JP2007183379A - Optical multilayer film and method for producing same - Google Patents

Optical multilayer film and method for producing same Download PDF

Info

Publication number
JP2007183379A
JP2007183379A JP2006001026A JP2006001026A JP2007183379A JP 2007183379 A JP2007183379 A JP 2007183379A JP 2006001026 A JP2006001026 A JP 2006001026A JP 2006001026 A JP2006001026 A JP 2006001026A JP 2007183379 A JP2007183379 A JP 2007183379A
Authority
JP
Japan
Prior art keywords
film
refractive index
low
layer
multilayer film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006001026A
Other languages
Japanese (ja)
Other versions
JP4939059B2 (en
JP2007183379A5 (en
Inventor
Mitsuharu Sawamura
光治 沢村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2006001026A priority Critical patent/JP4939059B2/en
Publication of JP2007183379A publication Critical patent/JP2007183379A/en
Publication of JP2007183379A5 publication Critical patent/JP2007183379A5/en
Application granted granted Critical
Publication of JP4939059B2 publication Critical patent/JP4939059B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical multilayer film having excellent polarized light separation characteristics and free of film cracking and a method for producing the same. <P>SOLUTION: A first dielectric film group 110 obtained by alternately stacking a low-refractive-index film 111 and an insertion film 112 comprising a high-refractive-index film and a medium-refractive-index film or an insertion film 112a comprising at least one of a high-refractive-index film and a medium-refractive-index film is formed on a substrate 101 by way of an underlayer 102. A second dielectric film group 120 obtained by alternately stacking a low-refractive-index film 121 and a high-refractive-index film 122 is formed on the first dielectric film group 110. A two-layer structure obtained by joining an MgF<SB>2</SB>film having tensile stress and an SiO<SB>2</SB>film having compressive stress is provided to each low-refractive-index film 111 in the first dielectric film group 110 to relieve the internal stress of the film. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、液晶プロジェクター等に搭載される偏光ビームスプリッタ(PBS)において、特に、可視域の青帯域ではS偏光透過、P偏光反射、赤帯域ではS偏光反射、P偏光透過の偏光分離特性を有する光学多層膜およびその製造方法に関するものである。   The present invention is a polarization beam splitter (PBS) mounted on a liquid crystal projector or the like, and has polarization separation characteristics of S-polarized light transmission, P-polarized light reflection in the visible blue band, and S-polarized light reflection and P-polarized light transmission in the red band. The present invention relates to an optical multilayer film and a method for manufacturing the same.

従来、液晶プロジェクター等に用いられる偏光ビームスプリッタは、特許文献1に記載されているように、誘電体多層膜(偏光分離膜)をプリズムの接合面上に設けて構成されている。この偏光分離膜は高屈折率膜と低屈折率膜の交互層からなり、可視域において高いS偏光反射率と高いP偏光透過率特性を有するものである。   2. Description of the Related Art Conventionally, a polarization beam splitter used for a liquid crystal projector or the like is configured by providing a dielectric multilayer film (polarization separation film) on a joint surface of a prism as described in Patent Document 1. This polarization separation film is composed of alternating layers of a high refractive index film and a low refractive index film, and has high S-polarized reflectance and high P-polarized transmittance characteristics in the visible range.

また、色分解光学フィルターとして、特許文献2に記載されているように、屈折率の異なる少なくとも3種類の誘電体膜を組み合わせて、それぞれ光学膜厚λ/4で繰り返し重ねた積層構造で構成されている例もある。このフィルターは、特定の波長帯域において高いS偏光反射率と高いP偏光反射率特性を有する。   Further, as described in Patent Document 2, the color separation optical filter is composed of a laminated structure in which at least three kinds of dielectric films having different refractive indexes are combined and repeatedly stacked with an optical film thickness λ / 4. There are also examples. This filter has high S-polarized reflectance and high P-polarized reflectance characteristics in a specific wavelength band.

また、偏光ビームスプリッタの応用例として、P偏光とS偏光の反射帯のエッジ(短波長側)が重なる場合、P偏光とS偏光の反射帯の反射率が略同等となる例が、非特許文献1に示されている。   In addition, as an application example of the polarization beam splitter, when the edges (short wavelength side) of the reflection bands of P-polarized light and S-polarized light overlap, the reflectance of the reflection bands of P-polarized light and S-polarized light is substantially equal. It is shown in Document 1.

色分解光学フィルターを高屈折率膜と低屈折率膜の交互層で構成する場合、屈折率差の大きい材料を用いる方が少ない層数で構成できることが知られており、特許文献3には、イオンビームアシスト蒸着法による光学多層膜が開示されている。この多層膜では、高屈折率膜としてTiO2 膜、低屈折率膜としてMgF2 膜を用い、イオンビームアシスト法により応力を緩和して積層するものである。
特開平11−023842号公報 特開平07−168017号公報 特許第2530461号公報 「Thin-filmoptical filters 」(Angus Macleod ) 1989年 11月 日刊工業新聞社 P403〜P409
When the color separation optical filter is composed of alternating layers of a high refractive index film and a low refractive index film, it is known that a material having a large refractive index difference can be configured with a smaller number of layers. An optical multilayer film by ion beam assisted deposition is disclosed. In this multi-layer film, TiO 2 film as a high refractive index film, using a MgF 2 film as a low refractive index film, is to laminate to relax the stress by ion beam assist method.
Japanese Patent Laid-Open No. 11-023842 Japanese Patent Laid-Open No. 07-168017 Japanese Patent No. 2530461 "Thin-film optical filters" (Angus Macleod) November 1989 Nikkan Kogyo Shimbun, Ltd. P403-P409

特許文献1に開示された多層膜構成は、高屈折率膜と低屈折率膜の交互層を用いて、可視帯域全体に亘ってS成分とP成分とに効率よく分離するものである。しかしながら、特定の波長帯域、例えば、緑帯域を除いた赤帯域と青帯域において、S成分とP成分とに効率よく分離することができない。   The multilayer film configuration disclosed in Patent Document 1 uses an alternating layer of a high refractive index film and a low refractive index film to efficiently separate an S component and a P component over the entire visible band. However, in a specific wavelength band, for example, the red band and the blue band excluding the green band, it is not possible to efficiently separate the S component and the P component.

また、特許文献2の多層膜構成は、3種類の誘電体膜を光学膜厚λ/4で繰り返し重ねて、特定の波長帯域において高いS偏光反射率と高いP偏光反射率特性を実現するものであるが、特定の波長帯域においてS成分とP成分とに効率よく分離することができない。   The multilayer film configuration of Patent Document 2 realizes high S-polarized reflectance and high P-polarized reflectance characteristics in a specific wavelength band by repeatedly stacking three types of dielectric films with an optical film thickness λ / 4. However, the S component and the P component cannot be efficiently separated in a specific wavelength band.

非特許文献1では、中間屈折率をM、低屈折率をL、高屈折率をH、4層からなる積層の繰り返し数をnとした時、(MLMH)n の膜構成が示されている。これは、P偏光とS偏光の反射帯の反射率が同等となる場合であり、特定の波長帯域において高いS偏光透過率と高いP偏光反射率特性を有する例は開示されていない。 Non-Patent Document 1 shows a film configuration of (MLMH) n where M is the intermediate refractive index, L is the low refractive index, H is the high refractive index, and n is the number of repetitions of the four-layer stack. . This is a case where the reflectances of the P-polarized light and the S-polarized light are equal, and an example having a high S-polarized light transmittance and a high P-polarized light reflectance characteristic in a specific wavelength band is not disclosed.

特許文献3では、イオンビームアシスト法を用いることにより膜割れを防止することができるが、同時にフッ化マグネシウム膜にダメージを与え、その吸収を防止することができない。   In Patent Document 3, film breakage can be prevented by using the ion beam assist method, but at the same time, the magnesium fluoride film is damaged and cannot be absorbed.

本発明は上記従来の技術の有する未解決の課題に鑑みてなされたものであり、可視域の青帯域および赤帯域において、P成分の光とS成分の光を効率良く分離する偏光分離特性を有する高品質な光学多層膜およびその製造方法を提供することを目的とするものである。   The present invention has been made in view of the above-mentioned unsolved problems of the prior art, and has a polarization separation characteristic that efficiently separates P-component light and S-component light in the visible blue and red bands. It is an object of the present invention to provide a high-quality optical multilayer film and a method for producing the same.

上記目的を達成するため、本発明の光学多層膜は、屈折率が2.0以上の高屈折率膜と、屈折率が1.5以上2.0未満の中間屈折率膜と、屈折率が1.5未満の低屈折率膜とを含む交互多層膜を有し、前記低屈折率膜が、引張応力を有する第1の低屈折率層と、圧縮応力を有する第2の低屈折率層とを接合した積層構造を備えたことを特徴とする。   In order to achieve the above object, the optical multilayer film of the present invention comprises a high refractive index film having a refractive index of 2.0 or more, an intermediate refractive index film having a refractive index of 1.5 or more and less than 2.0, and a refractive index. An alternating multilayer film including a low refractive index film of less than 1.5, wherein the low refractive index film includes a first low refractive index layer having a tensile stress and a second low refractive index layer having a compressive stress. And a laminated structure in which the two are joined together.

引張応力を有するMgF2 膜と圧縮応力を有するSiO2 膜を接合した積層構造にすることで、低屈折率膜の膜割れを防ぎ、可視域の青帯域ではS偏光透過、P偏光反射、赤帯域ではS偏光反射、P偏光透過の偏光分離特性を有する高品質な光学多層膜を実現することができる。 By the stacked structure formed by joining SiO 2 film having a MgF 2 film and the compressive stress of the tensile stress, preventing the film cracking in the low refractive index film, S-polarized light transmittance in the blue band in the visible range, P-polarized light reflected red In the band, a high-quality optical multilayer film having polarization separation characteristics of S-polarized light reflection and P-polarized light transmission can be realized.

さらに、MgF2 膜へのダメージ(吸収)を防止するSiO2 膜を介在させることで、中間屈折率膜および高屈折率膜へのイオンビームアシスト法の適用を可能にする。これによって、より一層応力を緩和することができる。 Furthermore, by interposing an SiO 2 film that prevents damage (absorption) to the MgF 2 film, the ion beam assist method can be applied to the intermediate refractive index film and the high refractive index film. Thereby, the stress can be further relaxed.

本発明を実施するための最良の形態を図面に基づいて説明する。   The best mode for carrying out the present invention will be described with reference to the drawings.

図1に示すように、基板101上に、屈折率が2.0以上の高屈折率膜Hと、屈折率が1.5以上2.0未満の中間屈折率膜Mと、屈折率が1.5未満の低屈折率膜Lとを、HMHL(またはHLHM)の順で積層した第1の誘電体膜群(交互多層膜)110を有する。各低屈折率膜111は、引張応力を有する第1の低屈折率層L1 と、第1の低屈折率層L1 に接して形成された圧縮応力を有する第2の低屈折率層L2 の2層で構成したものである。 As shown in FIG. 1, a high refractive index film H having a refractive index of 2.0 or more, an intermediate refractive index film M having a refractive index of 1.5 or more and less than 2.0, and a refractive index of 1 on a substrate 101. A first dielectric film group (alternate multilayer film) 110 in which a low refractive index film L of less than 0.5 is stacked in the order of HMHL (or HLHM). Each low refractive index film 111 includes a first low refractive index layer L 1 having a tensile stress, the second low refractive index layer having a first compressive stress formed in contact with the low refractive index layer L 1 L which is constituted by two layers of 2.

第1の誘電体膜群110の基体構成HMHLにおいては、低屈折率膜111の間に挿入される挿入膜112は、中間屈折率膜Mと高屈折率膜Hを含む3層や、単層の挿入膜112aとして、中間屈折率膜Mまたは高屈折率膜Hを間に挿入した構成を含む。あるいは、2層の挿入膜として、中間屈折率膜Mと高屈折率膜Hを用いてもよい。   In the base structure HMHL of the first dielectric film group 110, the insertion film 112 inserted between the low refractive index films 111 has three layers including the intermediate refractive index film M and the high refractive index film H, or a single layer. The insertion film 112a includes a configuration in which an intermediate refractive index film M or a high refractive index film H is inserted therebetween. Alternatively, an intermediate refractive index film M and a high refractive index film H may be used as a two-layer insertion film.

さらに、低屈折率膜121(または中間屈折率膜)と高屈折率膜122を交互に積層した第2の誘電体膜群(交互多層膜)120を設ける。第2の誘電体膜群120は、第1の誘電体膜群110の基板側に接して設けてもよいし、基板側と反対側の界面に設けてもよいが、好ましくは基板側と反対側の界面に第2の誘電体膜群120を含むほうが応力制御上都合がよい。   Further, a second dielectric film group (alternate multilayer film) 120 in which low refractive index films 121 (or intermediate refractive index films) and high refractive index films 122 are alternately stacked is provided. The second dielectric film group 120 may be provided in contact with the substrate side of the first dielectric film group 110 or may be provided at the interface opposite to the substrate side, but preferably opposite to the substrate side. It is more convenient in terms of stress control to include the second dielectric film group 120 at the side interface.

さらに、最終層には図示しない中間屈折率膜を有し、この中間屈折率膜を介して高屈折率のプリズム(屈折率が1.8以上)で接合される。   Further, the final layer has an intermediate refractive index film (not shown), and is joined by a high refractive index prism (refractive index of 1.8 or more) through the intermediate refractive index film.

第1の低屈折率層L1 としてはMgF2 膜、第2の低屈折率層L2 としてはSiO2 膜が最適であり、高屈折率膜HとしてはTiO2 膜、Nb2 5 膜、Ta2 5 膜等を用いることができる。中間屈折率膜MとしてはAl2 3 膜が最適である。 First low refractive index layer MgF 2 film as L 1, a second low refractive index layer L 2 is optimum SiO 2 film, TiO 2 film as a high refractive index film H, Nb 2 O 5 film A Ta 2 O 5 film or the like can be used. As the intermediate refractive index film M, an Al 2 O 3 film is optimal.

本実施の形態による多層膜構成は、可視域の青帯域ではS偏光透過、P偏光反射、赤帯域ではS偏光反射、P偏光透過の偏光分離特性を得ることを目的としている。そのためには1層のMgF2 の幾何学的膜厚は40nm以上であり、その積層された各幾何学的膜厚の合計は600nm以上であることが好ましい。また、SiO2 の膜厚は、応力制御、イオンビームアシスト時のMgF2 へのダメージ(吸収)防止から20nm以上の幾何学的厚さを有することが好ましい。 The multilayer film structure according to the present embodiment aims to obtain polarization separation characteristics of S-polarized light transmission and P-polarized light reflection in the visible blue band and S-polarized light reflection and P-polarized light transmission in the red band. For this purpose, the geometrical film thickness of one layer of MgF 2 is preferably 40 nm or more, and the total of the laminated geometric film thicknesses is preferably 600 nm or more. The film thickness of SiO 2 preferably has a geometric thickness of 20 nm or more from the viewpoint of stress control and prevention of damage (absorption) to MgF 2 during ion beam assist.

応力制御のためには、イオンビームアシスト法を用いるのが好ましく、第1の誘電体膜群の挿入膜や、第2の誘電体膜群に用いることができる。   For stress control, the ion beam assist method is preferably used, and can be used for the insertion film of the first dielectric film group or the second dielectric film group.

上記の構成においては、第1の低屈折率層であるMgF2 膜の層厚、層数が大きいほど偏光分離特性は良好な傾向を示すが、一方、膜割れは発生しやすくなる。各単膜の応力から、積層膜の全応力を推定することが可能で、おおよその膜割れの発生の有無を予測できる。検討の結果、MgF2 膜を合計600nm以上用いる多層膜構成では、その全応力(予測膜割れ限界全応力)を300N/m以下に抑えることが必要である。 In the above configuration, the larger the layer thickness and the number of layers of the MgF 2 film that is the first low refractive index layer, the better the polarization separation characteristics tend to be. On the other hand, film cracking tends to occur. It is possible to estimate the total stress of the laminated film from the stress of each single film, and it is possible to predict the occurrence of approximate film cracking. As a result of investigation, in a multilayer film configuration using a total of 600 nm or more of MgF 2 film, it is necessary to suppress the total stress (predicted film cracking limit total stress) to 300 N / m or less.

引張応力を有する第1の低屈折率層と、圧縮応力を有する第2の低屈折率層とからなる低屈折率膜を用いることにより、光学多層膜の特性を損なうことなく全応力を緩和し膜割れを防止することができる。応力緩和のためには、第2の低屈折率層の厚さは20nm以上必要である。   By using a low refractive index film composed of a first low refractive index layer having a tensile stress and a second low refractive index layer having a compressive stress, the total stress is alleviated without impairing the characteristics of the optical multilayer film. Film cracking can be prevented. In order to relieve stress, the thickness of the second low refractive index layer needs to be 20 nm or more.

低屈折率膜の間に設けられる挿入膜を中間屈折率膜と高屈折率膜の3層以下で形成し、低屈折率膜と挿入膜を交互に設けた積層構成において、低屈折率膜と薄い高屈折率膜を含む挿入膜を交互に繰り返すことにより高いP偏光反射率を得ることができる。   In the laminated structure in which the insertion film provided between the low refractive index films is formed of three or less layers of the intermediate refractive index film and the high refractive index film, and the low refractive index film and the insertion film are alternately provided, By alternately repeating the insertion film including the thin high refractive index film, a high P-polarized light reflectance can be obtained.

MgF2 膜を含む光学多層膜においては、その膜構成(材料、層数、膜厚、成膜条件)により多層膜の応力は変化するが、MgF2 膜の合計の幾何学的厚さが600nm以上となる場合、膜割れを防止するためにはSiO2 膜の使用が有効である。 In the optical multilayer film including the MgF 2 film, the stress of the multilayer film varies depending on the film configuration (material, number of layers, film thickness, film formation conditions), but the total geometric thickness of the MgF 2 film is 600 nm. In such a case, it is effective to use a SiO 2 film in order to prevent film cracking.

SiO2 膜の第1の役目はMgF2 膜の応力を緩和することであり、第2の役目は目的とする分光特性を得ることであり、第3の役目はイオンビームアシスト蒸着法を用いる場合、MgF2 膜をイオンビームのダメージ(吸収)から防止することにある。このためにはSiO2 の膜厚が20nm以上である必要がある。ここで、イオンビームアシストを用いる目的は、応力緩和とさらに高屈折率の高屈折率膜を得ることによる層数の削減にある。 The first role of the SiO 2 film is to alleviate the stress of the MgF 2 film, a second role is to obtain the spectral characteristics of interest, the third role when using the ion beam assisted deposition , To prevent the MgF 2 film from being damaged (absorbed) by the ion beam. For this purpose, the film thickness of SiO 2 needs to be 20 nm or more. Here, the purpose of using ion beam assist is to reduce the number of layers by obtaining stress relaxation and obtaining a high refractive index film having a higher refractive index.

基板側あるいは基板側と反対側の界面に接して高屈折率膜と低屈折率膜または高屈折率膜と中間屈折率膜からなる第2の交互多層膜を配設し、さらに最終層の中間屈折率膜を介してプリズム接合される構成においては、赤領域でのS偏光透過率を抑えることができる。   A second alternating multilayer film composed of a high refractive index film and a low refractive index film or a high refractive index film and an intermediate refractive index film is provided in contact with the substrate side or the interface on the opposite side of the substrate side. In the configuration in which the prism is bonded via the refractive index film, the S-polarized light transmittance in the red region can be suppressed.

基板として、PBH56(屈折率1.84)プリズムを用い、可視域の青帯域ではS偏光透過、P偏光反射、赤帯域ではS偏光反射、P偏光透過の偏光分離特性を有する84層の光学多層膜を、基板加熱温度270℃で真空蒸着法により形成した。本実施例の膜構成を表1に示す。ここで、dは幾何学的膜厚を示す。高屈折率膜にはTiO2 (屈折率2.35)、中間屈折率膜にはAl2 3 (屈折率1.62)、第1の低屈折率層にはMgF2 (屈折率1.38)、第2の低屈折率層にはSiO2 (屈折率1.46)を用いた。 As a substrate, a PBH56 (refractive index 1.84) prism is used, and an optical multilayer of 84 layers having polarization separation characteristics of S-polarized light transmission, P-polarized light reflection in the visible blue band, S-polarized light reflection, and P-polarized light transmission in the red band. The film was formed by vacuum deposition at a substrate heating temperature of 270 ° C. Table 1 shows the film configuration of this example. Here, d indicates the geometric film thickness. TiO 2 (refractive index 2.35) for the high refractive index film, Al 2 O 3 (refractive index 1.62) for the intermediate refractive index film, and MgF 2 (refractive index 1.30) for the first low refractive index layer. 38), SiO 2 (refractive index 1.46) was used for the second low refractive index layer.

基板に下地層を形成したのち、基板側から第1の低屈折率層と、第1の低屈折率層に接して形成される第2の低屈折率層からなる低屈折率膜を形成する。次いで、低屈折率膜に接して、TiO2 膜およびAl2 3 膜の少なくとも一方からなる挿入膜を形成する。この2つの工程と交互に繰り返して第1の誘電体膜群を形成した。さらに、高屈折率膜と低屈折率膜を交互に積層して層番号2〜9の第2の誘電体膜群を形成した。 After forming the base layer on the substrate, a low-refractive index film including a first low-refractive index layer and a second low-refractive index layer formed in contact with the first low-refractive index layer is formed from the substrate side. . Next, an insertion film made of at least one of a TiO 2 film and an Al 2 O 3 film is formed in contact with the low refractive index film. The first dielectric film group was formed by alternately repeating these two steps. Further, a high refractive index film and a low refractive index film were alternately laminated to form a second dielectric film group having layer numbers 2 to 9.

図2は実施例1の膜特性を示すグラフである。縦軸は透過率(%)、横軸は波長を示し、プリズム内入射角が45度の時のP偏光(Tp)、S偏光(Ts)の特性である。   FIG. 2 is a graph showing the film characteristics of Example 1. The vertical axis represents transmittance (%), the horizontal axis represents wavelength, and the characteristics of P-polarized light (Tp) and S-polarized light (Ts) when the incident angle in the prism is 45 degrees.

実施例1の膜構成においては、第1の低屈折率層であるMgF2 膜の総厚は680nmであるが、第2の低屈折率層であるSiO2 膜の総厚1268nmにより応力緩和され、膜割れを発生しなかったと考えられる。このとき、予測全応力は略290N/mであり、予測膜割れ限界全応力近傍であった。膜割れの観点からは、MgF2 膜の総厚は薄い方が好ましいが、特性上は600nm程度以上必要である。 In the film configuration of Example 1, the total thickness of the MgF 2 film as the first low refractive index layer is 680 nm, but the stress is relaxed by the total thickness of 1268 nm of the SiO 2 film as the second low refractive index layer. It is considered that no film cracking occurred. At this time, the predicted total stress was approximately 290 N / m, which was in the vicinity of the predicted film cracking limit total stress. From the viewpoint of film cracking, it is preferable that the total thickness of the MgF 2 film is thin.

Figure 2007183379
Figure 2007183379

実施例1と同様に、偏光分離特性を有する84層の光学多層膜を、基板加熱温度150℃で形成した。高屈折率膜としてはイオンビームアシスト法によるTiO2 膜(屈折率2.45)、中間屈折率膜としてはイオンビームアシスト法によるAl2 3 膜(屈折率1.64)を用いた。膜構成を表2に示す。 In the same manner as in Example 1, an 84-layer optical multilayer film having polarization separation characteristics was formed at a substrate heating temperature of 150 ° C. As the high refractive index film, a TiO 2 film (refractive index: 2.45) by an ion beam assist method was used, and as the intermediate refractive index film, an Al 2 O 3 film (refractive index: 1.64) by an ion beam assist method was used. Table 2 shows the film configuration.

基板に下地層を形成したのち、基板側から第1の低屈折率層と、第1の低屈折率層に接して形成される第2の低屈折率層からなる低屈折率膜を真空蒸着法によって形成する。次いで、低屈折率膜に接してTiO2 膜およびAl2 3 膜の少なくとも一方からなる挿入膜をイオンビームアシスト法によって形成する。この2つの工程を交互に繰り返して第1の誘電体膜群を形成した。さらに、イオンビームアシスト法による高屈折率膜と真空蒸着法による低屈折率膜を交互に積層して層番号2〜9からなる第2の誘電体膜群を形成した。 After forming the base layer on the substrate, a low refractive index film comprising a first low refractive index layer and a second low refractive index layer formed in contact with the first low refractive index layer from the substrate side is vacuum deposited. Form by law. Next, an insertion film made of at least one of a TiO 2 film and an Al 2 O 3 film is formed in contact with the low refractive index film by an ion beam assist method. These two steps were alternately repeated to form a first dielectric film group. Furthermore, a second dielectric film group consisting of layer numbers 2 to 9 was formed by alternately laminating a high refractive index film by an ion beam assist method and a low refractive index film by a vacuum deposition method.

表2において、IADTiO2 、IADAl2 3 は、イオンビームアシスト法によって成膜されたTiO2 膜、Al2 3 膜を示し、いずれも加速電圧750KV、電流密度20μA/cm2 の条件で成膜した。 In Table 2, IADTiO 2 and IADAl 2 O 3 indicate a TiO 2 film and an Al 2 O 3 film formed by an ion beam assist method, both of which are formed under the conditions of an acceleration voltage of 750 KV and a current density of 20 μA / cm 2. Filmed.

第2の低屈折率層であるSiO2 膜の最低膜厚は、イオンビームアシスト法によるTiO2 膜の成膜時のMgF2 膜に対するダメージを防止するため、30nmとした。 The minimum film thickness of the SiO 2 film, which is the second low refractive index layer, was set to 30 nm in order to prevent damage to the MgF 2 film when forming the TiO 2 film by the ion beam assist method.

図3に実施例2の膜特性を示す。縦軸は透過率(%)、横軸は波長を示し、プリズム内入射角が45度の時のP偏光(Tp)、S偏光(Ts)の特性である。   FIG. 3 shows the film characteristics of Example 2. The vertical axis represents transmittance (%), the horizontal axis represents wavelength, and the characteristics of P-polarized light (Tp) and S-polarized light (Ts) when the incident angle in the prism is 45 degrees.

実施例2の膜構成においては、第1の低屈折率層であるMgF2 膜の総厚は1190nmであるが、第2の低屈折率層であるSiO2 膜と、イオンビームアシスト法によるTiO2 膜およびAl2 3 膜により応力緩和され、膜割れを発生しなかったと考えられる。このとき、予測全応力は略110N/mであり、予測膜割れ限界全応力以下であった。また、青領域(420〜480nm)におけるS偏光の吸収は1%程度であり、偏光分離特性も実施例1より向上した。 In the film configuration of Example 2, the total thickness of the MgF 2 film as the first low refractive index layer is 1190 nm, but the SiO 2 film as the second low refractive index layer and TiO 2 by the ion beam assist method are used. It is considered that the stress was relaxed by the two films and the Al 2 O 3 film and no film cracking occurred. At this time, the predicted total stress was approximately 110 N / m, which was below the predicted total film cracking limit total stress. Further, the absorption of S-polarized light in the blue region (420 to 480 nm) was about 1%, and the polarization separation characteristic was also improved from that of Example 1.

Figure 2007183379
Figure 2007183379

(比較例1)
偏光分離特性を有する63層の光学多層膜を、真空蒸着法により形成した。ただし、第1の低屈折率層であるMgF2 膜のみで低屈折率膜を形成した。膜構成を表3に、膜特性を図4に示す。実施例1と同様、プリズム内入射角が45度の時のP偏光(Tp)、S偏光(Ts)の特性である。MgF2 膜の総厚が1582nmと厚いが、63層と少ない層数で、偏光分離特性は向上した。また、青領域(420〜480nm)におけるS偏光の吸収は1%程度であり、光学特性としては問題なかった。しかしながら、MgF2 膜の応力が大きいため、多層膜には膜割れが発生し実用はできなかった。このとき、予測全応力は略880N/mであり、予測膜割れ限界全応力を大きく上回るものであった。
(Comparative Example 1)
A 63-layer optical multilayer film having polarization separation characteristics was formed by vacuum deposition. However, the low refractive index film was formed only with the MgF 2 film as the first low refractive index layer. The film configuration is shown in Table 3, and the film characteristics are shown in FIG. Similar to Example 1, the characteristics of P-polarized light (Tp) and S-polarized light (Ts) when the incident angle in the prism is 45 degrees. Although the total thickness of the MgF 2 film was as thick as 1582 nm, the polarization separation characteristics were improved with a small number of 63 layers. Further, the absorption of S-polarized light in the blue region (420 to 480 nm) was about 1%, and there was no problem in optical characteristics. However, since the stress of the MgF 2 film is large, the multilayer film is cracked and cannot be practically used. At this time, the predicted total stress was approximately 880 N / m, which was much higher than the predicted total film cracking limit total stress.

Figure 2007183379
Figure 2007183379

(比較例2)
実施例2と同様に、偏光分離特性を有する79層の光学多層膜を、基板加熱温度150℃で形成した。高屈折率膜としてはイオンビームアシスト法によるTiO2 膜(屈折率2.45)、中間屈折率膜としてはイオンビームアシスト法によるAl2 3 (屈折率1.64)を同様に用いた。膜構成を表4に示す。第2の低屈折率層であるSiO2 膜の最低膜厚は、15nmとした。図5に比較例2の膜特性を示す。縦軸は透過率(%)、横軸は波長を示し、プリズム内入射角が45度の時のP偏光(Tp)、S偏光(Ts)の特性である。
(Comparative Example 2)
As in Example 2, a 79-layer optical multilayer film having polarization separation characteristics was formed at a substrate heating temperature of 150 ° C. As the high refractive index film, a TiO 2 film (refractive index 2.45) by an ion beam assist method was used, and as the intermediate refractive index film, Al 2 O 3 (refractive index 1.64) by an ion beam assist method was similarly used. Table 4 shows the film configuration. The minimum film thickness of the SiO 2 film as the second low refractive index layer was 15 nm. FIG. 5 shows the film characteristics of Comparative Example 2. The vertical axis represents transmittance (%), the horizontal axis represents wavelength, and the characteristics of P-polarized light (Tp) and S-polarized light (Ts) when the incident angle in the prism is 45 degrees.

比較例2の膜構成においては、第1の低屈折率層であるMgF2 膜の総厚は1305nmであるが、第2の低屈折率層であるSiO2 膜と、イオンビームアシスト法によるTiO2 膜、およびAl2 3 膜により応力緩和され、膜割れを発生しなかったと考えられる。このとき、予測全応力は略120N/mであり、予測膜割れ限界全応力以下であった。 In the film configuration of Comparative Example 2, the total thickness of the MgF 2 film as the first low refractive index layer is 1305 nm, but the SiO 2 film as the second low refractive index layer and TiO 2 by the ion beam assist method are used. It is considered that the stress was relieved by the two films and the Al 2 O 3 film and no film cracking occurred. At this time, the predicted total stress was approximately 120 N / m, which was below the predicted total film cracking limit total stress.

また、偏光分離特性も実施例2より向上した。しかしながら、青領域(420〜480nm)におけるS偏光の吸収は2%程度あり、改善が望まれる。これは、第2の低屈折率層であるSiO2 膜の最低膜厚が15nmでは、イオンビームアシスト法によるTiO2 膜の成膜時にMgF2 膜に対するダメージ(吸収)を防止するためにはやや不足であるためと推測される。従って、第2の低屈折率層であるSiO2 膜の最低膜厚としては、20nm以上必要であると考えられる。 Further, the polarization separation characteristics were also improved as compared with Example 2. However, the absorption of S-polarized light in the blue region (420 to 480 nm) is about 2%, and improvement is desired. This is a little in order to prevent damage (absorption) to the MgF 2 film when forming the TiO 2 film by the ion beam assist method when the minimum film thickness of the SiO 2 film as the second low refractive index layer is 15 nm. Presumed to be due to a lack. Therefore, it is considered that 20 nm or more is necessary as the minimum film thickness of the SiO 2 film which is the second low refractive index layer.

Figure 2007183379
Figure 2007183379

一実施の形態による多層膜構成を示す図である。It is a figure which shows the multilayer film structure by one embodiment. 実施例1の光学多層膜の光学特性を示す図である。FIG. 3 is a diagram illustrating optical characteristics of the optical multilayer film of Example 1. 実施例2の光学多層膜の光学特性を示す図である。FIG. 6 is a diagram showing optical characteristics of the optical multilayer film of Example 2. 比較例1の光学多層膜の光学特性を示す図である。6 is a diagram showing optical characteristics of an optical multilayer film of Comparative Example 1. FIG. 比較例2の光学多層膜の光学特性を示す図である。It is a figure which shows the optical characteristic of the optical multilayer film of the comparative example 2.

符号の説明Explanation of symbols

101 基板
110 第1の誘電体膜群
111、121 低屈折率膜
112、112a 挿入膜
120 第2の誘電体膜群
101 Substrate 110 First Dielectric Film Group 111, 121 Low Refractive Index Film 112, 112a Insertion Film 120 Second Dielectric Film Group

Claims (7)

屈折率が2.0以上の高屈折率膜と、屈折率が1.5以上2.0未満の中間屈折率膜と、屈折率が1.5未満の低屈折率膜とを含む交互多層膜を有し、前記低屈折率膜が、引張応力を有する第1の低屈折率層と、圧縮応力を有する第2の低屈折率層とを接合した積層構造を備えたことを特徴とする光学多層膜。   Alternating multilayer film comprising a high refractive index film having a refractive index of 2.0 or more, an intermediate refractive index film having a refractive index of 1.5 or more and less than 2.0, and a low refractive index film having a refractive index of less than 1.5 And the low refractive index film has a laminated structure in which a first low refractive index layer having tensile stress and a second low refractive index layer having compressive stress are joined. Multilayer film. 前記交互多層膜が、前記積層構造の低屈折率膜と、3層以下であって各層が中間屈折率膜または高屈折率膜からなる挿入膜を交互に積層した多層膜構成を有することを特徴とする請求項1記載の光学多層膜。   The alternating multilayer film has a multilayer film structure in which low-refractive index films having the stacked structure and three or less layers, and each layer is alternately stacked with an insertion film made of an intermediate refractive index film or a high refractive index film. The optical multilayer film according to claim 1. 前記第1の低屈折率層がMgF2 膜であり、全てのMgF2 膜の幾何学的厚さの合計が600nm以上であって、前記第2の低屈折率層がSiO2 膜であり、各SiO2 膜の幾何学的厚さが20nm以上であることを特徴とする請求項1または2記載の光学多層膜。 The first low refractive index layer is an MgF 2 film, the total geometric thickness of all MgF 2 films is 600 nm or more, and the second low refractive index layer is an SiO 2 film, 3. The optical multilayer film according to claim 1, wherein the geometric thickness of each SiO 2 film is 20 nm or more. 前記積層構造の低屈折率膜が、基板側から前記第1の低屈折率層、前記第2の低屈折率層の順で形成された2層構成の低屈折率膜であることを特徴とする請求項1ないし3いずれか1項記載の光学多層膜。   The low-refractive index film having a laminated structure is a low-refractive index film having a two-layer structure formed in order of the first low-refractive index layer and the second low-refractive index layer from the substrate side. The optical multilayer film according to any one of claims 1 to 3. 基板側または前記基板側と反対側の界面に接して、高屈折率膜と低屈折率膜、または高屈折率膜と中間屈折率膜を交互に積層した第2の交互多層膜を有し、前記第2の交互多層膜の最終層は中間屈折率膜であって、該中間屈折率膜を介してプリズム接合されるように構成されていることを特徴とする請求項1ないし4いずれか1項記載の光学多層膜。   Having a second alternating multilayer film in which a high refractive index film and a low refractive index film, or a high refractive index film and an intermediate refractive index film are alternately laminated in contact with the substrate side or the interface opposite to the substrate side; The final layer of the second alternating multilayer film is an intermediate refractive index film, and is configured to be prism-bonded through the intermediate refractive index film. The optical multilayer film according to Item. 屈折率が2.0以上の高屈折率膜と、屈折率が1.5以上2.0未満の中間屈折率膜と、屈折率が1.5未満の複数の低屈折率膜とを含む交互多層膜を有する光学多層膜の製造方法において、
引張応力を有する第1の低屈折率層と、圧縮応力を有する第2の低屈折率層とからなる積層構造の低屈折率膜を真空蒸着法により形成する第1の工程と、
積層構造の低屈折率膜に接して、3層以上であって各層が中間屈折率膜または高屈折率膜からなる挿入膜をイオンビームアシスト法により形成する第2の工程と、を有し、
前記第1の工程と前記第2の工程を交互に繰り返して交互多層膜を形成することを特徴とする光学多層膜の製造方法。
Alternating film including a high refractive index film having a refractive index of 2.0 or more, an intermediate refractive index film having a refractive index of 1.5 or more and less than 2.0, and a plurality of low refractive index films having a refractive index of less than 1.5 In a method for producing an optical multilayer film having a multilayer film,
A first step of forming a low refractive index film having a laminated structure including a first low refractive index layer having a tensile stress and a second low refractive index layer having a compressive stress by a vacuum deposition method;
A second step of forming, by an ion beam assist method, an insertion film comprising three or more layers, each layer being an intermediate refractive index film or a high refractive index film, in contact with the low refractive index film having a laminated structure,
A method for producing an optical multilayer film, wherein the first and second steps are alternately repeated to form an alternate multilayer film.
高屈折率膜と低屈折率膜、または中間屈折率膜と低屈折率膜からなる第2の交互多層膜を形成する第3の工程を有することを特徴とする請求項6記載の光学多層膜の製造方法。   7. The optical multilayer film according to claim 6, further comprising a third step of forming a second alternating multilayer film comprising a high refractive index film and a low refractive index film, or an intermediate refractive index film and a low refractive index film. Manufacturing method.
JP2006001026A 2006-01-06 2006-01-06 Optical multilayer film and method for forming the same Expired - Fee Related JP4939059B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006001026A JP4939059B2 (en) 2006-01-06 2006-01-06 Optical multilayer film and method for forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006001026A JP4939059B2 (en) 2006-01-06 2006-01-06 Optical multilayer film and method for forming the same

Publications (3)

Publication Number Publication Date
JP2007183379A true JP2007183379A (en) 2007-07-19
JP2007183379A5 JP2007183379A5 (en) 2009-02-19
JP4939059B2 JP4939059B2 (en) 2012-05-23

Family

ID=38339548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006001026A Expired - Fee Related JP4939059B2 (en) 2006-01-06 2006-01-06 Optical multilayer film and method for forming the same

Country Status (1)

Country Link
JP (1) JP4939059B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103233200A (en) * 2013-03-28 2013-08-07 同济大学 355 nm high threshold high reflection film preparation method
CN105280566A (en) * 2014-06-10 2016-01-27 Spts科技有限公司 Substrate

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102046152B1 (en) 2012-11-20 2019-11-19 삼성디스플레이 주식회사 Polarizer and liquid crystal display using the same
KR20160017365A (en) 2014-08-05 2016-02-16 삼성디스플레이 주식회사 Liquid crystal display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05232317A (en) * 1992-02-18 1993-09-10 Asahi Optical Co Ltd Polarization beam splitter
JP2530461B2 (en) * 1987-08-31 1996-09-04 株式会社コパル Optical multilayer thin film
JPH0954213A (en) * 1995-03-06 1997-02-25 Nikon Corp Projection type display device
JP2003114327A (en) * 2001-10-04 2003-04-18 Olympus Optical Co Ltd Polarized light separation film and polarized light separation prism

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2530461B2 (en) * 1987-08-31 1996-09-04 株式会社コパル Optical multilayer thin film
JPH05232317A (en) * 1992-02-18 1993-09-10 Asahi Optical Co Ltd Polarization beam splitter
JPH0954213A (en) * 1995-03-06 1997-02-25 Nikon Corp Projection type display device
JP2003114327A (en) * 2001-10-04 2003-04-18 Olympus Optical Co Ltd Polarized light separation film and polarized light separation prism

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103233200A (en) * 2013-03-28 2013-08-07 同济大学 355 nm high threshold high reflection film preparation method
CN105280566A (en) * 2014-06-10 2016-01-27 Spts科技有限公司 Substrate
US9472610B2 (en) 2014-06-10 2016-10-18 Spts Technologies Limited Substrate

Also Published As

Publication number Publication date
JP4939059B2 (en) 2012-05-23

Similar Documents

Publication Publication Date Title
TWI404979B (en) Dielectric multilayer filter
TWI554779B (en) Antireflective film and optical element
JP2008020563A (en) Dielectric multilayer film filter
JP3332879B2 (en) Dichroic mirror
JP4404568B2 (en) Infrared cut filter and manufacturing method thereof
KR20010034105A (en) Anti-reflective polymer constructions and method for producing same
JP2007206172A (en) Imaging system optical element
JP4939059B2 (en) Optical multilayer film and method for forming the same
JP3812527B2 (en) Polarizing beam splitter
JP5757775B2 (en) Optical multilayer film bandpass filter
JPH11202127A (en) Dichroic mirror
JP2007063574A5 (en)
JP5888124B2 (en) Multilayer filter and method for manufacturing multilayer filter
JP2006259124A (en) Cold mirror
JPH07111482B2 (en) Multi-layer antireflection film
JP3584257B2 (en) Polarizing beam splitter
JP2007183379A5 (en) Optical multilayer film and method for forming the same
JP2006071754A (en) Polarized beam splitter and its manufacturing method
JP4914954B2 (en) ND filter
JP6247033B2 (en) IR cut filter
JP2004198778A (en) Two-wavelength reflection preventing film and forming method of the film
JPH10153705A (en) Dichroic mirror
JP2001350024A (en) Polarizing beam splitter
WO2015046098A1 (en) Reflection-suppressing film and reflection-suppressing member
JP2005345492A (en) Optical element, mirror, and antireflection film

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081226

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110207

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4939059

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees