JP2007186204A - Rudder for ship - Google Patents

Rudder for ship Download PDF

Info

Publication number
JP2007186204A
JP2007186204A JP2007069025A JP2007069025A JP2007186204A JP 2007186204 A JP2007186204 A JP 2007186204A JP 2007069025 A JP2007069025 A JP 2007069025A JP 2007069025 A JP2007069025 A JP 2007069025A JP 2007186204 A JP2007186204 A JP 2007186204A
Authority
JP
Japan
Prior art keywords
rudder
shape
width
cross
rear end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007069025A
Other languages
Japanese (ja)
Inventor
Keiichi Yamazaki
啓市 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universal Shipbuilding Corp
Original Assignee
Universal Shipbuilding Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universal Shipbuilding Corp filed Critical Universal Shipbuilding Corp
Priority to JP2007069025A priority Critical patent/JP2007186204A/en
Publication of JP2007186204A publication Critical patent/JP2007186204A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a rudder shape having high lift and suppressing increase in rudder resistance as small as possible. <P>SOLUTION: In the rudder shape, a front edge portion of a rudder body in a horizontal section has an arc shape or its similar shape. The sectional width gradually increases toward a rear direction of the rudder body, reaches the maximum width, and then, gradually decreases while changing from an outwardly projecting shape to an outwardly gently recessed shape. In addition, the rudder shape has a linear portion formed by approximately linear lines continuing to a rear end of finite width. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、船舶用の舵に関し、特に高い舵力を発生することで船舶の操縦性能を向上させることができ、かつ、推進性能の劣化のない舵に関する。   The present invention relates to a rudder for a ship, and more particularly to a rudder that can improve the maneuvering performance of a ship by generating a high rudder force and that does not deteriorate the propulsion performance.

従来技術の代表的な舵の断面形状として、NACA(National Advisory Committee for Aeronautics)の対称翼型がある。この舵の断面形状の一例として、最大舵厚位置から前方を5等分し、後方を7等分して、それら13点における舵厚を最大舵厚との比であらわし、前縁端から順に0.0,0.6,0.820,0.937,0.988,1.000,0.882,0.761,0.611,0.438,0.222,0.0となる舵形状がある。図12に、この舵本体10の翼長を1、最大舵厚Tmaxを翼長の18%、最大舵厚位置を前縁端10Aから翼長の36%とした形状を示す。以降、この技術を「従来技術1」と記述する。   As a typical cross-sectional shape of a rudder in the prior art, there is a symmetrical airfoil of NACA (National Advisory Committee for Aeronautics). As an example of the cross-sectional shape of this rudder, divide the front from the maximum rudder thickness position into five equal parts, divide the rear into seven equal parts, express the rudder thickness at those 13 points as a ratio to the maximum rudder thickness, and in order from the front edge Rudder with 0.0, 0.6, 0.820, 0.937, 0.988, 1.000, 0.882, 0.761, 0.611, 0.438, 0.222, 0.0 There is a shape. FIG. 12 shows a shape in which the rudder body 10 has a blade length of 1, the maximum rudder thickness Tmax is 18% of the blade length, and the maximum rudder thickness position is 36% of the blade length from the leading edge 10A. Hereinafter, this technique is referred to as “conventional technique 1”.

また、高揚力舵に関する従来技術としては、特許文献1がある。この舵は舵の水平断面形状をちょうど魚を横から見た形状にすることで、高揚力を得ようとするものである。この舵は図13に示すようなものであり、プロペラ直径をDとおいたとき、舵本体20の船首尾方向の全長Cが0.60〜0.62Dとされた舵であって、舵本体20の水平断面輪郭が魚を横から見たような形状をなし、魚体に相当する断面流線型をなす前方部20Aの、後方部20Bとの境界20Cより広がるスロープ角αが側角10〜12゜、魚尾部に相当する後方部20Bの、前方部20Aとの境界20Cより広がるテール角βが側角4〜6゜とされ、舵本体20の頂底端面に幅が0.4Cの端板21、22が取り付けられ、かつ底端板22の両側縁のみが15度の角度で下方へ折り曲げられてなり、魚体部に相当する断面流線型をなす前方部20Aの長さC1 が0.8C、魚尾部に相当する後方部20Bの長さC2 が0.2Cとされたものである。以降、この技術を「従来技術2」と記述する。 Moreover, there exists patent document 1 as a prior art regarding a high lift rudder. This rudder is intended to obtain high lift by making the horizontal cross-sectional shape of the rudder exactly the shape of a fish viewed from the side. This rudder is as shown in FIG. 13, and when the propeller diameter is set to D, the total length C in the fore-and-aft direction of the rudder body 20 is 0.60 to 0.62D. The horizontal cross-sectional profile of the fish has a shape as seen from the side of the fish, and the slope angle α extending from the boundary 20C with the rear portion 20B of the front portion 20A having a streamlined cross-section corresponding to the fish body is 10 to 12 ° side angle, A tail angle β extending from the boundary 20C with the front part 20A of the rear part 20B corresponding to the fish tail part is set to a side angle of 4 to 6 °, and an end plate 21 having a width of 0.4C on the top end face of the rudder body 20; 22 is attached, and only both side edges of the bottom end plate 22 are bent downward at an angle of 15 degrees, and the length C 1 of the front portion 20A having a streamlined cross section corresponding to the fish body portion is 0.8C. the length C 2 of the rear portion 20B is a 0.2C equivalent to parts Than is. Hereinafter, this technique is referred to as “conventional technique 2”.

この他に、従来技術としては特許文献2がある。この舵は図14に示すようなものであり、舵がプロペラ後流の加速流中にあることを考慮して、舵本体30の水平断面形状(実線で示す舵形状)を、従来の流線形状(点線で示す舵形状)に比較して頭部をより丸く、尾部をより細くすることに着目し、舵本体30の前縁端30Aからの長さXの全長Cに対する割合をX/Cとし、最大厚さTmaxに対する、X/Cの部位での水平断面における厚さTの割合をT/Tmaxとし、T/Tmaxの1/2をYとしたときに、0.25≦Y≦0.33(X/C=0.05)、0.35≦Y≦0.43(X/C=0.1)、0.11≦Y≦0.17(X/C=0.8)、0.03≦Y≦0.08(X/C=0.9)とするものである。以降、この技術を「従来技術3」と記述する。   In addition, there is Patent Document 2 as a conventional technique. This rudder is as shown in FIG. 14, and in consideration of the fact that the rudder is in the accelerating flow behind the propeller, the horizontal cross-sectional shape (the rudder shape shown by a solid line) of the rudder main body 30 is changed to the conventional streamline. Focusing on making the head more round and the tail thinner than the shape (the rudder shape shown by the dotted line), the ratio of the length X from the front edge 30A of the rudder body 30 to the total length C is expressed as X / C. When the ratio of the thickness T in the horizontal section at the X / C portion to the maximum thickness Tmax is T / Tmax, and 1/2 of T / Tmax is Y, 0.25 ≦ Y ≦ 0 .33 (X / C = 0.05), 0.35 ≦ Y ≦ 0.43 (X / C = 0.1), 0.11 ≦ Y ≦ 0.17 (X / C = 0.8), 0.03 ≦ Y ≦ 0.08 (X / C = 0.9). Hereinafter, this technique is referred to as “conventional technique 3”.

特開平10−297593号公報JP 10-297593 A 特開2000−280984号公報JP 2000-280984 A

2次元翼がある角度(迎角)をもって一様流中に置かれたとき、流れが当たる側をface面、その反対側をback面と一般的にいう。図15に、揚力Lと抗力Dとともにそれらの定義を示す。   When a two-dimensional wing is placed in a uniform flow at an angle (attack angle), the side on which the flow strikes is generally called the face surface, and the opposite side is called the back surface. FIG. 15 shows the definitions of lift L and drag D along with their definitions.

図12に示される従来技術1は、前縁端10Aから舵の断面幅が増加し最大舵厚Tmaxに達し、その後、舵厚(断面幅)は外側に凸の形状を保ちながら緩やかに減少し、後端で閉じる形状をなしている。このような水平断面形状をもつ一般的な舵では、舵の後半部で発生する揚力は小さい。それは、後半部が外側に凸の形状で緩やかに断面幅が減少するために、特にface面で見られる現象だが、最大舵厚以降での流速変化がほとんどないことに起因する。それを検証するために、図12に示す形状をもつ2次元翼に8゜の迎角で一様流が当たる場合について、CFD(数値流体力学)解析をフルーエント社製の汎用CFDコード、Fluent Ver.5のプログラムを用いて実施した。設定レイノルズ数は6.0×106である。このときの、翼断面の圧力分布とそれによって引き起こされる揚力分布を図16に示す。図16の横軸はX/C(但し、Xは舵の前縁端からの長さ、Cは舵の水平断面中心線上の全長)、縦軸は圧力分布と揚力分布の圧力係数である。また、同図の下側には参考のため図12の舵形状の半分を付記してある。   In the prior art 1 shown in FIG. 12, the cross-sectional width of the rudder increases from the front edge 10A to reach the maximum rudder thickness Tmax, and then the rudder thickness (cross-sectional width) gradually decreases while maintaining a convex shape on the outside. The shape is closed at the rear end. In a general rudder having such a horizontal cross-sectional shape, the lift generated in the latter half of the rudder is small. This is due to the fact that the latter half is convex outward and the cross-sectional width gradually decreases, so this phenomenon is seen especially on the face, but there is almost no change in flow velocity after the maximum rudder thickness. To verify this, CFD (computational fluid dynamics) analysis was performed on a two-dimensional wing having the shape shown in FIG. 12 at an angle of attack of 8 °. It was carried out using the program of .5. The set Reynolds number is 6.0 × 10 6. FIG. 16 shows the pressure distribution on the blade cross section and the lift distribution caused thereby. The horizontal axis in FIG. 16 is X / C (where X is the length from the front edge of the rudder, C is the total length on the horizontal section center line of the rudder), and the vertical axis is the pressure coefficient of the pressure distribution and the lift distribution. Further, for reference, half of the rudder shape in FIG.

流れの当たるface面では、前縁端付近で圧力が正のピーク値をもち最大幅の近くまで減少を続け、その後はほぼ一定の値をもつことが分かる。圧力は、その点の流速が速いほど低い値をもち、流速が遅いほど高い値となることから、face面の前縁端付近で流速が急激に低下し、その後最大幅付近まで増速するが最大幅位置を過ぎると流速変化がなくなり、ほぼ一定の速さで流れていくことが理解される。
一方、back面では、前縁端付近でface面からの流れ込みにより流速が非常に大きくなるため、圧力が大きな負のピーク値をもち、その後、後端まで徐々に流速が低下してゆき圧力が上がり続け、前縁端から85%(横軸で0.85)の付近でface面と同じ圧力になってしまう。
すなわち、face側で最大幅位置以降の流速変化がないため、face面の圧力の上昇がなく、その分back面との圧力差で生じる揚力が小さくなるのである。この現象は、一様流の代わりにプロペラ後流が当たった場合でも同様である。
It can be seen that on the face surface where the flow hits, the pressure has a positive peak value near the front edge and continues to decrease to near the maximum width, and thereafter has a substantially constant value. The pressure has a lower value as the flow velocity at that point is faster, and becomes higher as the flow velocity is slower, so the flow velocity suddenly decreases near the front edge of the face surface, and then increases to near the maximum width. It will be understood that when the maximum width position is passed, there is no change in flow velocity, and the flow proceeds at a substantially constant speed.
On the other hand, on the back surface, the flow velocity becomes very large due to the inflow from the face surface near the front edge, so the pressure has a large negative peak value, and then the flow velocity gradually decreases to the rear edge, and the pressure increases. It continues to rise and reaches the same pressure as the face surface in the vicinity of 85% (0.85 on the horizontal axis) from the front edge.
That is, since there is no flow velocity change after the maximum width position on the face side, there is no increase in pressure on the face surface, and the lift generated by the pressure difference with the back surface is reduced accordingly. This phenomenon is the same even when the propeller wake flows instead of the uniform flow.

従来技術2では、舵水平断面の後方部を魚のヒレのように広がった形状とすることで高揚力を得ようとするものである。これはプロペラの後流が舵に当たって舵面に沿って流れる際、後方部のヒレにおいて流れが偏流させられるために、特に舵のface面(流れが当たる側)のヒレのくびれの部分で圧力が高くなり、結果として揚力が大きくなる。しかし、この揚力を高くするためのヒレの存在は、その後端部が大きな幅を有することで渦の放出量を大きくすることにつながり、舵が流体から受ける抵抗を過大なものとし、船舶の推進性能を悪化させる原因となっている。従来技術2の特許文献1に記載されたA舵は、推進性能への影響の改善を図るために、テール角を小さくすることでヒレの幅を小さくして渦抵抗を減少させたり、舵コード長/プロペラ直径比(C/D)を0.6程度と小さくすることで対応している。しかし、このような改善のための手段は、舵面積(舵本体の可動部分の側面投影面積のことであり、以下特に断らない限り「舵面積」と略記する。)がプロペラの大きさに制約を受けることと等価で、プロペラ直径で舵形状と舵面積が決定されてしまうため、船に必要な舵力を提供できない場合が発生する可能性があり、大きな問題を抱えていることになる。   In the prior art 2, a high lift is obtained by making the rear part of the horizontal cross section of the rudder widened like a fish fin. This is because when the wake of the propeller hits the rudder and flows along the rudder surface, the flow is deviated in the fins on the rear side, so the pressure is especially at the fin constriction on the face surface (the side where the flow strikes) of the rudder. As a result, the lift increases. However, the presence of fins for increasing the lift force increases the amount of vortex shedding due to the large width at the rear end, making the rudder excessively resisted by the fluid and propelling the ship. This is a cause of deterioration in performance. In order to improve the influence on propulsion performance, the A rudder described in Patent Document 1 of Prior Art 2 reduces the vortex resistance by reducing the fin width by reducing the tail angle. This is achieved by reducing the length / propeller diameter ratio (C / D) to about 0.6. However, the means for such improvement is that the rudder area (the side projection area of the movable part of the rudder main body, hereinafter abbreviated as “rudder area” unless otherwise specified) is limited to the size of the propeller. Since the rudder shape and rudder area are determined by the propeller diameter, there is a possibility that the rudder force necessary for the ship cannot be provided, which has a big problem.

舵形状自体の性能を調べるためには、特許文献1に示されているように舵角対揚力係数と舵角対抗力係数の図を見ればよい。それらを、図17および図18に示す。これらの2つの係数は舵面積で無次元化されているため、舵の断面形状そのものの優劣を示す結果と同等である。図17の舵角10゜におけるA舵、B舵、E舵の揚力係数は、上述の従来技術1に相当するM舵の1.4倍と大きいが、反面、図18に示す舵の抗力係数も、M舵よりはるかに大きいことが分かり、上述の利点と欠点を物語っている。さらに、この技術には構造強度上の問題がある。すなわち、舵後端部の魚のヒレ部の直前に舵幅の非常に薄い部分があるが、この舵形状ではそのヒレ部分に大きな揚力が発生するため、この薄い部分には過大な曲げモーメントがかかる。従って、大型船舶への適用には構造強度上の問題がある。また、魚のヒレ部とその直前の幅の非常に薄い部分の製作には高度な製作技術が必要となる。   In order to examine the performance of the rudder shape itself, as shown in Patent Document 1, it is only necessary to look at the diagram of the rudder angle versus lift coefficient and the rudder angle resistance coefficient. They are shown in FIG. 17 and FIG. Since these two coefficients are made dimensionless by the rudder area, they are equivalent to the result showing the superiority or inferiority of the cross-sectional shape of the rudder itself. The lift coefficient of A rudder, B rudder, and E rudder at a rudder angle of 10 ° in FIG. 17 is 1.4 times as large as that of M rudder corresponding to the above-described prior art 1, but on the other hand, the drag coefficient of rudder shown in FIG. Is much larger than the M rudder, and demonstrates the advantages and disadvantages described above. Furthermore, this technique has structural strength problems. That is, there is a very thin portion of the rudder width just before the fin portion of the fish at the rear end of the rudder, but in this rudder shape, a large lift is generated in the fin portion, so an excessive bending moment is applied to this thin portion. . Therefore, there is a problem in structural strength when applied to large ships. In addition, advanced manufacturing techniques are required to manufacture the fin portion of the fish and the very thin portion immediately before it.

従来技術3では、舵の水平断面形状を、従来技術1に比較して頭部をより丸く、尾部をより細くすることで高い揚力を得ようとするものである。これは舵の前部を外側に張り出した形状とすることで、この付近の舵のback面の流れをより加速して圧力を低下させ、さらに尾部を細くし、舵後半部の断面形状を外側に凹の形状に近づけることで、この付近のface面の流れをよどませて流速の加速を抑え、ひいては圧力の低下を抑える。この結果、揚力を従来技術1が属する従来のものと比較して大きくすることができると考えられる。また、舵はプロペラ後流の旋回流中にあることから、直進時においても舵には迎え角を持った流れが入る。このため前縁部で大きな揚力を発生するこの舵は、大きな前縁推力を発生し、結果として舵の抵抗を低減できるとしている。
しかしながら、図19(特許文献2からの引用)に示されるように、揚力の増大効果は従来の舵に比べて約10%に過ぎず決して十分なものとはいえない。その原因として、舵の尾部付近に関する技術的方策が舵幅を小さくすることのみであることがあげられる。
In the prior art 3, the horizontal cross-sectional shape of the rudder is intended to obtain a high lift by making the head rounder and the tail narrower than in the prior art 1. This is because the front part of the rudder protrudes outward, and the flow on the back surface of the rudder near this area is further accelerated to lower the pressure, and the tail is made thinner, and the cross-sectional shape of the rear part of the rudder is outside. By making it close to a concave shape, the flow on the face surface in the vicinity is stagnated to suppress acceleration of the flow velocity and, in turn, decrease in pressure. As a result, it is considered that the lift can be increased as compared with the conventional one to which the prior art 1 belongs. In addition, since the rudder is in the swirling flow after the propeller, a flow with an angle of attack enters the rudder even when going straight. For this reason, this rudder which generates a large lift at the front edge portion generates a large front edge thrust, and as a result, the rudder resistance can be reduced.
However, as shown in FIG. 19 (cited from Patent Document 2), the effect of increasing the lift is only about 10% compared to the conventional rudder, which is not sufficient. The reason is that the technical measure related to the vicinity of the tail of the rudder is only to reduce the rudder width.

本発明は、上述の従来技術1ないし従来技術3の問題点を解決するためになされたもので、舵抵抗をできるだけ小さく抑えた高揚力の舵形状を提供するものであり、操縦性能の悪い船舶に対しては大きな舵力を提供し、操縦性能に問題のない船舶に対しては舵力が増大した分を舵面積の減少に当てて製造コストの低減を可能にし、推進性能に対して悪影響を与えない舵断面形状をもつ船舶用舵を提供することを目的とする。   The present invention has been made in order to solve the above-described problems of the prior art 1 to the prior art 3, and provides a high lift rudder shape in which rudder resistance is kept as small as possible, and has a poor maneuvering performance. For ships with no steering performance problems, the increased steering power can be used to reduce the rudder area to reduce manufacturing costs and adversely affect propulsion performance. It aims at providing the rudder for ships which has the rudder cross-sectional shape which does not give.

本発明に係る船舶用舵は、舵本体の水平断面形状において、断面形状の最大幅をTmaxとおくとき、前縁部の半径が最大幅Tmaxの14%以上22%以下であって、前縁部形状が円弧状またはこれに類似する形状からなり、舵本体の後方に向かって徐々に断面幅が増加して最大幅に達し、外側に凸の形状から緩やかな外側に凹の形状に変化しながら断面幅が減少してゆき、その後、後端まで、ほぼ平行な直線で形成される直線状部分を有し、有限幅をもつ後端を有する舵形状をするものである。   The marine rudder according to the present invention has a horizontal cross-sectional shape of the rudder main body, where the maximum width of the cross-sectional shape is Tmax, the radius of the front edge is not less than 14% and not more than 22% of the maximum width Tmax. The part shape is an arc shape or a similar shape, and the cross-sectional width gradually increases toward the rear of the rudder body to reach the maximum width, and changes from a convex shape on the outside to a concave shape on the gentle outside. However, the cross-sectional width is reduced, and then the rear portion has a linear portion formed by a substantially parallel straight line and has a rudder shape having a rear end having a finite width.

また、本発明に係る船舶用舵は、前記ほぼ平行な直線状部分の長さを、後端から全長Cの3%以上10%以下の範囲とするものである。   Moreover, the rudder for ships which concerns on this invention makes the length of the said substantially parallel linear part the range of 3 to 10% of the full length C from a rear end.

また、本発明に係る船舶用舵は、前記ほぼ平行な直線状部分の断面幅Tを、最大幅Tmaxの4%以上11%以下の範囲とするものである。   In the marine rudder according to the present invention, the cross-sectional width T of the substantially parallel linear portions is in the range of 4% to 11% of the maximum width Tmax.

また、本発明においては、以下のような舵形状または構造を有する船舶用舵とすることが好ましい。
(手段1)
断面の前縁端から後端までの全長をC、前縁端からの距離を後端に向かってX、Xにおける断面幅をT、断面形状の最大幅をTmaxとおくとき、X/C=0.05の位置においては、0.42<T/Tmax<0.62、X/C=0.1の位置においては、0.64<T/Tmax<0.81、X/C=0.15の位置においては、0.78<T/Tmax<0.92、X/C=0.7の位置においては、0.26<T/Tmax<0.42、X/C=0.8の位置においては、0.13<T/Tmax<0.22、X/C=0.9の位置においては、0.04<T/Tmax<0.11、X/C=0.98の位置においては、0.02<T/Tmax<0.11の断面幅を有する舵形状とする。
(手段2)
最大幅Tmaxの位置を、前縁端から全長Cの26%以上32.5%以下の範囲とする。
(手段3)
舵本体の水平断面形状を船舶用の吊り型舵に適用する。
(手段4)
ラダーホーンを有する船舶用舵に適用する場合においては、可動舵本体のラダーホーンより下方の下部可動部は、任意の水平断面において、前記のいずれかに記載の水平断面形状を有するものとする。なお、ラダーホーンから後方の上部可動部は、任意の断面形状でよい。
Moreover, in this invention, it is preferable to set it as the ship rudder which has the following rudder shapes or structures.
(Means 1)
When the total length from the front edge to the rear edge of the cross section is C, the distance from the front edge is X toward the rear edge, the cross-sectional width at T is T, and the maximum width of the cross-sectional shape is Tmax, X / C = At the position of 0.05, 0.42 <T / Tmax <0.62, and at the position of X / C = 0.1, 0.64 <T / Tmax <0.81, X / C = 0. At the position of 15, 0.78 <T / Tmax <0.92, and at the position of X / C = 0.7, 0.26 <T / Tmax <0.42 and X / C = 0.8. In the position, 0.13 <T / Tmax <0.22, and in the position of X / C = 0.9, in the position of 0.04 <T / Tmax <0.11, and X / C = 0.98. Is a rudder shape having a cross-sectional width of 0.02 <T / Tmax <0.11.
(Means 2)
The position of the maximum width Tmax is set in a range from 26% to 32.5% of the total length C from the front edge.
(Means 3)
The horizontal cross-sectional shape of the rudder body is applied to a suspension rudder for ships.
(Means 4)
When applied to a marine rudder having a rudder horn, the lower movable part below the rudder horn of the movable rudder main body has the horizontal cross-sectional shape described above in any horizontal cross-section. Note that the upper movable part behind the ladder horn may have an arbitrary cross-sectional shape.

本発明は、舵の水平断面における最大舵厚位置より後半の舵形状を、全体的に外側に凹の形状に近づけることでface面の流れをよどませて流速低下を招き、結果として圧力上昇を起こして揚力を増大させることを意図した舵にし、舵後端から数%程度の範囲にほぼ平行な直線状の部分を設けるものである。これは、舵後半部の緩やかに減少していく断面形状に沿って流れてきた流体の流れがその直線状部分にくると断面形状の傾きが不連続な点を通過することになり、流れに偏流が生じよどむことになる。その結果として揚力を増加させる効果が生じるからである。また、このような直線状部分を設けることによって、緩やかに舵幅が減少する舵後半部の断面形状の外側に凹である傾向を僅かに強めることも同時になされるため更なる揚力の増大が期待される。   The present invention brings the rudder shape in the latter half of the maximum rudder thickness position in the horizontal section of the rudder closer to the concave shape as a whole, thereby causing the flow on the face surface to stagnate and causing a decrease in flow velocity, resulting in a pressure increase. The rudder is intended to be lifted to increase lift, and is provided with a linear portion approximately parallel to a range of several percent from the rear end of the rudder. This is because when the flow of the fluid flowing along the gradually decreasing cross-sectional shape of the latter half of the rudder reaches the linear portion, the cross-sectional shape slope passes through a discontinuous point. A drift will occur and stagnant. As a result, the effect of increasing the lift occurs. In addition, by providing such a linear portion, the tendency to be concave outside the cross-sectional shape of the latter half of the rudder where the rudder width gradually decreases can be slightly increased at the same time, so further increase in lift is expected. Is done.

舵後半部のスロープ形状と舵後端部に設けられる直線状部分の長さの範囲を決定するために、表1に示すA00舵、A05舵、A10舵、B05舵の4種類の舵断面形状を作成し、フルーエント社製の汎用CFDコード、Fluent Ver.5のプログラムを用いて、2次元翼に流れが8゜の迎角で当たる場合の計算を実施し、揚力の変化を調べた。図1に各舵の断面形状とX/C=0.8における舵幅T/Tmax =0.22の位置を示す。図1は、横軸にX/Cを、縦軸にY/C(但し、Yは舵幅Tの半分、Xは舵の前縁端からの距離、Cは舵の水平断面中心線上の全長(翼長あるいは舵コード長))をとって示してある。また、舵断面形状の違いを明確にするため縦軸を拡大して示してある。図1において、1は舵本体、1Aは舵の水平断面中心線上の前縁端、1Bは舵の水平断面中心線上の後端、1Cは舵後端部における直線状部分を示す。   In order to determine the range of the slope shape of the latter half of the rudder and the length of the linear portion provided at the rear end of the rudder, the four types of cross-sectional shapes of the rudder A00 rudder, A05 rudder, A10 rudder and B05 rudder shown in Table 1 Using a general purpose CFD code manufactured by Fluent, a program of Fluent Ver.5, calculations were performed when the flow hits a two-dimensional wing at an angle of attack of 8 °, and changes in lift were investigated. FIG. 1 shows the cross-sectional shape of each rudder and the position of the rudder width T / Tmax = 0.22 at X / C = 0.8. FIG. 1 shows X / C on the horizontal axis and Y / C on the vertical axis (where Y is half the rudder width T, X is the distance from the leading edge of the rudder, and C is the total length on the horizontal section center line of the rudder. (Wing length or rudder cord length)). In addition, the vertical axis is enlarged to clarify the difference in rudder cross-sectional shape. In FIG. 1, 1 is a rudder main body, 1A is a front edge end on the horizontal cross-section center line of the rudder, 1B is a rear end on the horizontal cross-section center line of the rudder, and 1C is a linear portion at the rear end of the rudder.

Figure 2007186204
Figure 2007186204

A00舵は舵後半部がなだらかな凹形状であるが、後端部の直線状部分1Cがない舵、A05舵はA00舵の後端部に5%翼長の平行な直線部1Cを設けることでスロープ部分を全体的に舵前方に縮小し凹形状を強めた舵、同様にA10舵は平行な直線部1Cを10%翼長に設定した舵である。B05舵は、最大舵厚位置から若干の間続く外側に凸の形状を長めにとり、その後凹の形状になって最後に5%翼長の平行な直線部分1Cを持つ舵形状であり、A05舵と比べてX/C=0.6以降のスロープがきつくなり凹形状の傾向は舵後端付近で強まっている。   The A00 rudder has a gentle concave shape in the latter half of the rudder, but the rudder without the straight portion 1C at the rear end, and the A05 rudder has a parallel straight portion 1C with a 5% blade length at the rear end of the A00 rudder. In the rudder, the slope portion is reduced to the front of the rudder and the concave shape is strengthened. Similarly, the A10 rudder is a rudder in which the parallel straight portions 1C are set to 10% blade length. The B05 rudder is a rudder shape that has a long outward convex shape that extends for a while from the maximum rudder thickness position, then becomes a concave shape, and finally has a parallel straight portion 1C with a 5% blade length. Compared with, the slope after X / C = 0.6 is tight, and the tendency of the concave shape is intensified near the rear end of the rudder.

表2にA00舵の揚力の計算結果を基準として各舵の揚力の比を示す。A05舵は1.04倍、A10舵は1.05倍と大きくなっている。平行な直線部1Cを舵後端部に設けることにより、舵後半部の形状が同じ傾向のスロープを持つものでも若干の直線部をつけることで凹傾向を僅かに強めることと、後端付近まで緩やかに減少してきた断面形状の傾きと不連続な傾きを持つ直線部1Cの存在により流れが偏流させられよどむという2つの効果が相乗して揚力を増大させていることが分かる。直線部1Cが5%翼長の場合は、0%の場合と比べて明らかに効果があるが、10%になっても5%の場合より僅かな効果しかない。従って、揚力増加効果は5%より短い長さから始まると考え、3%以上の長さを有することが望ましい。但し、直線部1Cの長さの上限は主に構造強度上の理由からの制限であるが、好ましくは10%翼長とするのがよい。また、舵後半部形状の傾向が異なるB05舵の揚力はA05舵と同等である。このことは、後端部の直線部1Cが同じならば後半部のスロープ傾向が多少異なっていても同等な揚力特性をもつということを意味する。一方、後端部に直線部のないA00舵の揚力は直線部をもつA05舵、A10舵より小さい。A00舵のX/C=0.8における舵幅はT/Tmax=0.243であり、前記(手段1)に記載の0.22より大きい。   Table 2 shows the ratio of the lift of each rudder based on the calculation result of the lift of the A00 rudder. The A05 rudder is 1.04 times larger, and the A10 rudder is 1.05 times larger. By providing a parallel straight part 1C at the rear end of the rudder, even if the shape of the latter half of the rudder has a slope with the same tendency, the concave tendency is slightly strengthened by attaching a slight straight part, and to the vicinity of the rear end It can be seen that the two effects that the flow is deviated and stagnated due to the presence of the linear portion 1C having the gently-decreasing cross-sectional shape and the discontinuous inclination increase the lift. When the straight portion 1C has a 5% blade length, the effect is clearly greater than the case of 0%, but even when it is 10%, there is only a slight effect compared to the case of 5%. Therefore, it is considered that the lift increasing effect starts from a length shorter than 5%, and it is desirable to have a length of 3% or more. However, the upper limit of the length of the straight portion 1C is a limitation mainly for the reasons of structural strength, but preferably the blade length is 10%. Further, the lift of the B05 rudder with a different tendency in the shape of the latter half of the rudder is equivalent to that of the A05 rudder. This means that if the straight line portion 1C at the rear end is the same, it has the same lift characteristics even if the slope tendency of the latter half is slightly different. On the other hand, the lift of the A00 rudder having no straight part at the rear end is smaller than the A05 rudder and A10 rudder having the straight part. The rudder width of A00 rudder at X / C = 0.8 is T / Tmax = 0.243, which is larger than 0.22 described in (Means 1).

Figure 2007186204
Figure 2007186204

このような断面形状をもつ舵の圧力分布および揚力分布と、従来技術1のそれらとの違いを見るため、図2にB05舵の圧力分布と揚力分布を示し(なお、図2の下側には図1のB05舵の舵形状が参考のため付記してある。)、図16の従来技術1と比較する。最も異なる点は、舵後半部のface面の圧力である。従来技術1の舵では最大舵厚位置(X/C=0.36)から後方の圧力は一定であるが、B05舵では最大舵厚位置(X/C=0.325)のあとX/C=0.5あたりから圧力が上昇し始め、凸面から凹面に変わる付近で正の圧力になり、後端付近まで正の圧力を保持し続ける。後端付近でface面とback面の圧力差が消滅しないで続いている。これらは、舵後端付近にほぼ平行な直線部を設け有限な幅の後端をもたせ、あえてクッタ・ジュウコフスキーの定理を満足させないことによる効果である。しかし、この定理を満足しないことは舵抵抗の増加に直結するため、その揚力増大と抵抗増加の調和を図ることが必要である。また、B05舵の舵前半部では、最大舵厚位置の手前(X/C=0.2)から、back面の圧力が負の側に盛り下がっているが、この付近の流体の加速が従来技術1の舵より大きいために圧力低下を招くのが原因である。図16と図2の比較より、本発明の舵断面形状が従来技術1に比べて揚力特性をはるかに向上させる形状であることが分かる。   In order to see the difference between the pressure distribution and lift distribution of the rudder having such a cross-sectional shape and those of the prior art 1, FIG. 2 shows the pressure distribution and lift distribution of the B05 rudder. (The rudder shape of the B05 rudder in FIG. 1 is added for reference.) Compared with the prior art 1 in FIG. The most different point is the pressure on the face of the latter half of the rudder. The rear pressure from the maximum rudder thickness position (X / C = 0.36) is constant in the rudder of the prior art 1, but the X / C after the maximum rudder thickness position (X / C = 0.325) in the B05 rudder. = The pressure starts to increase from around 0.5, becomes a positive pressure in the vicinity of the change from the convex surface to the concave surface, and continues to hold the positive pressure to the vicinity of the rear end. Near the rear end, the pressure difference between the face and back faces continues without disappearing. These are the effects of providing a substantially parallel straight portion near the rear end of the rudder and having a rear end having a finite width, and not intentionally satisfying Kutta-Jukovsky's theorem. However, not satisfying this theorem is directly linked to an increase in rudder resistance, so it is necessary to balance the increase in lift and the increase in resistance. Further, in the front half of the rudder of the B05 rudder, the pressure on the back surface rises to the negative side from the front of the maximum rudder thickness position (X / C = 0.2). This is because the pressure drops because it is larger than the rudder of Technology 1. From the comparison between FIG. 16 and FIG. 2, it can be seen that the rudder cross-sectional shape of the present invention is a shape that greatly improves the lift characteristics as compared with the prior art 1.

舵前半部では、前縁端付近の幅を小さくし、最大舵厚位置まで連続的に増大していく形状とすると、前縁部を小さくしたことで整流効果が高まり、舵に当たる流れをスムーズに後方に流すことができる。それにより、舵前縁端付近で流れを乱すために発生する抵抗増加を小さくすることが可能である。しかしながら、舵前縁部では、back側に流れ込む流速の加速が小さくなるため前縁端付近の揚力のピーク値は小さくなる傾向がある。一方、舵前縁端付近の幅を大きくすると前縁部でのピーク値が上がり揚力は大きくなるが、舵抵抗も大きくなる。このような相反する事象の影響を確かめ、かつ本発明の舵幅を確定するために模型試験を実施した。   In the first half of the rudder, if the width near the front edge is reduced and the shape is continuously increased to the maximum rudder thickness position, the rectifying effect is enhanced by reducing the front edge, and the flow that hits the rudder is smooth. Can flow backwards. Thereby, it is possible to reduce the increase in resistance that occurs because the flow is disturbed near the rudder front edge. However, at the rudder front edge, since the acceleration of the flow velocity flowing into the back side is small, the peak value of lift near the front edge tends to be small. On the other hand, increasing the width near the rudder front edge increases the peak value at the front edge and increases the lift, but also increases the rudder resistance. A model test was conducted to confirm the influence of such conflicting events and to determine the rudder width of the present invention.

表3に示す側面が矩形の模型舵と、それと同サイズで従来技術1による側面矩形の模型舵を作成し、全長8.5m、喫水0.472m、直径0.240mのプロペラを付けた肥大船の模型船に取り付け、プロペラを作動させながら船速1.28m/sの速さで曳航し、舵角を取り舵直圧力(舵面と垂直に働く力)と舵抵抗力(舵長手方向に働く力)を測定する試験をNKK船型試験水槽にて実施した。図3に、舵角δ、舵直圧力Fry、および、舵抵抗力Frxの定義を示す。図3において、1は舵本体、2は舵軸、3はプロペラである。 A model rudder with a rectangular side as shown in Table 3 and a rectangular rudder with the same size and side rectangle according to the prior art 1, with a propeller having a total length of 8.5 m, a draft of 0.472 m and a diameter of 0.240 m Attached to the model ship, towed at a speed of 1.28 m / s while operating the propeller, took the rudder angle, the rudder direct pressure (force acting perpendicular to the rudder surface) and rudder resistance (in the rudder longitudinal direction) A test for measuring the working force) was carried out in an NKK hull test tank. FIG. 3 shows definitions of the rudder angle δ, the rudder direct pressure F ry , and the rudder resistance force F rx . In FIG. 3, 1 is a rudder body, 2 is a rudder shaft, and 3 is a propeller.

Figure 2007186204
Figure 2007186204

また、推進性能に及ぼす影響を調べるため、推進性能試験(すなわち抵抗試験および自航試験)を行い、本船の計画速力における実船相当の主機馬力推定も実施した。図4、図5に左舵角8゜の時の舵直圧力と舵抵抗力の係数を、従来技術1の舵のそれらとの比を示す。
舵前縁部半径(あるいは舵先端部半径)Rを最大舵厚Tmaxの15%とした舵(B05A15、B05B15、B05C15)の揚力比の変化から最大舵厚位置が32.5%コード長より長くなると揚力増大の効果が薄れることが分かる。最大舵厚位置が下がることで舵前縁部が細くなり前縁揚力が減少することが原因である。図5の舵抵抗係数を見ても抵抗の減少は最大舵厚位置/コード長の37.5%の舵(B05C15)は最大舵厚位置/コード長32.5%の舵(B05B15)より僅かに下がるだけである。従って、最大舵厚位置/コード長を32.5%に止めておけば十分で、それ以上後方に下げても意味がない。最大舵厚位置/コード長37.5%の舵(B05C15)のX/C=0.8の舵幅は表3よりT/Tmax=0.233で手段1に記載の0.22より大きい。同じ最大舵厚位置をもつ3個の舵(B05B15、B05B22、B05B30)の結果から前縁部の円半径の大きさの影響が分かる。図4と図5より、前縁部半径を大きくすれば舵直圧力は大きくなるが、舵抵抗力も増加する。なお、舵前縁部の形状は円弧状に限られるものではない。これに類似する形状、例えば楕円、放物線等でも構わない。
In addition, in order to investigate the effect on propulsion performance, a propulsion performance test (ie, resistance test and self-propulsion test) was conducted, and the main engine horsepower equivalent to the actual ship at the planned speed of the ship was also estimated. 4 and 5 show the coefficient of rudder direct pressure and rudder resistance when the left rudder angle is 8 °, and the ratio of the rudder of the prior art 1 to that of the rudder.
The maximum steering thickness position is longer than the 32.5% cord length due to the change in the lift ratio of the rudder (B05A15, B05B15, B05C15) with the rudder leading edge radius (or rudder tip radius) R being 15% of the maximum rudder thickness Tmax. Then, it can be seen that the effect of increasing the lift is lessened. This is because the leading edge of the rudder becomes thinner and the leading edge lift decreases as the maximum rudder thickness position decreases. As seen from the rudder resistance coefficient in FIG. 5, the decrease in the resistance is slightly greater in the rudder with the maximum rudder thickness position / cord length of 37.5% (B05C15) than the rudder with the maximum rudder thickness position / cord length of 32.5% (B05B15). Just go down. Therefore, it is sufficient to keep the maximum rudder thickness position / cord length at 32.5%, and it is meaningless to lower it further. The rudder width of X / C = 0.8 of the rudder (B05C15) with the maximum rudder thickness position / cord length of 37.5% is T / Tmax = 0.233 from Table 3, and larger than 0.22 described in the means 1. From the results of three rudders (B05B15, B05B22, B05B30) having the same maximum rudder thickness position, the influence of the size of the circle radius of the front edge can be seen. From FIGS. 4 and 5, if the front edge radius is increased, the steering straight pressure increases, but the rudder resistance increases. The shape of the rudder front edge is not limited to the arc shape. A shape similar to this, for example, an ellipse or a parabola may be used.

推進性能への影響は舵角を取ったときの舵力では評価できない。また、舵角ゼロの時の舵抵抗だけでも評価は完全ではない。それは、プロペラ後流が舵に当たると、舵の形状の違いにより異なる流れ場がプロペラや舵のある船尾付近に発生し、その流れが、プロペラに及ぼす影響や、舵近傍の船体部分に及ぼす影響などいくつかの要素が複雑に絡み合って推進性能が決定されるからである。そのため、舵が推進性能へ及ぼす影響の把握には船型試験水槽で推進性能試験を行い実船の推定馬力で比較することが最も望ましい。   The effect on propulsion performance cannot be evaluated by the rudder force when the rudder angle is taken. Also, the evaluation is not complete only with rudder resistance when the rudder angle is zero. When the propeller wake hits the rudder, a different flow field is generated near the stern with the propeller or rudder due to the difference in the shape of the rudder, and the effect of this flow on the propeller or the hull part near the rudder. This is because several factors are intertwined in a complicated manner to determine propulsion performance. Therefore, it is most desirable to understand the effect of rudder on propulsion performance by conducting a propulsion performance test in a hull test tank and comparing with the estimated horsepower of the actual ship.

舵揚力計測試験と同じ舵を用いて行った試験から実船の馬力を推定し、従来技術1の舵を搭載したときの馬力からの増加量で比較を行い、その結果を図6に示す。一般的にこのような推進性能試験においては、馬力の1%以下の増減は水槽試験の計測誤差範囲とみなすことができ同等の性能と判断できる。舵前縁部半径を最大舵厚の15%とした3個の舵のうち、B05A15舵とB05B15舵は、従来技術1と同等な推進性能を持つといえる。最大舵厚位置の大きなB05C15舵と、前縁部半径を大きくした2個の舵(B05B22、B05B30)は、先の2個の舵に比べて馬力増加量が大きく1%を超しているため、推進性能はやや劣化する。
従って、前縁部半径を最大舵厚の15%以上30%以下の範囲では、推進性能に及ぼす影響は小さいものの、22%を超すと推進性能に悪影響を与え出す。したがって、前縁部半径は22%を上限とした。
また、最大舵厚位置は、前縁部半径が最大舵厚の15%の場合の図4の揚力特性から判断して、舵コード長の27.5%から32.5%の範囲を基準に考えるのが妥当である。
The horsepower of an actual ship is estimated from a test conducted using the same rudder as in the rudder lifting force measurement test, and the comparison is made with the amount of increase from the horsepower when the rudder of the prior art 1 is mounted. The result is shown in FIG. In general, in such a propulsion performance test, an increase or decrease of 1% or less in horsepower can be regarded as a measurement error range of the aquarium test and can be judged as equivalent performance. Among the three rudders with the rudder leading edge radius of 15% of the maximum rudder thickness, it can be said that the B05A15 rudder and the B05B15 rudder have the same propulsion performance as the prior art 1. The B05C15 rudder with a large maximum rudder thickness position and the two rudders (B05B22, B05B30) with larger front edge radii have a larger horsepower increase than the previous two rudders, exceeding 1%. The propulsion performance is slightly degraded.
Therefore, when the leading edge radius is in the range of 15% to 30% of the maximum rudder thickness, the influence on the propulsion performance is small, but when it exceeds 22%, the propulsion performance is adversely affected. Therefore, the upper limit of the leading edge radius is 22%.
Further, the maximum rudder thickness position is determined based on the lift characteristic of FIG. 4 when the leading edge radius is 15% of the maximum rudder thickness, and is based on the range of 27.5% to 32.5% of the rudder cord length. It is reasonable to think.

以上のことから、舵前半部の舵幅を最大にし、後半部の舵幅を最小にする第1の舵形状を、前縁部半径を最大舵厚の30%、最大舵厚位置を舵コード長の26%、舵後半部の形状を表1に示したA10舵の後半部のスロープ傾向を最大舵厚位置から後端から舵コード長10%の位置まで適用し、後端平行部長さを舵コード長の10%とした舵の形状とする。また、舵前半部の舵幅を最小にし、後半部の舵幅を最大にする第2の舵形状を、前縁部半径を最大舵厚の15%、最大舵厚位置から後端から舵コード長5%の位置まで適用し、後端平行部長さを舵コード長の5%とした舵の形状とする。これら2つの舵形状を基にして(手段1)に記載した舵幅の範囲を決定する。この2つの舵形状と舵幅の関係を図7に示す。   From the above, the first rudder shape that maximizes the rudder width in the first half of the rudder and minimizes the rudder width in the second half, the front edge radius is 30% of the maximum rudder thickness, and the maximum rudder thickness position is the rudder code. 26% of the length, the slope tendency of the latter half of the A10 rudder shown in Table 1 for the shape of the latter half of the rudder is applied from the maximum rudder thickness position to the position of the rudder cord length 10% from the rear end, and the rear end parallel part length is The shape of the rudder shall be 10% of the rudder cord length. In addition, the second rudder shape that minimizes the rudder width in the first half of the rudder and maximizes the rudder width in the second half has a front edge radius of 15% of the maximum rudder thickness. Apply to the position of 5% in length, and make the rudder shape with the rear end parallel part length 5% of the rudder cord length. Based on these two rudder shapes, the range of the rudder width described in (Means 1) is determined. The relationship between the two rudder shapes and the rudder width is shown in FIG.

図7は上記第1および第2の舵形状を舵中心線より半分の形状で示すもので、図中の□印は各X/Cの位置における断面幅の上限と下限を示している。
X/C=0.98の位置における舵幅範囲の上限は大きいが、船舶用舵に適用した場合、舵幅が舵高さ方向の位置で変更されることが多い。このとき舵後端部の幅を高さ方向に一定幅で舵を製作すれば、最大舵幅が舵高さ方向で変化するので、舵幅の小さい断面では必然的に後端付近の幅が大きくなるためである。
FIG. 7 shows the first and second rudder shapes in a shape half the rudder center line, and the □ marks in the figure indicate the upper and lower limits of the cross-sectional width at each X / C position.
Although the upper limit of the rudder width range at the position of X / C = 0.98 is large, when applied to a marine rudder, the rudder width is often changed at a position in the rudder height direction. At this time, if a rudder is manufactured with a constant width in the height direction of the rudder rear end, the maximum rudder width will change in the rudder height direction. This is because it becomes larger.

船舶用舵を、さらに大きな揚力を発生せしめる舵に改良するために、舵後端部付近の平行に近い直線部1Cは流体の流れを偏流しよどませることで流体の加速を抑え圧力上昇をもたらす働きがあったが、舵後端にその点の舵幅より大きい幅の断面をもつ柱状物を付加すれば、流れを偏流させる効果が大きくなり、さらに揚力は増加する。従来技術2における舵後端部の魚のヒレ部も同様な働きをする。しかし、前述のように直前に非常に薄い部分があり構造強度上の問題で、大型船舶への適用が不向きな点や、製作が難しいという問題点がある。本発明では、これらの問題を解決することができる。   In order to improve the marine rudder to a rudder that generates even higher lift, the straight parallel part 1C near the rear end of the rudder drifts the flow of the fluid and thereby suppresses the acceleration of the fluid, resulting in an increase in pressure. Although there was a work, if a columnar object having a cross section larger than the rudder width at that point is added to the rear end of the rudder, the effect of drifting the flow becomes larger, and the lift increases. The fin portion of the fish at the rear end of the rudder in the prior art 2 also performs the same function. However, as described above, there is a very thin part immediately before, which is a problem in structural strength, and is unsuitable for application to a large ship or difficult to manufacture. The present invention can solve these problems.

まず、舵製作時の舵後端部の処理は、図8(a)に示すように比較的小さな円形断面をもつ柱状体4aに舵の両側から舵板5を溶接する手法で行われることが多い。従って、図8(b)に示すように、小さな円柱体4aの代わりに径の大きな中実あるいは中空の柱状物4bを用いるだけでよいことになる。なお、本図では円柱状の場合を示しているが他の形状でも同じ効果を生む。その際、柱状物4bを舵高さ全体に取り付けてもよいが、部分的に取り付けることで揚力の調整や、舵抵抗の増加を調整することも可能になる。この場合、柱状物4bの取付位置等は特に限定するものではないが、より好ましくは、プロペラ径と同程度の長さをもつ柱状物をプロペラに正対するごとく取り付けた方がよく、より効率が向上する。また、舵後端部の幅が薄い場合でも、柱状物4bとの距離が非常に近いため大きなモーメントを受けることはなく、構造強度上の問題も解決される。   First, the rudder rear end processing at the time of manufacturing the rudder may be performed by a method of welding the rudder plates 5 from both sides of the rudder to a columnar body 4a having a relatively small circular cross section as shown in FIG. Many. Therefore, as shown in FIG. 8B, it is only necessary to use a solid or hollow columnar body 4b having a large diameter instead of the small columnar body 4a. In addition, although this figure has shown the case of cylindrical shape, the same effect is produced also in another shape. At that time, the columnar object 4b may be attached to the entire rudder height, but by partially attaching it, it is possible to adjust lift and increase rudder resistance. In this case, the mounting position or the like of the columnar object 4b is not particularly limited, but more preferably, it is better to mount the columnar object having the same length as the propeller diameter as if it is directly opposed to the propeller. improves. Moreover, even when the width of the rear end portion of the rudder is thin, the distance from the columnar object 4b is very close, so that a large moment is not received, and the problem of structural strength is solved.

本発明の実施例としては、表1および図1に示すA05舵、A10舵、B05舵および、表3に示すB05A15舵、B05B15舵、B05B22舵、B05B30舵等がある。但し、実際の船舶に装備する舵の後端は、その端部処理のため必ずしも有限幅をもつものではない。従って、請求項1にある有限幅の後端をもつという記述は、このような製作上の端部処理を考慮から外したものであり、端部処理直前の断面形状に対して適用される(端部処理後の断面形状は有限幅をもつと否とを問わない)ものであることを付記しておく。   Examples of the present invention include A05 rudder, A10 rudder, B05 rudder shown in Table 1 and FIG. 1, and B05A15 rudder, B05B15 rudder, B05B22 rudder, B05B30 rudder and the like shown in Table 3. However, the rear end of the rudder equipped in an actual ship does not necessarily have a finite width because of the end processing. Therefore, the description of having a finite width rear end in claim 1 excludes such manufacturing end processing and is applied to a cross-sectional shape immediately before end processing ( It should be noted that the cross-sectional shape after the end processing does not matter if it has a finite width.

図9は吊り型舵の実施例であり、図10はラダーホーン付きの半吊り型舵の実施例を示すものである。図9、図10において、1は舵本体、2は舵軸、3はプロペラ、6はラダーホーン、7は船体である。
図9の吊り型舵においては、舵本体1の任意の位置における水平断面形状が本発明を満足するものであり、図10のラダーホーン付きの半吊り型舵においては、可動舵本体1のラダーホーン6より下方の下部可動部11は、任意の水平断面において、すなわち上部可動部11の高さ全体にわたって、本発明を満足する水平断面形状を有するものとし、ラダーホーン6から後方の上部可動部12は、任意の水平断面において、すなわち上部可動部12の高さ全体にわたって、下部可動部11の対応する部分の形状とほぼ相似形の水平断面形状を有するものである。ここで、ラダーホーン6の断面形状は、特に限定されるものではない。
FIG. 9 shows an embodiment of a suspended rudder, and FIG. 10 shows an embodiment of a semi-suspended rudder with a ladder horn. 9 and 10, 1 is a rudder body, 2 is a rudder shaft, 3 is a propeller, 6 is a ladder horn, and 7 is a hull.
In the suspension type rudder of FIG. 9, the horizontal cross-sectional shape at an arbitrary position of the rudder main body 1 satisfies the present invention, and in the semi-suspended rudder with a ladder horn of FIG. The lower movable portion 11 below the horn 6 has a horizontal sectional shape that satisfies the present invention in an arbitrary horizontal cross section, that is, over the entire height of the upper movable portion 11, and the upper movable portion behind the ladder horn 6. 12 has a horizontal cross-sectional shape that is substantially similar to the shape of the corresponding portion of the lower movable portion 11 in an arbitrary horizontal cross section, that is, over the entire height of the upper movable portion 12. Here, the cross-sectional shape of the ladder horn 6 is not particularly limited.

図11(a)は表3に示したB05A15舵の水平断面形状を示すものであり、図11(b)はこの水平断面形状をもつB05A15舵の後端に、その後端の幅より大きい幅の断面形状をもつ柱状物4bを取り付けた場合の舵形状を示すものである。柱状物4bは船舶用舵の後端の上下方向の一部あるいは全体に取り付ける。また、柱状物4bの断面形状は、円形、楕円形、正四角形、ひし形等があり、特に限定はない。そして、楕円形の場合は長径方向が、正四角形の場合は対角線が、ひし形の場合は長い方の対角線が、それぞれ舵の中心線の延長線上になるように取り付ける。   FIG. 11 (a) shows the horizontal cross-sectional shape of the B05A15 rudder shown in Table 3, and FIG. 11 (b) shows that the width of the B05A15 rudder having this horizontal cross-sectional shape is larger than the width of the rear end. The rudder shape at the time of attaching the columnar object 4b which has a cross-sectional shape is shown. The columnar object 4b is attached to a part or the whole of the rear end of the marine rudder in the vertical direction. The cross-sectional shape of the columnar object 4b includes a circle, an ellipse, a regular square, a rhombus, and the like, and is not particularly limited. In the case of an ellipse, the major axis direction is attached, in the case of a regular quadrangle, the diagonal line is on the extended line of the center line of the rudder, and in the case of a rhombus, the longer diagonal line is attached.

本発明の実施例としては、表3に示したB05A15舵、B05B15舵、B05B22舵、B05B30舵があり、その模型を作成した。また、それらと同サイズの従来技術1の側面矩形の模型舵を作成し、全長8.5m、喫水0.472m、直径0.240mのプロペラを付けた肥大船の模型船に取り付け、プロペラを作動させながら船速1.28m/sの速さで曳航し、舵角を取り舵に働く流体力を測定する試験をNKK船型試験水槽にて実施した。
舵直圧力の結果を図4に、推進性能試験により推定した実船相当の馬力推定の結果を図6に従来技術1との比較で示している。その結果、本実施例の舵は従来技術1に比べて推進性能は同等であり、舵直圧力は効果の小さい順に、9%、17%、20%、24%の増大がそれぞれ確認できた。これらは、従来技術3の特開平2000−280984号公報中にある従来舵(従来技術1と同等)より約10%増(図19参照)という舵力増大効果に比べると大きい範囲にあり、本発明の舵形状が舵直圧力の増大に有効であることを示している。
Examples of the present invention include the B05A15 rudder, B05B15 rudder, B05B22 rudder, and B05B30 rudder shown in Table 3, and models were prepared. Also, create a side-rectangular model rudder of prior art 1 of the same size as those, and attach it to a model ship of a large ship with a propeller with a total length of 8.5 m, draft of 0.472 m, and a diameter of 0.240 m, and operate the propeller The test was conducted in an NKK hull form test water tank while towing the ship at a speed of 1.28 m / s while taking the rudder angle and measuring the fluid force acting on the rudder.
FIG. 4 shows the result of the direct steering pressure, and FIG. 6 shows the result of estimating the horsepower equivalent to the actual ship estimated by the propulsion performance test. As a result, the rudder of this example had the same propulsive performance as compared with the prior art 1, and the steering straight pressure was confirmed to increase by 9%, 17%, 20%, and 24% in order of increasing effect. These are in a larger range compared to the effect of increasing the rudder force by about 10% (see FIG. 19) compared to the conventional rudder (equivalent to the prior art 1) in Japanese Patent Laid-Open No. 2000-280984 of the prior art 3. It shows that the rudder shape of the invention is effective for increasing the rudder direct pressure.

舵直圧力の増大による舵面積の減少効果を算定する。船舶のプロペラ後流に置かれた舵の舵直圧力Fryの算定には、従来技術1の舵に対しては、数1が用いられてきた。 Calculate the reduction effect of the rudder area due to the increase of the rudder direct pressure. For the calculation of the rudder direct pressure Fry of the rudder placed behind the propeller of the ship, Equation 1 has been used for the rudder of the prior art 1.

Figure 2007186204
Figure 2007186204

従来技術1の舵よりも直圧力係数が大きな舵の場合は、その比Rをf(λ)に乗じたものを新たに直圧力係数として取り扱うことで近似的に舵直圧力の算定ができる。舵を矩形舵とし、舵高さHを同一とした場合、舵直圧力の増加率がRなる舵と、従来技術1の舵が同じ直圧力を出す場合の舵面積比は次式(数2)で計算できる。   In the case of a rudder having a direct pressure coefficient larger than that of the rudder of the prior art 1, the rudder direct pressure can be approximately calculated by newly treating the ratio R multiplied by f (λ) as the direct pressure coefficient. When the rudder is a rectangular rudder and the rudder height H is the same, the rudder area ratio in the case where the rudder having an increase rate of the rudder direct pressure R and the rudder of the conventional technique 1 gives the same direct pressure is expressed by the following formula (Equation 2 ).

Figure 2007186204
Figure 2007186204

表3の舵形状(H=364.9mm,C0=211.3mm)を用いてλ0=H/C0=1.73とし、B05A15舵、B05B15舵、B05B22舵、B05B30舵の舵角δ=8゜の場合の舵直圧力係数の比率を用いると、上式より各舵の舵面積の減少率が算出される。表4にその結果を示す。 Using the rudder shape (H = 364.9 mm, C 0 = 211.3 mm) in Table 3, λ 0 = H / C 0 = 1.73, and the rudder angle δ of the B05A15 rudder, B05B15 rudder, B05B22 rudder, and B05B30 rudder If the ratio of the rudder straight pressure coefficient in the case of = 8 ° is used, the reduction rate of the rudder area of each rudder is calculated from the above formula. Table 4 shows the results.

Figure 2007186204
Figure 2007186204

表4から、請求項1〜3の範囲内で最も舵面積の減少率の大きなB05A15舵の場合、従来技術1に比べて68%の舵面積となる。従来技術3の舵は、従来技術1に対する直圧力係数の増加率を図19より約1.10とすると、舵面積は従来技術1の82%になるが、B05A15舵はそれより更に17%(従来技術3が基準)小さな舵面積となる。但し、これは矩形舵を仮定し、直圧力が上述のような式で表され、アスペクト比で表される直圧力係数勾配の式が本発明の舵の場合でも成り立つとした場合の算定結果であることを付記する。   From Table 4, in the case of the B05A15 rudder having the largest reduction rate of the rudder area within the range of claims 1 to 3, the rudder area is 68% as compared with the prior art 1. In the rudder of the prior art 3, when the rate of increase of the direct pressure coefficient with respect to the prior art 1 is about 1.10 from FIG. 19, the rudder area is 82% of the prior art 1, but the B05A15 rudder is 17% more than that ( It is a small rudder area). However, this is a calculation result when assuming that a rectangular rudder is used, the direct pressure is expressed by the above formula, and the formula of the direct pressure coefficient gradient expressed by the aspect ratio holds even in the case of the rudder of the present invention. It is added that there is.

舵の断面形状として、図11に示すように、B05A15舵の舵断面形状をもつ矩形舵の後端に、舵コード長の約3%(模型舵で6mm)の直径を持つ円形断面の柱状物4bを、可動舵本体(図10参照)の下端から上端まで取り付けた。図11(b)に示す本実施例の舵について、舵力計測試験と推進性能試験を実施した。その結果、従来技術1に比べ舵角8゜の時の舵直圧力は1.36倍増加、舵抵抗力は1.47倍増加し、実船相当馬力の増加量は3.3%となった。
本実施例の舵は、推進性能が3%程度の劣化を招くものの直圧力の増大はきわめて大きく、従来技術1の舵と同じ直圧力を得るために必要な舵面積を上と同様にして求めると、従来技術1の舵の舵面積の55%で良いことになり、舵を極めて小型化することが可能になる。そのため、舵抵抗が半減するだけでなく、プロペラ後流への悪影響も少なくなることは容易に想像でき、推進性能への悪影響も問題のない程度に小さくなって一般船舶への適用も可能になる。
As a cross-sectional shape of the rudder, as shown in FIG. 11, a columnar object having a circular cross section having a diameter of about 3% of the rudder cord length (6 mm for the model rudder) at the rear end of the rectangular rudder having the rudder cross-sectional shape of the B05A15 rudder 4b was attached from the lower end to the upper end of the movable rudder main body (see FIG. 10). A rudder force measurement test and a propulsion performance test were performed on the rudder of this example shown in FIG. As a result, the steering straight pressure at the steering angle of 8 ° increased by 1.36 times, the rudder resistance increased by 1.47 times compared to the prior art 1, and the increase in horsepower equivalent to the actual ship was 3.3%. It was.
Although the rudder of this embodiment causes a deterioration of about 3% in propulsion performance, the increase in direct pressure is extremely large, and the rudder area necessary for obtaining the same direct pressure as that of the rudder of the prior art 1 is obtained in the same manner as above. Thus, 55% of the rudder area of the rudder of the prior art 1 is sufficient, and the rudder can be extremely miniaturized. Therefore, it is easy to imagine that the rudder resistance will not only be halved, but also the adverse effect on the propeller wake will be reduced, and the adverse effect on the propulsion performance will be reduced to a level where there is no problem, and it can be applied to general ships. .

以上のように、本発明によれば、舵後半部の形状を大きな揚力を得るために有効な外側に凹の形状と、舵後端部付近にほぼ平行な直線状部分を組み合わせることにより、揚力性能に優れ、推進性能の劣化のない船舶用舵が実現できるため、比較的小さい主機馬力の相対的に大きな内航船への適用はいうまでもなく、外洋を航海する運行採算の難しい大型船舶に装備しても、その運行採算性を悪くすることなく、操縦性、操船性の大幅な向上が達成できるほか、舵の小型化による舵製作費用の削減と操舵装置の小型化による機器調達費の削減という船主側と建造側の双方にとってメリットを生み出すことが可能になった。   As described above, according to the present invention, the shape of the rear half of the rudder is effectively increased in order to obtain a large lift, by combining a concave shape on the outside and a linear portion substantially parallel to the vicinity of the rear end of the rudder, thereby increasing the lift. Because it is possible to realize a rudder for ships with excellent performance and no deterioration in propulsion performance, it is not only applicable to relatively large mainland horsepower ships, but also to large ships that are difficult to profit from operating in the open ocean. Even if equipped, it can achieve a significant improvement in maneuverability and maneuverability without deteriorating its operating profitability, and it can reduce the rudder production cost by downsizing the rudder and reduce equipment procurement cost by downsizing the steering device. It has become possible to create benefits for both the shipowner and the construction side.

本発明の船舶用舵の水平断面形状を決定するために用いた舵形状(但し、半分の形状)図である。It is a rudder shape (however, half shape) figure used in order to determine the horizontal cross-sectional shape of the rudder for ships of this invention. 本発明の船舶用舵の2次元断面に対するCFD計算による圧力分布と揚力分を示す図である。It is a figure which shows the pressure distribution and lift component by CFD calculation with respect to the two-dimensional cross section of the ship rudder of this invention. 模型試験における舵直圧力、舵抵抗力、舵角の定義を示す図である。It is a figure which shows the definition of the rudder direct pressure, rudder resistance force, and rudder angle in a model test. 舵力計測試験により得られた舵の直圧力を従来技術1の舵直圧力との比率で比較した図である。It is the figure which compared the direct pressure of the rudder obtained by the rudder force measurement test by the ratio with the rudder direct pressure of the prior art 1. FIG. 舵力計測試験により得られた舵の抵抗力を従来技術1の舵抵抗力との比率で比較した図である。It is the figure which compared the resistance force of the rudder obtained by the rudder force measurement test by the ratio with the rudder resistance force of the prior art 1. FIG. 推進性能試験により舵形状が実船の馬力に及ぼす影響を調べた結果で、従来技術1の舵を装着したときの馬力からの増減をパーセントで表した図である。It is the result of having investigated the influence which a rudder shape has on the horsepower of an actual ship by a propulsion performance test, and is a figure which expressed the change from horsepower when installing the rudder of prior art 1 in percentage. 本発明の船舶用舵における舵幅の範囲を決定するために用いた舵形状(但し、半分の形状)図である。It is a rudder shape (however, half shape) figure used in order to determine the range of the rudder width in the ship rudder of this invention. 舵後端部に柱状物を取り付ける場合の製作方法を簡単に示した図である。It is the figure which showed simply the manufacturing method in the case of attaching a columnar thing to a rudder rear end part. 吊り型舵の実施例を示す図である。It is a figure which shows the Example of a suspension type rudder. ラダーホーン付きの半吊り型舵の実施例を示す図である。It is a figure which shows the Example of the semi-suspended type rudder with a ladder horn. (a)は本発明の実施例を示す舵形状図、(b)はその舵の後端部に柱状物を取り付けた場合の舵形状図である。(A) is a rudder shape figure which shows the Example of this invention, (b) is a rudder shape figure at the time of attaching a columnar object to the rear-end part of the rudder. 従来技術1(NACA対称翼)の舵形状を示す図である。It is a figure which shows the rudder shape of the prior art 1 (NACA symmetrical wing | blade). 従来技術2(特開平10−297593号公報)の舵形状を示す図である。It is a figure which shows the rudder shape of the prior art 2 (Unexamined-Japanese-Patent No. 10-297593). 従来技術3(特開2000−280984号公報)の舵形状を示す図である。It is a figure which shows the rudder shape of the prior art 3 (Unexamined-Japanese-Patent No. 2000-280984). 2次元翼に当たる流れと揚力および抗力の定義を示す図である。It is a figure which shows the definition of the flow and lift and drag which hit a two-dimensional wing | blade. 従来技術1の2次元断面に対するCFD計算による圧力分布と揚力分布を示す図である。It is a figure which shows the pressure distribution and lift distribution by CFD calculation with respect to the two-dimensional cross section of the prior art 1. FIG. 従来技術2の揚力係数を示す図である。It is a figure which shows the lift coefficient of the prior art 2. FIG. 従来技術2の舵の抗力を示す図である。It is a figure which shows the drag of the rudder of the prior art 2. FIG. 従来技術3の揚力係数を示す図である。It is a figure which shows the lift coefficient of the prior art 3. FIG.

符号の説明Explanation of symbols

1 舵本体、1A 前縁端、1B 後端、1C 直線状部分、6 ラダーホーン。 1 rudder body, 1A front edge, 1B rear end, 1C linear portion, 6 ladder horn.

Claims (3)

舵本体の水平断面形状において、断面形状の最大幅をTmaxとおくとき、前縁部の半径が最大幅Tmaxの14%以上22%以下であって、前縁部形状が円弧状またはこれに類似する形状からなり、舵本体の後方に向かって徐々に断面幅が増加して最大幅に達し、外側に凸の形状から緩やかな外側に凹の形状に変化しながら断面幅が減少してゆき、その後、後端まで、ほぼ平行な直線で形成される直線状部分を有し、有限幅をもつ後端を有することを特徴とする船舶用舵。   In the horizontal cross-sectional shape of the rudder body, when the maximum width of the cross-sectional shape is Tmax, the radius of the front edge is 14% or more and 22% or less of the maximum width Tmax, and the front edge is circular or similar The cross-sectional width gradually increases toward the rear of the rudder body, reaches the maximum width, and the cross-sectional width decreases while changing from a convex shape outward to a concave shape gently outward. Then, a marine rudder having a linear portion formed by substantially parallel straight lines up to the rear end and having a rear end having a finite width. 前記ほぼ平行な直線状部分の長さは、後端から全長Cの3%以上10%以下の範囲であることを特徴とする請求項1記載の船舶用舵。   The rudder for a ship according to claim 1, wherein a length of the substantially parallel linear portion is in a range of 3% to 10% of the entire length C from the rear end. 前記ほぼ平行な直線状部分の断面幅Tは、最大幅Tmaxの4%以上11%以下の範囲であることを特徴とする請求項1または2記載の船舶用舵。   3. The ship rudder according to claim 1, wherein a cross-sectional width T of the substantially parallel linear portion is in a range of 4% to 11% of a maximum width Tmax.
JP2007069025A 2007-03-16 2007-03-16 Rudder for ship Pending JP2007186204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007069025A JP2007186204A (en) 2007-03-16 2007-03-16 Rudder for ship

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007069025A JP2007186204A (en) 2007-03-16 2007-03-16 Rudder for ship

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001378075A Division JP3968633B2 (en) 2001-12-12 2001-12-12 Ship rudder

Publications (1)

Publication Number Publication Date
JP2007186204A true JP2007186204A (en) 2007-07-26

Family

ID=38341646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007069025A Pending JP2007186204A (en) 2007-03-16 2007-03-16 Rudder for ship

Country Status (1)

Country Link
JP (1) JP2007186204A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2692628A1 (en) 2012-08-03 2014-02-05 SI Co Ltd Ship with a propeller and a rudder mounted in a recess, whereby the rudder is oriented towards the bow
US8881666B2 (en) 2012-08-10 2014-11-11 Si Co. Ltd. Ship
KR20180040700A (en) 2015-12-09 2018-04-20 재팬 마린 유나이티드 코포레이션 Ship Keys, Steering Methods and Vessels
JP2018079879A (en) * 2016-11-18 2018-05-24 ジャパンマリンユナイテッド株式会社 Uniaxial two-rudder system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2692628A1 (en) 2012-08-03 2014-02-05 SI Co Ltd Ship with a propeller and a rudder mounted in a recess, whereby the rudder is oriented towards the bow
US8881666B2 (en) 2012-08-10 2014-11-11 Si Co. Ltd. Ship
KR20180040700A (en) 2015-12-09 2018-04-20 재팬 마린 유나이티드 코포레이션 Ship Keys, Steering Methods and Vessels
KR102042947B1 (en) 2015-12-09 2019-11-27 재팬 마린 유나이티드 코포레이션 Vessel keys, steering methods and vessels
JP2018079879A (en) * 2016-11-18 2018-05-24 ジャパンマリンユナイテッド株式会社 Uniaxial two-rudder system

Similar Documents

Publication Publication Date Title
RU2678733C2 (en) Vessel comprising aft foil having special orientation to provide forwardly directed component of lift force
KR101503881B1 (en) Hydrodynamic duct of flow management at the bow of a vessel
JP2006306304A (en) Propulsion device and its manufacturing method
JP2018501150A (en) Ship front side design
JP4889238B2 (en) Ship with bow fin
JP2007186204A (en) Rudder for ship
KR101205355B1 (en) Rudder for vessel
US20100186648A1 (en) Ship rudder and ship provided therewith
KR101110392B1 (en) Asymmetrical ship rudder form and section
JP6041440B2 (en) Fin device and ship
JP2008247050A (en) Vessel drag reducing device and vessel
JP3968633B2 (en) Ship rudder
JP5868805B2 (en) Enlargement ship
Damley-Strnad et al. Hydrodynamic performance and hysteresis response of hydrofoils in ventilated flows
JPH09136693A (en) Bilge voltex energy recovery device for ship
JP7178188B2 (en) rudder system
KR101390309B1 (en) Wedge tail type rudder
JP2014156193A (en) Propeller back stream rectifier
KR20200004457A (en) Structure for reducing the drag of a ship and its application
KR100773924B1 (en) Vessel fin blade for reduction of cavitation
JP4216858B2 (en) Ship
JP5244341B2 (en) Marine propulsion device and design method for marine propulsion device
KR102535242B1 (en) Stern plate construction and ship
KR101886920B1 (en) Rudder for ship
JP4999384B2 (en) Stern duct and ship with it

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090724

A131 Notification of reasons for refusal

Effective date: 20090811

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20091215

Free format text: JAPANESE INTERMEDIATE CODE: A02