JP2007184505A - Method for manufacturing silicon system thin film photoelectric converter - Google Patents

Method for manufacturing silicon system thin film photoelectric converter Download PDF

Info

Publication number
JP2007184505A
JP2007184505A JP2006003033A JP2006003033A JP2007184505A JP 2007184505 A JP2007184505 A JP 2007184505A JP 2006003033 A JP2006003033 A JP 2006003033A JP 2006003033 A JP2006003033 A JP 2006003033A JP 2007184505 A JP2007184505 A JP 2007184505A
Authority
JP
Japan
Prior art keywords
substrate
photoelectric conversion
silicon
holder
frequency electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006003033A
Other languages
Japanese (ja)
Inventor
Yohei Koi
洋平 小井
Toshiaki Sasaki
敏明 佐々木
Kenji Yamamoto
憲治 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2006003033A priority Critical patent/JP2007184505A/en
Publication of JP2007184505A publication Critical patent/JP2007184505A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a silicon system thin film photoelectric converter which fabricates at least one or more amorphous photoelectric conversion units or crystalline photoelectric conversion units, so as to improve the efficiency of the silicon system thin film photoelectric converter. <P>SOLUTION: The method for manufacturing the silicon system thin film photoelectric converter includes generating plasma uniformly within a space between a high frequency electrode (A) and a holder (C), even when E/S (the distance of the high frequency electrode and a substrate face) is narrow. To be more precise, using a plasma CVD equipment including at least the high frequency electrode (A), a substrate (B), and the holder (C), the plasma CVD method is carried out to arrange on a roughly same flat plane a film deposition plane (i) of the substrate face facing the high frequency electrode of the substrate (B); and a plane (ii) which consists of a part of the holder (C) and faces to the high frequency electrode nearest to the end of the substrate which is in parallel direction to the film deposition plane, and nearest to the high frequency electrode. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、非晶質シリコン光電変換層を含む非晶質シリコン光電変換ユニット、又は結晶質シリコン光電変換層を含む結晶質シリコン光電変換ユニットを少なくとも1以上作製することを特徴とする、シリコン系薄膜光電変換装置の製造方法に関するものである。   The present invention is characterized by producing at least one amorphous silicon photoelectric conversion unit including an amorphous silicon photoelectric conversion layer or at least one crystalline silicon photoelectric conversion unit including a crystalline silicon photoelectric conversion layer. The present invention relates to a method for manufacturing a thin film photoelectric conversion device.

近年、太陽電池を含む光電変換装置の低コスト化、高効率化を両立するために原材料が少なくてすむ薄膜光電変換装置が注目され、開発が精力的に行われている。特に、ガラス等の安価な基板上に低温プロセスを用いて良質の半導体層を形成する方法が低コストを実現可能な方法として期待されている。   In recent years, a thin film photoelectric conversion device that requires less raw materials in order to achieve both cost reduction and high efficiency of a photoelectric conversion device including a solar cell has attracted attention and has been vigorously developed. In particular, a method of forming a high-quality semiconductor layer on an inexpensive substrate such as glass using a low-temperature process is expected as a method capable of realizing low cost.

このような薄膜光電変換装置は、一般に絶縁透光性基板上に順に積層された透明電極層と、1つ以上の光電変換ユニットと、及び裏面電極層とを含んでいる。ここで、光電変換ユニットは一般にp型層、i型層、及びn型層がこの順、またはその逆順に積層されてなり、その主要部を占めるi型の光電変換層が非晶質のものは非晶質光電変換ユニットと呼ばれ、i型層が結晶質のものは結晶質光電変換ユニットと呼ばれている。   Such a thin film photoelectric conversion device generally includes a transparent electrode layer, one or more photoelectric conversion units, and a back electrode layer that are sequentially stacked on an insulating translucent substrate. Here, the photoelectric conversion unit generally has a p-type layer, an i-type layer, and an n-type layer laminated in this order or vice versa, and the i-type photoelectric conversion layer occupying the main part is amorphous. Is called an amorphous photoelectric conversion unit, and those having an i-type layer crystalline are called crystalline photoelectric conversion units.

透明導電膜は、透光性基板側から入射された光を有効に光電変換ユニット内に閉じ込めるために、その表面には通常微細な凹凸が多数形成されており、その高低差は一般的には0.05μm〜0.3μm程度である。透明導電膜の凹凸の度合いを表す指標としてヘイズ率がある。これは特定の光源の光を透明導電膜が付いた透光性基板に入射した際に透過する光のうち、光路が曲げられた散乱成分を全成分で割ったものに相当し、通常可視光を含むC光源を用いて測定される。一般的には凹凸の高低差を大きくするほど、または凹凸の凸部と凸部の間隔が大きくなるほどヘイズ率が高くなり、光電変換ユニット内に入射された光は有効に閉じ込められる。   In order to effectively confine light incident from the translucent substrate side in the photoelectric conversion unit, the transparent conductive film usually has many fine irregularities formed on the surface, and the height difference is generally It is about 0.05 μm to 0.3 μm. There is a haze ratio as an index representing the degree of unevenness of the transparent conductive film. This is equivalent to the light that is transmitted when the light from a specific light source is incident on a transparent substrate with a transparent conductive film divided by the scattered component whose optical path is bent and divided by all components. Measured using a C light source containing In general, the haze ratio increases as the height difference between the projections and depressions increases, or as the interval between the projections and depressions of the projections and projections increases, so that the light incident on the photoelectric conversion unit is effectively confined.

i型層は実質的に真性の半導体層であって光電変換ユニットの厚さの大部分を占め、光電変換作用は主としてこのi型層内で生じる。このため、このi型層は通常i型光電変換層または単に光電変換層と呼ばれる。光電変換層は真性半導体層に限らず、ドープされた不純物(ドーパント)によって吸収される光の損失が問題にならない範囲で微量にp型またはn型にドープされた層であってもよい。光電変換層は光吸収のためには厚い方が好ましいが、必要以上に厚くすればその製膜のためのコストと時間が増大することになる。   The i-type layer is a substantially intrinsic semiconductor layer and occupies most of the thickness of the photoelectric conversion unit, and the photoelectric conversion action mainly occurs in the i-type layer. For this reason, this i-type layer is usually called an i-type photoelectric conversion layer or simply a photoelectric conversion layer. The photoelectric conversion layer is not limited to an intrinsic semiconductor layer, and may be a layer doped in a small amount of p-type or n-type within a range where loss of light absorbed by a doped impurity (dopant) does not become a problem. The photoelectric conversion layer is preferably thicker for light absorption, but if it is thicker than necessary, the cost and time for film formation will increase.

他方、p型やn型の導電型半導体層は光電変換ユニット内に内部電界を生じさせる役目を果たし、この内部電界の大きさによって薄膜光電変換装置の重要な特性の1つである開放電圧(Voc)の値が左右される。しかし、これらの導電型半導体層は光電変換に直接寄与しない不活性な層であり、導電型半導体層にドープされた不純物によって吸収される光は発電に寄与しない損失となる。したがって、p型とn型の導電型半導体層は、十分な内部電界を生じさせ得る範囲内であれば、できるだけ小さな厚さにとどめておくことが好ましい。導電型半導体層の厚さは一般的には20nm程度以下である。   On the other hand, the p-type or n-type conductive semiconductor layer plays a role of generating an internal electric field in the photoelectric conversion unit, and an open-circuit voltage (one of important characteristics of the thin film photoelectric conversion device depending on the magnitude of the internal electric field). The value of Voc) is influenced. However, these conductive semiconductor layers are inactive layers that do not directly contribute to photoelectric conversion, and light absorbed by impurities doped in the conductive semiconductor layer is a loss that does not contribute to power generation. Therefore, it is preferable that the p-type and n-type conductive semiconductor layers have a thickness as small as possible as long as a sufficient internal electric field can be generated. The thickness of the conductive semiconductor layer is generally about 20 nm or less.

薄膜光電変換装置の変換効率(Eff)を向上させる方法として、2以上の光電変換ユニットを積層する方法がある。この場合、薄膜光電変換装置の光入射側に大きなバンドギャップを有する光電変換層を含む前方ユニットを配置し、その後方に順に小さなバンドギャップを有する光電変換層を含む後方ユニットを配置することにより、入射光の広い波長範囲にわたって光電変換を可能にし、これによって薄膜光電変換装置全体としての変換効率の向上が図られる。このような積層型薄膜光電変換装置の中でも、特に非晶質シリコン光電変換ユニットと結晶質シリコン光電変換ユニットを各々1つずつ積層し電気的に直列接続したものはシリコン系ハイブリッド薄膜光電変換装置と称される。   As a method for improving the conversion efficiency (Eff) of the thin film photoelectric conversion device, there is a method of stacking two or more photoelectric conversion units. In this case, by arranging a front unit including a photoelectric conversion layer having a large band gap on the light incident side of the thin film photoelectric conversion device, and arranging a rear unit including a photoelectric conversion layer having a small band gap in order behind the unit. Photoelectric conversion is enabled over a wide wavelength range of incident light, thereby improving the conversion efficiency of the thin film photoelectric conversion device as a whole. Among such stacked thin film photoelectric conversion devices, in particular, an amorphous silicon photoelectric conversion unit and a crystalline silicon photoelectric conversion unit that are stacked one by one and electrically connected in series are silicon-based hybrid thin film photoelectric conversion devices. Called.

例えば、i型非晶質シリコンが光電変換し得る光の波長は長波長側において800nm程度までであるが、i型結晶質シリコンはそれより長い約1150nm程度の波長までの光を光電変換することができる。   For example, the wavelength of light that can be photoelectrically converted by i-type amorphous silicon is up to about 800 nm on the long wavelength side, but i-type crystalline silicon photoelectrically converts light up to a wavelength of about 1150 nm longer than that. Can do.

シリコン系ハイブリッド薄膜光電変換装置の出力特性のうち、短絡電流密度(Jsc)は、前方に配置される非晶質シリコン光電変換ユニット(以降これを単にトップセルと称す)の分光感度積分電流(分光感度を測定し、それらにエアマス1.5に代表される太陽光スペクトル強度を波長毎に乗じて積分し算出される出力電流密度)と後方に配置される結晶質シリコン光電変換ユニット(以降これを単にボトムセルと称す)の分光感度積分電流との大小関係によって決定される。具体的には、トップセルの分光感度積分電流よりもボトムセルの分光感度積分電流が大きければ、シリコン系ハイブリッド薄膜光電変換装置全体のJscはトップセルの分光感度積分電流により制限される。逆にボトムセルの分光感度積分電流のほうが小さければ、全体のJscはボトムセルの分光感度積分電流により制限される。   Among the output characteristics of the silicon-based hybrid thin film photoelectric conversion device, the short-circuit current density (Jsc) is the spectral sensitivity integral current (spectrum) of the amorphous silicon photoelectric conversion unit (hereinafter simply referred to as the top cell) disposed in front. Sensitivity is measured, and the solar spectrum intensity represented by air mass 1.5 is multiplied by each wavelength and integrated to calculate the output current density) and the crystalline silicon photoelectric conversion unit (hereinafter referred to as this) It is determined by the magnitude relationship with the spectral sensitivity integral current (simply referred to as the bottom cell). Specifically, if the spectral sensitivity integrated current of the bottom cell is larger than the spectral sensitivity integrated current of the top cell, Jsc of the entire silicon-based hybrid thin film photoelectric conversion device is limited by the spectral sensitivity integrated current of the top cell. Conversely, if the spectral sensitivity integrated current of the bottom cell is smaller, the overall Jsc is limited by the spectral sensitivity integrated current of the bottom cell.

また一般に、i型層に結晶質シリコンを用いた結晶質薄膜光電変換ユニットにおいては、結晶質シリコンの結晶粒を増やし結晶分率を向上させるために、i層の水素希釈率を高くする方法が知られている(非特許文献1)。ここでいう結晶分率は(結晶粒の体積)/(全体の体積)で、水素希釈率は(H2ガス流量)/(SiH4ガス流量)で定義される。逆に、i層の水素希釈率を低くすると、非晶質成分が多くなり結晶分率が低下することも一般に知られている。また、i層の結晶シリコンの結晶分率が高いとVocは低下しJscが向上し、結晶分率が低いとVocが向上しJscが低下することも知られている(非特許文献2)。つまり、結晶質薄膜光電変換ユニットの結晶分率を水素希釈率で微調整する手法を用いることで、高い電流を維持したまま、電圧を向上させることができる。 In general, in a crystalline thin film photoelectric conversion unit using crystalline silicon for an i-type layer, there is a method of increasing the hydrogen dilution rate of the i layer in order to increase the crystalline silicon crystal grains and improve the crystal fraction. It is known (Non-Patent Document 1). The crystal fraction here is defined as (volume of crystal grains) / (total volume), and the hydrogen dilution rate is defined as (H 2 gas flow rate) / (SiH 4 gas flow rate). Conversely, it is generally known that when the hydrogen dilution rate of the i layer is lowered, the amorphous component is increased and the crystal fraction is lowered. It is also known that when the crystal fraction of the i-layer crystalline silicon is high, Voc is lowered and Jsc is improved, and when the crystal fraction is low, Voc is improved and Jsc is lowered (Non-patent Document 2). That is, by using a method of finely adjusting the crystal fraction of the crystalline thin film photoelectric conversion unit with the hydrogen dilution rate, the voltage can be improved while maintaining a high current.

このようなシリコン系薄膜光電変換装置を、電力用として高電圧で高出力を生じ得る大面積のシリコン系薄膜光電変換装置として製造する場合、大きな基板上に形成されたシリコン系薄膜光電変換装置を複数個直列接続して用いるのではなく、歩留りを良くするために大きな基板上に形成されたシリコン系薄膜光電変換装置を複数のセルに分割し、それらのセルを直列接続して集積化するのが一般的である。特に、基板としてガラス板を用いて、ガラス基板側から光を入射させるタイプのシリコン系薄膜光電変換装置においては、ガラス基板上に順次半導体層を形成した後、ガラス基板上の透明電極層の抵抗による損失を低減するために、レーザスクライブ法でその透明電極を所定幅の短冊状に加工する分離溝を設け、その短冊状の長手方向に直行する方向に各セルを直列接続して集積化するのが一般的である(以降、前述のように集積化されたシリコン系薄膜光電変換装置を、シリコン系薄膜光電変換モジュールと称す)。短冊状の各セルは直列接続されているため、シリコン系薄膜光電変換モジュールのJscは、各セルで発生する電流値のうちもっとも小さな値で制限される。従って各セルの電流値は均等であるほど好ましく、さらに電流の絶対値が大きいほどシリコン系薄膜光電変換モジュールのEff向上が期待できる。   When manufacturing such a silicon-based thin film photoelectric conversion device as a large-area silicon-based thin film photoelectric conversion device capable of generating high output at a high voltage for power, a silicon-based thin film photoelectric conversion device formed on a large substrate is used. Rather than using a plurality of units connected in series, a silicon-based thin film photoelectric conversion device formed on a large substrate is divided into a plurality of cells to improve yield, and these cells are connected in series and integrated. Is common. In particular, in a silicon-based thin-film photoelectric conversion device in which light is incident from the glass substrate side using a glass plate as the substrate, the resistance of the transparent electrode layer on the glass substrate is formed after sequentially forming the semiconductor layer on the glass substrate. In order to reduce loss due to laser, a separation groove for processing the transparent electrode into a strip having a predetermined width is provided by a laser scribing method, and the cells are connected in series in a direction perpendicular to the longitudinal direction of the strip to integrate the cells. (Hereinafter, the silicon-based thin film photoelectric conversion device integrated as described above is referred to as a silicon-based thin film photoelectric conversion module). Since each strip-shaped cell is connected in series, Jsc of the silicon-based thin film photoelectric conversion module is limited to the smallest value among the current values generated in each cell. Therefore, the current value of each cell is preferably as uniform as possible, and the Eff of the silicon-based thin film photoelectric conversion module can be expected to increase as the absolute value of the current increases.

ところで、前述の非晶質シリコンや結晶質シリコンを基板に製膜するための装置にはさまざまな種類があるが、原料ガスを導入した容器内でプラズマを発生させ、生成されるフリーラジカルなどの活性種を基板に堆積させて膜を形成するプラズマCVD装置は、プラズマの発生方法で、容量結合型プラズマCVD装置と誘導結合型プラズマCVD装置に大別できる。一般的に、容量結合型プラズマCVD装置は大面積基板に対して一様な放電が得られやすいため、液晶ディスプレイや太陽電池などの大面積基板製膜用として用いられる。また、誘導結合型プラズマCVD装置は高密度プラズマを発生させやすいことからエッチングで用いられる傾向がある。又、プラズマCVD装置は、基板搬送用のホルダを必要とするか否かによっても2つに大別できる。   By the way, there are various types of apparatuses for depositing the above-mentioned amorphous silicon or crystalline silicon on a substrate, but a plasma is generated in a container into which a source gas is introduced to generate free radicals and the like. Plasma CVD apparatuses that form a film by depositing active species on a substrate can be broadly classified into capacitively coupled plasma CVD apparatuses and inductively coupled plasma CVD apparatuses according to plasma generation methods. In general, since the capacitively coupled plasma CVD apparatus can easily obtain a uniform discharge with respect to a large area substrate, it is used for film formation of a large area substrate such as a liquid crystal display or a solar cell. Inductively coupled plasma CVD devices tend to be used for etching because they tend to generate high-density plasma. The plasma CVD apparatus can be roughly divided into two types depending on whether or not a holder for transporting the substrate is required.

基板搬送用ホルダを有する容量結合型プラズマCVD装置の内部は、直径0.2〜1mm程度の穴が多数開いたシャワープレートと呼ばれるガスを噴出する高周波電極と、それに対抗する面に基板と基板を保持するホルダから構成されるのが一般的である。図3に一般的な基板搬送用ホルダの模式的断面図を示す。ホルダ10は、基板11の外形よりもやや大きめの内形状を有するステンレスやアルミ製の外枠13からなり、この外枠13には基板11の表面を支持する段部14が一定の厚みで設けられている。ホルダ10使用時には、この段部14に基板11を設置し、基板11の裏面を支持するために基板上に押さえ板12を設置する。基板11の押さえ板12側の反対側の面は、開口しており、基板製膜面7とされる。また、押さえ板12を外枠13に保持するために、例えば、押さえ板12を保持するように、固定部材15が外枠にネジで固定されている。   The inside of a capacitively coupled plasma CVD apparatus having a substrate transfer holder includes a high frequency electrode called a shower plate having many holes with a diameter of about 0.2 to 1 mm, and a substrate and a substrate facing each other. Generally, it is composed of a holder for holding. FIG. 3 shows a schematic cross-sectional view of a general substrate transport holder. The holder 10 includes an outer frame 13 made of stainless steel or aluminum having an inner shape slightly larger than the outer shape of the substrate 11, and the outer frame 13 is provided with a stepped portion 14 that supports the surface of the substrate 11 with a constant thickness. It has been. When the holder 10 is used, the substrate 11 is installed on the stepped portion 14, and the pressing plate 12 is installed on the substrate to support the back surface of the substrate 11. The surface of the substrate 11 opposite to the holding plate 12 side is open and serves as a substrate film-forming surface 7. Further, in order to hold the pressing plate 12 on the outer frame 13, for example, the fixing member 15 is fixed to the outer frame with screws so as to hold the pressing plate 12.

また、基板サイズの変更に要する工数を大幅に減らし、安価でかつ簡単に部品交換できるホルダの特許として、特許文献1に記載されている構造例もある。   Further, there is a structural example described in Patent Document 1 as a patent for a holder that can greatly reduce the man-hours required for changing the substrate size and can be easily replaced at low cost.

図4に特許文献1に記載されているホルダの模式断面図を示す。最大サイズのガラス基板の外形よりもやや大きめの内形状をもつ開口部を有するステンレスやアルミニウム製の方形の外枠13と、この外枠13にはめはずしが可能な補助枠部材16とからなる。この外枠13の開口部の全内周にわたって、最大サイズの基板を支持するための段部14が、一定の厚みで設けられている。一方、補助枠部材16にも基板を支持するための補助枠部材段部17が一定の厚みで設けられており、補助枠部材16の大きさの範囲内で単または複数の基板11を支持することができる。   FIG. 4 shows a schematic cross-sectional view of the holder described in Patent Document 1. It consists of a stainless steel or aluminum rectangular outer frame 13 having an opening having an inner shape slightly larger than the outer shape of the maximum size glass substrate, and an auxiliary frame member 16 that can be removed from the outer frame 13. A step portion 14 for supporting a substrate of the maximum size is provided with a constant thickness over the entire inner periphery of the opening of the outer frame 13. On the other hand, the auxiliary frame member 16 is also provided with an auxiliary frame member step 17 for supporting the substrate with a certain thickness, and supports the single or plural substrates 11 within the range of the size of the auxiliary frame member 16. be able to.

さらに、i型層に結晶質シリコンを用いた結晶質薄膜光電変換ユニットの結晶シリコンの膜質を向上するためには、高周波電極と基板との距離をできるだけ狭くして製膜する方が良い、ということが一般に知られている。これは、ラジカルが発生するプラズマの領域が基板に近づくため、損失の激しい水素ラジカルが膜中に効果的に到達するので、膜質が向上すると考えることができる。
特願平09−192604号公報。 T.Roschek, T.Repmann, J.Muller, B.Rech, H.Wagner :Proceedings of the 28th IEEE Photovoltaic Specialists Conference,Anchorage, 2000, pp.150-153. T.Repmann, W.Appenzeller, T.Roschek, B.Rech, H.Wagner: Proceedings of the 28th IEEE Photovoltaic Specialists Conference,Anchorage, 2000, pp.912-915.
Furthermore, in order to improve the crystalline silicon film quality of the crystalline thin film photoelectric conversion unit using crystalline silicon for the i-type layer, it is better to form the film with the distance between the high-frequency electrode and the substrate as narrow as possible. It is generally known. This can be considered that since the plasma region where radicals are generated approaches the substrate, hydrogen radicals with severe losses effectively reach the film, and the film quality is improved.
Japanese Patent Application No. 09-192604. T. Roschek, T. Repmann, J. Muller, B. Rech, H. Wagner: Proceedings of the 28th IEEE Photovoltaic Specialists Conference, Anchorage, 2000, pp. 150-153. T. Repmann, W. Appenzeller, T. Roschek, B. Rech, H. Wagner: Proceedings of the 28th IEEE Photovoltaic Specialists Conference, Anchorage, 2000, pp.912-915.

<従来技術の要改善点の解析>
しかしながら前述のホルダ10は、基板11の外縁を厚み方向に支持するための段部14または段部17が絶対的に必要であるため、ホルダ10が基板11を支持する段部14または段部17の厚み分だけ基板製膜面7とホルダ表面8に段差ができ、基板製膜面7とホルダ表面8が略同一平面に配置されることは無く、言わば、基板11は額縁のようにホルダ10に保持されている(以降、本ホルダを額縁ホルダと称す)。ここでいう「略同一平面に配置される」とは、平面と平面とが±1mm以内の間隔で配置される状態のことをいう。
<Analysis of points that require improvement in the prior art>
However, since the holder 10 described above absolutely requires the step portion 14 or the step portion 17 for supporting the outer edge of the substrate 11 in the thickness direction, the step portion 14 or the step portion 17 where the holder 10 supports the substrate 11. The substrate film-forming surface 7 and the holder surface 8 are stepped by the thickness of the substrate, and the substrate film-forming surface 7 and the holder surface 8 are not arranged in substantially the same plane. In other words, the substrate 11 has a holder 10 like a frame. (Hereinafter, this holder is referred to as a frame holder). Here, “arranged in substantially the same plane” means a state in which the plane and the plane are arranged at an interval within ± 1 mm.

額縁ホルダは、前述したように基板製膜面7とホルダ表面8とに段差があるため、高周波電極とホルダ表面8との距離(以降、E/Hと称す)と高周波電極と基板製膜面7との距離(以降、E/Sと称す)が異なる。このため、基板製膜面7周辺の段差がある部分において、プラズマが高周波電極とホルダ表面8との間の空間内で一様に発生せず、基板7周辺の膜厚・膜質が不均一になりやすかった。つまり従来の額縁ホルダで製膜したシリコン系薄膜光電変換モジュールは、製膜条件として水素希釈率で結晶分率を微調整して、高い電流を維持したまま電圧を向上させようとしても、集積化した短冊状の各セルの電流値が、基板周辺の膜厚や膜質が不均一な電流値の小さいところで制限されるため、高電流と高電圧を両立することができず、Effが向上しないという問題があった。   Since the frame holder has a step between the substrate film-forming surface 7 and the holder surface 8 as described above, the distance between the high-frequency electrode and the holder surface 8 (hereinafter referred to as E / H), the high-frequency electrode and the substrate film-forming surface. 7 (hereinafter referred to as E / S) is different. For this reason, plasma is not uniformly generated in the space between the high-frequency electrode and the holder surface 8 in a portion where there is a step around the substrate film forming surface 7, and the film thickness and film quality around the substrate 7 are not uniform. It was easy to be. In other words, silicon-based thin-film photoelectric conversion modules formed using conventional frame holders can be integrated even if the film fraction is fine-tuned with the hydrogen dilution rate to improve the voltage while maintaining a high current. Since the current value of each strip-shaped cell is limited where the film thickness and film quality around the substrate are not uniform, the high current and high voltage cannot be achieved at the same time, and Eff does not improve. There was a problem.

さらに膜質を向上させるためにE/Sの狭い製膜条件にするにしたがって、E/SとE/Hの解離割合が大きくなり、高周波電極とホルダ10の間の一部分でしかプラズマが発生しなくなる傾向があった。つまり、E/Sが8mm以下といった狭い領域では基板全面に製膜することですら困難であった。   Further, in order to improve the film quality, the dissociation ratio of E / S and E / H increases as the film forming conditions of E / S are narrow, and plasma is generated only at a part between the high-frequency electrode and the holder 10. There was a trend. That is, even in a narrow region where E / S is 8 mm or less, it is difficult to form a film on the entire surface of the substrate.

<新たな課題の設定>
上述のような状況に鑑み、本発明は、E/Sが狭い状態であっても、高周波電極(A)とホルダ(C)の間の空間内で均一にプラズマが発生できる少なくとも該高周波電極(A)と該基板(B)と該ホルダ(C)を含むプラズマCVD装置を用いて、非晶質シリコン光電変換層を含む非晶質光電変換ユニット、又は結晶質シリコン光電変換層を含む結晶質光電変換ユニットを少なくとも1以上作製することを特徴とする、シリコン系薄膜光電変換装置を製造して、シリコン系薄膜光電変換装置の変換効率を向上させることを目的とする。
<Setting new issues>
In view of the situation as described above, the present invention provides at least the high-frequency electrode that can generate plasma uniformly in the space between the high-frequency electrode (A) and the holder (C) even when the E / S is narrow. A), an amorphous photoelectric conversion unit including an amorphous silicon photoelectric conversion layer, or a crystalline material including a crystalline silicon photoelectric conversion layer using a plasma CVD apparatus including the substrate (B) and the holder (C) An object of the present invention is to manufacture a silicon-based thin film photoelectric conversion device characterized by producing at least one photoelectric conversion unit and to improve the conversion efficiency of the silicon-based thin film photoelectric conversion device.

(1)本発明の第1は、
「少なくとも、
(A)高周波電極と、
(B)該高周波電極と対向して配置される基板と、
(C)該高周波電極と対向して配置され、かつ、該基板を保持するホルダと
を含むプラズマCVD装置を使用するプラズマCVD工程を含むシリコン系薄膜光電変換装置の製造方法であって、下記の(i)と(ii)とが、(iii)の配置状態で行われるプラズマCVD法により、
非晶質シリコン光電変換層を含む非晶質光電変換ユニット、又は結晶質シリコン光電変換層を含む結晶質光電変換ユニットを少なくとも1以上作製する
ことを特徴とする、シリコン系薄膜光電変換装置の製造方法。
(i)該基板(B)の高周波電極と対向する基板面である製膜面。
(ii)該ホルダ(C)の一部をなし、かつ、高周波電極と対向する面であって、
該製膜面に平行な方向の基板端部から最も近く、かつ、高周波電極に最も近い面。
(iii)略同一平面上に配置されている状態。」
、である。
(1) The first of the present invention is
"at least,
(A) a high-frequency electrode;
(B) a substrate disposed opposite to the high-frequency electrode;
(C) A method of manufacturing a silicon-based thin film photoelectric conversion device including a plasma CVD process using a plasma CVD device that is disposed to face the high-frequency electrode and includes a holder that holds the substrate. (I) and (ii) are performed by plasma CVD performed in the arrangement state of (iii),
Production of a silicon-based thin film photoelectric conversion device, comprising at least one amorphous photoelectric conversion unit including an amorphous silicon photoelectric conversion layer or at least one crystalline photoelectric conversion unit including a crystalline silicon photoelectric conversion layer Method.
(I) A film-forming surface that is a substrate surface facing the high-frequency electrode of the substrate (B).
(Ii) a surface that forms part of the holder (C) and faces the high-frequency electrode;
A surface closest to the substrate end in a direction parallel to the film forming surface and closest to the high-frequency electrode.
(Iii) The state arrange | positioned on the substantially the same plane. "
.

(2)本発明の第2は、
「前記のホルダ(C)が、前記の基板(B)の製膜面に対して側面から(B)を保持する手段を有することを特徴とする、(1)に記載のシリコン系薄膜光電変換装置の製造方法」
、である。
(2) The second aspect of the present invention is
The silicon-based thin film photoelectric conversion according to (1), wherein the holder (C) has means for holding (B) from the side surface with respect to the film-forming surface of the substrate (B). Device manufacturing method "
.

(3)本発明の第3は、
「前記の基板(B)の高周波電極と対向する基板面である製膜面と、前記の高周波電極(A)の主たる面との最短距離が0mmより大きく8mm以下であることを特徴とする、(1)または(2)に記載のシリコン系薄膜光電変換装置の製造方法」
、である。
(3) The third aspect of the present invention is
“The shortest distance between the film-forming surface that is the substrate surface facing the high-frequency electrode of the substrate (B) and the main surface of the high-frequency electrode (A) is greater than 0 mm and 8 mm or less. Manufacturing method of silicon-based thin film photoelectric conversion device according to (1) or (2) "
.

本発明によれば、E/Sが狭い状態であっても、従来の額縁ホルダを用いた製造方法と比べて高周波電極(A)とホルダ(C)の間の空間内でより均一にプラズマを発生させることができるため、基板(B)上に製膜される膜厚および膜質の均一性および膜質が向上し、非晶質シリコン光電変換層を含む非晶質光電変換ユニット、又は結晶質シリコン光電変換層を含む結晶質光電変換ユニットを少なくとも1以上作製することを特徴とする、シリコン系薄膜光電変換装置のEffを向上することができる。また、従来の額縁ホルダでは異常放電が起こる場合が有るようなE/Sが狭い状態であっても、異常放電無く該シリコン系光電変換装置を製造することができる。   According to the present invention, even when the E / S is narrow, plasma is more uniformly generated in the space between the high frequency electrode (A) and the holder (C) as compared with the conventional manufacturing method using the frame holder. Since it can be generated, the uniformity of film thickness and film quality formed on the substrate (B) and the film quality are improved, and an amorphous photoelectric conversion unit including an amorphous silicon photoelectric conversion layer, or crystalline silicon Eff of a silicon-based thin film photoelectric conversion device characterized by producing at least one crystalline photoelectric conversion unit including a photoelectric conversion layer can be improved. Moreover, even if the E / S is so narrow that abnormal discharge may occur in the conventional frame holder, the silicon-based photoelectric conversion device can be manufactured without abnormal discharge.

本発明においては、E/Sが狭い状態であっても該高周波電極(A)と該ホルダ(C)の間の空間内でより均一にプラズマを発生させることができるため、従来の額縁ホルダを用いた製造方法と比べて、該基板(B)上に製膜される膜厚および膜質の均一性が向上し、シリコン系薄膜光電変換モジュールのJscが向上する。また、従来の額縁ホルダにおいては膜厚および膜質の不均一な部分が発生していた低い水素希釈率でも、膜厚および膜質が不均一にならず、シリコン系薄膜光電変換モジュールのVocが向上することも見出した。よって、シリコン系薄膜光電変換モジュールのJscとVocが向上しEffが向上する。   In the present invention, since the plasma can be generated more uniformly in the space between the high-frequency electrode (A) and the holder (C) even when the E / S is narrow, a conventional frame holder is used. Compared with the manufacturing method used, the film thickness and film quality uniformity formed on the substrate (B) are improved, and the Jsc of the silicon-based thin film photoelectric conversion module is improved. In addition, even with a low hydrogen dilution rate in which a non-uniform portion of film thickness and film quality is generated in the conventional frame holder, the film thickness and film quality are not non-uniform, and the Voc of the silicon-based thin film photoelectric conversion module is improved. I also found out. Therefore, Jsc and Voc of the silicon-based thin film photoelectric conversion module are improved, and Eff is improved.

本発明においては、E/Sが狭い状態であっても該高周波電極(A)と該ホルダ(C)の間の空間内でより均一にプラズマを発生させることができるため、従来の額縁ホルダを用いた製造方法と比べて、該基板(B)上に製膜される膜厚および膜質の均一性が向上し、シリコン系薄膜光電変換装置のJscが向上することを見出した。また、従来の額縁ホルダにおいては膜厚および膜質の不均一な部分が発生していた低い水素希釈率でも、膜厚および膜質が不均一にならず、シリコン系薄膜光電変換モジュールのVocが向上することも見出した。よって、シリコン系薄膜光電変換モジュールのJscとVocが向上しEffが向上することを見出した。   In the present invention, since the plasma can be generated more uniformly in the space between the high-frequency electrode (A) and the holder (C) even when the E / S is narrow, a conventional frame holder is used. It has been found that the uniformity of the film thickness and film quality formed on the substrate (B) is improved and the Jsc of the silicon-based thin film photoelectric conversion device is improved as compared with the manufacturing method used. In addition, even with a low hydrogen dilution rate in which a non-uniform portion of film thickness and film quality is generated in the conventional frame holder, the film thickness and film quality are not non-uniform, and the Voc of the silicon-based thin film photoelectric conversion module is improved. I also found out. Therefore, it was found that Jsc and Voc of the silicon-based thin film photoelectric conversion module are improved and Eff is improved.

以下において本発明の好ましい実施の形態について図・表を参照しつつ説明する。なお本願の各図において、厚さや長さなどの寸法関係については図面の明瞭化と簡略化のため適宜変更されており、実際の寸法関係を表してはいない。また、各図において、同一の参照符号は同一部分または相当部分を表している。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings and tables. In each drawing of the present application, dimensional relationships such as thickness and length are appropriately changed for clarity and simplification of the drawings, and do not represent actual dimensional relationships. Moreover, in each figure, the same referential mark represents the same part or an equivalent part.

以下に、本発明の実施の形態としてのシリコン系ハイブリッド薄膜光電変換装置の製造方法を、図1を参照しつつ説明する。ここでは、本発明の一態様として、非晶質光電変換ユニットに引き続き、結晶質光電変換ユニットを形成する例を一例として説明するが、これに限定されるものではない
本発明の一態様としては、透光性基板1の上に透明導電膜2が形成されている。透光性基板1としては、ガラス、透明樹脂等から成る板状部材やシート状部材が用いられうる。
Below, the manufacturing method of the silicon type hybrid thin film photoelectric conversion apparatus as embodiment of this invention is demonstrated, referring FIG. Here, as one embodiment of the present invention, an example in which a crystalline photoelectric conversion unit is formed following an amorphous photoelectric conversion unit will be described as an example. However, the present invention is not limited to this example. A transparent conductive film 2 is formed on the translucent substrate 1. As the translucent substrate 1, a plate-like member or a sheet-like member made of glass, transparent resin, or the like can be used.

透明導電膜2としては酸化錫、酸化亜鉛等の金属酸化物が用いられうる。透明導電膜2はCVD、スパッタ、蒸着等の方法を用いて形成されうる。透明導電膜2は、形成条件の工夫によりその表面に微細な凹凸を生じさせて入射光の散乱を増大させる効果を有している。凹凸の高低差は0.05〜0.3μm程度であり、シート抵抗は5〜20Ω/□程度に設定されうる。   As the transparent conductive film 2, a metal oxide such as tin oxide or zinc oxide can be used. The transparent conductive film 2 can be formed using a method such as CVD, sputtering, or vapor deposition. The transparent conductive film 2 has the effect of increasing the scattering of incident light by producing fine irregularities on the surface by devising the formation conditions. The height difference of the unevenness is about 0.05 to 0.3 μm, and the sheet resistance can be set to about 5 to 20 Ω / □.

本発明の一態様としては、透明導電膜2の上にはトップセルである非晶質光電変換ユニット3が形成される。非晶質光電変換ユニット3の一態様としては非晶質p型シリコンカーバイド層3p、ノンドープ非晶質i型シリコン光電変換層3i、n型シリコン層3nから成り立っている。ノンドープ非晶質i型シリコン光電変換層3iの材料はシリコンのみならず、シリコンカーバイド、シリコンゲルマニウム等の合金でもよい。
また、n型シリコン層3nの代わりに、非晶質i型シリコン光電変換層3iで吸収しきれずに後方に抜けた光を再度非晶質i型シリコン光電変換層3i側に反射させるために、微結晶シリコンを含むシリコンオキサイド等の低屈折率層が配置されていてもよい。
As one embodiment of the present invention, an amorphous photoelectric conversion unit 3 that is a top cell is formed on the transparent conductive film 2. As one aspect of the amorphous photoelectric conversion unit 3, the amorphous photoelectric conversion unit 3 includes an amorphous p-type silicon carbide layer 3p, a non-doped amorphous i-type silicon photoelectric conversion layer 3i, and an n-type silicon layer 3n. The material of the non-doped amorphous i-type silicon photoelectric conversion layer 3i may be not only silicon but also an alloy such as silicon carbide or silicon germanium.
Further, instead of the n-type silicon layer 3n, in order to reflect the light that has not been absorbed by the amorphous i-type silicon photoelectric conversion layer 3i and has passed backwards again to the amorphous i-type silicon photoelectric conversion layer 3i side, A low refractive index layer such as silicon oxide containing microcrystalline silicon may be disposed.

本発明の一態様としては、非晶質光電変換ユニット3の上にボトムセルである結晶質光電変換ユニット4が形成されている。結晶質光電変換ユニット4は結晶質p型シリコン層4p、結晶質i型シリコン光電変換層4i、および結晶質n型シリコン層4nから成り立っている。結晶質n型シリコン層4nの代わりに、微結晶シリコンを含むシリコンオキサイド等の低屈折率層と結晶質n型シリコン層を積層したものを用いることにより、ボトムセルで吸収しきれなかった長波長光を再度ボトムセル側に有効に反射させてもよい。   As one aspect of the present invention, a crystalline photoelectric conversion unit 4 that is a bottom cell is formed on an amorphous photoelectric conversion unit 3. The crystalline photoelectric conversion unit 4 includes a crystalline p-type silicon layer 4p, a crystalline i-type silicon photoelectric conversion layer 4i, and a crystalline n-type silicon layer 4n. Instead of the crystalline n-type silicon layer 4n, a long wavelength light that could not be absorbed by the bottom cell by using a laminate of a low refractive index layer such as silicon oxide containing microcrystalline silicon and a crystalline n-type silicon layer. May be effectively reflected again to the bottom cell side.

なお、非晶質あるいは結晶質のシリコン系材料としては、半導体を構成する主要元素としてシリコンのみを用いる場合だけでなく、炭素、酸素、窒素、ゲルマニウムなどの元素をも含む合金材料であってもよい。また、導電型層の主要構成材料としては、必ずしもi型層と同質のものである必要はなく、例えば非晶質シリコン光電変換ユニットのp型層に非晶質シリコンカーバイドを用い得るし、n型層に結晶質を含むシリコン層(μc−Siとも呼ばれる)も用い得る。   Note that the amorphous or crystalline silicon-based material is not only a case where only silicon is used as a main element constituting a semiconductor, but also an alloy material including elements such as carbon, oxygen, nitrogen, and germanium. Good. The main constituent material of the conductive layer is not necessarily the same as that of the i-type layer. For example, amorphous silicon carbide can be used for the p-type layer of the amorphous silicon photoelectric conversion unit, and n A silicon layer (also referred to as μc-Si) containing crystal in the mold layer can also be used.

非晶質光電変換ユニット3、および結晶質光電変換ユニット4(以下、この両方のユニットをまとめて単に光電変換ユニットと称する)の形成には後述するプラズマCVD法が適している。光電変換ユニットの形成条件としては、基板温度100〜250℃、圧力30〜3000Pa、高周波パワー密度0.01〜0.5W/cm2、E/Sは30mm以下が好ましく用いられる。特に、結晶質i型シリコン光電変換層4iは、結晶分率=3〜7、水素希釈率=100〜250、圧力800Pa〜3000Pa、高周波パワー密度=0.05〜0.2W/cm2、E/S=8mm以下で製膜することがより好ましい。光電変換ユニット形成に使用する原料ガスとしては、SiH4、Si26等のシリコン含有ガスまたは、それらのガスと水素を混合したものが用いられる。光電変換ユニットにおけるp型またはn型層を形成するためのドーパントガスとしては、B26またはPH3等が好ましく用いられる。 The plasma CVD method described later is suitable for forming the amorphous photoelectric conversion unit 3 and the crystalline photoelectric conversion unit 4 (hereinafter, both units are collectively referred to as a photoelectric conversion unit). As conditions for forming the photoelectric conversion unit, a substrate temperature of 100 to 250 ° C., a pressure of 30 to 3000 Pa, a high frequency power density of 0.01 to 0.5 W / cm 2 , and an E / S of 30 mm or less are preferably used. In particular, the crystalline i-type silicon photoelectric conversion layer 4i has a crystal fraction of 3 to 7, a hydrogen dilution rate of 100 to 250, a pressure of 800 Pa to 3000 Pa, a high frequency power density of 0.05 to 0.2 W / cm 2 , E More preferably, the film is formed at / S = 8 mm or less. As a source gas used for forming the photoelectric conversion unit, a silicon-containing gas such as SiH 4 or Si 2 H 6 or a mixture of these gases and hydrogen is used. B 2 H 6 or PH 3 is preferably used as the dopant gas for forming the p-type or n-type layer in the photoelectric conversion unit.

また非晶質光電変換ユニット3のn型シリコン層3nを製膜後に基板を一旦大気中に取り出して、再び別のプラズマCVD装置で結晶質光電変換ユニット4を製膜しても良い。ただしその場合は、結晶質光電変換ユニット4の結晶質p型シリコン層4pを製膜する前に、もう一度n型シリコン層3nを製膜することが好ましい。   Alternatively, after the n-type silicon layer 3n of the amorphous photoelectric conversion unit 3 is formed, the substrate is once taken out into the atmosphere, and the crystalline photoelectric conversion unit 4 is formed again by another plasma CVD apparatus. However, in that case, it is preferable to form the n-type silicon layer 3n again before forming the crystalline p-type silicon layer 4p of the crystalline photoelectric conversion unit 4.

さらに、もう一度製膜するn型シリコン層3n、結晶質光電変換ユニット4の結晶質p型シリコン層4p、結晶質i型シリコン光電変換層4iおよび結晶質n型シリコン層4nは、同一のチャンバー内で製膜しても良い。   Further, the n-type silicon layer 3n to be formed again, the crystalline p-type silicon layer 4p of the crystalline photoelectric conversion unit 4, the crystalline i-type silicon photoelectric conversion layer 4i, and the crystalline n-type silicon layer 4n are formed in the same chamber. You may form into a film.

本発明の一態様としては、n型シリコン層4nの上には裏面電極層5が形成される。裏面電極層5にはAg、Alまたはそれらの合金が好ましく用いられる。裏面電極層5とn型シリコン層4nとの間には、裏面電極層5からn型シリコン層4nへの金属の拡散を防止するため、透明反射層5tを挿入してもよい。透明反射層5tにはZnO、ITO等の低抵抗で透明性の優れた金属酸化物が用いられる。透明反射層5tおよび裏面電極層5の形成においては、スパッタ、蒸着等の方法が好ましく用いられる。   As one aspect of the present invention, the back electrode layer 5 is formed on the n-type silicon layer 4n. For the back electrode layer 5, Ag, Al, or an alloy thereof is preferably used. A transparent reflective layer 5t may be inserted between the back electrode layer 5 and the n-type silicon layer 4n in order to prevent metal diffusion from the back electrode layer 5 to the n-type silicon layer 4n. For the transparent reflective layer 5t, a metal oxide having low resistance and excellent transparency such as ZnO or ITO is used. In forming the transparent reflective layer 5t and the back electrode layer 5, methods such as sputtering and vapor deposition are preferably used.

(1)本発明の第1は、
「少なくとも、
(A)高周波電極と、
(B)該高周波電極と対向して配置される基板と、
(C)該高周波電極と対向して配置され、かつ、該基板を保持するホルダと
を含むプラズマCVD装置を使用するプラズマCVD工程を含むシリコン系薄膜光電変換装置の製造方法であって、下記の(i)と(ii)とが、(iii)の配置状態で行われるプラズマCVD法により、
非晶質シリコン光電変換層を含む非晶質光電変換ユニット、又は結晶質シリコン光電変換層を含む結晶質光電変換ユニットを少なくとも1以上作製する
ことを特徴とする、シリコン系薄膜光電変換装置の製造方法。
(i)該基板(B)の高周波電極と対向する基板面である製膜面。
(ii)該ホルダ(C)の一部をなし、かつ、高周波電極と対向する面であって、
該製膜面に平行な方向の基板端部から最も近く、かつ、高周波電極に最も近い面。
(iii)略同一平面上に配置されている状態。」
、である。
(1) The first of the present invention is
"at least,
(A) a high-frequency electrode;
(B) a substrate disposed opposite to the high-frequency electrode;
(C) A method of manufacturing a silicon-based thin film photoelectric conversion device including a plasma CVD process using a plasma CVD device that is disposed to face the high-frequency electrode and includes a holder that holds the substrate. (I) and (ii) are performed by plasma CVD performed in the arrangement state of (iii),
Production of a silicon-based thin film photoelectric conversion device, comprising at least one amorphous photoelectric conversion unit including an amorphous silicon photoelectric conversion layer or at least one crystalline photoelectric conversion unit including a crystalline silicon photoelectric conversion layer Method.
(I) A film-forming surface that is a substrate surface facing the high-frequency electrode of the substrate (B).
(Ii) a surface that forms part of the holder (C) and faces the high-frequency electrode;
A surface closest to the substrate end in a direction parallel to the film forming surface and closest to the high-frequency electrode.
(Iii) The state arrange | positioned on the substantially the same plane. "
.

これら、シリコン系薄膜光電変換装置は、基板製膜面(i)とホルダ表面(ii)が略同一平面上に配置される(iii)、少なくとも高周波電極(A)と基板(B)とホルダ(C)を含むプラズマCVD装置を用いて製造することが好ましい。前述のホルダ(C)の模式的断面図を図5に、製膜面から見たホルダの模式的平面図を図6に示す。言うまでも無いが、これらの図5や図6は、本発明の一態様を表すものであって、本発明が、図5や図6に限定されるものではない。   In these silicon-based thin film photoelectric conversion devices, the substrate film-forming surface (i) and the holder surface (ii) are disposed on substantially the same plane (iii), and at least the high-frequency electrode (A), the substrate (B), and the holder ( It is preferable to manufacture using a plasma CVD apparatus including C). FIG. 5 shows a schematic cross-sectional view of the holder (C) described above, and FIG. 6 shows a schematic plan view of the holder viewed from the film forming surface. Needless to say, these FIG. 5 and FIG. 6 represent one embodiment of the present invention, and the present invention is not limited to FIG. 5 and FIG.

図5に記載のホルダ20は、基板11の外形よりもやや大きめの内形状を有するステンレスやアルミ製の外枠13からなり、この外枠には押さえ板12を支持するための段部が一定の厚みで設けられている。この段部にはあらかじめ押さえ板12が固定部材15で取り付けてある。ホルダ20使用時には、基板11を固定部材15が取り付けてある側と反対側から設置し、基板留め部材21で基板11の側面から固定する。ただし、基板留め部材21が基板11を側面から固定する具体的手段は、基板製膜面7とホルダ表面8が略同一平面上に配置される状態を損なわない限り、限定されるものではない。   The holder 20 shown in FIG. 5 is composed of an outer frame 13 made of stainless steel or aluminum having an inner shape slightly larger than the outer shape of the substrate 11, and a stepped portion for supporting the pressing plate 12 is constant on the outer frame. The thickness is provided. A holding plate 12 is attached to the step portion with a fixing member 15 in advance. When the holder 20 is used, the substrate 11 is installed from the side opposite to the side on which the fixing member 15 is attached, and is fixed from the side surface of the substrate 11 by the substrate fastening member 21. However, the specific means for fixing the substrate 11 from the side surface by the substrate fastening member 21 is not limited as long as the state in which the substrate film-forming surface 7 and the holder surface 8 are arranged on substantially the same plane is not impaired.

ここでいう「略同一平面に配置されている状態」とは、平面と平面とが±1mm以内の間隔でほぼ同一平面に平行に配置されている状態のことをいう。   Here, the “state of being arranged in substantially the same plane” means a state in which the plane and the plane are arranged in parallel to the same plane with an interval of ± 1 mm or less.

(2)本発明の第2は、
「前記のホルダ(C)が、前記の基板(B)の製膜面に対して側面から(B)を保持する手段を有することを特徴とする、(1)に記載のシリコン系薄膜光電変換装置の製造方法」
、である。
(2) The second aspect of the present invention is
The silicon-based thin film photoelectric conversion according to (1), wherein the holder (C) has means for holding (B) from the side surface with respect to the film-forming surface of the substrate (B). Device manufacturing method "
.

図6では、基板留め部材21が左右2カ所ずつ配置されているが、基板留め部材21の数量および配置は限定されるものではない。例えば数量はもっと多くても良く、配置は左右だけでなく上下にあっても良い。ただし、下は基板の自重で固定されるため配置されない方が望ましい。本発明の一態様である図6の基板留め部材21が、「前記のホルダ(C)が、前記の基板(B)の製膜面に対して側面から(B)を保持する手段」である。   In FIG. 6, although the board | substrate fastening member 21 is arrange | positioned at right and left two places, the quantity and arrangement | positioning of the board | substrate fastening member 21 are not limited. For example, the quantity may be larger, and the arrangement may be not only on the left and right but also on the top and bottom. However, it is desirable that the bottom is not disposed because it is fixed by its own weight. The substrate fastening member 21 of FIG. 6 which is one embodiment of the present invention is “means that the holder (C) holds (B) from the side with respect to the film-forming surface of the substrate (B)”. .

また、ホルダ20に基板11を設置したときに、基板製膜面7とホルダ表面8は略同一平面上に配置される。   Further, when the substrate 11 is installed on the holder 20, the substrate film-forming surface 7 and the holder surface 8 are arranged on substantially the same plane.

(3)本発明の第3は、
「前記の基板(B)の高周波電極と対向する基板面である製膜面と、前記の高周波電極(A)の主たる面との最短距離が0mmより大きく8mm以下であることを特徴とする、(1)または(2)に記載のシリコン系薄膜光電変換装置の製造方法」
、である。
(3) The third aspect of the present invention is
“The shortest distance between the film-forming surface that is the substrate surface facing the high-frequency electrode of the substrate (B) and the main surface of the high-frequency electrode (A) is greater than 0 mm and 8 mm or less. Manufacturing method of silicon-based thin film photoelectric conversion device according to (1) or (2) "
.

次に、高周波電極(A)、基板(B)、ホルダ(C)の配置例を図8に示す。電極30は、ステンレスやアルミ製の高周波電極31と高周波電極31の側面を取り囲むテフロン(登録商標)やセラミック製の絶縁部材32およびステンレスやアルミ製のアースシールド33から一般的に構成される。アースシールド33は、高周波電極31とホルダ20の間の空間以外でプラズマが発生するのを抑制する。高周波電極31の基板11と反対側の面は、図8では何も記されていないが、もう一枚のホルダ20を基板11が高周波電極31の方に向くように配置しても良い。又、高周波電極31の基板11と反対側の面は、絶縁部材32およびアースシールド33で高周波電極31を覆っても良い。図8では基板製膜面7とホルダ表面8が略同一平面上に配置され、E/SとE/H(前記のとおり、高周波電極とホルダ表面8との距離をE/Hと称し、高周波電極と基板製膜面7との距離をE/Sと称している。)が同じであるため、ホルダ20と電極30の間の空間で均一にプラズマを発生することができる。   Next, FIG. 8 shows an arrangement example of the high-frequency electrode (A), the substrate (B), and the holder (C). The electrode 30 is generally composed of a stainless steel or aluminum high-frequency electrode 31, a Teflon (registered trademark) surrounding the side surface of the high-frequency electrode 31, a ceramic insulating member 32, and a stainless steel or aluminum earth shield 33. The earth shield 33 suppresses the generation of plasma outside the space between the high frequency electrode 31 and the holder 20. Although the surface of the high-frequency electrode 31 opposite to the substrate 11 is not shown in FIG. 8, another holder 20 may be arranged so that the substrate 11 faces the high-frequency electrode 31. Further, the surface of the high frequency electrode 31 opposite to the substrate 11 may cover the high frequency electrode 31 with an insulating member 32 and a ground shield 33. In FIG. 8, the substrate film-forming surface 7 and the holder surface 8 are arranged on substantially the same plane, and E / S and E / H (the distance between the high-frequency electrode and the holder surface 8 is referred to as E / H, as described above, Since the distance between the electrode and the substrate deposition surface 7 is referred to as E / S.), The plasma can be generated uniformly in the space between the holder 20 and the electrode 30.

本発明の一態様である図9は、電極30の絶縁部材32およびアースシールド33が高周波電極表面9よりもホルダ側へ出っ張っている、高周波電極(A)、基板(B)、ホルダ(C)の配置例である。図9ではホルダ20に絶縁部材32およびアースシールド33の出っ張りがあるものの、
『図8と同様に、図9中で、基板製膜面7とホルダ表面8が略同一平面上に配置され、
(i)基板(B)の高周波電極と対向する基板面である製膜面と、
前記の高周波電極(A)の絶縁部材32に隠れていない「主たる面」である高周波電極表面9との最短距離E/S』

『(i)基板(B)の高周波電極と対向する基板面である製膜面と(iii)略同一平面上に配置されており、
(ii)ホルダ(C)の一部をなし、かつ、高周波電極と対向する面であって、
該製膜面に平行な方向の基板端部から最も近く、かつ、高周波電極に最も近い面、「すなわち基板留め部材21の、製膜面と略同一平面上に配置された面」と、
前記の高周波電極(A)の絶縁部材32に隠れていない「主たる面」である高周波電極表面9との最短距離E/H』
とが同じであることから、ホルダ20と電極30の間の空間で均一にプラズマを発生することができる。図9の配置例では、絶縁部材32とアースシールド33が同程度出っ張っているように描かれているが、異なっていても問題はない。また、出っ張るのではなく、引っ込んでいても問題ない。ただしアースシールド33の引っ込み程度は、高周波電極31とホルダ20の間の空間以外でプラズマが発生するのを抑制することを 妨げない程度に限定される。
9 which is one embodiment of the present invention, the insulating member 32 and the earth shield 33 of the electrode 30 protrude from the high-frequency electrode surface 9 to the holder side. The high-frequency electrode (A), the substrate (B), and the holder (C) This is an arrangement example. In FIG. 9, although the holder 20 has a protrusion of the insulating member 32 and the earth shield 33,
“Similar to FIG. 8, in FIG. 9, the substrate film-forming surface 7 and the holder surface 8 are arranged on substantially the same plane,
(I) a film forming surface which is a substrate surface facing the high frequency electrode of the substrate (B);
Shortest distance E / S with the high-frequency electrode surface 9 which is the “main surface” that is not hidden by the insulating member 32 of the high-frequency electrode (A) ”
And (i) a film-forming surface that is a substrate surface facing the high-frequency electrode of the substrate (B) and (iii) substantially on the same plane,
(Ii) a surface that forms part of the holder (C) and faces the high-frequency electrode;
The surface closest to the substrate edge in the direction parallel to the film-forming surface and closest to the high-frequency electrode, that is, “the surface of the substrate-clamping member 21 disposed on substantially the same plane as the film-forming surface”;
Shortest distance E / H with respect to the high-frequency electrode surface 9 which is a “main surface” that is not hidden by the insulating member 32 of the high-frequency electrode (A) ”
Therefore, the plasma can be generated uniformly in the space between the holder 20 and the electrode 30. In the arrangement example of FIG. 9, the insulating member 32 and the earth shield 33 are drawn so as to protrude to the same extent, but there is no problem even if they are different. In addition, it does not matter if it is retracted instead of protruding. However, the extent to which the earth shield 33 is retracted is limited to such an extent that it does not prevent the plasma from being generated outside the space between the high-frequency electrode 31 and the holder 20.

上記で記載したとおり、本発明の第3の「高周波電極(A)の主たる面」とは、例えば9中に記載のように、絶縁部材32に隠れていない部分であって、高周波電極表面9のうち、面積的に主たる面(面積的に少なくとも50%超の高周波電極表面9)である。   As described above, the third “main surface of the high-frequency electrode (A)” of the present invention is a portion that is not hidden by the insulating member 32 as described in 9, for example, the high-frequency electrode surface 9. Of these, the main surface in terms of area (the high-frequency electrode surface 9 having an area of at least more than 50%).

本発明の一態様である図10は、ホルダ20の外枠13に絶縁部材34が取り付けられた、高周波電極(A)、基板(B)、ホルダ(C)の配置例である。図10では、ホルダ20に絶縁部材34の出っ張りがあるが、図8と同様に基板製膜面7とホルダ表面8が略同一平面上に配置され、E/SとE/Hの差が同じであることから、ホルダ20と電極30の間の空間で均一にプラズマを発生することができる。ただし、外枠13の内側面に近い箇所に絶縁部材34が配置されると、額縁ホルダと同様にホルダ20と電極30の間の空間でプラズマが均一に発生することを妨げることになる。よって絶縁部材34は、ホルダ20と電極30の間の空間でプラズマが均一に発生することを妨げない範囲で、外枠13の内側面に近い箇所に配置することができる。また絶縁部材34は、ホルダ20と電極30の間の空間でプラズマを閉じ込める効果を狙い、ホルダ20の搬送に支障が無く電極30に接触しない範囲で大きくすることができる。   FIG. 10 which is one embodiment of the present invention is an arrangement example of the high-frequency electrode (A), the substrate (B), and the holder (C) in which the insulating member 34 is attached to the outer frame 13 of the holder 20. In FIG. 10, the insulating member 34 protrudes from the holder 20, but the substrate film-forming surface 7 and the holder surface 8 are arranged on substantially the same plane as in FIG. 8, and the difference between E / S and E / H is the same. Therefore, plasma can be generated uniformly in the space between the holder 20 and the electrode 30. However, if the insulating member 34 is disposed at a location close to the inner side surface of the outer frame 13, the plasma is prevented from being uniformly generated in the space between the holder 20 and the electrode 30 like the frame holder. Therefore, the insulating member 34 can be disposed at a location close to the inner side surface of the outer frame 13 within a range that does not prevent the plasma from being uniformly generated in the space between the holder 20 and the electrode 30. Further, the insulating member 34 can be enlarged as long as it does not interfere with the conveyance of the holder 20 and does not contact the electrode 30 with the aim of confining the plasma in the space between the holder 20 and the electrode 30.

本発明の一態様である図11は、ホルダ20の外枠13の高周波電極31側に突起部35がある、高周波電極(A)、基板(B)、ホルダ(C)の配置例である。図10の絶縁部材34と違い図11の突起部35は導体であるため、一般的に突起部35はホルダ20と電極30との間で異常放電を生じる原因となる。このため、できるだけ突起部35は無いことが好ましい。ただし、ホルダ20の搬送に必要で、異常放電が生じない程度に十分電極30から離れた場所にあるという範囲において、突起部35はホルダ20に配置することができる。   FIG. 11, which is one embodiment of the present invention, is an arrangement example of the high-frequency electrode (A), the substrate (B), and the holder (C) in which the protruding portion 35 is provided on the high-frequency electrode 31 side of the outer frame 13 of the holder 20. Unlike the insulating member 34 in FIG. 10, the protrusion 35 in FIG. 11 is a conductor, and thus the protrusion 35 generally causes abnormal discharge between the holder 20 and the electrode 30. For this reason, it is preferable that there is no protrusion 35 as much as possible. However, the protrusion 35 can be disposed on the holder 20 as long as it is necessary to transport the holder 20 and is sufficiently away from the electrode 30 to the extent that abnormal discharge does not occur.

次に本発明の一態様である図13に基板留め部材21の模式的構造についてより詳細に示す。図13に示すようにホルダ20の基板留め部材21は、基板11を基板11の端面処理で角が削れている部分を利用して基板11の側面から保持する構造になっている。このため、基板製膜面7とホルダ表面8は略同一平面上に配置できる。又、熱膨張による基板11の割れを防ぐため、基板留め部材21が基板11を側面から押し付けるようにバネを利用することが好ましい。   Next, FIG. 13 which is one embodiment of the present invention shows in more detail the schematic structure of the substrate fastening member 21. As shown in FIG. 13, the substrate fastening member 21 of the holder 20 has a structure in which the substrate 11 is held from the side surface of the substrate 11 by using a portion whose corner is cut by the end face processing of the substrate 11. For this reason, the board | substrate film-forming surface 7 and the holder surface 8 can be arrange | positioned on substantially the same plane. In order to prevent the substrate 11 from cracking due to thermal expansion, it is preferable to use a spring so that the substrate fastening member 21 presses the substrate 11 from the side surface.

基板留め部材21の種類には、図13(1)のように基板11に対して線で接触する台形型の線接触型基板留め部材23や、図13(2)のように基板11に対して点で接触する紡錘型の点接触型基板留め部材24等がある。ただし、点接触型基板留め部材24は基板11に対して点で接触するため、線接触型基板留め部材23が基板11に対して線で接触するのに対して、基板11に対する押し圧力が強い。このため、点接触型基板留め部材24では基板11が欠ける恐れがある。よって基板留め部材21は、線接触型基板留め部材23の方がより好ましい。なお、図13(1)の断面AAとは、図13(1)中の左上のA部分と、図13(1)中の右上のA部分と、の間AAでの断面のことを表す。また、図13(2)の断面BBとは、図13(2)中の左上のB部分と、図13(2)中の右上のB部分と、の間BBでの断面のことを表す。   The type of the substrate fastening member 21 includes a trapezoidal line contact type substrate fastening member 23 that contacts the substrate 11 with a line as shown in FIG. 13A, and a substrate 11 as shown in FIG. 13B. There is a spindle type point contact type substrate fastening member 24 that contacts at a point. However, since the point contact type substrate fastening member 24 is in contact with the substrate 11 at a point, the line contact type substrate fastening member 23 is in contact with the substrate 11 with a line, whereas the pressing force against the substrate 11 is strong. . For this reason, there is a possibility that the substrate 11 is missing in the point contact type substrate fastening member 24. Accordingly, the substrate contact member 21 is more preferably the line contact substrate stop member 23. The cross section AA in FIG. 13A represents a cross section at AA between the upper left A portion in FIG. 13A and the upper right A portion in FIG. Further, the cross section BB in FIG. 13 (2) represents a cross section at BB between the upper left B portion in FIG. 13 (2) and the upper right B portion in FIG. 13 (2).

以下に、本発明を、実施例によって説明するが、本発明は、下記の実施例に限定されるものではない。   EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to the following examples.

(実施例1)
実施例1のシリコン系薄膜光電変換装置として、シリコン系ハイブリッド薄膜光電変換モジュールを作製した、図2はシリコン系薄膜光電変換モジュールの模式的断面図である。
Example 1
As a silicon-based thin film photoelectric conversion device of Example 1, a silicon-based hybrid thin film photoelectric conversion module was produced. FIG. 2 is a schematic cross-sectional view of the silicon-based thin film photoelectric conversion module.

まず、透光性基板1として910mm×455mm×4mm厚の青板ガラスを用いた。次に、透光性基板1の一主面上に、酸化錫からなる表面に微細な凹凸構造を有する透明導電膜2を熱CVD法により形成した。得られた透明導電膜2の厚さは0.8μm、ヘイズ率は14%、シート抵抗は12Ω/□であった。次に、透明導電膜2を複数の帯状パタ−ンへと分割するためにYAG基本波パルスレーザーを透光性基板1に照射することにより、幅50μmの透明電極層分離溝2aを形成し、超音波洗浄および乾燥を行った。
さらに、非晶質光電変換ユニット3を形成するために、透明導電膜2が形成された透光性基板1を基板搬送に額縁ホルダを用いているプラズマCVD装置内に導入し、厚さ150Åの非晶質p型シリコンカーバイド(p型a−SiC)層3pを形成した。引き続いて厚さ3300Åのノンドープ非晶質i型シリコン光電変換層3iを、さらに、微結晶シリコンを含むシリコンオキサイド等の低屈折率層600Åとn型結晶質シリコン層50Åを積層したn型シリコン層3nを順次積層した。p型a−SiC層3pの形成においては、SiH4、水素、水素希釈されたB26、CH4を反応ガスとして用い、p型a−SiC層3pの厚さが80Å相当となった時点で放電を維持したまま、水素希釈されたB26およびCH4の供給を止めて残り70Åの製膜を行った。
First, a blue plate glass having a thickness of 910 mm × 455 mm × 4 mm was used as the translucent substrate 1. Next, a transparent conductive film 2 having a fine concavo-convex structure on the surface made of tin oxide was formed on one main surface of the translucent substrate 1 by a thermal CVD method. The obtained transparent conductive film 2 had a thickness of 0.8 μm, a haze ratio of 14%, and a sheet resistance of 12Ω / □. Next, a transparent electrode layer separation groove 2a having a width of 50 μm is formed by irradiating the transparent substrate 1 with a YAG fundamental wave pulse laser in order to divide the transparent conductive film 2 into a plurality of strip patterns. Ultrasonic cleaning and drying were performed.
Furthermore, in order to form the amorphous photoelectric conversion unit 3, the translucent substrate 1 on which the transparent conductive film 2 is formed is introduced into a plasma CVD apparatus using a frame holder for transporting the substrate, and has a thickness of 150 mm. An amorphous p-type silicon carbide (p-type a-SiC) layer 3p was formed. Subsequently, an n-type silicon layer in which a non-doped amorphous i-type silicon photoelectric conversion layer 3i having a thickness of 3300 mm and a low-refractive index layer 600 mm such as silicon oxide containing microcrystalline silicon and an n-type crystalline silicon layer 50 mm are stacked. 3n was laminated sequentially. In the formation of the p-type a-SiC layer 3p, SiH 4 , hydrogen, B 2 H 6 diluted with hydrogen, and CH 4 were used as reaction gases, and the thickness of the p-type a-SiC layer 3p became 80 mm. While maintaining the discharge at that time, the supply of hydrogen-diluted B 2 H 6 and CH 4 was stopped, and the remaining 70 mm of film was formed.

次に、結晶質光電変換ユニット4を形成するために、一旦基板を大気中に取り出して新ホルダ構造を有する別のプラズマCVD装置を用いた。図7に実際に使用した新ホルダの模式断面図を示す。ホルダ20は、基板11の外形よりもやや大きめの内形状を有するステンレスやアルミ製の外枠13からなり、この外枠には押さえ板12を支持するための段部が一定の厚みで設けられている。この段部にはあらかじめ押さえ板12が固定部材15で取り付けてある。ホルダ20使用時には、基板11を固定部材15が取り付けてある側と反対側から設置し、基板留め部材21で基板11の側面から固定する。本ホルダでは基板11を側面から留める手段として、斜めの傾斜をつけた基板留め部材21を、押さえ板12に取り付け、バネ22で基板11を側面から押し付けて固定する方法を用いた。基板11の端面は一般的に端面処理で角が削られているため、基板留め部材21の斜めの傾斜をつけた部分が基板11にひっかかり、基板11は押さえ板12に固定される。このようにして基板11を外枠13に固定することで、基板11の製膜面とホルダ20の外枠13の製膜面側の面は略同一面上に配置される。又、バネ22を用いることで基板11の熱膨張による基板割れを緩和している。押さえ板12は基板11を保持する以外に、基板11を所定の温度に暖める役割も果たしており、押さえ板側に設置されたヒーターからの輻射熱を有効に吸収するために、黒色処理を施してある。   Next, in order to form the crystalline photoelectric conversion unit 4, the substrate was once taken out into the atmosphere and another plasma CVD apparatus having a new holder structure was used. FIG. 7 shows a schematic cross-sectional view of the new holder actually used. The holder 20 includes an outer frame 13 made of stainless steel or aluminum having an inner shape slightly larger than the outer shape of the substrate 11, and a stepped portion for supporting the pressing plate 12 is provided on the outer frame with a constant thickness. ing. A holding plate 12 is attached to the step portion with a fixing member 15 in advance. When the holder 20 is used, the substrate 11 is installed from the side opposite to the side on which the fixing member 15 is attached, and is fixed from the side surface of the substrate 11 by the substrate fastening member 21. In this holder, as a means for fastening the substrate 11 from the side surface, a method of attaching a substrate fastening member 21 having an oblique inclination to the holding plate 12 and pressing the substrate 11 from the side surface by a spring 22 and fixing it is used. Since the corners of the end surface of the substrate 11 are generally cut by end surface processing, the inclined portion of the substrate fastening member 21 is caught on the substrate 11, and the substrate 11 is fixed to the pressing plate 12. By fixing the substrate 11 to the outer frame 13 in this manner, the film forming surface of the substrate 11 and the surface on the film forming surface side of the outer frame 13 of the holder 20 are arranged on substantially the same surface. Further, by using the spring 22, substrate cracking due to thermal expansion of the substrate 11 is mitigated. In addition to holding the substrate 11, the pressing plate 12 also plays a role of warming the substrate 11 to a predetermined temperature, and has been subjected to black processing in order to effectively absorb the radiant heat from the heater installed on the pressing plate side. .

次に、厚さ100Åのn型結晶質シリコン層3n、厚さ150Åのp型結晶質シリコン層4p、厚さ25000Åの結晶質i型シリコン光電変換層4i、厚さ100Åのn型結晶質シリコン層4nを順次同一チャンバー内で積層した。また、結晶質i型シリコン光電変換層4iは、E/S=6〜12mmで製膜した。   Next, an n-type crystalline silicon layer 3n having a thickness of 100 mm, a p-type crystalline silicon layer 4p having a thickness of 150 mm, a crystalline i-type silicon photoelectric conversion layer 4i having a thickness of 25000 mm, and an n-type crystalline silicon having a thickness of 100 mm Layer 4n was sequentially stacked in the same chamber. The crystalline i-type silicon photoelectric conversion layer 4i was formed with E / S = 6 to 12 mm.

次に、非晶質光電変換ユニット3及び結晶質光電変換ユニット4を複数の帯状パターンへと分割するために、大気中に基板を取り出し、YAG第2高調波パルスレーザーを透光性基板1に照射することにより幅60μmの接続溝4aを形成した。その後、厚さ900ÅのZnOから成る透明反射層(図示せず)と厚さ2000ÅのAgから成る裏面電極層5をDCスパッタ法によって形成した。   Next, in order to divide the amorphous photoelectric conversion unit 3 and the crystalline photoelectric conversion unit 4 into a plurality of strip patterns, the substrate is taken out into the atmosphere, and a YAG second harmonic pulse laser is applied to the translucent substrate 1. By irradiation, a connection groove 4a having a width of 60 μm was formed. Thereafter, a transparent reflective layer (not shown) made of 900 mm thick ZnO and a back electrode layer 5 made of 2000 mm thick Ag were formed by DC sputtering.

最後に、非晶質光電変換ユニット3、結晶質光電変換ユニット4、及び裏面電極層5を複数の帯状パターンへと分割するために、YAG第2高調波パルスレーザーを透光性基板1に照射することにより、幅60μmの裏面電極層分離溝5aを形成し、図2に示すような左右に隣接する短冊状シリコン系薄膜光電変換装置が電気的に直列接続されたシリコン系ハイブリッド薄膜光電変換モジュールを作製した。   Finally, in order to divide the amorphous photoelectric conversion unit 3, the crystalline photoelectric conversion unit 4, and the back electrode layer 5 into a plurality of strip patterns, the YAG second harmonic pulse laser is irradiated to the translucent substrate 1. By doing so, a silicon hybrid thin film photoelectric conversion module in which a back electrode layer separation groove 5a having a width of 60 μm is formed, and strip-like silicon thin film photoelectric conversion devices adjacent to the left and right as shown in FIG. 2 are electrically connected in series Was made.

このシリコン系ハイブリッド薄膜光電変換モジュールは、幅8.9mm×長さ430mmのシリコン系薄膜光電変換装置が100段直列接続されて構成されている。
エアマス1.5に近似されたスペクトルでエネルギー密度100mW/cm2の擬似太陽光を、測定雰囲気及びシリコン系ハイブリッド薄膜光電変換モジュールの温度25±1℃の条件下で照射し、シリコン系ハイブリッド薄膜光電変換モジュールの電流−電圧特性を測定した。開放電圧(Voc)、短絡電流密度(Jsc)、曲線因子(FF)、変換効率(Eff)の測定結果を表1に示す。
This silicon-based hybrid thin film photoelectric conversion module is configured by 100 stages of silicon-based thin film photoelectric conversion devices having a width of 8.9 mm and a length of 430 mm connected in series.
Pseudo-sunlight with an energy density of 100 mW / cm 2 with a spectrum approximated to air mass 1.5 is irradiated under the conditions of the measurement atmosphere and the temperature of the silicon-based hybrid thin film photoelectric conversion module 25 ± 1 ° C. The current-voltage characteristics of the conversion module were measured. Table 1 shows the measurement results of open circuit voltage (Voc), short circuit current density (Jsc), fill factor (FF), and conversion efficiency (Eff).

表1で、910mm×455mm基板におけるシリコン系ハイブリッド薄膜光電変換モジュールの特性(1cm2角換算)を示す。 In Table 1, the characteristic (1 cm2 square conversion) of the silicon-type hybrid thin film photoelectric conversion module in a 910 mm x 455 mm board | substrate is shown.

(比較例1)
比較例1においては、実施例1と比較して結晶質光電変換ユニット4を形成するためのプラズマCVD装置のホルダのみが図4に示す従来ホルダに変更され、他は実施例1と全く同様にしてシリコン系ハイブリッド薄膜光電変換モジュールを作製した。比較例1で作製したシリコン系ハイブリッド薄膜光電変換モジュールの出力測定結果を表1に示す。また、E/Sを変化させたときの、実施例1と比較例1のEffを図12に示す。
(Comparative Example 1)
In Comparative Example 1, compared with Example 1, only the holder of the plasma CVD apparatus for forming the crystalline photoelectric conversion unit 4 is changed to the conventional holder shown in FIG. A silicon-based hybrid thin film photoelectric conversion module was manufactured. Table 1 shows the output measurement results of the silicon-based hybrid thin film photoelectric conversion module fabricated in Comparative Example 1. Moreover, FIG. 12 shows Eff of Example 1 and Comparative Example 1 when E / S is changed.

表1および図12の実施例1と比較例1との比較から、実施例1はE/Sが狭くなるにつれてVocおよびJscが向上してEffが徐々に向上していることが分かる。まず、E/S=10mm以上の時、実施例1と比較例1はE/Sが狭くなるにつれてどちらも徐々にEffが向上していき、実施例1と比較例1のEffの絶対値は0.2%の差しかない。ところが、E/S=8mm以下になるとE/Sが狭くなるにつれて、比較例1のEffは徐々に低下していき、E/S=6mmではEff=11.0%まで低下する。それに対して、実施例1のEffはE/Sが狭くなるにつれて徐々に向上していき、E/S=6mmではEff=13.3%まで向上することが分かる。またEffの最大値は、比較例1がE/S=10mmの時に12.5%であるのに対して、実施例1はE/S=6mmの時に13.3%であり、Effの絶対値として0.8%も上回っていることが分かる。   From comparison between Example 1 and Comparative Example 1 in Table 1 and FIG. 12, it can be seen that in Example 1, Voc and Jsc are improved and Eff is gradually improved as E / S becomes narrower. First, when E / S = 10 mm or more, Eff in both Example 1 and Comparative Example 1 gradually improved as E / S narrowed, and the absolute value of Eff in Example 1 and Comparative Example 1 is Only 0.2%. However, as E / S = 8 mm or less, Eff of Comparative Example 1 gradually decreases as E / S becomes narrower, and when E / S = 6 mm, Eff = 11.0%. On the other hand, Eff of Example 1 gradually increases as E / S becomes narrower, and it can be seen that Eff = 13.3% when E / S = 6 mm. The maximum value of Eff is 12.5% when Comparative Example 1 is E / S = 10 mm, whereas Example 1 is 13.3% when E / S = 6 mm. It can be seen that the value exceeds 0.8%.

以上のことから、本発明によれば、少なくとも、
(A)高周波電極と、
(B)該高周波電極と対向して配置される基板と、
(C)該高周波電極と対向して配置され、かつ、該基板を保持するホルダとを含むプラズマCVD装置を使用する工程を含むシリコン系薄膜光電変換装置の製造方法であって、下記の(i)と(ii)とが、(iii)の配置状態で行われるプラズマCVD法工程により非晶質シリコン光電変換層を含む非晶質光電変換ユニット、又は結晶質シリコン光電変換層を含む結晶質光電変換ユニットを少なくとも1以上作製することを特徴とする、シリコン系薄膜光電変換装置を製造することで、シリコン系薄膜光電変換装置のVocおよびJscが向上し、Effを向上することができる。
(i)該基板(B)の高周波電極と対向する基板面である製膜面。
(ii)該ホルダ(C)の一部をなし、かつ、高周波電極と対向する面であって、
該製膜面に平行な方向の基板端部から最も近く、かつ、高周波電極に最も近い面。
(iii)略同一平面上に配置されている状態。
From the above, according to the present invention, at least
(A) a high-frequency electrode;
(B) a substrate disposed opposite to the high-frequency electrode;
(C) A method of manufacturing a silicon-based thin film photoelectric conversion device including a step of using a plasma CVD apparatus that is disposed to face the high-frequency electrode and includes a holder that holds the substrate. ) And (ii) are amorphous photoelectric conversion units including an amorphous silicon photoelectric conversion layer or crystalline photoelectric including a crystalline silicon photoelectric conversion layer by a plasma CVD method performed in the arrangement state of (iii) By producing a silicon-based thin film photoelectric conversion device characterized by producing at least one conversion unit, Voc and Jsc of the silicon-based thin film photoelectric conversion device can be improved, and Eff can be improved.
(I) A film-forming surface that is a substrate surface facing the high-frequency electrode of the substrate (B).
(Ii) a surface that forms part of the holder (C) and faces the high-frequency electrode;
A surface closest to the substrate end in a direction parallel to the film forming surface and closest to the high-frequency electrode.
(Iii) The state arrange | positioned on the substantially the same plane.

シリコン系ハイブリッド薄膜光電変換装置の模式的断面図Schematic cross-sectional view of a silicon-based hybrid thin film photoelectric conversion device シリコン系ハイブリッド薄膜光電変換モジュールの模式的断面図Schematic cross section of a silicon-based hybrid thin film photoelectric conversion module 従来ホルダの模式的断面図1Schematic sectional view of a conventional holder 1 従来ホルダの模式的断面図2Schematic sectional view of a conventional holder 2 新ホルダの模式的断面図Schematic cross section of the new holder 製膜面から見た新ホルダの模式的平面図Schematic plan view of the new holder as seen from the film forming surface 新ホルダにおける基板留め部分の具体的構造(断面図)Specific structure of the substrate holder in the new holder (cross-sectional view) 新ホルダと高周波電極の配置例1Arrangement example 1 of new holder and high frequency electrode 新ホルダと高周波電極の配置例2Arrangement example 2 of new holder and high frequency electrode 新ホルダと高周波電極の配置例3Arrangement example 3 of new holder and high frequency electrode 新ホルダと高周波電極の配置例4Arrangement example 4 of new holder and high frequency electrode 実施例1と比較例1のE/SとEffの関係Relationship between E / S and Eff of Example 1 and Comparative Example 1 基板留め部材の模式的構造Schematic structure of substrate fastening member

符号の説明Explanation of symbols

1 透光性基板
2 透明導電膜
3 非晶質光電変換ユニット
3p 非晶質p型シリコンカーバイド層
3i ノンドープ非晶質i型シリコン光電変換層
3n n型シリコン層
4 結晶質光電変換ユニット
4p p型結晶質シリコン層
4i 結晶質i型シリコン光電変換層
4n n型結晶質シリコン層
5 裏面電極層
5t 透明反射層
2a 透明電極層分離溝
4a 接続溝
5a 裏面電極層分離溝
7 基板製膜面
8 ホルダ表面
9 高周波電極表面
10 ホルダ
11 基板
12 押さえ板
13 外枠
14 段部
15 固定部材
16 補助枠部材
17 補助枠部材段部
20 新ホルダ
21 基板留め部材
22 バネ
23 線接触型基板留め部材
24 点接触型基板留め部材
30 電極
31 高周波電極
32 絶縁部材
33 アースシールド
34 絶縁部材
35 突起部
DESCRIPTION OF SYMBOLS 1 Translucent substrate 2 Transparent electrically conductive film 3 Amorphous photoelectric conversion unit 3p Amorphous p-type silicon carbide layer 3i Non-doped amorphous i-type silicon photoelectric conversion layer 3n N-type silicon layer 4 Crystalline photoelectric conversion unit 4p p-type Crystalline silicon layer 4i Crystalline i-type silicon photoelectric conversion layer 4n n-type crystalline silicon layer 5 Back electrode layer 5t Transparent reflection layer 2a Transparent electrode layer separation groove 4a Connection groove 5a Back electrode layer separation groove 7 Substrate film surface 8 Holder Surface 9 High-frequency electrode surface 10 Holder 11 Substrate 12 Holding plate 13 Outer frame 14 Step portion 15 Fixing member 16 Auxiliary frame member 17 Auxiliary frame member step portion 20 New holder 21 Substrate fastening member 22 Spring 23 Line contact type substrate fastening member 24 Point contact Mold substrate fixing member 30 Electrode 31 High frequency electrode 32 Insulating member 33 Earth shield 34 Insulating member 35 Projection

Claims (3)

少なくとも、
(A)高周波電極と、
(B)該高周波電極と対向して配置される基板と、
(C)該高周波電極と対向して配置され、かつ、該基板を保持するホルダと
を含むプラズマCVD装置を使用するプラズマCVD工程を含むシリコン系薄膜光電変換装置の製造方法であって、下記の(i)と(ii)とが、(iii)の配置状態で行われるプラズマCVD法により、
非晶質シリコン光電変換層を含む非晶質光電変換ユニット、又は結晶質シリコン光電変換層を含む結晶質光電変換ユニットを少なくとも1以上作製する
ことを特徴とする、シリコン系薄膜光電変換装置の製造方法。
(i)該基板(B)の高周波電極と対向する基板面である製膜面。
(ii)該ホルダ(C)の一部をなし、かつ、高周波電極と対向する面であって、
該製膜面に平行な方向の基板端部から最も近く、かつ、高周波電極に最も近い面。
(iii)略同一平面上に配置されている状態。
at least,
(A) a high-frequency electrode;
(B) a substrate disposed opposite to the high-frequency electrode;
(C) A method of manufacturing a silicon-based thin film photoelectric conversion device including a plasma CVD process using a plasma CVD device that is disposed to face the high-frequency electrode and includes a holder that holds the substrate. (I) and (ii) are performed by plasma CVD performed in the arrangement state of (iii),
Production of a silicon-based thin film photoelectric conversion device, comprising at least one amorphous photoelectric conversion unit including an amorphous silicon photoelectric conversion layer or at least one crystalline photoelectric conversion unit including a crystalline silicon photoelectric conversion layer Method.
(I) A film-forming surface that is a substrate surface facing the high-frequency electrode of the substrate (B).
(Ii) a surface that forms part of the holder (C) and faces the high-frequency electrode;
A surface closest to the substrate end in a direction parallel to the film forming surface and closest to the high-frequency electrode.
(Iii) The state arrange | positioned on the substantially the same plane.
前記のホルダ(C)が、前記の基板(B)の製膜面に対して側面から(B)を保持する手段を有することを特徴とする、請求項1に記載のシリコン系薄膜光電変換装置の製造方法。   2. The silicon-based thin film photoelectric conversion device according to claim 1, wherein the holder (C) has means for holding (B) from a side surface with respect to a film forming surface of the substrate (B). 3. Manufacturing method. 前記の基板(B)の高周波電極と対向する基板面である製膜面と、前記の高周波電極(A)の主たる面との最短距離が0mmより大きく8mm以下であることを特徴とする、請求項1または2に記載のシリコン系薄膜光電変換装置の製造方法。   The shortest distance between a film-forming surface, which is a substrate surface facing the high-frequency electrode of the substrate (B), and a main surface of the high-frequency electrode (A) is greater than 0 mm and 8 mm or less. Item 3. A method for producing a silicon-based thin film photoelectric conversion device according to Item 1 or 2.
JP2006003033A 2006-01-10 2006-01-10 Method for manufacturing silicon system thin film photoelectric converter Pending JP2007184505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006003033A JP2007184505A (en) 2006-01-10 2006-01-10 Method for manufacturing silicon system thin film photoelectric converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006003033A JP2007184505A (en) 2006-01-10 2006-01-10 Method for manufacturing silicon system thin film photoelectric converter

Publications (1)

Publication Number Publication Date
JP2007184505A true JP2007184505A (en) 2007-07-19

Family

ID=38340314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006003033A Pending JP2007184505A (en) 2006-01-10 2006-01-10 Method for manufacturing silicon system thin film photoelectric converter

Country Status (1)

Country Link
JP (1) JP2007184505A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011135051A (en) * 2009-11-24 2011-07-07 Semiconductor Energy Lab Co Ltd Method for manufacturing soi substrate
CN111742418A (en) * 2018-02-23 2020-10-02 株式会社钟化 Solar cell and electronic device provided with same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011135051A (en) * 2009-11-24 2011-07-07 Semiconductor Energy Lab Co Ltd Method for manufacturing soi substrate
US8815662B2 (en) 2009-11-24 2014-08-26 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing SOI substrate and semiconductor device
CN111742418A (en) * 2018-02-23 2020-10-02 株式会社钟化 Solar cell and electronic device provided with same
CN111742418B (en) * 2018-02-23 2023-08-29 株式会社钟化 Solar cell and electronic device provided with same

Similar Documents

Publication Publication Date Title
JP4257332B2 (en) Silicon-based thin film solar cell
US6750394B2 (en) Thin-film solar cell and its manufacturing method
JP5180590B2 (en) Stacked photoelectric conversion device
JP5069791B2 (en) Thin film photoelectric conversion device and manufacturing method thereof
US20100163100A1 (en) Photovoltaic Device and Process for Producing Same
JP6125594B2 (en) Method for manufacturing photoelectric conversion device
JP4902779B2 (en) Photoelectric conversion device and manufacturing method thereof
US20100307574A1 (en) Solar cell and manufacturing method thereof
JP5232362B2 (en) A manufacturing method of an integrated thin film photoelectric conversion device, and an integrated thin film photoelectric conversion device obtainable by the manufacturing method.
JP2007305826A (en) Silicon-based thin film solar cell
JP2007184505A (en) Method for manufacturing silicon system thin film photoelectric converter
JP2006216624A (en) Solar cell and its production process
JPWO2011114551A1 (en) Solar cell and manufacturing method thereof
JP5770294B2 (en) Photoelectric conversion device and manufacturing method thereof
JPWO2006049003A1 (en) Method for manufacturing thin film photoelectric conversion device
WO2013168515A1 (en) Photovoltaic device and method for producing same
JP4441298B2 (en) Photoelectric conversion device and manufacturing method thereof
JP2006073878A (en) Photoelectric converter and manufacturing method therefor
US20100307573A1 (en) Solar cell and manufacturing method thereof
JP5763411B2 (en) Stacked photoelectric conversion device
JP2002222969A (en) Laminated solar battery
JP2757896B2 (en) Photovoltaic device
JP2006120712A (en) Thin film photoelectric converter and manufacturing method therefor
JP2010283162A (en) Solar cell and method for manufacturing the same
JP2004095881A (en) Thin film solar cell