JP2007183251A - Photoelectric encoder - Google Patents

Photoelectric encoder Download PDF

Info

Publication number
JP2007183251A
JP2007183251A JP2006326180A JP2006326180A JP2007183251A JP 2007183251 A JP2007183251 A JP 2007183251A JP 2006326180 A JP2006326180 A JP 2006326180A JP 2006326180 A JP2006326180 A JP 2006326180A JP 2007183251 A JP2007183251 A JP 2007183251A
Authority
JP
Japan
Prior art keywords
grating
measurement axis
photoelectric encoder
shift
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006326180A
Other languages
Japanese (ja)
Other versions
JP5154072B2 (en
Inventor
Toru Yaku
亨 夜久
Tetsuo Kiriyama
哲郎 桐山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Original Assignee
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp, Mitsutoyo Kiko Co Ltd filed Critical Mitutoyo Corp
Priority to JP2006326180A priority Critical patent/JP5154072B2/en
Publication of JP2007183251A publication Critical patent/JP2007183251A/en
Application granted granted Critical
Publication of JP5154072B2 publication Critical patent/JP5154072B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Transform (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To heighten accuracy by removing a harmonic component without increasing manufacturing cost by devising a first grating pattern formed on a glass substrate having low manufacturing cost. <P>SOLUTION: In this three-grating type photoelectric encoder equipped with a second grating 20 formed on a scale and first and third gratings 22, 24 disposed on the detection part side, a part of at least the first grating 22 is shifted in the measuring axis direction by P/(2n) (P: a grating pitch, n: the order of a harmonic component required to be removed), to thereby remove the n-th order harmonic component. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、スケール上に形成された第2格子と、検出部側に配設された第1、第3格子を備えた3格子型の光電式エンコーダに係る。特に、高調波を効果的に削減することが可能な光電式エンコーダに関する。   The present invention relates to a three-grating photoelectric encoder including a second grating formed on a scale, and first and third gratings arranged on the detection unit side. In particular, the present invention relates to a photoelectric encoder that can effectively reduce harmonics.

リニアエンコーダに利用されている、例えば特許文献1に記載されたような、いわゆる3格子原理では、3枚の光学格子(図1(A)に示す透過型の場合は、メインスケールとしての第2格子20とインデックススケールとしての第1、第3格子22、24、図1(B)(C)に示す反射型の場合は、共通化された第1(第3)格子22を光が2回通過)が空間フィルタとなるので、正弦波に近い信号を検出でき、高精度の補間が可能である。図において、26は光源、28は、例えばコリメータレンズでなる光学系、30は受光素子、32は反射型で用いられるハーフミラー、34は同じくミラー、36は同じく集光レンズである。   In the so-called three-grating principle used in the linear encoder, for example, as described in Patent Document 1, three optical gratings (in the case of the transmission type shown in FIG. 1A, the second as the main scale). In the case of the reflection type shown in FIGS. 1B and 1C, the light is transmitted twice through the shared first (third) grating 22 in the case of the grating 20 and the first and third gratings 22 and 24 as index scales. Since (passing) becomes a spatial filter, a signal close to a sine wave can be detected, and highly accurate interpolation is possible. In the figure, reference numeral 26 denotes a light source, 28 denotes an optical system composed of, for example, a collimator lens, 30 denotes a light receiving element, 32 denotes a half mirror used in a reflection type, 34 denotes a mirror, and 36 denotes a condenser lens.

この3格子原理を反射型エンコーダとして活用する場合には、図1(B)(C)に示すように、スケール格子が第2格子20となる。しかしながら、スケール上の光学格子は、スケールの場所によって線幅が変動してしまう。そのために、その部分では出力信号に高調波成分が重畳されてしまうという問題があった。   When this three-grid principle is utilized as a reflective encoder, the scale grating becomes the second grating 20 as shown in FIGS. However, the line width of the optical grating on the scale varies depending on the location of the scale. Therefore, there is a problem that the harmonic component is superimposed on the output signal in that portion.

そこで、特許文献2や特許文献3では、図2に示す如く、受光素子30前面の第3格子24と受光素子を組み合わせて受光素子アレイ31とし、該受光素子アレイの平均化効果によって安定化する方法が提案されている。   Therefore, in Patent Document 2 and Patent Document 3, as shown in FIG. 2, the third grating 24 on the front surface of the light receiving element 30 and the light receiving element are combined to form a light receiving element array 31, which is stabilized by the averaging effect of the light receiving element array. A method has been proposed.

又、図2の構成において更に高調波を除去するために、受光素子アレイに位相差(特許文献4)や線幅変調(特許文献5)を与える方法も提案されている。   In order to further remove harmonics in the configuration of FIG. 2, a method of providing a phase difference (Patent Document 4) and a line width modulation (Patent Document 5) to the light receiving element array has also been proposed.

又、特許文献6には、3格子原理を用いた検出原理において、第1格子と第3格子の格子パターンに位相差を設ける方法が提案されている。   Patent Document 6 proposes a method of providing a phase difference between the grating patterns of the first grating and the third grating in the detection principle using the three-grid principle.

特開昭63−33604号公報(図1〜図3)JP 63-33604 A (FIGS. 1 to 3) 特開平9−196706号公報(図5)JP-A-9-196706 (FIG. 5) 特開2004−264295号公報(図4)JP 2004-264295 A (FIG. 4) 特開平10−122909号公報(図2)Japanese Patent Laid-Open No. 10-122909 (FIG. 2) 特開平8−145724号公報(図2)JP-A-8-145724 (FIG. 2) 特開平9−113213号公報(図3)JP-A-9-113213 (FIG. 3)

しかしながら、特許文献4や5に記載された、受光素子アレイに位相差や線幅変調を与える方法では、受光素子のパターンを変更する必要があるので、製造コストを上げてしまう。   However, in the methods described in Patent Documents 4 and 5 in which the phase difference or line width modulation is applied to the light receiving element array, it is necessary to change the pattern of the light receiving element, which increases the manufacturing cost.

又、特許文献6に記載された、第1格子と第3格子の格子パターンに位相差を設ける方法では、第3格子の代わりに受光素子アレイを用いると、同じ格子を2回通るため、偶数次の高調波しか除去できず、奇数次、特に、2次高調波より大きく一番問題な3次高調波を除去することができない。従って、第3格子の代わりに受光素子アレイを用いることができないという問題点を有していた。   In the method of providing a phase difference between the grating patterns of the first grating and the third grating described in Patent Document 6, if a light receiving element array is used instead of the third grating, the same grating is passed twice. Only the next harmonic can be removed, and the third harmonic, which is the most problematic than the odd harmonic, especially the second harmonic, cannot be removed. Therefore, there is a problem that the light receiving element array cannot be used in place of the third grating.

上記の問題点は反射型エンコーダに限らず透過型エンコーダでも同じである。   The above problem is not limited to the reflective encoder, but is the same for the transmissive encoder.

本発明は、前記従来の問題点を解決するべくなされたもので、第1格子パターンを工夫することにより、製造コストを上げずに高調波を除去して、高精度化することを課題とする。   The present invention has been made to solve the above-mentioned conventional problems, and it is an object to improve the accuracy by removing the harmonics without increasing the manufacturing cost by devising the first lattice pattern. .

本発明は、スケール上に形成された第2格子と、検出部側に配設された第1、第3格子を備えた3格子型の光電式エンコーダにおいて、少なくとも第1格子の一部分を、測定軸方向にP/(2n)(P:格子ピッチ、n:除去したい高調波の次数)だけシフトして、第n次高調波を除去することにより、前記課題を解決したものである。   The present invention measures at least a part of the first grating in a three-grid photoelectric encoder including a second grating formed on a scale and first and third gratings arranged on the detection unit side. The above problem is solved by removing the nth harmonic by shifting in the axial direction by P / (2n) (P: lattice pitch, n: order of the harmonic to be removed).

又、前記第1格子を、測定軸と垂直な方向又は測定軸方向に分割してシフトするようにしたものである。   The first grating is divided and shifted in a direction perpendicular to the measurement axis or in the measurement axis direction.

又、前記第1格子の複数の部分を、それぞれ異なるシフト量でシフトするようにしたものである。   Further, the plurality of portions of the first lattice are shifted by different shift amounts.

又、前記シフト量を連続的に変化させて、格子パターンを正弦波状に変形させるようにしたものである。   Further, the shift amount is continuously changed to deform the lattice pattern into a sine wave shape.

又、前記第3格子の一部分も、測定軸方向にシフトするようにしたものである。   A part of the third grating is also shifted in the measurement axis direction.

本発明によれば、第1格子の一部分を、測定軸方向にP/(2n)だけシフトさせることにより、受光素子アレイ面上で千渉縞を合成して、図3にn=3の3次高調波の場合を例示する如く、第n次高調波を削減することができる。   According to the present invention, a part of the first grating is shifted by P / (2n) in the direction of the measurement axis, thereby synthesizing the thousand fringes on the light receiving element array surface. As illustrated in the case of the second harmonic, the nth harmonic can be reduced.

又、第1格子を、測定軸と垂直な方向又は測定軸方向に分割してシフトすることにより、受光素子アレイ面上における干渉縞合成が平均化される。   Further, by dividing and shifting the first grating in the direction perpendicular to the measurement axis or in the measurement axis direction, the interference fringe synthesis on the light receiving element array surface is averaged.

又、前記第1格子の複数の部分を、それぞれ異なるシフト量でシフトすることにより、複数次の高調波を削減することができる。   Further, the plurality of harmonics can be reduced by shifting the plurality of portions of the first grating by different shift amounts.

又、前記シフト量を連続的に変化させて、格子パターンを正弦波状に変形させることにより、受光素子アレイ面上における干渉縞合成が平均化される。   Further, the interference fringe synthesis on the light receiving element array surface is averaged by continuously changing the shift amount and deforming the lattice pattern into a sine wave.

更に、前記第3格子の一部分も、測定軸方向にシフトすることにより、高調波を一層削減することができる。   Furthermore, harmonics can be further reduced by shifting a part of the third grating in the measurement axis direction.

以下図面を参照して、本発明の実施形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

反射型エンコーダに適用した本発明の第1実施形態は、図4に示す如く、例えば、受光素子アレイ31を搭載する、製造コストが小さいガラス基板上に形成されている第1格子22のパターンを測定軸と垂直な方向に2分割して、一方を、他方に対して測定軸方向にシフトして配置するようにしたものである。除去したい高調波の次数をnとすると、対応するシフト量は、格子ピッチP÷(2×n)となる。第3高調波を除去したいときには、シフト量はP/6である。   In the first embodiment of the present invention applied to the reflective encoder, as shown in FIG. 4, for example, the pattern of the first grating 22 formed on the glass substrate on which the light receiving element array 31 is mounted and the manufacturing cost is low. It is divided into two in a direction perpendicular to the measurement axis, and one is shifted from the other in the measurement axis direction. If the order of the harmonic to be removed is n, the corresponding shift amount is lattice pitch P ÷ (2 × n). When it is desired to remove the third harmonic, the shift amount is P / 6.

この第1実施形態において、光源から出た光は、第1格子22を通過して、第2格子20で反射して、受光素子アレイ31の受光面上に干渉縞40を生成する。   In the first embodiment, the light emitted from the light source passes through the first grating 22 and is reflected by the second grating 20 to generate interference fringes 40 on the light receiving surface of the light receiving element array 31.

これにより、第1格子22と第2格子20を通して生成されるn次の高調波の干渉縞40が受光素子アレイ31の受光面上で合成、相殺され、除去される。   As a result, the nth-order harmonic interference fringes 40 generated through the first grating 22 and the second grating 20 are combined, offset, and removed on the light receiving surface of the light receiving element array 31.

従って、受光素子アレイ31上の第3格子24(図2参照)のパターンには、特に高調波対策を施す必要が無くなる。なお、第3格子24にも第1格子22と同様の高調波対策を施して、例えば第1格子とは異なる次数の高調波を除去するように構成することも可能である。   Therefore, it is not necessary to take measures against harmonics in the pattern of the third grating 24 (see FIG. 2) on the light receiving element array 31. The third grating 24 may be configured so as to take the same harmonic countermeasures as the first grating 22 and remove, for example, higher-order harmonics different from the first grating.

次に、図5を参照して、本発明の第2実施形態を説明する。   Next, a second embodiment of the present invention will be described with reference to FIG.

本実施形態は、第1格子22を測定軸と垂直な方向(図の上下方向)に多数分割して、シフト領域と非シフト領域を測定軸に対して垂直な方向に交互に配置したものである。なお、シフト領域の幅Wは、格子ピッチP以上とする。   In the present embodiment, the first grating 22 is divided into a large number in the direction perpendicular to the measurement axis (up and down direction in the figure), and the shift region and the non-shift region are alternately arranged in the direction perpendicular to the measurement axis. is there. Note that the width W of the shift region is greater than or equal to the lattice pitch P.

このようにして、シフト領域と非シフト領域を測定軸と垂直な方向に交互に配置することにより、受光素子アレイ上の干渉縞合成が平均化される。   In this way, the interference fringe synthesis on the light receiving element array is averaged by alternately arranging the shift regions and the non-shift regions in the direction perpendicular to the measurement axis.

次に、図6を参照して、本発明の第3実施形態を詳細に説明する。   Next, a third embodiment of the present invention will be described in detail with reference to FIG.

本実施形態は、第1格子22のシフト領域を、例えば格子本数N毎に、測定軸方向(図の左右方向)に分割して配置したものである。   In the present embodiment, the shift region of the first grating 22 is divided and arranged in the measurement axis direction (left-right direction in the figure), for example, for every N grids.

このようにして、シフト領域と非シフト領域を測定軸方向に交互に配置することにより、受光素子アレイ上の干渉縞合成が平均化される。   In this way, the interference fringe synthesis on the light receiving element array is averaged by alternately arranging the shift regions and the non-shift regions in the measurement axis direction.

次に、図7を参照して本発明の第4実施形態を詳細に説明する。   Next, a fourth embodiment of the present invention will be described in detail with reference to FIG.

本実施形態は、第1格子22を測定軸と垂直な方向に3以上(図では9)に分割すると共に、各領域でシフト量を個々に設定したものである。   In the present embodiment, the first grating 22 is divided into three or more (9 in the figure) in the direction perpendicular to the measurement axis, and the shift amount is individually set in each region.

例えば削減したい高調波としてn次とn次がある場合、少なくとも3つの領域を設けて、そのうちの1つの領域を基準領域とし、他の領域の光学格子シフト量を、それぞれP/(2n)とP/(2n)に設定する。 For example, if there are n 1 order and n 2 order as harmonics to be reduced by providing at least three regions, the one of the regions as a reference area, the optical grating shift amount of the other areas, respectively P / (2n 1 ) and P / (2n 2 ).

これにより、n次とn次の複数の高調波を除去することができる。 Thus, it is possible to remove the n 1-th and n 2-order multiple harmonics.

次に、図8を参照して、本発明の第5実施形態を詳細に説明する。   Next, a fifth embodiment of the present invention will be described in detail with reference to FIG.

本実施形態は、第1格子22の格子パターンを測定軸と垂直な方向に周期Lで正弦波状に変形させて、シフト量がP/(2n)×(1+sin2π(y/L))/2になるように、連続的に変化させたものである。   In the present embodiment, the grating pattern of the first grating 22 is deformed into a sine wave shape with a period L in a direction perpendicular to the measurement axis, and the shift amount is P / (2n) × (1 + sin2π (y / L)) / 2. As shown, it is continuously changed.

本実施形態においては、シフト量が連続的に変化するので、例えばn=2とした場合は、n=3以上の高調波も同時に削減される。   In the present embodiment, since the shift amount changes continuously, for example, when n = 2, harmonics of n = 3 or more are also reduced at the same time.

本発明の適用対象は、上記実施形態に示した反射型エンコーダに限定されず、図9に第6実施形態として示したように、透過型エンコーダにも適用できる。   The application target of the present invention is not limited to the reflective encoder shown in the above embodiment, and can be applied to a transmissive encoder as shown in FIG. 9 as the sixth embodiment.

この第6実施形態において、光源から出た光は、第1格子22及び第2格子20を順次透過して、受光素子アレイ31の受光面上に干渉縞40を生成する。   In the sixth embodiment, light emitted from the light source is sequentially transmitted through the first grating 22 and the second grating 20 to generate interference fringes 40 on the light receiving surface of the light receiving element array 31.

なお、前記実施形態においては、いずれも第3格子と受光素子が一体化された受光素子アレイが用いられていたが、別体であっても構わない。   In each of the above embodiments, the light receiving element array in which the third grating and the light receiving element are integrated is used, but it may be a separate body.

又、第1格子だけでなく、第3格子の一部分も、第1格子と同様に測定軸方向にシフトさせることで、第1格子と同じ、又は異なる次数の高調波を除去するように構成することもできる。   Further, not only the first grating but also a part of the third grating is configured to be shifted in the measurement axis direction in the same manner as the first grating so as to remove harmonics having the same or different orders as the first grating. You can also.

特許文献1に記載された3格子原理のエンコーダの基本的構成を示す図The figure which shows the basic composition of the encoder of the 3 grating | lattice principle described in patent document 1 特許文献2や3に記載された受光素子アレイを有する3格子原理の反射型エンコーダの例を示す断面図Sectional drawing which shows the example of the reflection type encoder of the 3 grating | lattice principle which has the light receiving element array described in patent document 2 or 3 本発明の効果を示す図The figure which shows the effect of this invention 本発明の第1実施形態の基本構成を示す(a)平面図及び(b)側面図(A) Top view and (b) Side view showing the basic configuration of the first embodiment of the present invention 同じく第2実施形態の第1格子を示す平面図The top view which similarly shows the 1st grating | lattice of 2nd Embodiment. 同じく第3実施形態の第1格子を示す平面図The top view which similarly shows the 1st grating | lattice of 3rd Embodiment. 同じく第4実施携帯の第1格子を示す平面図The top view which similarly shows the 1st grating | lattice of 4th implementation mobile phone. 同じく第5実施形態の第1格子を示す平面図The top view which similarly shows the 1st grating | lattice of 5th Embodiment. 同じく第6実施形態の基本構成を示す斜視図The perspective view which similarly shows the basic composition of 6th Embodiment

符号の説明Explanation of symbols

20…第2格子
22…第1格子
24…第3格子
26…光源
30…受光素子
31…受光素子アレイ
40…干渉縞
DESCRIPTION OF SYMBOLS 20 ... 2nd grating | lattice 22 ... 1st grating | lattice 24 ... 3rd grating | lattice 26 ... Light source 30 ... Light receiving element 31 ... Light receiving element array 40 ... Interference fringe

Claims (7)

スケール上に形成された第2格子と、検出部側に配設された第1、第3格子を備えた3格子型の光電式エンコーダにおいて、
少なくとも第1格子の一部分を、測定軸方向にP/(2n)(P:格子ピッチ、n:除去したい高調波の次数)だけシフトして、第n次高調波を除去することを特徴とする光電式エンコーダ。
In a three-lattice photoelectric encoder including a second grating formed on the scale and first and third gratings disposed on the detection unit side,
At least a part of the first grating is shifted by P / (2n) (P: grating pitch, n: the order of the harmonic to be removed) in the measurement axis direction to remove the n-th harmonic. Photoelectric encoder.
前記第1格子を、測定軸と垂直な方向又は測定軸方向に分割してシフトすることを特徴とする請求項1に記載の光電式エンコーダ。   The photoelectric encoder according to claim 1, wherein the first grating is divided and shifted in a direction perpendicular to a measurement axis or a measurement axis direction. 前記第1格子を測定軸と垂直な方向に複数に分割して、シフト領域と非シフト領域を測定軸に対して垂直な方向に交互に配置することを特徴とする請求項2に記載の光電式エンコーダ。   3. The photoelectric device according to claim 2, wherein the first grating is divided into a plurality of parts in a direction perpendicular to the measurement axis, and shift regions and non-shift regions are alternately arranged in a direction perpendicular to the measurement axis. Type encoder. 前記第1格子のシフト領域を、所定の格子本数毎に、測定軸方向に複数に分割して、シフト領域と非シフト領域を測定軸方向に交互に配置することを特徴とする請求項2に記載の光電式エンコーダ。   The shift area of the first grating is divided into a plurality in the measurement axis direction every predetermined number of grids, and the shift areas and the non-shift areas are alternately arranged in the measurement axis direction. The described photoelectric encoder. 前記第1格子の複数の部分を、それぞれ異なるシフト量でシフトすることを特徴とする請求項2に記載の光電式エンコーダ。   The photoelectric encoder according to claim 2, wherein the plurality of portions of the first grating are shifted by different shift amounts. 前記シフト量を連続的に変化させて、格子パターンを正弦波状に変形させることを特徴とする請求項5に記載の光電式エンコーダ。   6. The photoelectric encoder according to claim 5, wherein the shift amount is continuously changed to deform the lattice pattern into a sine wave shape. 前記第3格子の一部分も、測定軸方向にシフトすることを特徴とする請求項1乃至6のいずれに記載の光電式エンコーダ。   The photoelectric encoder according to claim 1, wherein a part of the third grating is also shifted in the measurement axis direction.
JP2006326180A 2005-12-06 2006-12-01 Photoelectric encoder Active JP5154072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006326180A JP5154072B2 (en) 2005-12-06 2006-12-01 Photoelectric encoder

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005352397 2005-12-06
JP2005352397 2005-12-06
JP2006326180A JP5154072B2 (en) 2005-12-06 2006-12-01 Photoelectric encoder

Publications (2)

Publication Number Publication Date
JP2007183251A true JP2007183251A (en) 2007-07-19
JP5154072B2 JP5154072B2 (en) 2013-02-27

Family

ID=38339463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006326180A Active JP5154072B2 (en) 2005-12-06 2006-12-01 Photoelectric encoder

Country Status (1)

Country Link
JP (1) JP5154072B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012026765A (en) * 2010-07-20 2012-02-09 Canon Inc Optical encoder
JP2013108911A (en) * 2011-11-22 2013-06-06 Canon Inc Optical encoder and device provided with the same
JP2015225084A (en) * 2014-05-29 2015-12-14 株式会社ミツトヨ Optical encoder
EP3527953A1 (en) * 2018-02-14 2019-08-21 Hohner Automaticos, S.L. An optical incremental encoder, a mask for an optical incremental encoder and a method to calculate the shape of a mask slots of an optical incremental encoder

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0267219U (en) * 1988-11-10 1990-05-22
JPH0348122A (en) * 1989-07-17 1991-03-01 Okuma Mach Works Ltd Optical encoder
JPH0499913A (en) * 1990-06-14 1992-03-31 Yaskawa Electric Corp Optical encoder
JPH0626885A (en) * 1992-07-07 1994-02-04 Tamagawa Seiki Co Ltd Method of eliminating distortion of encoder signal in optical encoder
JPH07146160A (en) * 1993-07-15 1995-06-06 Dr Johannes Heidenhain Gmbh Photoelectric length-measuring or angle-measuring apparatus
JPH08201117A (en) * 1995-01-23 1996-08-09 Okuma Mach Works Ltd Optical encoder
JPH11325968A (en) * 1998-05-19 1999-11-26 Tamagawa Seiki Co Ltd Fixed slit structure for optical encoder
JP2004219422A (en) * 2003-01-15 2004-08-05 Xerox Corp Method and system for finding high quality of sine curve from analog orthogonal phase encoder
JP2005121640A (en) * 2003-10-14 2005-05-12 Dr Johannes Heidenhain Gmbh Optical position measuring instrument
WO2005085767A1 (en) * 2004-03-03 2005-09-15 Mitsubishi Denki Kabushiki Kaisha Optical encoder

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0267219U (en) * 1988-11-10 1990-05-22
JPH0348122A (en) * 1989-07-17 1991-03-01 Okuma Mach Works Ltd Optical encoder
JPH0499913A (en) * 1990-06-14 1992-03-31 Yaskawa Electric Corp Optical encoder
JPH0626885A (en) * 1992-07-07 1994-02-04 Tamagawa Seiki Co Ltd Method of eliminating distortion of encoder signal in optical encoder
JPH07146160A (en) * 1993-07-15 1995-06-06 Dr Johannes Heidenhain Gmbh Photoelectric length-measuring or angle-measuring apparatus
JPH08201117A (en) * 1995-01-23 1996-08-09 Okuma Mach Works Ltd Optical encoder
JPH11325968A (en) * 1998-05-19 1999-11-26 Tamagawa Seiki Co Ltd Fixed slit structure for optical encoder
JP2004219422A (en) * 2003-01-15 2004-08-05 Xerox Corp Method and system for finding high quality of sine curve from analog orthogonal phase encoder
JP2005121640A (en) * 2003-10-14 2005-05-12 Dr Johannes Heidenhain Gmbh Optical position measuring instrument
WO2005085767A1 (en) * 2004-03-03 2005-09-15 Mitsubishi Denki Kabushiki Kaisha Optical encoder

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012026765A (en) * 2010-07-20 2012-02-09 Canon Inc Optical encoder
JP2013108911A (en) * 2011-11-22 2013-06-06 Canon Inc Optical encoder and device provided with the same
US9234772B2 (en) 2011-11-22 2016-01-12 Canon Kabushiki Kaisha Optical encoder and apparatus including the same
JP2015225084A (en) * 2014-05-29 2015-12-14 株式会社ミツトヨ Optical encoder
EP3527953A1 (en) * 2018-02-14 2019-08-21 Hohner Automaticos, S.L. An optical incremental encoder, a mask for an optical incremental encoder and a method to calculate the shape of a mask slots of an optical incremental encoder

Also Published As

Publication number Publication date
JP5154072B2 (en) 2013-02-27

Similar Documents

Publication Publication Date Title
EP1795873B1 (en) Photoelectric Encoder
JP6312505B2 (en) Optical encoder and apparatus equipped with the same
KR101184167B1 (en) Interferometric position encoder employing spatial filtering of diffraction orders
JP5562076B2 (en) Optical encoder and displacement measuring device
US20060180748A1 (en) Position measuring instrument
JP6032924B2 (en) Encoder
JPH08145724A (en) Optical encoder
JP6437802B2 (en) Optical encoder
US9651404B2 (en) Optical encoder having an optical portion comprising dual lenses and an aperture portion positioned in relation to a moiré grating
JPH0131127B2 (en)
JP6593868B2 (en) Displacement detector
JP5154072B2 (en) Photoelectric encoder
JP2009019876A (en) Optical absolute value encoder
JP4629486B2 (en) Optical encoder
JP7063743B2 (en) Encoder
JPH09113213A (en) Device for filtering higher-harmonic signal component
US6094307A (en) Optical grating and encoder
JP2018105845A (en) Encoder
JPH0151926B2 (en)
US6943341B2 (en) Position measuring system
JP3199549B2 (en) Encoder device
JP5744446B2 (en) Photodetector array and optical encoder using the same
JP6159236B2 (en) Optical absolute encoder
JP2004239855A (en) Reflex photoelectric encoder
JP2024053373A (en) Optical Encoders

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5154072

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250