration transmissibility T is increased and the floor impact sound is amplified, and the frequency ω of the floor impact sound is sufficiently larger than the resonance frequency ω 0 (frequency ratio ω / ω 0 > In the case of 2 1/2 ), the vibration transmissibility T becomes small and the floor impact sound is cut off. The method of Patent Document 2 and 3, by shifting the resonance frequency omega 0 of the double floor structure to the low frequency side, the vibration transmissibility T of heavy floor impact sounds of the frequency omega close to the resonance frequency omega 0 of the previous shift It can be said that the technology to make it smaller. However, in the actual double floor structure, the floor impact sound is not amplified only at the single resonance frequency ω 0 as in the model shown in the figure, but the floor impact sound is amplified in a wide band as described above.

空隙6に減衰力を与えて床衝撃音を遮断する従来方法として、例えば特許文献4が開示するように、二重床構造の空隙6にグラスウール・ロックウール等の繊維系多孔質の吸音材を敷き詰める方法が知られている。この方法では、例えば二重床構造の上階で発生した床衝撃音の空気振動(圧力変動)を、空隙6の多孔質吸音材の粘性摩擦によって吸音することにより遮断する。しかし本発明者等の経験によれば、多孔質吸音材は比較的高い周波数の音の遮断には有効であるが、低い周波数の音(重量床衝撃音)の遮断効果はあまり期待できない。特許文献4は吸音材の相互間に所定幅及び所定割合の通路を設けて重量床衝撃音の遮断効果の向上を図っているが、このような敷き詰め方の工夫がない場合は逆に二重床構造の重量床衝撃音が吸音材によって増幅される場合も経験されている。   As a conventional method for applying a damping force to the air gap 6 to block floor impact sound, for example, as disclosed in Patent Document 4, a fiber-based porous sound absorbing material such as glass wool and rock wool is used in the air gap 6 having a double floor structure. A method of spreading is known. In this method, for example, the air vibration (pressure fluctuation) of the floor impact sound generated on the upper floor of the double floor structure is blocked by absorbing the sound by the viscous friction of the porous sound absorbing material in the gap 6. However, according to the experience of the present inventors, the porous sound-absorbing material is effective in blocking a relatively high-frequency sound, but the effect of blocking a low-frequency sound (heavy floor impact sound) cannot be expected so much. In Patent Document 4, a predetermined width and a predetermined ratio of passages are provided between sound absorbing materials to improve the effect of blocking heavy floor impact sound. It has also been experienced when the heavy floor impact sound of a floor structure is amplified by a sound absorbing material.

図8(B)のグラフは、共振周波数ω0をシフトせずとも損失係数ηを大きくすることにより二重床構造の振動伝達率Tを小さくできることを示している。本発明者は、吸音材のように粘性摩擦によって二重床構造の空隙6に音響的な減衰力を与えるのではなく、図8のようにヤング率が空気層のそれと同等又はやや高く且つ損失係数ηが高い固体媒質の粘弾性材によって二重床構造の流体媒質の空隙6を置き換えて床基盤2とパネル材3とを力学的に結合すれば、広帯域で振動伝達率Tを小さく抑え、広帯域に亘り重量床衝撃音の遮断性能を高めることが期待できるとの知見を得た。本発明は、この知見に基づく研究開発の結果、完成に至ったものである。 The graph of FIG. 8B shows that the vibration transmissibility T of the double floor structure can be reduced by increasing the loss factor η without shifting the resonance frequency ω 0 . The present inventor does not give an acoustic damping force to the gap 6 having a double floor structure by viscous friction as in the sound absorbing material, but the Young's modulus is equal to or slightly higher than that of the air layer as shown in FIG. If the gap 6 of the fluid medium having a double floor structure is replaced by a solid medium viscoelastic material having a high coefficient η and the floor base 2 and the panel material 3 are mechanically coupled, the vibration transmissibility T can be kept small over a wide band. We obtained the knowledge that it is expected to improve the performance of blocking heavy floor impact sound over a wide band. The present invention has been completed as a result of research and development based on this finding.

図1の実施例を参照するに、本発明の衝撃音遮断型二重構造は、構造物の床基盤2の上又は下に空隙6(図7参照)を介してパネル材3を対向させて支持し、空隙6内に設けた損失係数ηが高く且つヤング率Eribが空気のそれと実質上同等又はやや高い粘弾性体8を介して床基盤2とパネル材3とを結合し、二重構造の共振周波数ω 0 が粘弾性体8の有無により実質上変化しないように二重構造の総床面積Aに対する粘弾性体の断面積s及び/又は粘弾性体群の個数nを調整してなるものである。好ましくは、空隙6内に柱状、錐台形(図5参照)、又は梁状(図2参照)の複数の粘弾性体8を設ける。 Referring to the embodiment of FIG. 1, the impact sound cutoff type double structure of the present invention is such that the panel material 3 is opposed to the floor base 2 of the structure via a gap 6 (see FIG. 7). supporting, loss factor provided in voids within 6 eta is high and the Young's modulus E, rib binds the floor foundation 2 and the panel member 3 via a substantially equal or slightly higher viscoelastic body 8 thereto of air, dual By adjusting the cross-sectional area s of the viscoelastic body and / or the number n of viscoelastic body groups with respect to the total floor area A of the double structure so that the resonance frequency ω 0 of the structure does not substantially change depending on the presence or absence of the viscoelastic body 8. It will be. Preferably, a plurality of viscoelastic bodies 8 having a columnar shape, a truncated cone shape (see FIG. 5), or a beam shape (see FIG. 2) are provided in the gap 6.

例えば、粘弾性体8の両端に床基盤2及びパネル材3を押圧することにより、床基盤2とパネル材3とを結合する。また図2に示すように、粘弾性体8の一端を厚みのある接着剤9により床基盤2又はパネル材3に固定し、接着剤9の厚さの調整により粘弾性体8を介して床基盤2とパネル材3とを結合してもよい。粘弾性体8は、発泡プラスチック、シリコンゴム、グラスウール又はロックウールの群から選択した1以上の材質製とすることができる。   For example, the floor base 2 and the panel material 3 are joined by pressing the floor base 2 and the panel material 3 to both ends of the viscoelastic body 8. Further, as shown in FIG. 2, one end of the viscoelastic body 8 is fixed to the floor base 2 or the panel material 3 with a thick adhesive 9, and the floor of the viscoelastic body 8 is adjusted via the adjustment of the thickness of the adhesive 9. The base 2 and the panel material 3 may be combined. The viscoelastic body 8 can be made of one or more materials selected from the group of foamed plastic, silicon rubber, glass wool or rock wool.

本発明の衝撃音遮断型二重構造は、構造物の床基盤の上又は下に空隙を介してパネル材を支持し、その空隙内に設けた損失係数ηが高くヤング率Eribが空気同等の粘弾性体を介して床基盤とパネル材とを結合し、二重構造の共振周波数ω 0 が粘弾性体の有無により実質上変化しないように二重構造の総床面積Aに対する粘弾性体の断面積s及び/又は粘弾性体群の個数nを調整するので、次の顕著な効果を奏する。 The impact sound insulation type double structure of the present invention supports the panel material via a gap above or below the floor base of the structure, and the loss coefficient η provided in the gap is high, and the Young's modulus E rib is equivalent to air The viscoelastic body with respect to the total floor area A of the double structure so that the floor base and the panel material are coupled via the viscoelastic body so that the resonance frequency ω 0 of the double structure does not substantially change depending on the presence or absence of the viscoelastic body. Since the cross-sectional area s and / or the number n of viscoelastic body groups is adjusted , the following remarkable effects are obtained.

(イ)粘弾性体によって重量床衝撃音の振動伝達率を小さく抑えるので、広帯域に亘る重量床衝撃音の遮断性能を高めることができる。
(ロ)また、従来の重量床衝撃音レベルの決定周波数であった63Hz帯だけでなく、それより低域の31.5Hz帯から250Hz帯までの広帯域の重量床衝撃音の遮断性能を向上できるので、構造物の主体構造や床構造等によって変わり得る様々な重量床衝撃音に適切に対応できる汎用的な二重構造とすることができる。
(ハ)粘弾性体のヤング率Eribを空気のそれと実質上同等又はやや高くすることにより、従来の二重床構造の持つ利点を損なうことなく重量床衝撃音の遮断性能を高めることができる。
(ニ)例えば、粘弾性体を柱状・錐台状又は梁状として床基盤とパネル材との間の空隙に適当に配置し、粘弾性体を床基盤及びパネル材に押圧又は接着する比較的簡単な作業で、広い床面積の二重構造も容易に施工できる。
(A) Since the vibration transmissibility of the heavy floor impact sound is suppressed by the viscoelastic body, it is possible to improve the performance of blocking the heavy floor impact sound over a wide band.
(B) In addition to the conventional 63Hz band, which is the determination frequency for heavy floor impact sound levels, it is possible to improve the performance of blocking heavy-weight floor floor impact sounds from the lower 31.5Hz to 250Hz bands. In addition, a general-purpose dual structure that can appropriately cope with various heavy floor impact sounds that can change depending on the main structure of the structure, the floor structure, and the like.
(C) By making the Young's modulus E rib of the viscoelastic body substantially equal to or slightly higher than that of air, it is possible to improve the performance of blocking heavy floor impact sound without impairing the advantages of the conventional double floor structure. .
(D) For example, a viscoelastic body is appropriately arranged in a gap between the floor base and the panel material in the form of a column, frustum or beam, and the viscoelastic body is relatively pressed and bonded to the floor base and the panel material. With a simple work, a double structure with a large floor area can be easily constructed.

(ホ)従来の二重床構造と同様に上部荷重を弾性台座付き支持脚によって支えることにより、歩行感の悪化や撓みによる家具の傾き等の問題を避けることができる。
(ヘ)従来の制振遮音性シートのように高価な材料でなく、発泡プラスチック等の安価な粘弾性材料を用いることにより、重量床衝撃音の遮断性能を経済的に高めることができる。
(ト)床基盤上方の二重床構造だけでなく、床基盤下方の天井構造に適用することも可能である。
(チ)近年増えつつある大型スラブにおける床先行の二重床(住戸内間仕切り壁に先行して床を施工する工法)に適用した場合は、粘弾性体と床基盤との結合が二重床表面の振動伝搬に対する拘束層付きの減衰機構として作用するため、同一住戸内において発生が懸念される二重床の体感振動を低減できる。
(E) By supporting the upper load with the support legs with the elastic base as in the conventional double floor structure, problems such as deterioration of walking feeling and inclination of furniture due to bending can be avoided.
(F) By using an inexpensive viscoelastic material such as foamed plastic instead of an expensive material as in the conventional vibration-damping and sound-insulating sheet, it is possible to economically improve the insulation performance of heavy floor impact sound.
(G) Not only the double floor structure above the floor base but also the ceiling structure below the floor base can be applied.
(H) When applied to a double floor in front of a floor in a large slab that has been increasing in recent years (a method of constructing a floor prior to a partition wall in a dwelling unit), the connection between the viscoelastic body and the floor base is a double floor. Since it acts as a damping mechanism with a constraining layer for vibration propagation on the surface, it is possible to reduce the double floor bodily sensation vibration that is likely to occur in the same dwelling unit.

図1は、この場合鉄筋コンクリート製である床基盤2上に本発明の二重床構造を構築した実施例を示す。図示例の二重床構造1は、床基盤2上に適当な間隔で設けた複数の支持脚10と、その支持脚10上に床基盤2と対向させて支持したパネル材(ベースパネル)3と、床基盤2とパネル材3の間の空隙6に介在して床基盤2とパネル材3とを結合する粘弾性体8とを有する。粘弾性体8は、空気層のそれと同等又はやや高いヤング率Eribと、高い損失係数ηとを有する。以下、図示例の二重床構造1に基づき本発明を説明するが、本発明は床構造への適用に限定されず、床基盤2の下方に空隙を介してパネル材3を対向させて支持した天井構造(以下、二重天井構造ということがある。)に適用することができる。二重天井構造に適用した場合も、パネル材3が床基盤2の下方に支持される点及び支持脚10が吊りボルトに置きかわる点等を除き、当業者であれば以下の説明が当てはまることを十分理解できるであろう。 FIG. 1 shows an embodiment in which the double floor structure of the present invention is constructed on a floor base 2 made of reinforced concrete in this case. The illustrated double floor structure 1 includes a plurality of support legs 10 provided on a floor base 2 at appropriate intervals, and a panel material (base panel) 3 supported on the support legs 10 so as to face the floor base 2. And a viscoelastic body 8 that couples the floor base 2 and the panel material 3 to be interposed in the gap 6 between the floor base 2 and the panel material 3. The viscoelastic body 8 has a Young's modulus E rib equal to or slightly higher than that of the air layer and a high loss factor η. Hereinafter, the present invention will be described based on the illustrated double floor structure 1, but the present invention is not limited to the application to the floor structure, and the panel material 3 is supported opposite to the floor base 2 through a gap. It can be applied to a ceiling structure (hereinafter sometimes referred to as a double ceiling structure). Even when applied to a double ceiling structure, those skilled in the art should apply the following explanations except that the panel material 3 is supported below the floor base 2 and the support legs 10 are replaced by suspension bolts. Will be fully understood.

図示例の支持脚10は、図7に示すように、高さ調節可能な脚部12と、その頂端に設けたパネル受け部11と、底端に設けた弾性台座13とを有する。図示例の二重床構造1は、床基盤2上に複数の支持脚10を均等に配置し、支持脚10の間に支持脚10よりわずかに高いリブ状粘弾性体8(以下、粘弾性リブ8ということがある。)を配置し、その支持脚10のパネル受け部11上にパネル材3を水平に設置して粘弾性リブ8と圧縮結合することにより、粘弾性リブ8を介して床基盤2とパネル材3とを結合したものである。必要に応じて、図示例のように根太部材5を設けてパネル受け部11上にパネル材3を設置してもよい。支持脚10によりパネル材3を床基盤2と対向させていわば点状に支持し、床基盤2及びパネル材3の支持された点以外の部位を粘弾性リブ8により結合する。ただし、パネル材3は支持脚10による支持に限定されず、従来技術に属する他の適当な支持部材を用いて支持することができる。パネル材3の材質にとくに制限はないが、一般的にはパーティクルボード製である。パネル材3上には、必要に応じて、フローリング材・絨毯・畳等の仕上げ材や遮音性シート等を敷設する。パネル材3や仕上げ材、遮音性シート等の上部荷重は、通常の二重床と同様に支持脚10等の支持部材で支える。   As shown in FIG. 7, the support leg 10 in the illustrated example includes a leg portion 12 that can be adjusted in height, a panel receiving portion 11 provided at the top end, and an elastic pedestal 13 provided at the bottom end. In the illustrated double floor structure 1, a plurality of support legs 10 are evenly arranged on a floor base 2, and a rib-like viscoelastic body 8 (hereinafter referred to as viscoelasticity) slightly higher than the support legs 10 between the support legs 10. Rib 8)), and the panel material 3 is placed horizontally on the panel receiving portion 11 of the supporting leg 10 and is compression-bonded to the viscoelastic rib 8 so that the viscoelastic rib 8 is interposed. The floor base 2 and the panel material 3 are combined. If necessary, the joist member 5 may be provided as in the illustrated example, and the panel member 3 may be installed on the panel receiving portion 11. The panel material 3 is opposed to the floor base 2 by the support legs 10 so as to be point-like, and parts other than the supported points of the floor base 2 and the panel material 3 are connected by the viscoelastic ribs 8. However, the panel material 3 is not limited to the support by the support legs 10 and can be supported by using another appropriate support member belonging to the prior art. Although there is no restriction | limiting in particular in the material of the panel material 3, Generally, it is a product made from a particle board. On the panel material 3, a flooring material, a carpet, a finishing material such as a tatami mat, a sound insulating sheet, or the like is laid as necessary. Upper loads such as the panel material 3, the finishing material, and the sound insulating sheet are supported by the support members such as the support legs 10 as in the case of a normal double floor.

図1で用いた粘弾性リブ8の拡大図を図5に示す。同図の粘弾性リブ8は、ヤング率Eribが空気のそれと同等かやや大きく且つ損失係数ηが高い粘弾性材料を角錐台又は円錐台状に成形したものであり、空隙6の幅より若干大きい高さを有する。この粘弾性リブ8は、底端が床基盤2上に載置され、頂端がパネル材3を設置する際にパネル材3の重量で押圧されて高さ方向に若干圧縮されることにより、床基盤2とパネル材3とに力学的に結合する。粘弾性リブ8を角錐台又は円錐台状とすることにより頂端の圧縮が容易になるが、粘弾性リブ8の総バネ定数が空気のそれと比して著しく大きく又は小さくならないように総床面積に対する粘弾性リブ8の総断面積及び/又は総数の割合を適切に設定すれば、粘弾性リブ8の形状に特に制限はなく、例えば粘弾性リブ8を角柱又は円柱状とすることも可能である。床基盤2とパネル材3とを対向配置する際に、二重床が粘弾性リブ8の反発力により浮き上がらないように例えば弾性台座13を床基盤2に接着すれば、その間の空隙6の幅より若干大きい高さの粘弾性リブ8を空隙6に挿入して床基盤2とパネル材3とを結合してもよい。 An enlarged view of the viscoelastic rib 8 used in FIG. 1 is shown in FIG. The viscoelastic rib 8 in the figure is formed by forming a viscoelastic material having a Young's modulus E rib equal to or slightly larger than that of air and having a high loss factor η into a truncated pyramid or truncated cone shape, and is slightly larger than the width of the gap 6. Has a large height. The viscoelastic rib 8 has a bottom end placed on the floor base 2 and a top end that is pressed by the weight of the panel material 3 when the panel material 3 is installed and is slightly compressed in the height direction. The substrate 2 and the panel material 3 are mechanically coupled. The viscoelastic rib 8 has a truncated pyramid shape or a truncated cone shape, so that compression of the top end is facilitated. However, the total spring constant of the viscoelastic rib 8 is not significantly larger or smaller than that of air. If the ratio of the total cross-sectional area and / or the total number of the viscoelastic ribs 8 is appropriately set, the shape of the viscoelastic ribs 8 is not particularly limited. For example, the viscoelastic ribs 8 may be prismatic or cylindrical. . When the floor base 2 and the panel material 3 are arranged to face each other, for example, by attaching an elastic base 13 to the floor base 2 so that the double floor does not rise due to the repulsive force of the viscoelastic rib 8, the width of the gap 6 therebetween The floor base 2 and the panel material 3 may be joined by inserting a viscoelastic rib 8 having a slightly larger height into the gap 6.

図2は、損失係数ηの粘弾性材料を梁状に成形した粘弾性リブ8の実施例を示す。この粘弾性リブ8は、底端(天井構造の場合は頂端)が適当な接着剤9により床基盤2上に固定され、頂端(天井構造の場合は底端)がパネル材3に押圧されることにより床基盤2とパネル材3とに力学的に結合する。例えば、梁状粘弾性リブ8の厚さを空隙6の幅より若干大きくし、図1の場合と同様にパネル材3の設置により若干圧縮させてパネル材3に押圧する。また、GLボンドやモルタル等の厚みのある湿式の接着剤9を用いることにより、粘弾性リブ8の厚さが空隙6の幅以下であっても接着剤9の厚さによって高さを調整し、粘弾性リブ8により床基盤2とパネル材3とを力学的に結合することができる。粘弾性リブ8の頂端を接着剤9でパネル材3に接着してもよい。この実施例から分かるように、粘弾性リブ8の総バネ定数が適切に設計されていれば、粘弾性リブ8の形状(例えば、粘弾性リブ8の幅や厚さ)は任意に選択できる。   FIG. 2 shows an embodiment of a viscoelastic rib 8 in which a viscoelastic material having a loss coefficient η is formed into a beam shape. The viscoelastic rib 8 has a bottom end (top end in the case of a ceiling structure) fixed on the floor base 2 by an appropriate adhesive 9 and a top end (bottom end in the case of a ceiling structure) pressed against the panel material 3. Thus, the floor base 2 and the panel material 3 are mechanically coupled. For example, the thickness of the beam-like viscoelastic rib 8 is made slightly larger than the width of the gap 6, and the panel material 3 is slightly compressed by the installation of the panel material 3 as in the case of FIG. Further, by using a thick wet adhesive 9 such as GL bond or mortar, the height is adjusted by the thickness of the adhesive 9 even if the thickness of the viscoelastic rib 8 is less than the width of the gap 6. The floor base 2 and the panel material 3 can be mechanically coupled by the viscoelastic rib 8. The top end of the viscoelastic rib 8 may be bonded to the panel material 3 with an adhesive 9. As can be seen from this embodiment, the shape of the viscoelastic rib 8 (for example, the width and thickness of the viscoelastic rib 8) can be arbitrarily selected if the total spring constant of the viscoelastic rib 8 is appropriately designed.

粘弾性リブ8は、床基盤2とパネル材3とを力学的に結合することにより、二重床の共振系に損失係数ηを付与する。損失係数ηが付与された二重床構造1の共振系は、上述した図8のようにモデル化することができ、損失係数ηに応じて二重床構造1の共振周波数ω0における重量床衝撃音の増幅(振動伝達率Tの増大)を小さく抑え、重量床衝撃音の遮断性能が高まる。遮断性能を高めるためには、粘弾性リブ8の損失係数ηを可能な限り高くすることが好ましく、望ましくは損失係数ηを0.4以上とする。また、粘弾性リブ8のヤング率Eribは空気のそれ(=1.4×105N/m2)と実質上同等又はやや高くなるように選択することが好ましく、空気のヤング率の5〜6倍の範囲内、例えば2×105〜9×105(N/m2)程度とすることが望ましい。粘弾性リブ8のヤング率Eribが空気に比して大き過ぎると、二重床構造1の共振周波数ω0が高域に変化して軽量床衝撃音に悪影響を及ぼすおそれがある。粘弾性リブ8を空気同等のヤング率Eribとすることにより、二重床構造1の共振周波数ω0を粘弾性リブ8がない場合から大きく変化させることなく、損失係数ηだけを高めた二重床構造1とすることができる。 The viscoelastic rib 8 mechanically couples the floor base 2 and the panel material 3 to give a loss factor η to the double floor resonance system. The resonance system of the double floor structure 1 to which the loss coefficient η is given can be modeled as shown in FIG. 8 described above, and the weight floor at the resonance frequency ω 0 of the double floor structure 1 according to the loss coefficient η. Amplification of impact sound (increase in vibration transmission rate T) is suppressed to a small level, and the performance of blocking heavy floor impact sound is enhanced. In order to improve the shut-off performance, it is preferable to increase the loss coefficient η of the viscoelastic rib 8 as much as possible. The Young's modulus E rib of the viscoelastic rib 8 is preferably selected so as to be substantially equal to or slightly higher than that of air (= 1.4 × 10 5 N / m 2 ). It is desirable to set it within a double range, for example, about 2 × 10 5 to 9 × 10 5 (N / m 2 ). If the Young's modulus E rib of the viscoelastic rib 8 is too large as compared with air, the resonance frequency ω 0 of the double floor structure 1 may change to a high range and adversely affect the lightweight floor impact sound. By setting the viscoelastic rib 8 to have a Young's modulus E rib equivalent to air, the resonance frequency ω 0 of the double floor structure 1 is increased only by the loss coefficient η without greatly changing from the case where the viscoelastic rib 8 is not provided. A heavy floor structure 1 can be obtained.

粘弾性リブ8の材質は上述した高い損失係数η及び空気と同等のヤング率Eribを有する適当なものを選択できるが、好ましい材質の一例は重量床衝撃音のような変位の大きい衝撃に対して高い損失係数を示す発泡ポリエチレンその他の発泡プラスチック、及びシリコンゴム等のシリコン系材料である。発泡プラスチックは、発泡倍率を変化させることでヤング率Eribを微調整することができる利点もある。また、粘弾性リブ8としてグラスウール・ロックウール等の繊維系多孔質材料を使用することも可能である。この場合、繊維系多孔質材料は床基盤2及びパネル材3と力学的に結合された力学的ダンピング材として使用され、特許文献4のように粘性摩擦によって衝撃音を吸収する音響ダンピング材として使用する場合とは重量床衝撃音の遮断作用が全く異なる。 As the material of the viscoelastic rib 8, an appropriate material having the above-described high loss factor η and Young's modulus E rib equivalent to air can be selected. However, an example of a preferable material is an impact with a large displacement such as a heavy floor impact sound. And foamed polyethylene and other foamed plastics that exhibit a high loss factor, and silicon-based materials such as silicon rubber. Foamed plastic also has an advantage that Young's modulus E rib can be finely adjusted by changing the expansion ratio. It is also possible to use a fibrous porous material such as glass wool or rock wool as the viscoelastic rib 8. In this case, the fiber-based porous material is used as a mechanical damping material that is mechanically coupled to the floor base 2 and the panel material 3, and is used as an acoustic damping material that absorbs impact sound by viscous friction as in Patent Document 4. This is completely different from the heavy floor impact sound blocking action.

二重床全体の重量床衝撃音の遮断性能を高めるためには、粘弾性リブ8を空隙6内に均一に配置することが望ましい。また、重量床衝撃音の遮断性能を高めるため、可能な限り多くの空隙6を粘弾性リブ8で置き換えることが好ましい。本発明者は、粘弾性リブ8をヤング率Eribが空気の5倍程度の発泡プラスチック製とした場合は、二重床構造1の総床面積の20%程度を粘弾性リブ8で置き換えることで、重量床衝撃音の遮断性能の向上に有効であることを実験的に確認することができた。 In order to improve the performance of blocking the heavy floor impact sound of the entire double floor, it is desirable to arrange the viscoelastic ribs 8 uniformly in the gap 6. Further, it is preferable to replace as many voids 6 as possible with viscoelastic ribs 8 in order to improve the performance of blocking heavy floor impact sound. The present inventor replaces about 20% of the total floor area of the double floor structure 1 with the viscoelastic rib 8 when the viscoelastic rib 8 is made of a foamed plastic whose Young's modulus E rib is about five times that of air. Thus, it was confirmed experimentally that it is effective in improving the performance of blocking heavy floor impact sound.

更に、本発明の二重床構造1において、ヤング率Eribが空気のそれよりやや高く且つ断面積sが均一な粘弾性リブ8(例えば円柱、四角柱等)を用いる場合は、二重床構造1の共振周波数ω0が粘弾性リブ8の有無により実質上大きく変化しないように、二重床構造1の総床面積Aに応じて粘弾性リブ8の断面積s及び/又は粘弾性リブ群の個数nを調整することができる。実用的には、ヤング率Eribの粘弾性リブ8を用いた二重床構造1の共振周波数ω0は(1)式の右辺と対応すると考えられるので、(1)式の関係式を大きく外れないように粘弾性リブ8の断面積s及び個数nを決定すればよい。(1)式においてρ0は空隙6の空気の密度を表し、c0は空気中の音速を表す。 Furthermore, in the double floor structure 1 of the present invention, when a viscoelastic rib 8 (for example, a cylinder, a square pillar, etc.) having a Young's modulus E rib slightly higher than that of air and a uniform cross-sectional area s is used, a double floor is used. The cross-sectional area s and / or the viscoelastic ribs of the viscoelastic ribs 8 depends on the total floor area A of the double floor structure 1 so that the resonance frequency ω 0 of the structure 1 does not change substantially depending on the presence or absence of the viscoelastic ribs 8. The number n of groups can be adjusted. Practically, the resonance frequency ω 0 of the double floor structure 1 using the viscoelastic rib 8 with Young's modulus E rib is considered to correspond to the right side of the equation (1). What is necessary is just to determine the cross-sectional area s and the number n of the viscoelastic rib 8 so that it may not remove | deviate. In equation (1), ρ 0 represents the density of air in the gap 6 and c 0 represents the speed of sound in the air.

Figure 0004301408
Figure 0004301408

[実験例1]
本発明の二重構造による床衝撃音の遮断効果を確認するため、図1に示す二重床構造1の試験体を製作し、併せて床基盤2のみの試験体及び粘弾性リブ8のない試験体を製作し、図6に示すように階上の音源室(上層室)21と階下の受音室(下層室)22とに区画された実験棟20を用いて床衝撃音の遮断効果を比較する実験を行った。床基盤2のみの試験体は、表1に示す厚さの床基盤2を用いた。粘弾性リブ8のない試験体は、表1に示す厚さの床基盤2及びパネル材3を同表に示す空隙6の幅で対向させて支持脚10により支持し、パネル材3上に同表に示す厚さの仕上げ材(フローリング材)及び遮音性シートを敷設して製作した。本発明の二重床構造1の試験体は、粘弾性リブ8のない試験体の空隙6に、損失係数η=0.2、ヤング率Erib=5×105(N/m2)の発泡プラスチック製粘弾性リブ8を、その水平断面積の総計が総床面積のおよそ20%となるように配置して製作した。
[Experiment 1]
In order to confirm the effect of blocking the floor impact sound by the double structure of the present invention, a test body of the double floor structure 1 shown in FIG. 1 is manufactured, and the test body of the floor base 2 only and the viscoelastic rib 8 are not provided. A test specimen was manufactured, and the floor impact sound was blocked using the test building 20 divided into a sound source room (upper room) 21 and a lower sound receiving room (lower room) 22 as shown in FIG. The experiment which compares was conducted. As the test body having only the floor base 2, the floor base 2 having the thickness shown in Table 1 was used. The test body without the viscoelastic rib 8 is supported by the support leg 10 with the floor base 2 and the panel material 3 having the thickness shown in Table 1 facing each other with the width of the gap 6 shown in the same table. A finishing material (flooring material) having a thickness shown in the table and a sound insulating sheet were laid. The specimen of the double floor structure 1 of the present invention is a foamed plastic having a loss factor η = 0.2 and Young's modulus E rib = 5 × 10 5 (N / m 2 ) in the gap 6 of the specimen without the viscoelastic rib 8. The viscoelastic ribs 8 were arranged so that the total horizontal sectional area was approximately 20% of the total floor area.

Figure 0004301408
Figure 0004301408

床基盤2のみの試験体、粘弾性リブ8のない二重床構造試験体、及び本発明の二重床構造試験体をそれぞれ図6の実験棟20の上層室21と下層室22との間に設置し、上層室21で床衝撃音発生器23(軽量床衝撃音発生用のタッピングマシーン又は重量床衝撃音発生用のバングマシーン)によりパネル材3又は床基盤2を打撃し、発生した床衝撃音の音圧レベルを下層室22のマイクロフォン24で測定し、受音装置25で解析した。床衝撃音レベルの測定方法は、JISA1418(建築物の現場における床衝撃音レベルの測定方法)の規定に準じて行った。実験結果を図3及び図4のグラフに示す。図3は3つの試験体の軽量床衝撃音の遮断性能の実験結果、図4は重量床衝撃音の遮断性能の実験結果を示す。実験結果は、下層室22の複数箇所で測定した音圧レベルの平均値を示す。   A test body having only the floor base 2, a double floor structure test body without the viscoelastic rib 8, and a double floor structure test body of the present invention are placed between the upper chamber 21 and the lower chamber 22 of the experimental building 20 in FIG. The floor generated by striking the panel material 3 or the floor base 2 with the floor impact sound generator 23 (tapping machine for generating lightweight floor impact sound or bang machine for generating heavy floor impact sound) in the upper chamber 21 The sound pressure level of the impact sound was measured by the microphone 24 in the lower chamber 22 and analyzed by the sound receiving device 25. The floor impact sound level was measured in accordance with JIS A1418 (method for measuring floor impact sound level at the building site). The experimental results are shown in the graphs of FIGS. FIG. 3 shows the experimental results of the performance of blocking the lightweight floor impact sound of the three specimens, and FIG. 4 shows the experimental results of the performance of blocking the heavy floor impact sound. The experimental result indicates an average value of sound pressure levels measured at a plurality of locations in the lower chamber 22.

図4の実験結果から、床基盤2のみの試験体に対する二重床構造試験体の重量床衝撃音レベルの増幅量は、粘弾性リブ8のない二重床構造試験体に比し、本発明の二重床構造試験体では63Hz帯域において1.5dB、125Hz帯域において5dB、250Hz帯域において4.2dB程度改善していることが分かる。すなわち、本発明の二重床構造1により、共振周波数の重量床衝撃音の増幅を小さく抑え、重量床衝撃音の遮断効果を広帯域に亘って向上できることが確認できた。本実験で用いた二重床構造は、粘弾性リブがない場合においても31.5〜63Hz帯域の増幅がなかったため、31.5〜63Hz帯域において粘弾性リブの効果が顕著に表れなかったが、一般の二重床構造では31.5〜63Hz帯域で重量床衝撃音が増幅することが多く、本発明の二重床構造1はそのような31.5〜63Hz帯域の増幅にも同様に作用すると推測できる。更に図3の実験結果は、本発明の二重床構造試験体による軽量床衝撃音レベルが、粘弾性リブ8のない二重床構造試験体と同等か又はそれ以上であることを示している。すなわち、本発明の二重床構造1により、従来の二重床構造と同等以上の軽量床衝撃音の遮蔽性能が得られることが確認できた。   From the experimental results of FIG. 4, the amplification amount of the heavy floor impact sound level of the double floor structure test body with respect to the test body having only the floor base 2 is larger than that of the double floor structure test body without the viscoelastic rib 8. It can be seen that the double-floor structure test specimen improved by 1.5 dB in the 63 Hz band, 5 dB in the 125 Hz band, and 4.2 dB in the 250 Hz band. In other words, it was confirmed that the double floor structure 1 of the present invention can suppress the amplification of the heavy floor impact sound at the resonance frequency and improve the blocking effect of the heavy floor impact sound over a wide band. In the double floor structure used in this experiment, there was no amplification in the 31.5 to 63 Hz band even when there was no viscoelastic rib, so the effect of the viscoelastic ribs did not appear significantly in the 31.5 to 63 Hz band. In the heavy floor structure, the heavy floor impact sound is often amplified in the 31.5 to 63 Hz band, and it can be assumed that the double floor structure 1 of the present invention similarly acts on such amplification in the 31.5 to 63 Hz band. Further, the experimental results in FIG. 3 show that the light floor impact sound level of the double floor structure test body of the present invention is equal to or higher than that of the double floor structure test body without the viscoelastic ribs 8. . That is, it has been confirmed that the double floor structure 1 of the present invention can provide a light floor impact sound shielding performance equivalent to or higher than that of the conventional double floor structure.

こうして本発明の目的である「広帯域に亘り重量床衝撃音を遮断できる衝撃音遮断型二重構造」の提供を達成できる。   Thus, the provision of the “impact sound blocking type double structure capable of blocking heavy floor impact sound over a wide band”, which is an object of the present invention, can be achieved.

本発明の一実施例の説明図である。It is explanatory drawing of one Example of this invention. 本発明の他の実施例の説明図である。It is explanatory drawing of the other Example of this invention. 本発明の二重床構造による軽量床衝撃音の遮断性能を示すグラフの一例である。It is an example of the graph which shows the interruption | blocking performance of the lightweight floor impact sound by the double floor structure of this invention. 本発明の二重床構造による重量床衝撃音の遮断性能を示すグラフの一例である。It is an example of the graph which shows the interruption | blocking performance of the heavy floor impact sound by the double floor structure of this invention. 本発明で用いる粘弾性リブの一例の説明図である。It is explanatory drawing of an example of the viscoelastic rib used by this invention. 床衝撃音の遮断性能を計測する実験装置の説明図である。It is explanatory drawing of the experimental apparatus which measures the interruption | blocking performance of a floor impact sound. 床基盤上にパネル材を支持する支持脚の一例の説明図である。It is explanatory drawing of an example of the support leg which supports a panel material on a floor base. 弾性k及び損失係数ηを有する粘弾性体と質量mとで構成されたバネ−質量共振系の振動伝達率の説明図である。It is explanatory drawing of the vibration transmissibility of the spring-mass resonance system comprised with the viscoelastic body which has the elasticity k and loss factor (eta), and the mass m.

符号の説明Explanation of symbols

1…二重構造 2…床基盤(スラブ)
3…パネル材(床板)
5…根太部材 6…空隙
8…粘弾性体(リブ) 9…接着剤
10…支持脚 11…パネル受け部
12…脚部 13…弾性台座
20…実験棟 21…上層室(音源室)
22…下層室(受音室) 23点衝撃音発生器
24…マイクロフォン 25…受音装置
1 ... Double structure 2 ... Floor base (slab)
3. Panel material (floor board)
5 ... joist member 6 ... void 8 ... viscoelastic body (rib) 9 ... adhesive
10 ... Support legs 11 ... Panel receiver
12 ... Leg 13 ... Elastic base
20… Experiment building 21… Upper room (sound source room)
22… Lower chamber (sound receiving room) 23 point impact sound generator
24 ... Microphone 25 ... Sound receiver

Claims (6)

構造物の床基盤の上又は下に空隙を介してパネル材を対向させて支持し、前記空隙内に設けた損失係数が高く且つヤング率が空気のそれと実質上同等又はやや高い粘弾性体を介して床基盤とパネル材とを結合し、二重構造の共振周波数が粘弾性体の有無により実質上変化しないように二重構造の総床面積に対する粘弾性体の断面積及び/又は粘弾性体群の個数を調整してなる衝撃音遮断型二重構造。 A panel material is supported on or under the floor base of the structure via a gap, and a viscoelastic body having a high loss coefficient and a Young's modulus substantially equal to or slightly higher than that of air is provided in the gap. The viscoelastic body cross-sectional area and / or viscoelasticity with respect to the total floor area of the double structure so that the resonance frequency of the double structure does not substantially change depending on the presence or absence of the viscoelastic body. Impact sound insulation type double structure by adjusting the number of body groups . 請求項1の二重構造において、前記空隙内に柱状、錐台形、又は梁状の複数の粘弾性体を設けてなる衝撃音遮断型二重構造。 The double structure according to claim 1, wherein a plurality of columnar, frustum-shaped, or beam-shaped viscoelastic bodies are provided in the gap. 請求項1又は2の二重構造において、前記粘弾性体の両端に床基盤及びパネル材を押圧してなる衝撃音遮断型二重構造。 The double structure of Claim 1 or 2 WHEREIN: The impact sound cutoff type | mold double structure formed by pressing a floor base | substrate and a panel material to the both ends of the said viscoelastic body. 請求項1又は2の二重構造において、前記粘弾性体の一端を厚みのある接着剤により床基盤又はパネル材に固定し、前記接着剤の厚さの調整により粘弾性体を介して床基盤とパネル材とを結合してなる衝撃音遮断二重構造。 3. The double structure according to claim 1 or 2, wherein one end of the viscoelastic body is fixed to a floor base or a panel material with a thick adhesive, and the floor base is interposed via the viscoelastic body by adjusting the thickness of the adhesive. Double structure that cuts off the impact sound by combining the panel material. 請求項1から4の何れかの二重構造において、前記粘弾性体を発泡プラスチック、シリコンゴム、グラスウール又はロックウールの群から選択した1以上の材質製としてなる衝撃音遮断型二重構造。 The double structure according to any one of claims 1 to 4, wherein the viscoelastic body is made of one or more materials selected from the group consisting of foamed plastic, silicon rubber, glass wool, and rock wool. 請求項1から5の何れかの二重構造において、前記粘弾性体を損失係数が0.4以上でヤング率が2×10 5 〜9×10 5 (N/m 2 )のものとしてなる衝撃音遮断型二重構造。 In any of the double structure of claims 1 to 5, impact loss factor the viscoelastic body is formed by a Young's modulus of 2 × 10 5 ~9 × 10 5 (N / m 2) at least 0.4 Sound insulation type double structure.
JP2004210609A 2004-07-16 2004-07-16 Impact sound insulation type double structure Expired - Fee Related JP4301408B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004210609A JP4301408B2 (en) 2004-07-16 2004-07-16 Impact sound insulation type double structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004210609A JP4301408B2 (en) 2004-07-16 2004-07-16 Impact sound insulation type double structure

Publications (2)

Publication Number Publication Date
JP2006028931A JP2006028931A (en) 2006-02-02
JP4301408B2 true JP4301408B2 (en) 2009-07-22

Family

ID=35895620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004210609A Expired - Fee Related JP4301408B2 (en) 2004-07-16 2004-07-16 Impact sound insulation type double structure

Country Status (1)

Country Link
JP (1) JP4301408B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102177760B1 (en) * 2019-12-17 2020-11-11 한국철도기술연구원 Sectional sound insulation panel using compressed cork

Also Published As

Publication number Publication date
JP2006028931A (en) 2006-02-02

Similar Documents

Publication Publication Date Title
JP6308770B2 (en) Construction method of hollow double wall
JP4901220B2 (en) Double structure of structure and construction method of double structure
JP4413344B2 (en) Soundproof floor structure
JP4301408B2 (en) Impact sound insulation type double structure
KR102338176B1 (en) Noise Absorption Structure Of Slab Concrete
JP5178937B2 (en) Sound insulation double floor and building
JPH10183805A (en) Soundproof double floor
JP4090835B2 (en) Soundproof floor structure
KR20190131675A (en) Floor structure for reducing impact noise
KR102351520B1 (en) Double Basement System for Preventing Noise of Apartment Housing
JP7207901B2 (en) Impact noise reduction structure and impact noise reduction method
WO2011133126A1 (en) Vibration-isolating fixing means for a floating floor
EP3235974B1 (en) A building part with high sound insulation performance
JP2778713B2 (en) Floor structure
JP4152993B2 (en) Sound insulation floor
JP2001132151A (en) Floor structure
JP2005307437A (en) Sound insulating structure for building
JP2007205152A (en) Sound insulating double-floor structure
JP2003027725A (en) Sound-insulating floor structure and its execution method
JP2022043931A (en) Vibration control floating floor
JP2024056420A (en) Floor structure, method of constructing floor structure, and building
JP4287874B2 (en) Sound insulation structure of building floor
JPH06322957A (en) Floor structure
JP2021143545A (en) Dry type double floor structure
JP2003096962A (en) Floor structure of building

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090415

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090415

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4301408

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150501

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees