JP7063743B2 - Encoder - Google Patents

Encoder Download PDF

Info

Publication number
JP7063743B2
JP7063743B2 JP2018118943A JP2018118943A JP7063743B2 JP 7063743 B2 JP7063743 B2 JP 7063743B2 JP 2018118943 A JP2018118943 A JP 2018118943A JP 2018118943 A JP2018118943 A JP 2018118943A JP 7063743 B2 JP7063743 B2 JP 7063743B2
Authority
JP
Japan
Prior art keywords
light
detection
light receiving
diffracted light
order diffracted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018118943A
Other languages
Japanese (ja)
Other versions
JP2019219347A (en
Inventor
彰秀 木村
ダニエル トバイアソン ジョセフ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Original Assignee
Mitutoyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/012,064 external-priority patent/US10274344B2/en
Application filed by Mitutoyo Corp filed Critical Mitutoyo Corp
Publication of JP2019219347A publication Critical patent/JP2019219347A/en
Application granted granted Critical
Publication of JP7063743B2 publication Critical patent/JP7063743B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • G01D5/34707Scales; Discs, e.g. fixation, fabrication, compensation
    • G01D5/34715Scale reading or illumination devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • G01D5/34746Linear encoders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/36Forming the light into pulses
    • G01D5/38Forming the light into pulses by diffraction gratings

Description

本発明は、エンコーダに関する。 The present invention relates to an encoder.

現在、移動量を測定する装置の一つとして、光学式エンコーダがある。光学式エンコーダは、スケールとスケールに沿って移動する検出ヘッドとを有する。スケールには、例えば、原点位置を検出するためのアブソリュートパターンと、スケールと検出ヘッドとの間の相対的な移動量を検出するためのインクリメンタルパターンとが設けられる。光学式エンコーダは、スケール上のアブソリュートパターンの検出結果である原点信号により原点位置を決定する。そして、原点位置を基準として、インクリメンタルパターンの検出結果から得られた移動量を考慮することで、スケールと検出ヘッドとの間の位置関係を検出することができる。 Currently, there is an optical encoder as one of the devices for measuring the amount of movement. The optical encoder has a scale and a detection head that moves along the scale. The scale is provided with, for example, an absolute pattern for detecting the origin position and an incremental pattern for detecting the relative movement amount between the scale and the detection head. The optical encoder determines the origin position by the origin signal which is the detection result of the absolute pattern on the scale. Then, the positional relationship between the scale and the detection head can be detected by considering the movement amount obtained from the detection result of the incremental pattern with the origin position as a reference.

一般に、インクリメンタルパターンは、測定方向に複数の格子パターンが配列された回折格子として構成されている。この回折格子に光を照射し、回折格子で回折された+1次回折光と-1次回折光とが干渉して生じる干渉縞の光強度を検出している。このような光学式エンコーダでは、+1次回折光と-1次回折光とによる干渉縞を高精度に検出するため、干渉縞に対する0次回折光などの他の次数の回折光の影響を抑制する必要がある。 Generally, the incremental pattern is configured as a diffraction grating in which a plurality of lattice patterns are arranged in the measurement direction. The diffraction grating is irradiated with light, and the light intensity of the interference fringes generated by the interference between the +1st-order diffracted light diffracted by the diffraction grating and the -1st-order diffracted light is detected. In such an optical encoder, since the interference fringes due to the +1st order diffracted light and the -1st order diffracted light are detected with high accuracy, it is necessary to suppress the influence of the diffracted light of another order such as the 0th order diffracted light on the interference fringes. ..

例えば、光源とスケールとの間に光学ブロックを配置して0次回折光を除去するエンコーダが提案されている(特許文献1)。このエンコーダでは、光源とスケールとの間にインデックス格子が挿入され、光源からの光が照射される。インデックス格子とスケールとの間には、0次回折光を遮蔽する遮蔽器が挿入される。この遮蔽器は、0次回折光を遮蔽し、かつ、+1次回折光及び-1次回折光を遮蔽しない位置に配置される。そのため、+1次回折光及び-1次回折光はスケールに到達するものの、0次回折光はスケールに到達しない。これにより、スケールから検出部に到達する光は+1次回折光及び-1次回折光だけとなり、0次回折光の影響を回避することができる。 For example, an encoder in which an optical block is arranged between a light source and a scale to remove 0th-order diffracted light has been proposed (Patent Document 1). In this encoder, an index grid is inserted between the light source and the scale, and the light from the light source is irradiated. A shield that shields the 0th-order diffracted light is inserted between the index grid and the scale. This shield is arranged at a position that shields the 0th-order diffracted light and does not shield the + 1st-order diffracted light and the -1st-order diffracted light. Therefore, the +1st-order diffracted light and the -1st-order diffracted light reach the scale, but the 0th-order diffracted light does not reach the scale. As a result, the light that reaches the detection unit from the scale is only the +1st-order diffracted light and the -1st-order diffracted light, and the influence of the 0th-order diffracted light can be avoided.

また、インデックス格子を用いたエンコーダの他の例が提案されている(特許文献2)。このエンコーダでは、光源からスケールに光を照射し、透過した回折光を検出する。スケールと検出部との間にはインデックス格子が挿入され、スケールからの回折光のうち、+1次回折光及び-1次回折光が入射する位置にのみ回折格子が形成され、0次回折光を含む他の回折光は遮断される。インデックス格子に入射した+1次回折光及び-1次回折光は回折格子で回折され、検出部上に干渉縞が生じる。これにより、スケールから検出部に到達する光は+1次回折光及び-1次回折光だけとなり、0次回折光の影響を回避することができる。 Further, another example of an encoder using an index grid has been proposed (Patent Document 2). This encoder irradiates the scale with light from a light source and detects the transmitted diffracted light. An index lattice is inserted between the scale and the detection unit, and the diffraction grating is formed only at the position where the + 1st-order diffracted light and the -1st-order diffracted light are incident among the diffracted light from the scale, and other diffracted light including the 0th-order diffracted light is formed. Diffracted light is blocked. The +1st-order diffracted light and the -1st-order diffracted light incident on the index grating are diffracted by the diffraction grating, and interference fringes are generated on the detection unit. As a result, the light that reaches the detection unit from the scale is only the +1st-order diffracted light and the -1st-order diffracted light, and the influence of the 0th-order diffracted light can be avoided.

更に、空間フィルタを用いて0次回折光を除去するエンコーダが提案されている(非特許文献1)。このエンコーダでは、スケールにレーザ光を照射し、生じた回折光をコリメータレンズで平行化する。そして、コリメータレンズから出射する平行化された各次の回折子のうち、+1次回折光及び-1次回折光のみを通過させる位置にだけスリットが設けられた空間フィルタを用いることで、0次回折光を含む他の回折光を遮断する。その後、収束レンズで+1次回折光及び-1次回折光を検出部に収束することで、検出部上に干渉縞を生じさせることができる。 Further, an encoder that removes 0th-order diffracted light by using a spatial filter has been proposed (Non-Patent Document 1). In this encoder, the scale is irradiated with laser light, and the generated diffracted light is parallelized by a collimator lens. Then, the 0th-order diffracted light is generated by using a spatial filter provided with a slit only at a position where only the + 1st-order diffracted light and the -1st-order diffracted light pass among the parallelized next-order diffractors emitted from the collimator lens. Blocks other diffracted light, including. After that, by converging the +1st-order diffracted light and the -1st-order diffracted light on the detection unit with the converging lens, interference fringes can be generated on the detection unit.

他にも、0次回折光の対策として、微細な回折格子の構造を最適化することで、0次回折光の発生を防止する構造が提案されている(特許文献3)。 In addition, as a countermeasure against the 0th-order diffracted light, a structure that prevents the generation of the 0th-order diffracted light by optimizing the structure of a fine diffraction grating has been proposed (Patent Document 3).

特許第2619566号公報Japanese Patent No. 2619566 特許第4856844号公報Japanese Patent No. 4856844 特開平8-219812号公報Japanese Unexamined Patent Publication No. 8-219812

羽根 一博、他2名、「金属表面回折格子を用いた光エンコーダ」、精密工学会誌、Vol.64、No.10、1998年Kazuhiro Hane, 2 others, "Optical Encoder Using Metal Surface Diffraction Grating", Journal of Precision Engineering, Vol. 64, No. 10, 1998

しかし、上記のエンコーダには、以下で説明する問題点がある。特許文献1及び2と非特許文献1においては、0次回折光の影響を除去するため、インデックス格子、レンズ、空間フィルタといた光学要素を追加する必要がある。そのため、エンコーダの大型化及び構造の複雑化を招いてしまう。 However, the above encoder has the problems described below. In Patent Documents 1 and 2 and Non-Patent Document 1, it is necessary to add optical elements such as an index grid, a lens, and a spatial filter in order to eliminate the influence of the 0th-order diffracted light. Therefore, the size of the encoder becomes large and the structure becomes complicated.

また、これらの例では、+1次回折光及び-1次回折光と他の回折光とを、回折角の相違を利用して分離している。しかし、回折光の次数を精度よく分離しようとすると、各光学要素間の距離を大きくしないと各次の回折光の離隔距離を大きくできないので、エンコーダが更に大型化してしまう。 Further, in these examples, the +1st order diffracted light and the -1st order diffracted light and the other diffracted light are separated by utilizing the difference in the diffraction angle. However, if the order of the diffracted light is to be separated accurately, the separation distance of the diffracted light of each order cannot be increased unless the distance between the optical elements is increased, so that the encoder becomes larger.

特許文献3では、構造が最適化された回折格子しか使用できないため、エンコーダ全体の光学設計が制約されてしまう。 In Patent Document 3, since only a diffraction grating with an optimized structure can be used, the optical design of the entire encoder is restricted.

本発明は、上記の事情に鑑みて成されたものであり、本発明の目的は、不要な回折光の影響を除去して位置検出精度を向上できるエンコーダを提供することである。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an encoder capable of removing the influence of unnecessary diffracted light and improving the position detection accuracy.

本発明の第1の態様であるエンコーダは、
インクリメンタルパターンが設けられたスケールと、
前記スケールに対して測定方向に相対的に移動可能であり、前記スケールに照射される光が前記インクリメンタルパターンで回折された回折光を検出し、検出結果を出力する検出ヘッドと、
前記検出ヘッドでの前記検出結果に応じて、前記スケールと前記検出ヘッドとの間の相対的な変位を算出する信号処理部と、を備え、
前記検出ヘッドは、
前記スケールに光を照射する光源と、
前記スケールからの前記回折光の検出信号を出力する複数の受光要素が所定の周期で前記測定方向に周期的に配列された受光部を有する検出部と、
前記回折光を前記検出部へ導く光学素子と、を備え、
前記複数の受光要素は、前記測定方向に偶数個配列され、
前記所定の周期は、前記回折光のうちで+1次回折光と-1次回折光とによって前記受光部上に生じる干渉縞の周期である基本周期の奇数倍であり、
前記受光要素の前記測定方向の幅は、前記基本周期の整数倍ではない値である、ものである。
The encoder according to the first aspect of the present invention is
A scale with an incremental pattern and
A detection head that is movable in the measurement direction relative to the scale, detects diffracted light diffracted by the incremental pattern of light radiated to the scale, and outputs a detection result.
A signal processing unit that calculates a relative displacement between the scale and the detection head according to the detection result of the detection head is provided.
The detection head is
A light source that irradiates the scale with light,
A detection unit having a light receiving unit in which a plurality of light receiving elements for outputting a detection signal of the diffracted light from the scale are periodically arranged in the measurement direction at a predetermined period.
An optical element that guides the diffracted light to the detection unit is provided.
The plurality of light receiving elements are arranged in an even number in the measurement direction.
The predetermined period is an odd multiple of the basic period, which is the period of the interference fringes generated on the light receiving portion by the +1st order diffracted light and the -1st order diffracted light among the diffracted light.
The width of the light receiving element in the measurement direction is a value that is not an integral multiple of the basic period.

本発明の第2の態様であるエンコーダは、上記のエンコーダであって、
前記検出部には、前記スケールからの+1次回折光、-1次回折光及び0次回折光が入射する、ものである。
The encoder according to the second aspect of the present invention is the above-mentioned encoder.
The + 1st-order diffracted light, the -1st-order diffracted light, and the 0th-order diffracted light from the scale are incident on the detection unit.

本発明の第3の態様であるエンコーダは、上記のエンコーダであって、
前記受光部は、前記測定方向に配列された複数の検出領域を有し、
前記検出部のそれぞれは、前記測定方向に配列された偶数個の前記受光要素を有し、
前記複数の受光領域のうち、互いに隣接する2つの受光領域は、前記測定方向に遠ざかるように、前記基本周期の1/4だけオフセットして配置される、ものである。
The encoder according to the third aspect of the present invention is the above-mentioned encoder.
The light receiving unit has a plurality of detection regions arranged in the measurement direction.
Each of the detection units has an even number of the light receiving elements arranged in the measurement direction.
Of the plurality of light receiving regions, two light receiving regions adjacent to each other are arranged so as to be offset by 1/4 of the basic period so as to be far from each other in the measurement direction.

本発明の第4の態様であるエンコーダは、上記のエンコーダであって、
前記検出部では、第1及び第2の受光領域が前記測定方向にこの順で配列され、
前記検出部は、前記第1の受光領域からの検出信号をA相信号として前記信号処理部に出力し、前記第2の受光領域からの検出信号をB相信号として前記信号処理部に出力する、ものである。
The encoder according to the fourth aspect of the present invention is the above-mentioned encoder.
In the detection unit, the first and second light receiving regions are arranged in this order in the measurement direction.
The detection unit outputs the detection signal from the first light receiving region to the signal processing unit as an A phase signal, and outputs the detection signal from the second light receiving region to the signal processing unit as a B phase signal. , The thing.

本発明の第5の態様であるエンコーダは、上記のエンコーダであって、
前記検出部では、第1~第4の受光領域が前記測定方向にこの順で配列され、
前記検出部は、前記第1の受光領域からの検出信号であるA相信号と前記第3の受光領域からの検出信号であるA-相信号との間の差動信号である差動A相信号と、前記第2の受光領域からの検出信号であるB相信号と前記第4の受光領域からの検出信号であるB-相信号との間の差動信号である差動B相信号と、を前記信号処理部に出力する、ものである。
The encoder according to the fifth aspect of the present invention is the above-mentioned encoder.
In the detection unit, the first to fourth light receiving regions are arranged in this order in the measurement direction.
The detection unit is a differential A phase which is a differential signal between an A phase signal which is a detection signal from the first light receiving region and an A-phase signal which is a detection signal from the third light receiving region. A signal and a differential B-phase signal which is a differential signal between a B-phase signal which is a detection signal from the second light-receiving region and a B-phase signal which is a detection signal from the fourth light-receiving region. , Is output to the signal processing unit.

本発明の第6の態様であるエンコーダは、上記のエンコーダであって、
前記受光部は、前記測定方向に配列された複数の検出領域を有し、
前記検出部のそれぞれは、前記測定方向に配列された偶数個の前記受光要素を有し、
前記複数の受光領域のうち、互いに隣接する2つの受光領域は、前記測定方向に遠ざかるように、前記基本周期の1/3だけオフセットして配置される、ものである。
The encoder according to the sixth aspect of the present invention is the above-mentioned encoder.
The light receiving unit has a plurality of detection regions arranged in the measurement direction.
Each of the detection units has an even number of the light receiving elements arranged in the measurement direction.
Of the plurality of light receiving regions, two light receiving regions adjacent to each other are arranged so as to be offset by 1/3 of the basic period so as to be far from each other in the measurement direction.

本発明の第7の態様であるエンコーダは、上記のエンコーダであって、
前記検出部では、第1~第3の受光領域が前記測定方向にこの順で配列され、
前記検出部は、前記第1の受光領域からの検出信号であるA相信号と前記第2の受光領域からの検出信号であるB相信号と前記第3の受光領域からの検出信号であるC相信号とを合成して生成した、互いに位相が90°異なる差動A相信号及び差動B相信号を前記信号処理部に出力する、ものである。
The encoder according to the seventh aspect of the present invention is the above-mentioned encoder.
In the detection unit, the first to third light receiving regions are arranged in this order in the measurement direction.
The detection unit includes an A phase signal which is a detection signal from the first light receiving region, a B phase signal which is a detection signal from the second light receiving region, and a C which is a detection signal from the third light receiving region. A differential A-phase signal and a differential B-phase signal, which are generated by synthesizing a phase signal and whose phases are different from each other by 90 °, are output to the signal processing unit.

本発明の第8の態様であるエンコーダは、上記のエンコーダであって、
前記光学素子は、+1次回折光と-1次回折光とを検出部5上に集光して、前記干渉縞を形成する、ものである。
The encoder according to the eighth aspect of the present invention is the above-mentioned encoder.
The optical element collects +1st-order diffracted light and -1st-order diffracted light on the detection unit 5 to form the interference fringes.

本発明の第9の態様であるエンコーダは、上記のエンコーダであって、
前記光学素子は、回折格子及びレンズのいずれかである、ものである。
The encoder according to the ninth aspect of the present invention is the above-mentioned encoder.
The optical element is either a diffraction grating or a lens.

本発明の第10の態様であるエンコーダは、上記のエンコーダであって、
前記光学素子は、2枚のミラーで構成され、
一方のミラーは、前記検出部へ向けて+1次回折光を反射し、
他方のミラーは、前記検出部へ向けて-1次回折光を反射する、ものである。
The encoder according to the tenth aspect of the present invention is the above-mentioned encoder.
The optical element is composed of two mirrors.
One mirror reflects the +1st order diffracted light toward the detection unit.
The other mirror reflects the -1st order diffracted light toward the detection unit.

本発明の第11の態様であるエンコーダは、上記のエンコーダであって、
kは、2以上の整数であり、
前記基本周期はPであり、
前記測定方向に交差する方向に配列されたk個の検出領域が検出列を構成し、
検出領域は、互いに前記測定方向にP/kのピッチでシフトしている、ものである。
The encoder according to the eleventh aspect of the present invention is the above-mentioned encoder.
k is an integer greater than or equal to 2 and
The basic period is P,
The k detection regions arranged in the directions intersecting the measurement directions form a detection row.
The detection regions are shifted from each other in the measurement direction at a pitch of P / k.

本発明の第12の態様であるエンコーダは、上記のエンコーダであって、
nは、1以上の整数であり、
k個の検出列は、前記測定方向にnP+P/kのピッチで周期的に配列されている、ものである。
The encoder according to the twelfth aspect of the present invention is the above-mentioned encoder.
n is an integer of 1 or more,
The k detection rows are periodically arranged at a pitch of nP + P / k in the measurement direction.

本発明によれば、不要な回折光の影響を除去して位置検出精度を向上できるエンコーダを提供することができる。 According to the present invention, it is possible to provide an encoder capable of removing the influence of unnecessary diffracted light and improving the position detection accuracy.

本発明の上述及び他の目的、特徴、及び長所は以下の詳細な説明及び付随する図面からより完全に理解されるだろう。付随する図面は図解のためだけに示されたものであり、本発明を制限するためのものではない。 The above and other objects, features, and advantages of the present invention will be more fully understood from the following detailed description and accompanying drawings. The accompanying drawings are shown for illustration purposes only and are not intended to limit the invention.

実施の形態1にかかる光学式エンコーダ100の概略構成を示す斜視図である。It is a perspective view which shows the schematic structure of the optical encoder 100 which concerns on Embodiment 1. FIG. 実施の形態1にかかる光学式エンコーダ100の構成を示す斜視図である。It is a perspective view which shows the structure of the optical encoder 100 which concerns on Embodiment 1. FIG. +1次回折光と-1次回折光とによって検出部上に生じる干渉縞を示す図である。It is a figure which shows the interference fringe generated on the detection part by the +1st order diffracted light and the -1st order diffracted light. +1次回折光、-1次回折光及び0次回折光によって検出部上に生じる干渉縞を示す図である。It is a figure which shows the interference fringe generated on the detection part by the +1st order diffracted light, the -1st order diffracted light and the 0th order diffracted light. 実施例1にかかる干渉縞と受光要素との関係を示す図である。It is a figure which shows the relationship between the interference fringe and the light receiving element which concerns on Example 1. FIG. 実施例2にかかる干渉縞と受光要素との関係を示す図である。It is a figure which shows the relationship between the interference fringe and the light receiving element which concerns on Example 2. FIG. 実施例3にかかる干渉縞と受光要素との関係を示す図である。It is a figure which shows the relationship between the interference fringe and the light receiving element which concerns on Example 3. FIG. 実施例4にかかる干渉縞と受光要素との関係を示す図である。It is a figure which shows the relationship between the interference fringe and the light receiving element which concerns on Example 4. FIG. 実施例5にかかる干渉縞と受光要素との関係を示す図である。It is a figure which shows the relationship between the interference fringe and the light receiving element which concerns on Example 5. FIG. 比較例1にかかる干渉縞と受光要素との関係を示す図である。It is a figure which shows the relationship between the interference fringe which concerns on the comparative example 1 and a light receiving element. 比較例2にかかる干渉縞と受光要素との関係を示す図である。It is a figure which shows the relationship between the interference fringe and the light receiving element which concerns on the comparative example 2. FIG. 比較例3にかかる干渉縞と受光要素との関係を示す図である。It is a figure which shows the relationship between the interference fringe and the light receiving element which concerns on the comparative example 3. FIG. 比較例4にかかる干渉縞と受光要素との関係を示す図である。It is a figure which shows the relationship between the interference fringe and the light receiving element which concerns on Comparative Example 4. FIG. 実施の形態2にかかる受光部の構成を模式的に示す図である。It is a figure which shows typically the structure of the light receiving part which concerns on Embodiment 2. FIG. 実施の形態2にかかる受光部の他の構成を模式的に示す図である。It is a figure which shows typically the other structure of the light receiving part which concerns on Embodiment 2. FIG. 実施の形態2にかかる受光部の他の構成を模式的に示す図である。It is a figure which shows typically the other structure of the light receiving part which concerns on Embodiment 2. FIG. 実施の形態3にかかる光学式エンコーダの構成を示す斜視図である。It is a perspective view which shows the structure of the optical encoder which concerns on Embodiment 3. FIG. 実施の形態3にかかる光学素子の一例を示す図である。It is a figure which shows an example of the optical element which concerns on Embodiment 3. FIG. 実施の形態3にかかる光学素子の他の例を示す図である。It is a figure which shows the other example of the optical element which concerns on Embodiment 3. FIG. 実施の形態3にかかる光学素子の他の例を示す図である。It is a figure which shows the other example of the optical element which concerns on Embodiment 3. FIG. 実施の形態4にかかる光学式エンコーダの構成を示す斜視図である。It is a perspective view which shows the structure of the optical encoder which concerns on Embodiment 4. FIG. 実施の形態4にかかる光学式エンコーダの構成を示す上面図である。It is a top view which shows the structure of the optical encoder which concerns on Embodiment 4. FIG. 実施の形態4にかかる光学式エンコーダ400をX軸方向に沿って見たときの構成を示す側面図である。It is a side view which shows the structure when the optical encoder 400 which concerns on Embodiment 4 is seen along the X-axis direction. 実施の形態4にかかる光学式エンコーダ400をY軸方向に沿って見たときの構成を示す側面図である。It is a side view which shows the structure when the optical encoder 400 which concerns on Embodiment 4 is seen along the Y-axis direction. 実施の形態5にかかる受光部LRU1の構成を模式的に示す図である。It is a figure which shows typically the structure of the light receiving part LRU1 which concerns on Embodiment 5. 実施の形態5にかかる他の受光部LRU2の構成を模式的に示す図である。It is a figure which shows typically the structure of the other light receiving part LRU2 which concerns on Embodiment 5. 実施の形態6にかかる受光部LRU3の構成を模式的に示す図である。It is a figure which shows typically the structure of the light receiving part LRU3 which concerns on Embodiment 6. 実施の形態6にかかる他の受光部LRU4の構成を模式的に示す図である。It is a figure which shows typically the structure of the other light receiving part LRU4 which concerns on Embodiment 6.

以下、図面を参照して本発明の実施の形態について説明する。各図面においては、同一要素には同一の符号が付されており、必要に応じて重複説明は省略される。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In each drawing, the same elements are designated by the same reference numerals, and duplicate explanations are omitted as necessary.

実施の形態1
本発明の実施の形態1にかかる光学式エンコーダについて説明する。図1は、実施の形態1にかかる光学式エンコーダ100の概略構成を示す斜視図である。ここでは、光学式エンコーダ100が透過式エンコーダとして構成される場合について説明する。図1に示すように、光学式エンコーダ100は、スケール1、検出ヘッド2及び信号処理部3を有する。スケール1と検出ヘッド2とは、スケール1の長手方向である測定方向(図1のX軸方向)に沿って相対的に移動が可能なように構成される。スケール1は、位置検出に用いるパターンが設けられ、パターンに光が照射されることで干渉光が生じる。検出ヘッド2は、干渉光の測定方向の変化を検出し、検出結果を示す電気信号である検出信号DETを信号処理部3に出力する。信号処理部3は、受け取った検出信号DETを信号処理することで、スケール1と検出ヘッド2との間の位置関係を算出することができる。
Embodiment 1
The optical encoder according to the first embodiment of the present invention will be described. FIG. 1 is a perspective view showing a schematic configuration of the optical encoder 100 according to the first embodiment. Here, a case where the optical encoder 100 is configured as a transmission encoder will be described. As shown in FIG. 1, the optical encoder 100 includes a scale 1, a detection head 2, and a signal processing unit 3. The scale 1 and the detection head 2 are configured to be relatively movable along the measurement direction (X-axis direction in FIG. 1) which is the longitudinal direction of the scale 1. The scale 1 is provided with a pattern used for position detection, and interference light is generated by irradiating the pattern with light. The detection head 2 detects a change in the measurement direction of the interference light, and outputs a detection signal DET, which is an electric signal indicating the detection result, to the signal processing unit 3. The signal processing unit 3 can calculate the positional relationship between the scale 1 and the detection head 2 by processing the received detection signal DET.

なお、以下では、測長方向(図1のX軸方向)に対して垂直、かつ、スケール1の幅を示す方向をY軸とする。すなわち、スケール1の主面は、X-Y平面となる。また、スケール1の主面(X-Y平面)に垂直、すなわちX軸及びY軸に垂直な方向をZ軸とする。また、以下で参照する斜視図では、紙面左下手前から右上奥へ向かう方向を、X軸の正方向とする。紙面右下手前から左上奥へ向かう方向を、Y軸の正方向とする。紙面下側から上側へ向かう方向を、Z軸の正方向とする。 In the following, the direction perpendicular to the length measurement direction (X-axis direction in FIG. 1) and indicating the width of the scale 1 is defined as the Y-axis. That is, the main surface of the scale 1 is an XY plane. Further, the direction perpendicular to the main surface (XY plane) of the scale 1, that is, the direction perpendicular to the X-axis and the Y-axis is defined as the Z-axis. Further, in the perspective view referred to below, the direction from the lower left front of the paper to the upper right is the positive direction of the X-axis. The direction from the lower right front to the upper left back of the paper is the positive direction of the Y axis. The direction from the lower side to the upper side of the paper surface is the positive direction of the Z axis.

光学式エンコーダ100について、より詳細に説明する。図2は、実施の形態1にかかる光学式エンコーダ100の構成を示す斜視図である。図2に示すように、検出ヘッド2は、光源4及び検出部5を有する。上述のように、スケール1と検出ヘッド2とは、測定方向(図2のX軸方向)に相対的に移動可能に構成される。 The optical encoder 100 will be described in more detail. FIG. 2 is a perspective view showing the configuration of the optical encoder 100 according to the first embodiment. As shown in FIG. 2, the detection head 2 has a light source 4 and a detection unit 5. As described above, the scale 1 and the detection head 2 are configured to be relatively movable in the measurement direction (X-axis direction in FIG. 2).

光源4は、平行光4Aを出力する光源である。光源4は、例えば、光源素子及びコリメータを有する。光源が出力した光は、コリメータでコリメートされることで平行光4Aとなる。光源素子としては、例えば、LED(Light Emitting Diode:発光ダイオード)、半導体レーザ、SLED(Self-Scanning Light Emitting Device:自己走査型発光素子)、OLED(Organic light-emitting diode:有機発光ダイオード)などを用いることができる。また、コリメータとしては、レンズ光学系などの様々なコリメート手段を用いることができる。 The light source 4 is a light source that outputs parallel light 4A. The light source 4 has, for example, a light source element and a collimator. The light output by the light source is collimated by a collimator to become parallel light 4A. Examples of the light source element include LED (Light Emitting Diode), semiconductor laser, SLED (Self-Scanning Light Emitting Device), OLED (Organic light-emitting diode), and the like. Can be used. Further, as the collimator, various collimating means such as a lens optical system can be used.

スケール1は、図2のZ軸に垂直な面(X-Y平面)を主面とし、X軸方向を長手方向とする板状の部材である。スケール1は、光源4からの平行光4Aが主面(X-Y平面)に垂直に入射する位置に配置される。図2では、スケール1は、光源4に対してZ軸の負方向側に配置される。 The scale 1 is a plate-shaped member having a plane perpendicular to the Z axis (XY plane) in FIG. 2 as a main plane and a longitudinal direction in the X axis direction. The scale 1 is arranged at a position where the parallel light 4A from the light source 4 is vertically incident on the main surface (XY plane). In FIG. 2, the scale 1 is arranged on the negative direction side of the Z axis with respect to the light source 4.

スケール1を構成する板状部材には、原点パターン6及びインクリメンタルパターン7が形成される。 The origin pattern 6 and the incremental pattern 7 are formed on the plate-shaped member constituting the scale 1.

原点パターン6では、典型的には、図2のY軸を長手方向とする格子状の光透過部6Aが1つ形成される。但し、原点パターン6のパターンはこの例に限られず、複数の格子パターンからなるものなど、適宜他のパターンを適用してもよい。 In the origin pattern 6, typically, one lattice-shaped light transmitting portion 6A having the Y axis of FIG. 2 as the longitudinal direction is formed. However, the pattern of the origin pattern 6 is not limited to this example, and other patterns such as those composed of a plurality of grid patterns may be applied as appropriate.

インクリメンタルパターン7では、図2のY軸を長手方向とする格子状の光透過部が、X軸方向に並んで複数配置される。つまり、インクリメンタルパターン7では、光透過部7Aと不透過部7Bとが、X軸方向に交互に、かつ、ピッチgにて繰り返して配置される。 In the incremental pattern 7, a plurality of grid-like light transmitting portions having the Y axis as the longitudinal direction in FIG. 2 are arranged side by side in the X axis direction. That is, in the incremental pattern 7, the light transmitting portions 7A and the impermeable portions 7B are arranged alternately in the X-axis direction and repeatedly at the pitch g.

スケール1は、ガラスで構成されることが望ましい。この場合、例えば、ガラスに蒸着された金属膜で不透過部が形成され、金属膜が存在しない領域が光透過部となる。但し、光を透過する格子状の光透過部と、光を透過しない不透過部を構成できる材料であれば、いずれもスケール1を構成する材料として用いることができる。 The scale 1 is preferably made of glass. In this case, for example, the impermeable portion is formed by the metal film deposited on the glass, and the region where the metal film does not exist becomes the light transmitting portion. However, any material that can form a lattice-shaped light transmitting portion that transmits light and a non-transmitting portion that does not transmit light can be used as a material that constitutes scale 1.

検出部5は、スケール1を通過した光を検出可能に構成される。検出部5は、受光部8及び受光部9を有する。受光部8と受光部9とは、Y軸方向に並んで配置される。検出部5は、受光部8及び9が出力する信号を検出信号DETとして出力する。 The detection unit 5 is configured to be able to detect the light that has passed through the scale 1. The detection unit 5 has a light receiving unit 8 and a light receiving unit 9. The light receiving unit 8 and the light receiving unit 9 are arranged side by side in the Y-axis direction. The detection unit 5 outputs the signals output by the light receiving units 8 and 9 as the detection signal DET.

受光部8は、原点パターン6を透過した光を検出可能に構成され、検出結果を信号処理部3へ出力する。この例では、原点パターン6の光透過部6Aを透過した光を検出するため、受光素子10が配置されている。これにより、受光部8は、原点パターン6の光透過部6Aを通過した光を光電変換して得られた電気信号を、信号処理部3へ出力する。 The light receiving unit 8 is configured to be able to detect the light transmitted through the origin pattern 6, and outputs the detection result to the signal processing unit 3. In this example, a light receiving element 10 is arranged in order to detect the light transmitted through the light transmitting portion 6A of the origin pattern 6. As a result, the light receiving unit 8 outputs the electric signal obtained by photoelectric conversion of the light passing through the light transmitting unit 6A of the origin pattern 6 to the signal processing unit 3.

受光部9は、インクリメンタルパターン7を通過した光を検出可能に構成され、検出結果を信号処理部3へ出力する。例えば、受光部9は、インクリメンタルパターン7を通過した光を光電変換して得られた電気信号を、信号処理部3へ出力する。受光部9は、インクリメンタルパターン7で回折された光による干渉縞の検出に好適なピッチで、複数の受光要素11(例えばフォトダイオード)が偶数個配列された受光素子アレイとして構成される。 The light receiving unit 9 is configured to be able to detect the light that has passed through the incremental pattern 7, and outputs the detection result to the signal processing unit 3. For example, the light receiving unit 9 outputs an electric signal obtained by photoelectric conversion of the light passing through the incremental pattern 7 to the signal processing unit 3. The light receiving unit 9 is configured as a light receiving element array in which an even number of light receiving elements 11 (for example, photodiodes) are arranged at a pitch suitable for detecting interference fringes due to light diffracted by the incremental pattern 7.

また、受光部9は、受光面積の大きなフォトダイオードの上に、光透過部が偶数個設けられた回折格子を配置した構成としてもよい。この場合、光透過部が設けられた部位のそれぞれが、実質的に上述した受光要素として機能する。 Further, the light receiving unit 9 may be configured such that a diffraction grating provided with an even number of light transmitting units is arranged on a photodiode having a large light receiving area. In this case, each of the portions provided with the light transmitting portion substantially functions as the above-mentioned light receiving element.

次いで、受光部9上に生じる干渉縞について説明する。インクリメンタルパターン7を透過した光は回折され、受光部9上に回折光による干渉縞を生じさせる。ここでは、まず、+1次回折光と-1次回折光とによって受光部9上に生じる干渉縞20について説明する。図3は、+1次回折光と-1次回折光とによって受光部9上に生じる干渉縞20を示す図である。図3に示すように、受光部9上には、+1次回折光と-1次回折光とによって、周期Pの干渉縞20が生じる。以下では、+1次回折光と-1次回折光とによって受光部9上に生じる干渉縞20の周期を、基本周期Pと称する。 Next, the interference fringes generated on the light receiving unit 9 will be described. The light transmitted through the incremental pattern 7 is diffracted, and interference fringes due to the diffracted light are generated on the light receiving portion 9. Here, first, the interference fringes 20 generated on the light receiving portion 9 by the +1st order diffracted light and the -1st order diffracted light will be described. FIG. 3 is a diagram showing the interference fringes 20 generated on the light receiving portion 9 by the +1st order diffracted light and the -1st order diffracted light. As shown in FIG. 3, an interference fringe 20 having a period P is generated on the light receiving portion 9 by the +1st order diffracted light and the -1st order diffracted light. Hereinafter, the period of the interference fringes 20 generated on the light receiving portion 9 by the +1st order diffracted light and the -1st order diffracted light is referred to as a basic period P.

しかしながら、受光部9には、インクリメンタルパターン7を透過した+1次回折光と-1次回折光以外の次数の回折光も入射する。このうち、0次回折光は光強度が大きいため、受光部9上に生じる干渉縞は0次回折光の影響を受けることとなる。 However, the light receiving unit 9 is also incident with the +1st order diffracted light transmitted through the incremental pattern 7 and the diffracted light of a degree other than the -1st order diffracted light. Of these, since the 0th-order diffracted light has a high light intensity, the interference fringes generated on the light receiving portion 9 are affected by the 0th-order diffracted light.

図4は、+1次回折光、-1次回折光及び0次回折光によって受光部9上に生じる干渉縞30を示す図である。図4に示すように、+1次回折光、-1次回折光及び0次回折光によって受光部9上に生じる干渉縞30は、高いピーク31と低いピーク32とが交互に現れる。高いピーク31と低いピーク32とは、互いに基本周期Pだけ離隔しているので、干渉縞30は、高いピーク31と低いピーク32とが、基本周期Pの2倍の周期2Pで繰り返し現れる波形を有する。よって、単に干渉縞30の光強度を光電変換してしまうと、変換結果を示す出力信号OUTも、基本周期Pの2倍の周期2Pで高いピークと低いピークとが繰り返し現れる波形となってしまう。 FIG. 4 is a diagram showing the interference fringes 30 generated on the light receiving portion 9 by the +1st order diffracted light, the -1st order diffracted light, and the 0th order diffracted light. As shown in FIG. 4, in the interference fringes 30 generated on the light receiving portion 9 by the + 1st-order diffracted light, the -1st-order diffracted light, and the 0th-order diffracted light, high peaks 31 and low peaks 32 appear alternately. Since the high peak 31 and the low peak 32 are separated from each other by the basic period P, the interference fringe 30 has a waveform in which the high peak 31 and the low peak 32 repeatedly appear in the period 2P which is twice the basic period P. Have. Therefore, if the light intensity of the interference fringes 30 is simply photoelectrically converted, the output signal OUT indicating the conversion result also has a waveform in which high peaks and low peaks repeatedly appear at a period of 2P, which is twice the basic period P. ..

これに対し、光学式エンコーダ100では、受光部9の受光要素の構成及び配置を以下の設計条件に則ることで、上記の0次回折光などの不要な干渉項の影響を抑制している。以下、本実施の形態における受光部9の受光要素11の構成及び配置について、詳細に説明する。受光部9には、以下の設計条件1~3を満たすように、複数の受光要素11がX方向に配列される。 On the other hand, in the optical encoder 100, the influence of unnecessary interference terms such as the above-mentioned 0th-order diffracted light is suppressed by conforming the configuration and arrangement of the light receiving element of the light receiving unit 9 to the following design conditions. Hereinafter, the configuration and arrangement of the light receiving element 11 of the light receiving unit 9 in the present embodiment will be described in detail. In the light receiving unit 9, a plurality of light receiving elements 11 are arranged in the X direction so as to satisfy the following design conditions 1 to 3.

[設計条件1]
本実施の形態では、受光部9の受光要素11のX方向の配列数が偶数個となるように配置される。以下、この条件を設計条件1と称する。
[Design condition 1]
In the present embodiment, the light receiving elements 11 of the light receiving unit 9 are arranged so that the number of arrangements in the X direction is an even number. Hereinafter, this condition is referred to as design condition 1.

[設計条件2]
また、本実施の形態では、受光部9の受光要素11は、X方向の配置周期が干渉縞の基本周期Pの奇数倍となるように配置される。以下、この条件を設計条件2と称する。
[Design condition 2]
Further, in the present embodiment, the light receiving element 11 of the light receiving unit 9 is arranged so that the arrangement period in the X direction is an odd multiple of the basic period P of the interference fringes. Hereinafter, this condition is referred to as design condition 2.

[設計条件3]
更に、本実施の形態では、各受光要素11は、X方向の幅Wが干渉縞の基本周期Pの整数倍とならないように構成される。以下、この条件を設計条件3と称する。
[Design condition 3]
Further, in the present embodiment, each light receiving element 11 is configured so that the width W in the X direction is not an integral multiple of the basic period P of the interference fringes. Hereinafter, this condition is referred to as design condition 3.

上記の設計条件1~3を満たすことで、受光部9は、0次回折光によって干渉縞30にもたらされた基本周期Pの2倍の周期性の影響を除去し、基本周期Pで変動する出力信号を得ることができる。以下、そのメカニズムについて、実施例を用いて説明する。
[実施例1]
図5に、実施例1にかかる干渉縞と受光要素との関係を示す。実施例1では、受光要素の配列数を10、受光要素の配置周期を干渉縞の基本周期Pの1倍、受光要素の幅Wを干渉縞の基本周期Pの0.5倍とした。なお、この例では、受光要素11Aと受光要素11Bとが交互に配列されるものとした。
By satisfying the above design conditions 1 to 3, the light receiving unit 9 eliminates the influence of the periodicity twice the basic period P brought about by the 0th-order diffracted light on the interference fringes 30, and fluctuates in the basic period P. The output signal can be obtained. Hereinafter, the mechanism will be described with reference to examples.
[Example 1]
FIG. 5 shows the relationship between the interference fringes and the light receiving element according to the first embodiment. In Example 1, the number of light-receiving elements arranged was 10, the arrangement cycle of the light-receiving elements was 1 times the basic period P of the interference fringes, and the width W of the light-receiving elements was 0.5 times the basic period P of the interference fringes. In this example, the light receiving elements 11A and the light receiving elements 11B are arranged alternately.

図5に示すように、受光要素11Aに着目すると、受光要素11Aは基本周期Pの2倍の周期2Pで配列されている。受光要素11Bに着目すると、受光要素11Bは基本周期Pの2倍の周期2Pで配列されている。つまり、受光要素11Aは基本周期Pの2倍の周期2Pで変動する干渉縞の位相θでの光強度を検出し、受光要素11Bは基本周期Pの2倍の周期2Pで変動する干渉縞の位相(θ+2π)での光強度を検出する。 As shown in FIG. 5, focusing on the light receiving element 11A, the light receiving elements 11A are arranged in a period 2P that is twice the basic period P. Focusing on the light receiving element 11B, the light receiving elements 11B are arranged in a period 2P that is twice the basic period P. That is, the light receiving element 11A detects the light intensity in the phase θ of the interference fringes that fluctuate in the period 2P twice the basic period P, and the light receiving element 11B detects the light intensity in the period 2P twice the basic period P. Detects the light intensity in phase (θ + 2π).

受光要素の配列数の1/2をn、受光要素11A及び11Bのそれぞれが位相θにおいて検出する光の強度をI(θ)とする。位相θは、基本周期Pに対して定義されるものであり、位相が2π変化するごとに干渉縞が基本周期Pだけ移動することとなる。また、上述したように、干渉縞30は基本周期Pの2倍の周期を有するので、受光要素11A及び11Bのそれぞれが位相θにおいて検出する光強度I(θ)は、位相4πごとに同じ値となる。つまり、I(θ)≠I(θ+2π)、I(θ)=I(θ+4π)が成立する。この関係は、以下の実施例及び比較例においても同様に成立する。以下、説明した条件下において、受光部9が検出する光の強度をITOTALとすると、以下の式[1]が成立する。

TOTAL=nI(θ)+nI(θ+2π) [1]
Let n be 1/2 of the number of array of light receiving elements, and let I (θ) be the intensity of light detected by each of the light receiving elements 11A and 11B in the phase θ. The phase θ is defined with respect to the basic period P, and the interference fringes move by the basic period P every time the phase changes by 2π. Further, as described above, since the interference fringe 30 has a period twice the basic period P, the light intensity I (θ) detected by each of the light receiving elements 11A and 11B in the phase θ has the same value for each phase 4π. Will be. That is, I (θ) ≠ I (θ + 2π) and I (θ) = I (θ + 4π). This relationship also holds in the following Examples and Comparative Examples. Assuming that the intensity of the light detected by the light receiving unit 9 is ITOTAL under the conditions described below, the following equation [1] is established.

I TOTAL = nI (θ) + nI (θ + 2π) [1]

式[1]は、式[2]に示すように、位相2πごとに同一の値をとるので、ITOTALは基本周期Pを周期として同じ強度のピークが出現することとなる。

TOTAL=nI(θ+2π)+nI(θ+2π+2π)
=nI(θ+2π)+nI(θ)
=nI(θ)+nI(θ+2π) [2]

これにより、基本周期Pで増減する出力信号OUTが得られることが理解できる。
As shown in the equation [2], the equation [1] takes the same value for each phase 2π, so that the peak of the same intensity appears in the ITOTAL with the basic period P as the period.

I TOTAL = nI (θ + 2π) + nI (θ + 2π + 2π)
= NI (θ + 2π) + nI (θ)
= NI (θ) + nI (θ + 2π) [2]

As a result, it can be understood that an output signal OUT that increases or decreases in the basic period P can be obtained.

[実施例2]
図6に、実施例2にかかる干渉縞と受光要素との関係を示す。実施例2では、受光要素の配置数を4、受光要素の配置周期を干渉縞の基本周期Pの3倍、受光要素の幅Wを干渉縞の基本周期Pの0.5倍とした。この例では、受光要素11Aと受光要素11Bとが交互に配列されるものとした。
[Example 2]
FIG. 6 shows the relationship between the interference fringes and the light receiving element according to the second embodiment. In Example 2, the number of light-receiving elements arranged was 4, the arrangement cycle of the light-receiving elements was 3 times the basic period P of the interference fringes, and the width W of the light-receiving elements was 0.5 times the basic period P of the interference fringes. In this example, the light receiving elements 11A and the light receiving elements 11B are arranged alternately.

図6に示すように、受光要素11Aに着目すると、受光要素11Aは基本周期Pの6倍の周期6Pで配列されている。受光要素11Bに着目すると、受光要素11Bは基本周期Pの6倍の周期6Pで配列されている。つまり、受光要素11Aは基本周期Pの2倍の周期2Pで変動する干渉縞の位相θでの光強度を検出し、受光要素11Bは基本周期Pの2倍の周期2Pで変動する干渉縞の位相(θ+6π)での光強度を検出する。 As shown in FIG. 6, focusing on the light receiving element 11A, the light receiving elements 11A are arranged in a period 6P which is 6 times the basic period P. Focusing on the light receiving element 11B, the light receiving elements 11B are arranged in a period 6P which is 6 times the basic period P. That is, the light receiving element 11A detects the light intensity in the phase θ of the interference fringes that fluctuate in the period 2P twice the basic period P, and the light receiving element 11B detects the light intensity in the period 2P twice the basic period P. The light intensity in phase (θ + 6π) is detected.

受光要素の配列数の1/2をn、受光要素11A及び11Bのそれぞれが位相θにおいて検出する光の強度をI(θ)、受光部9が検出する光の強度をITOTALとすると、以下の式[3]が成立する。

TOTAL=nI(θ)+nI(θ+6π)
=nI(θ)+nI(θ+2π+4π)
=nI(θ)+nI(θ+2π) [3]

つまり、式[3]は、実施例1の式[1]と同じとなる。よって、実施例1と同様に、ITOTALは基本周期Pを周期として同じ強度のピークが出現することとなる。これにより、基本周期Pで増減する出力信号OUTが得られることが理解できる。
Assuming that 1/2 of the number of light receiving elements arranged is n, the light intensity detected by each of the light receiving elements 11A and 11B in the phase θ is I (θ), and the light intensity detected by the light receiving unit 9 is ITOTAL , the following is assumed. Equation [3] holds.

I TOTAL = nI (θ) + nI (θ + 6π)
= NI (θ) + nI (θ + 2π + 4π)
= NI (θ) + nI (θ + 2π) [3]

That is, the equation [3] is the same as the equation [1] of the first embodiment. Therefore, as in Example 1, in ITOTAL , peaks of the same intensity appear with the basic period P as the period. As a result, it can be understood that an output signal OUT that increases or decreases in the basic period P can be obtained.

[実施例3]
図7に、実施例3にかかる干渉縞と受光要素との関係を示す。実施例3では、受光要素の配置数を4、受光要素の配置周期を干渉縞の基本周期Pの3倍、受光要素の幅Wを干渉縞の基本周期Pの1.5倍とした。この例では、受光要素11Aと受光要素11Bとが交互に配列されるものとした。
[Example 3]
FIG. 7 shows the relationship between the interference fringes and the light receiving element according to the third embodiment. In Example 3, the number of light-receiving elements arranged was 4, the arrangement cycle of the light-receiving elements was 3 times the basic period P of the interference fringes, and the width W of the light-receiving elements was 1.5 times the basic period P of the interference fringes. In this example, the light receiving elements 11A and the light receiving elements 11B are arranged alternately.

この構成では、実施例1及び2と比べて受光要素の幅は異なるものの、受光要素11Aは同一の波形を検出し、受光要素11Bも同一の波形を検出し、かつ受光要素11Aの数と受光要素11Bの数とが同一である。よって、実施例1と同様に式[1]及び[2]が成立する。その結果、実施例2と同様に、基本周期Pで増減する出力信号OUTが得られる。 In this configuration, although the width of the light receiving element is different from that of Examples 1 and 2, the light receiving element 11A detects the same waveform, the light receiving element 11B also detects the same waveform, and the number of light receiving elements 11A and the light receiving light are received. The number of elements 11B is the same. Therefore, the equations [1] and [2] are established as in the first embodiment. As a result, the output signal OUT that increases or decreases in the basic period P is obtained as in the second embodiment.

[実施例4]
図8に、実施例4にかかる干渉縞と受光要素との関係を示す。実施例4では、受光要素の配置数を2、受光要素の配置周期を干渉縞の基本周期Pの5倍、受光要素の幅Wを干渉縞の基本周期Pの1.5倍とした。この例では、受光要素11Aと受光要素11Bとが交互に配列されるものとした。
[Example 4]
FIG. 8 shows the relationship between the interference fringes and the light receiving element according to the fourth embodiment. In Example 4, the number of light-receiving elements arranged was 2, the arrangement cycle of the light-receiving elements was 5 times the basic period P of the interference fringes, and the width W of the light-receiving elements was 1.5 times the basic period P of the interference fringes. In this example, the light receiving elements 11A and the light receiving elements 11B are arranged alternately.

この構成では、実施例3と比べて受光要素の数及び幅が異なるものの、受光要素11Aと受光要素11Bとは、基本周期Pの5倍離れているので、結果として上記の式[1]及び[2]が成立する。その結果、実施例3と同様に、基本周期Pで増減する出力信号OUTが得られる。 In this configuration, although the number and width of the light receiving elements are different from those in the third embodiment, the light receiving elements 11A and the light receiving elements 11B are separated by five times the basic period P, and as a result, the above equation [1] and the above equation [1] and [2] holds. As a result, the output signal OUT that increases or decreases in the basic period P is obtained as in the third embodiment.

[実施例5]
実施例5は、実施例2の変形例であり、4相信号を得られる例について示す。図9に、実施例5にかかる干渉縞と受光要素との関係を示す。実施例5では、各相の受光要素の配置数を偶数個、各相の受光要素の配置周期を干渉縞の基本周期Pの3倍、各相の受光要素の幅Wを干渉縞の基本周期Pの0.5倍とした。また、この例では、A相、B相、A-相及びB-相にかかる受光要素を、それぞれ符号A、B、A-及びB-を用いて表示した。
[Example 5]
Example 5 is a modification of Example 2, and shows an example in which a four-phase signal can be obtained. FIG. 9 shows the relationship between the interference fringes and the light receiving element according to the fifth embodiment. In the fifth embodiment, the number of light receiving elements arranged in each phase is an even number, the arrangement cycle of the light receiving elements of each phase is three times the basic period P of the interference fringes, and the width W of the light receiving elements of each phase is the basic period of the interference fringes. It was set to 0.5 times P. Further, in this example, the light receiving elements pertaining to the A phase, the B phase, the A-phase and the B-phase are indicated by using the reference numerals A, B, A- and B-, respectively.

図9に示すように、A相、B相、A-相、B-相にかかる受光要素12~15は、それぞれ、実施例2にかかる受光要素11(受光要素11A及び11B)と同様に配列されている。換言すれば、互いに隣接する受光要素の配列周期は基本周期Pの0.75倍であるものの、4相信号を得る構成としているので、各相にかかる受光要素に着目すると、受光要素の配列は実施例2と同様となる。つまり、実施例5によれば、実施例2と同様に、不要な干渉光の影響を受けることなく、基本周期Pで増減する出力信号OUTが得られる。 As shown in FIG. 9, the light receiving elements 12 to 15 related to the A phase, the B phase, the A-phase, and the B-phase are arranged in the same manner as the light receiving elements 11 (light receiving elements 11A and 11B) according to the second embodiment, respectively. Has been done. In other words, although the arrangement period of the light receiving elements adjacent to each other is 0.75 times the basic period P, the configuration is such that a four-phase signal is obtained. It becomes the same as in Example 2. That is, according to the fifth embodiment, as in the second embodiment, an output signal OUT that increases or decreases in the basic period P can be obtained without being affected by unnecessary interference light.

また、実施例と比較するため、上記の設計条件1~3のいずれかを満たさない場合の比較例について検討する。
[比較例1]
図10に、比較例1にかかる干渉縞と受光要素との関係を示す。比較例1では、受光要素の配置数を3、受光要素の配置周期を干渉縞の基本周期Pの3倍、受光要素の幅Wを干渉縞の基本周期Pの0.5倍とした。この例では、受光要素11Aと受光要素11Bとが交互に配列されるものとした。つまり、比較例1は、上述した設計条件1を満たしていない。
Further, in order to make a comparison with the examples, a comparative example in the case where any one of the above design conditions 1 to 3 is not satisfied will be examined.
[Comparative Example 1]
FIG. 10 shows the relationship between the interference fringes and the light receiving element according to Comparative Example 1. In Comparative Example 1, the number of light-receiving elements arranged was 3, the arrangement cycle of the light-receiving elements was 3 times the basic period P of the interference fringes, and the width W of the light-receiving elements was 0.5 times the basic period P of the interference fringes. In this example, the light receiving elements 11A and the light receiving elements 11B are arranged alternately. That is, Comparative Example 1 does not satisfy the above-mentioned design condition 1.

受光要素の配列数を2で除したときの商をm、受光要素11A及び11Bのそれぞれが位相θにおいて検出する光の強度をI(θ)、受光部9が検出する光の強度をITOTALとすると、以下の式[4]が成立する。

TOTAL=(m+1)I(θ)+mI(θ+2π) [4]
The quotient when the number of light receiving elements is divided by 2 is m, the light intensity detected by each of the light receiving elements 11A and 11B in the phase θ is I (θ), and the light intensity detected by the light receiving unit 9 is ITOTAL . Then, the following equation [4] holds.

I TOTAL = (m + 1) I (θ) + mI (θ + 2π) [4]

式[4]において、位相が2π、すなわち基本周期Pだけ変動すると、以下の式[5]が得られる。

TOTAL=(m+1)I(θ+2π)+mI(θ+2π+2π)
=(m+1)I(θ+2π)+mI(θ) [5]

上述したように、干渉縞は基本周期Pの2倍の周期2Pで変動するため、基本周期Pだけ離れた位置での干渉縞の光強度は等しくない。そのため、式[3]と式[4]とでは、ITOTALの値が異なることとなる。
In the equation [4], when the phase fluctuates by 2π, that is, the basic period P, the following equation [5] is obtained.

I TOTAL = (m + 1) I (θ + 2π) + mI (θ + 2π + 2π)
= (M + 1) I (θ + 2π) + mI (θ) [5]

As described above, since the interference fringes fluctuate in a period 2P that is twice the basic period P, the light intensities of the interference fringes at positions separated by the basic period P are not equal. Therefore, the value of ITOTAL differs between the equation [3] and the equation [4].

式[4]において、位相が4π、すなわち基本周期Pの2倍だけ変動すると、以下の式[6]が得られる。

TOTAL=(m+1)I(θ+4π)+mI(θ+2π+4π)
=(m+1)I(θ)+mI(θ+2π) [6]

よって、式[5]は、式[3]と同一となる。つまり、ITOTALは基本周期Pの2倍を周期として同じ強度のピークが出現することとなる。その結果、出力信号OUTは、干渉縞30と同じように基本周期Pの2倍を周期として変動する、異なる強度のピークが混在する波形の信号となり、位置検出の精度が低下してしまう。
In the equation [4], when the phase fluctuates by 4π, that is, twice the basic period P, the following equation [6] is obtained.

I TOTAL = (m + 1) I (θ + 4π) + mI (θ + 2π + 4π)
= (M + 1) I (θ) + mI (θ + 2π) [6]

Therefore, the equation [5] is the same as the equation [3]. That is, in I TOTAL , peaks of the same intensity appear with a cycle of twice the basic cycle P. As a result, the output signal OUT becomes a signal having a waveform in which peaks of different intensities are mixed, which fluctuates with a cycle of twice the basic period P as in the case of the interference fringe 30, and the accuracy of position detection is lowered.

[比較例2]
図11に、比較例2にかかる干渉縞と受光要素との関係を示す。比較例2では、受光要素の配置数を4、受光要素の配置周期を干渉縞の基本周期Pの2倍、受光要素の幅Wを干渉縞の基本周期Pの0.5倍とした。この例では、受光要素11Aと受光要素11Bとが交互に配列されるものとした。つまり、比較例2は、上述した設計条件2を満たしていない。
[Comparative Example 2]
FIG. 11 shows the relationship between the interference fringes and the light receiving element according to Comparative Example 2. In Comparative Example 2, the number of light-receiving elements arranged was 4, the arrangement cycle of the light-receiving elements was twice the basic period P of the interference fringes, and the width W of the light-receiving elements was 0.5 times the basic period P of the interference fringes. In this example, the light receiving elements 11A and the light receiving elements 11B are arranged alternately. That is, Comparative Example 2 does not satisfy the above-mentioned design condition 2.

図11に示すように、受光要素11Aに着目すると、受光要素11Aは基本周期Pの4倍の周期4Pで配列されている。受光要素11Bに着目すると、受光要素11Bは基本周期Pの4倍の周期4Pで配列されている。 As shown in FIG. 11, focusing on the light receiving element 11A, the light receiving elements 11A are arranged in a period 4P which is four times the basic period P. Focusing on the light receiving element 11B, the light receiving elements 11B are arranged in a period 4P which is four times the basic period P.

受光要素の配列数の1/2をn、受光要素11A及び11Bのそれぞれが検出する光の強度をI(θ)、受光部9が検出する光の強度をITOTALとすると、以下の式[7]が成立する。

TOTAL=nI(θ)+nI(θ+4π)
=2nI(θ) [7]
Assuming that 1/2 of the number of light receiving elements arranged is n, the light intensity detected by each of the light receiving elements 11A and 11B is I (θ), and the light intensity detected by the light receiving unit 9 is ITOTAL , the following equation [ 7] holds.

I TOTAL = nI (θ) + nI (θ + 4π)
= 2nI (θ) [7]

つまり、式[6]に示すように、ITOTALは位相θにおける干渉縞の光の強度をそのまま反映するため、干渉縞と同様に基本周期の2倍の周期2Pで変動することとなる。その結果、出力信号OUTは、干渉縞30と同じように基本周期Pの2倍を周期として変動する、異なる強度のピークが混在する波形の信号となり、位置検出の精度が低下してしまう。 That is, as shown in the equation [6], since ITOTAL directly reflects the light intensity of the interference fringes in the phase θ, it fluctuates with a period of 2P, which is twice the basic period, like the interference fringes. As a result, the output signal OUT becomes a signal having a waveform in which peaks of different intensities are mixed, which fluctuates with a cycle of twice the basic period P as in the case of the interference fringe 30, and the accuracy of position detection is lowered.

[比較例3]
図12に、比較例3にかかる干渉縞と受光要素との関係を示す。比較例3では、受光要素の配置数を4、受光要素の配置周期を干渉縞の基本周期Pの3倍、受光要素の幅Wを干渉縞の基本周期Pの1倍とした。この例では、受光要素11Aと受光要素11Bとが交互に配列されるものとした。つまり、比較例3は、上述した設計条件3を満たしていない。
[Comparative Example 3]
FIG. 12 shows the relationship between the interference fringes and the light receiving element according to Comparative Example 3. In Comparative Example 3, the number of light-receiving elements arranged was 4, the arrangement cycle of the light-receiving elements was set to 3 times the basic period P of the interference fringes, and the width W of the light-receiving elements was set to 1 times the basic period P of the interference fringes. In this example, the light receiving elements 11A and the light receiving elements 11B are arranged alternately. That is, Comparative Example 3 does not satisfy the above-mentioned design condition 3.

この例では、実施例2と同様に、受光要素11Aが検出する干渉縞の波形は同一となり、かつ、受光要素11Bが検出する干渉縞の波形は同一となる。しかし、受光要素の幅Wが基本周期Pと一致しているために、受光部9からの出力信号OUTが平滑化されてしまい、出力信号OUTの周期が基本周期Pの2倍となってしまう。つまり、基本周期Pよりも出力信号OUTの周期が大きくなってしまい、その分だけ位置検出の精度が低下してしまうこととなる。 In this example, similarly to the second embodiment, the waveforms of the interference fringes detected by the light receiving element 11A are the same, and the waveforms of the interference fringes detected by the light receiving element 11B are the same. However, since the width W of the light receiving element coincides with the basic cycle P, the output signal OUT from the light receiving unit 9 is smoothed, and the cycle of the output signal OUT becomes twice the basic cycle P. .. That is, the cycle of the output signal OUT becomes larger than the basic cycle P, and the accuracy of the position detection is lowered by that amount.

この例では、受光要素の幅Wが基本周期Pの1倍である場合について説明したが、受光要素の幅Wが基本周期Pの奇数倍である場合でも同様に成立する。 In this example, the case where the width W of the light receiving element is once the basic period P has been described, but the same holds true even when the width W of the light receiving element is an odd multiple of the basic period P.

[比較例4]
図13に、比較例4にかかる干渉縞と受光要素との関係を示す。比較例4では、受光要素の配置数を4、受光要素の配置周期を基本周期Pの3倍、受光要素の幅Wを基本周期Pの2倍とした。つまり、比較例4は、上述した設計条件3を満たしていない。
[Comparative Example 4]
FIG. 13 shows the relationship between the interference fringes and the light receiving element according to Comparative Example 4. In Comparative Example 4, the number of light receiving elements arranged was 4, the arrangement cycle of the light receiving elements was 3 times the basic period P, and the width W of the light receiving elements was 2 times the basic period P. That is, Comparative Example 4 does not satisfy the above-mentioned design condition 3.

この例では、実施例2と同様に、受光要素11Aが検出する干渉縞の波形は同一となり、かつ、受光要素11Bが検出する干渉縞の波形は同一となる。しかし、受光要素の幅Wが基本周期Pの2倍であり、干渉縞30の周期と一致しているため、受光部9が検出する光の強度が一定となってしまう。その結果、出力信号OUTは周期性を有しない信号となってしまい、位置検出を行うことができなくなってしまう。 In this example, similarly to the second embodiment, the waveforms of the interference fringes detected by the light receiving element 11A are the same, and the waveforms of the interference fringes detected by the light receiving element 11B are the same. However, since the width W of the light receiving element is twice the basic period P and coincides with the period of the interference fringes 30, the intensity of the light detected by the light receiving unit 9 becomes constant. As a result, the output signal OUT becomes a signal having no periodicity, and position detection cannot be performed.

この例では、受光要素の幅Wが基本周期Pの2倍である場合について説明したが、受光要素の幅Wが基本周期Pの偶数倍である場合でも同様に成立する。 In this example, the case where the width W of the light receiving element is twice the basic period P has been described, but the same holds true even when the width W of the light receiving element is an even multiple of the basic period P.

以上では、不要な回折光のうち、最も大きく影響する0次回折光に着目したが、本実施の形態かかる構成は、他の次数の不要な回折光による影響も抑制することができる。以下、そのメカニズムについて、+2次回折光及び-2次回折光による影響の抑制について説明する。 In the above, the 0th-order diffracted light having the greatest influence among the unnecessary diffracted light has been focused on, but the present embodiment can suppress the influence of the unnecessary diffracted light of another order. Hereinafter, the mechanism thereof will be described for suppressing the influence of the + second-order diffracted light and the second-order diffracted light.

ここで、+2次回折光の複素振幅をu+2、+1次回折光の複素振幅をu+1、0次回折光の複素振幅をu、-1次回折光の複素振幅をu-1、-2次回折光の複素振幅をu-2と表すと、受光部9上に生じる干渉縞は、これらの5つの複素振幅と、5つの複素振幅と共役な複素振幅の掛け合わせの総和Iとして表現できる。ここで、各次数の回折光の複素振幅に共役には、上部に線を表示することで表した。

Figure 0007063743000001
Here, the complex amplitude of the + second-order diffracted light is u + 2 , the complex amplitude of the + 1st - order diffracted light is u +1 and the complex amplitude of the 0th-order diffracted light is u 0 . When the complex amplitude is expressed as u -2 , the interference fringes generated on the light receiving unit 9 can be expressed as the sum I of the multiplication of these five complex amplitudes and the five complex amplitudes and the conjugate complex amplitudes. Here, the conjugate to the complex amplitude of the diffracted light of each order is represented by displaying a line at the top.
Figure 0007063743000001

上式の各項が示す干渉縞の周期は、2つの回折光の進行方向から算出することができる。+1次回折光及び-1次回折光による干渉縞の基本周期Pであるので、各項の干渉縞の周期は、以下の表に示す通りとなる。

Figure 0007063743000002
The period of the interference fringes indicated by each term in the above equation can be calculated from the traveling directions of the two diffracted lights. Since it is the basic period P of the interference fringes due to the +1st order diffracted light and the -1st order diffracted light, the period of the interference fringes of each term is as shown in the following table.
Figure 0007063743000002

0次回折光と+1次回折光とによる干渉縞、0次回折光と-1次回折光とによる干渉縞とは、これまで説明したように、基本周期Pの2倍の周期であるので、本構成により、影響を除去することが可能である。 The interference fringes caused by the 0th-order diffracted light and the + 1st-order diffracted light and the interference fringes caused by the 0th-order diffracted light and the -1st-order diffracted light have a period twice the basic period P as described above. It is possible to eliminate the effect.

+1次回折光と+2次回折光とによる干渉縞、及び、-1次回折光と-2次回折光とによる干渉縞は、基本周期Pの2倍の周期であるので、本構成により、これらの干渉縞の影響を除去することが可能である。 Since the interference fringes due to the + 1st-order diffracted light and the + 2nd-order diffracted light and the interference fringes due to the -1st-order diffracted light and the -2nd-order diffracted light have twice the basic period P, the interference fringes of these interference fringes are configured by this configuration. It is possible to eliminate the effect.

-1次回折光と+2次回折光とによる干渉縞、及び、+1次回折光と-2次回折光とによる干渉縞は、基本周期Pの2/3倍の周期である。この場合、結果的に、受光要素11A及び11Bの配置によって不要干渉光の影響は除去される。 The interference fringes of the -1st-order diffracted light and the + 2nd-order diffracted light and the interference fringes of the + 1st-order diffracted light and the -2nd-order diffracted light have a period of 2/3 times the basic period P. In this case, as a result, the influence of unnecessary interference light is eliminated by the arrangement of the light receiving elements 11A and 11B.

よって、本構成によれば、+2次回折光及び-2次回折光による干渉縞の影響の一部、すなわち基本周期の2倍及び2/3倍の周期を持つ干渉縞の影響を除去することが可能である。 Therefore, according to this configuration, it is possible to remove a part of the influence of the interference fringes due to the + second-order diffracted light and the second-order diffracted light, that is, the influence of the interference fringes having a period twice and two-thirds of the basic period. Is.

一方で、-2次回折光と+2次回折光とによる干渉縞は基本周期Pの1/2倍の周期を有しているが、この干渉縞の影響は除去されずに残存することとなる。しかし、-2次回折光及び+2次回折光の光強度は、0次回折光、-1次回折光及び+1次回折光に光強度よりも有意に小さいので、その影響は比較的軽微である。よって、上記の通り、他の次数の不要回折光に起因する影響を除去することで、-2次回折光と+2次回折光とによる干渉縞の影響を除去せずとも、位置検出精度を十分に向上させることができる。 On the other hand, the interference fringes due to the second-order diffracted light and the + second-order diffracted light have a period 1/2 times the basic period P, but the influence of the interference fringes remains without being removed. However, since the light intensities of the second-order diffracted light and the + second-order diffracted light are significantly smaller than the light intensities of the 0th-order diffracted light, the -1st-order diffracted light, and the + 1st-order diffracted light, the influence thereof is relatively minor. Therefore, as described above, by removing the influence caused by the unnecessary diffracted light of other order, the position detection accuracy is sufficiently improved without removing the influence of the interference fringes caused by the second-order diffracted light and the + second-order diffracted light. Can be made to.

また、上述では、基本周期の2/3倍及び2倍の周期を有する干渉成分を除去できると説明したが、3次以上の次数の回折光が混入する場合まで考慮すると、nを0以上の整数としたときに、生成される全ての干渉縞のうちで基本周期Pの2/(2×n+1)倍の周期を有する干渉成分を除去できるものとして一般化することが可能である。つまり、本構成によれば、1次より大きい高次回折光の混入によって生じる不要干渉成分のうち、所定の周期を有する成分を除去できることが理解できる。 Further, in the above, it has been explained that the interference component having a period of 2/3 times and 2 times the basic period can be removed, but considering the case where diffracted light of a third order or higher order is mixed, n is set to 0 or more. When it is an integer, it can be generalized as being able to remove an interference component having a period of 2 / (2 × n + 1) times the basic period P among all the generated interference fringes. That is, it can be understood that according to this configuration, among the unnecessary interference components generated by the mixing of higher-order diffracted light larger than the first order, the components having a predetermined period can be removed.

以上、本構成によれば、不要な回折光を除去するための光学要素などを追加することなく、不要な回折光の影響を抑制ないしは防止することができる。従って、エンコーダの物理的寸法が拡大することはないので、エンコーダの小型化を図る上で有利である。 As described above, according to this configuration, it is possible to suppress or prevent the influence of unnecessary diffracted light without adding an optical element or the like for removing unnecessary diffracted light. Therefore, since the physical dimensions of the encoder do not increase, it is advantageous in reducing the size of the encoder.

実施の形態2
本発明の実施の形態2にかかる光学式エンコーダについて説明する。本実施の形態では、受光部9の変形例について説明する。図14は、実施の形態2にかかる受光部の構成を模式的に示す図である。受光部40は、2つの検出領域41及び42が、X方向に配列されている。なお、検出領域41及び42は、それぞれ第1及び第2の受光部とも称する。
Embodiment 2
The optical encoder according to the second embodiment of the present invention will be described. In this embodiment, a modified example of the light receiving unit 9 will be described. FIG. 14 is a diagram schematically showing the configuration of the light receiving portion according to the second embodiment. In the light receiving unit 40, two detection regions 41 and 42 are arranged in the X direction. The detection areas 41 and 42 are also referred to as first and second light receiving units, respectively.

検出領域41及び42は、それぞれ実施の形態1にかかる受光部9と同様の構成を有する。但し、検出領域42の受光要素は、検出領域41の受光要素に対して、基本周期Pの1/4だけX方向にオフセットして配置されている。つまり、検出領域41及び42は、X方向で遠ざかるように基本周期Pの1/4だけX方向にオフセットして配置されている。この場合、検出領域41及び42の連結部において最も近距離の受光要素間の距離は、1.25Cとなる。 The detection regions 41 and 42 have the same configuration as the light receiving unit 9 according to the first embodiment, respectively. However, the light receiving element of the detection area 42 is arranged so as to be offset in the X direction by 1/4 of the basic period P with respect to the light receiving element of the detection area 41. That is, the detection regions 41 and 42 are arranged so as to be offset in the X direction by 1/4 of the basic period P so as to move away in the X direction. In this case, the distance between the light receiving elements at the shortest distance in the connecting portion of the detection regions 41 and 42 is 1.25C.

本構成によれば、検出領域41がA相信号(0°)を出力し、検出領域42がB相信号(90°)を出力することができる。このように、位相差信号を生成することで、より高精度な位置検出を実現することができる。 According to this configuration, the detection area 41 can output an A-phase signal (0 °), and the detection area 42 can output a B-phase signal (90 °). By generating the phase difference signal in this way, more accurate position detection can be realized.

また、受光部の他の構成例について説明する。図15は、実施の形態2にかかる受光部の他の構成を模式的に示す図である。受光部50は、4つの検出領域51~54が、X方向にこの順で配列されている。検出領域51~54は、それぞれ実施の形態1にかかる受光部9と同様の構成を有する。なお、検出領域51~54は、それぞれ第1~第4の受光部とも称する。 Further, another configuration example of the light receiving unit will be described. FIG. 15 is a diagram schematically showing another configuration of the light receiving portion according to the second embodiment. In the light receiving unit 50, the four detection regions 51 to 54 are arranged in this order in the X direction. Each of the detection regions 51 to 54 has the same configuration as the light receiving unit 9 according to the first embodiment. The detection regions 51 to 54 are also referred to as first to fourth light receiving units, respectively.

検出領域52の受光要素は、検出領域51の受光要素に対して、基本周期Pの1/4だけX方向にオフセットして配置されている。検出領域53の受光要素は、検出領域52の受光要素に対して、基本周期Pの1/4だけX方向にオフセットして配置されている。検出領域54の受光要素は、検出領域53の受光要素に対して、基本周期Pの1/4だけX方向にオフセットして配置されている。つまり、検出領域51~54は、隣接する2つの受光部がX方向で遠ざかるように基本周期Pの1/4だけX方向にオフセットして配置されている。この場合、隣接する2つの受光部の連結部において最も近距離の受光要素間の距離は、1.25Cとなる。 The light receiving element of the detection area 52 is arranged so as to be offset in the X direction by 1/4 of the basic period P with respect to the light receiving element of the detection area 51. The light receiving element of the detection area 53 is arranged so as to be offset in the X direction by 1/4 of the basic period P with respect to the light receiving element of the detection area 52. The light receiving element of the detection area 54 is arranged so as to be offset in the X direction by 1/4 of the basic period P with respect to the light receiving element of the detection area 53. That is, the detection regions 51 to 54 are arranged so as to be offset in the X direction by 1/4 of the basic period P so that the two adjacent light receiving portions are separated in the X direction. In this case, the distance between the light receiving elements at the shortest distance in the connecting portion of the two adjacent light receiving portions is 1.25C.

本構成によれば、検出領域51がA相信号(0°)、検出領域52がB相信号(90°)、検出領域53がA-相信号(180°)、検出領域54がB-相信号(270°)を出力することができる。これにより、A相信号(0°)及びA-相信号(180°)から差動A相信号を生成し、B相信号(90°)及びB-相信号(270°)から差動B相信号を生成することができる。このように、位相差信号を生成することで、より高精度な位置検出を実現することができる。 According to this configuration, the detection area 51 is an A-phase signal (0 °), the detection area 52 is a B-phase signal (90 °), the detection area 53 is an A-phase signal (180 °), and the detection area 54 is a B-phase. A signal (270 °) can be output. As a result, a differential A-phase signal is generated from the A-phase signal (0 °) and the A-phase signal (180 °), and the differential B-phase is generated from the B-phase signal (90 °) and the B-phase signal (270 °). It can generate a signal. By generating the phase difference signal in this way, more accurate position detection can be realized.

更に、受光部の他の構成例について説明する。図16は、実施の形態2にかかる受光部の他の構成を模式的に示す図である。受光部60は、3つの検出領域61~63が、X方向にこの順で配列されている。検出領域61~63は、それぞれ実施の形態1にかかる受光部9と同様の構成を有する。なお、検出領域61~63は、それぞれ第1~第3の受光部とも称する。 Further, another configuration example of the light receiving unit will be described. FIG. 16 is a diagram schematically showing another configuration of the light receiving portion according to the second embodiment. In the light receiving unit 60, the three detection regions 61 to 63 are arranged in this order in the X direction. Each of the detection regions 61 to 63 has the same configuration as the light receiving unit 9 according to the first embodiment. The detection areas 61 to 63 are also referred to as first to third light receiving units, respectively.

検出領域62の受光要素は、検出領域61の受光要素に対して、基本周期Pの1/3だけX方向にオフセットして配置されている。検出領域63の受光要素は、検出領域62の受光要素に対して、基本周期Pの1/3だけX方向にオフセットして配置されている。つまり、検出領域61~64は、隣接する2つの受光部がX方向で遠ざかるように基本周期Pの1/3だけX方向にオフセットして配置されている。この場合、隣接する2つの受光部の連結部において最も近距離の受光要素間の距離は、4/3Cとなる。 The light receiving element of the detection area 62 is arranged so as to be offset in the X direction by 1/3 of the basic period P with respect to the light receiving element of the detection area 61. The light receiving element of the detection area 63 is arranged so as to be offset in the X direction by 1/3 of the basic period P with respect to the light receiving element of the detection area 62. That is, the detection regions 61 to 64 are arranged so as to be offset in the X direction by 1/3 of the basic period P so that the two adjacent light receiving portions are separated in the X direction. In this case, the distance between the light receiving elements at the shortest distance in the connecting portion of the two adjacent light receiving portions is 4 / 3C.

本構成によれば、検出領域61がA相信号(0°)、検出領域62がB相信号(120°)、検出領域63がC相信号(240°)を出力することができる。これにより、三相信号を合成して差動A相信号(0°)及び差動B相信号(90°)を生成することで、より高精度な位置検出を実現することができる。 According to this configuration, the detection area 61 can output an A-phase signal (0 °), the detection area 62 can output a B-phase signal (120 °), and the detection area 63 can output a C-phase signal (240 °). As a result, more accurate position detection can be realized by synthesizing the three-phase signals to generate the differential A-phase signal (0 °) and the differential B-phase signal (90 °).

実施の形態3
次いで、実施の形態3にかかる光学式エンコーダについて説明する。図17は、実施の形態3にかかる光学式エンコーダ300の構成を示す斜視図である。ここでは、光学式エンコーダ300は、透過型のエンコーダとして構成される。
Embodiment 3
Next, the optical encoder according to the third embodiment will be described. FIG. 17 is a perspective view showing the configuration of the optical encoder 300 according to the third embodiment. Here, the optical encoder 300 is configured as a transmissive encoder.

図17に示すように、光学式エンコーダ300は、実施の形態1にかかる光学式エンコーダ100に光学素子70を追加した構成を有する。光学素子70は、少なくとも+1次回折光、-1次回折光及び0次回折光を含む回折光が入射し、かつ、入射した回折光を検出部5の受光部9へ導くように構成される。換言すれば、光学素子70は、+1次回折光と-1次回折光とが受光部9上に干渉縞20を形成するように、入射した回折光を検出部5上に集光するように構成される。図17では、一例として、光学素子70を回折格子として表している。光学素子70では、X-Y平面に平行な主面を有する平板部材70Bに、Y方向に延在する光透過部70Aが、X方向に周期的に配列されている。しかしながら、受光部9上に回折光を集光できる各種の光学素子を光学素子70として用いてもよいことは、言うまでもない。 As shown in FIG. 17, the optical encoder 300 has a configuration in which an optical element 70 is added to the optical encoder 100 according to the first embodiment. The optical element 70 is configured so that diffracted light including at least +1st-order diffracted light, -1st-order diffracted light, and 0th-order diffracted light is incident, and the incident diffracted light is guided to the light receiving unit 9 of the detection unit 5. In other words, the optical element 70 is configured to collect the incident diffracted light on the detection unit 5 so that the + 1st-order diffracted light and the -1st-order diffracted light form an interference fringe 20 on the light receiving unit 9. Ru. In FIG. 17, as an example, the optical element 70 is represented as a diffraction grating. In the optical element 70, the light transmitting portions 70A extending in the Y direction are periodically arranged in the X direction on the flat plate member 70B having a main surface parallel to the XY plane. However, it goes without saying that various optical elements capable of condensing diffracted light on the light receiving unit 9 may be used as the optical element 70.

図18に、実施の形態3にかかる光学素子の一例を示す。図18に示すように、回折格子71が光学素子として設けられている。回折格子71は、回折格子として構成された光学素子70と同様の構成を有する。回折格子71は、+1次回折光L+1と-1次回折光L-1とを検出部5へ向けて更に回折させて、干渉縞20を形成する。振幅格子及び位相格子を含む各種の回折格子を、回折格子71として用いてもよい。 FIG. 18 shows an example of the optical element according to the third embodiment. As shown in FIG. 18, a diffraction grating 71 is provided as an optical element. The diffraction grating 71 has the same configuration as the optical element 70 configured as a diffraction grating. The diffraction grating 71 further diffracts the + 1st-order diffracted light L + 1 and the -1st -order diffracted light L-1 toward the detection unit 5 to form the interference fringes 20. Various diffraction gratings including an amplitude grating and a phase grating may be used as the diffraction grating 71.

図19に、実施の形態3にかかる光学素子の他の例を示す。図19に示すように、レンズ72が光学素子として設けられている。レンズ72は、+1次回折光L+1と-1次回折光L-1とを検出部5に集光し、干渉縞20を形成する。非球面レンズなどの各種のレンズを、レンズ72として用いてもよい。なお、レンズ72は光学素子の一例に過ぎず、+1次回折光L+1と-1次回折光L-1とを検出部5に集光できる限り、光学系は2以上のレンズを有してもよい。例えば、両側テレセントリックレンズ系(ダブルレンズ、4f設計)又は二重両側テレセントリックレンズ系としてもよい。 FIG. 19 shows another example of the optical element according to the third embodiment. As shown in FIG. 19, the lens 72 is provided as an optical element. The lens 72 collects the +1st-order diffracted light L + 1 and the -1st-order diffracted light L -1 on the detection unit 5 to form the interference fringes 20. Various lenses such as an aspherical lens may be used as the lens 72. The lens 72 is only an example of an optical element, and the optical system may have two or more lenses as long as the + 1st-order diffracted light L + 1 and the -1st-order diffracted light L -1 can be focused on the detection unit 5. .. For example, a bilateral telecentric lens system (double lens, 4f design) or a double bilateral telecentric lens system may be used.

図20に、実施の形態3にかかる光学素子の他の例を示す。図20に示すように、ミラー73及び74が光学素子として設けられている。ミラー73及び74は、光学式エンコーダ300の光軸を基準として、互いに向き合うように、対称に配置されることが望ましい。ここで、光学式エンコーダ300の光軸は、光源の中心と検出部5の中心とを通過する、Z軸に平行な軸である。ミラー73は、スケール1から入射する+1次回折光L+1を検出部5へ向けて反射する。ミラー74は、スケール1から入射する-1次回折光L-1を検出部5へ向けて反射する。これにより、反射された回折光は、検出部5上に干渉縞20を形成することができる。ミラーの配置はこの配置に限られるものではない。検出部5に回折光を好適に導けるならば、他の配置としてもよい。 FIG. 20 shows another example of the optical element according to the third embodiment. As shown in FIG. 20, mirrors 73 and 74 are provided as optical elements. It is desirable that the mirrors 73 and 74 are arranged symmetrically so as to face each other with respect to the optical axis of the optical encoder 300. Here, the optical axis of the optical encoder 300 is an axis parallel to the Z axis that passes through the center of the light source and the center of the detection unit 5. The mirror 73 reflects the +1st-order diffracted light L + 1 incident from the scale 1 toward the detection unit 5. The mirror 74 reflects the -1st- order diffracted light L-1 incident from the scale 1 toward the detection unit 5. As a result, the reflected diffracted light can form an interference fringe 20 on the detection unit 5. The arrangement of mirrors is not limited to this arrangement. If the diffracted light can be suitably guided to the detection unit 5, another arrangement may be used.

図18~20に示す例では、0次回折光L0も、光学素子を介して、検出部5に到達する。しかし、上述の実施の形態で説明した原理に基づき、0次回折光L0の影響を抑制ないし除去できることは、言うまでもない。よって、上述の通り、誤差抑制のための遮光は必須の機能ではないので、より簡易な設計が可能となる。 In the example shown in FIGS. 18 to 20, the 0th-order diffracted light L0 also reaches the detection unit 5 via the optical element. However, it goes without saying that the influence of the 0th-order diffracted light L0 can be suppressed or eliminated based on the principle described in the above-described embodiment. Therefore, as described above, shading for error suppression is not an essential function, and a simpler design becomes possible.

以上、本構成によれば、上述の実施の形態と同様に、不要な回折光を除去するための光学要素などを追加することなく、不要な回折光の影響を抑制ないしは防止することができる。 As described above, according to the present configuration, it is possible to suppress or prevent the influence of unnecessary diffracted light without adding an optical element or the like for removing unnecessary diffracted light, as in the above-described embodiment.

実施の形態4
次いで、実施の形態4にかかる光学式エンコーダについて説明する。図21は、実施の形態4にかかる光学式エンコーダ400の構成を示す斜視図である。図22は、実施の形態4にかかる光学式エンコーダ400の構成を示す上面図である。図23は、実施の形態4にかかる光学式エンコーダ400をX軸方向に沿って見たときの構成を示す側面図である。図24は、実施の形態4にかかる光学式エンコーダ400をY軸方向に沿って見たときの構成を示す側面図である。
Embodiment 4
Next, the optical encoder according to the fourth embodiment will be described. FIG. 21 is a perspective view showing the configuration of the optical encoder 400 according to the fourth embodiment. FIG. 22 is a top view showing the configuration of the optical encoder 400 according to the fourth embodiment. FIG. 23 is a side view showing a configuration when the optical encoder 400 according to the fourth embodiment is viewed along the X-axis direction. FIG. 24 is a side view showing a configuration when the optical encoder 400 according to the fourth embodiment is viewed along the Y-axis direction.

光学式エンコーダ300と比較すると、光学式エンコーダ400は、スケール1及び光学素子70がそれぞれスケール90及び光学素子80に置換され、かつ、各構成要素の配置が変更されている。 Compared with the optical encoder 300, in the optical encoder 400, the scale 1 and the optical element 70 are replaced with the scale 90 and the optical element 80, respectively, and the arrangement of each component is changed.

本実施の形態では、光学式エンコーダ400は、反射型のエンコーダとして構成される。光源4及び検出部5は、光学素子80の一方の面(図21の上面)の側に配置される。スケール90は、光学素子80の他方の面(図21の下面)の側に配置される。 In the present embodiment, the optical encoder 400 is configured as a reflection type encoder. The light source 4 and the detection unit 5 are arranged on the side of one surface (upper surface of FIG. 21) of the optical element 80. The scale 90 is arranged on the side of the other surface (lower surface of FIG. 21) of the optical element 80.

図21~24では、光の経路を示すため、平行光4A、レーザ光4D、+1次回折光L+1及び-1次回折光L-1を、3本の線で表している。図21、22及び24での3本の線は、X軸方向に離隔するように表されている。図23の3本の線は、Y軸方向に離隔するように表されている。なお、X軸方向に沿って見た場合、+1次回折光L+1及び-1次回折光L-1は重なる。そのため、図23では、簡略化のため、+1次回折光L+1だけを表示している。 In FIGS. 21 to 24, the parallel light 4A, the laser light 4D, the + 1st-order diffracted light L +1 and the -1st -order diffracted light L-1 are represented by three lines in order to show the light path. The three lines in FIGS. 21, 22 and 24 are represented so as to be separated in the X-axis direction. The three lines in FIG. 23 are represented so as to be separated in the Y-axis direction. When viewed along the X-axis direction, the + 1st-order diffracted light L + 1 and the -1st-order diffracted light L -1 overlap. Therefore, in FIG. 23, for simplification, only the +1st order diffracted light L + 1 is displayed.

本実施の形態では、光源4から出力された平行光4Aがスケール90に入射する。本実施の形態では、光源4は、半導体レーザ4B及びコリメートレンズ4Cを有する。半導体レーザ4Bは、コリメートレンズ4Cへ、レーザ光4Dを出力する。図21では、半導体レーザ4Bは、レーザ光4Dを出力する半導体レーザダイオードが内部に実装されたCANパッケージとして表されている。レーザ光4Dの波長は、例えば660nmとしてもよい。コリメートレンズ4Cは、レーザ光4Dをコリメートし、スケール90へ平行光4Aを出力する。 In the present embodiment, the parallel light 4A output from the light source 4 is incident on the scale 90. In this embodiment, the light source 4 has a semiconductor laser 4B and a collimating lens 4C. The semiconductor laser 4B outputs the laser beam 4D to the collimating lens 4C. In FIG. 21, the semiconductor laser 4B is represented as a CAN package in which a semiconductor laser diode that outputs a laser beam 4D is mounted inside. The wavelength of the laser beam 4D may be, for example, 660 nm. The collimating lens 4C collimates the laser beam 4D and outputs the parallel light 4A to the scale 90.

光学式エンコーダ400は反射型のエンコーダとして構成されるため、光源4は、平行光4Aがスケール90の面に対して傾斜した方向から、スケール90に入射するように配置される。図21~図24の例では、平行光4Aは、スケール90の面に対してY-Z平面内で所定の角度だけ傾斜した方向から、スケール90に入射している。但し、図21~図24での平行光4Aの入射方向は一例に過ぎず、他の方向としてもよい。よって、+1次回折光L+1及び-1次回折光L-1の経路が平行光4Aと重なることはないので、検出部5は、光源4と干渉することなく、好適に回折光を受光することができる。 Since the optical encoder 400 is configured as a reflection type encoder, the light source 4 is arranged so that the parallel light 4A is incident on the scale 90 from a direction in which the parallel light 4A is inclined with respect to the surface of the scale 90. In the example of FIGS. 21 to 24, the parallel light 4A is incident on the scale 90 from a direction inclined by a predetermined angle in the YY plane with respect to the surface of the scale 90. However, the incident direction of the parallel light 4A in FIGS. 21 to 24 is only an example, and may be another direction. Therefore, since the paths of the +1st-order diffracted light L +1 and the -1st -order diffracted light L-1 do not overlap with the parallel light 4A, the detection unit 5 can suitably receive the diffracted light without interfering with the light source 4. can.

スケール90は、反射型格子として構成される。スケール90のインクリメンタルパターンのピッチPは、例えば、2μmとしてもよい。スケール90に入射する平行光4Aは、スケール90によって回折し、かつ、反射される。 The scale 90 is configured as a reflective grid. The pitch Ps of the incremental pattern of the scale 90 may be, for example, 2 μm. The parallel light 4A incident on the scale 90 is diffracted and reflected by the scale 90.

光学素子80は、少なくとも+1次回折光、-1次回折光及び0次回折光を含む回折光が入射し、かつ、入射した回折光を検出部5の受光部9へ導くように構成される。換言すれば、光学素子80は、+1次回折光と-1次回折光とが検出部5上に干渉縞20を形成するように、入射した回折光を検出部5上に集光するように構成される。 The optical element 80 is configured so that diffracted light including at least +1st-order diffracted light, -1st-order diffracted light, and 0th-order diffracted light is incident, and the incident diffracted light is guided to the light receiving unit 9 of the detection unit 5. In other words, the optical element 80 is configured to collect the incident diffracted light on the detection unit 5 so that the + 1st-order diffracted light and the -1st-order diffracted light form the interference fringes 20 on the detection unit 5. Ru.

光学素子80の構成について説明する。光学素子80は、透過型格子として構成される。光学素子80は、周期的パターン81及び透明基板82で構成される。透明基板82は、ガラスや合成石英などの透明材料で形成された、X-Y平面と平行な主面を有する板状の部材である。なお、簡略化のため、図22では透明基板82を省略している。 The configuration of the optical element 80 will be described. The optical element 80 is configured as a transmissive grid. The optical element 80 is composed of a periodic pattern 81 and a transparent substrate 82. The transparent substrate 82 is a plate-shaped member made of a transparent material such as glass or synthetic quartz and having a main surface parallel to the XY plane. For the sake of simplicity, the transparent substrate 82 is omitted in FIG. 22.

スケール90の上面と透明基板82の下面との間のZ軸方向の距離D1は、例えば、2.5mmとしてもよい。透明基板82のZ軸方向の厚みT1は、例えば、2.286mm(0.09インチ)としてもよい。スケール90の上面と検出部5の受光面との間のZ軸方向の距離D2は、例えば、13.28mmとしてもよい。 The distance D1 in the Z-axis direction between the upper surface of the scale 90 and the lower surface of the transparent substrate 82 may be, for example, 2.5 mm. The thickness T1 of the transparent substrate 82 in the Z-axis direction may be, for example, 2.286 mm (0.09 inch). The distance D2 in the Z-axis direction between the upper surface of the scale 90 and the light receiving surface of the detection unit 5 may be, for example, 13.28 mm.

周期的パターン81は、光源4及び検出部5の側の透明基板82の上面に形成される。周期的パターン81は、位相格子として構成されてもよい。この場合、周期的パターン81は、Y軸方向に延在し、かつ、X軸方向に周期的に配列された溝によって構成される。周期的な溝は、一般的なフォトリソグラフィ及びエッチング(例えば、反応性イオンエッチング:RIE(Reactive Ion Etching)などのドライエッチング)により形成されてもよい。
周期的な溝のピッチPは、例えば、4/3μm(1.333...μm)としてもよい。
The periodic pattern 81 is formed on the upper surface of the transparent substrate 82 on the side of the light source 4 and the detection unit 5. The periodic pattern 81 may be configured as a phase grid. In this case, the periodic pattern 81 is composed of grooves extending in the Y-axis direction and periodically arranged in the X-axis direction. Periodic grooves may be formed by general photolithography and etching (eg, reactive ion etching: dry etching such as RIE (Reactive Ion Etching)).
The pitch Pi of the periodic groove may be, for example, 4/3 μm ( 1.333 ... μm).

干渉縞20のピッチPは、以下の式で定義できる。

Figure 0007063743000003
ピッチPが2μm、ピッチPが4/3μm(1.333...μm)の場合、ピッチPは2μmとなる。 The pitch P f of the interference fringes 20 can be defined by the following equation.
Figure 0007063743000003
When the pitch P s is 2 μm and the pitch P i is 4/3 μm (1.333 ... μm), the pitch P f is 2 μm.

以上、本構成によれば、上述の実施の形態と同様に、不要な回折光を除去するための光学要素などを追加することなく、不要な回折光の影響を抑制ないしは防止することができる。 As described above, according to the present configuration, it is possible to suppress or prevent the influence of unnecessary diffracted light without adding an optical element or the like for removing unnecessary diffracted light, as in the above-described embodiment.

なお、光学素子80は、回折格子には限られない。実施の形態3で説明したレンズやミラーなどの各種の光学素子を、光学素子80として用いてもよい。 The optical element 80 is not limited to the diffraction grating. Various optical elements such as a lens and a mirror described in the third embodiment may be used as the optical element 80.

実施の形態5
本実施の形態では、上述の実施の形態にかかる受光部9の変形例について説明する。図25に、実施の形態5にかかる受光部LRU1の構成を模式的に示す。受光部LRU1は、Y方向に配列された複数の検出列DSを有する。この例では、簡略化のため、Y方向に配列された2つの検出列DSを有する受光部LRU1について説明する。図25では、DS11が2つの検出列DSの一方を示し、DS12が2つの検出列DSの他方を示している。なお、受光部LRU1では、3つ以上の検出列がY方向に配列されてもよいことは言うまでもない。
Embodiment 5
In this embodiment, a modified example of the light receiving unit 9 according to the above-described embodiment will be described. FIG. 25 schematically shows the configuration of the light receiving unit LRU1 according to the fifth embodiment. The light receiving unit LRU1 has a plurality of detection rows DS arranged in the Y direction. In this example, for simplification, the light receiving unit LRU1 having two detection rows DS arranged in the Y direction will be described. In FIG. 25, DS 11 shows one of the two detection columns DS and DS 12 shows the other of the two detection columns DS. Needless to say, in the light receiving unit LRU1, three or more detection rows may be arranged in the Y direction.

検出列DSのそれぞれは、複数の受光領域を有する。本実施の形態では、4つの検出領域DA11~DA14が設けられた4相構造について説明する。検出領域DA11~DA14は、それぞれ、A相、B相、A-相及びB-相の信号を与えるように構成される。なお、検出列DSのそれぞれに、2つ(2相構造)、3つ(3相構造)、又は5つ以の検出領域が設けられてもよいことは言うまでもない。 Each of the detection columns DS has a plurality of light receiving regions. In this embodiment, a four-phase structure provided with four detection regions DA11 to DA14 will be described. The detection regions DA11 to DA14 are configured to give A-phase, B-phase, A-phase, and B-phase signals, respectively. Needless to say, each of the detection columns DS may be provided with two (two-phase structure), three (three-phase structure), or five or more detection regions.

検出領域DA11~DA14のそれぞれは、実施の形態1にかかる受光部9の検出領域と同様の構成を有する。検出領域DA11~DA14は、Y方向に配列される一方で、4相信号を与えるために、それぞれX方向に基本周期Pの1/4(P/4)だけシフトしている。 Each of the detection regions DA11 to DA14 has the same configuration as the detection region of the light receiving unit 9 according to the first embodiment. While the detection regions DA11 to DA14 are arranged in the Y direction, they are each shifted in the X direction by 1/4 (P / 4) of the basic period P in order to give a four-phase signal.

具体的には、検出領域DA12の受光要素11は、検出領域DA11の受光要素11に対してX方向にP/4だけシフトしている。検出領域DA13の受光要素11は、検出領域DA12の受光要素11に対してX方向にP/4だけシフトしている。検出領域DA14の受光要素11は、検出領域DA13の受光要素11に対してX方向にP/4だけシフトしている。 Specifically, the light receiving element 11 in the detection area DA12 is shifted in the X direction by P / 4 with respect to the light receiving element 11 in the detection area DA11. The light receiving element 11 of the detection area DA13 is shifted in the X direction by P / 4 with respect to the light receiving element 11 of the detection area DA12. The light receiving element 11 of the detection area DA14 is shifted in the X direction by P / 4 with respect to the light receiving element 11 of the detection area DA13.

検出領域DA11の受光要素11は出力信号を合成するために互いに接続されており、合成された信号はA相信号として出力される。検出領域DA12の受光要素11は出力信号を合成するために互いに接続されており、合成された信号はB相信号として出力される。検出領域DA13の受光要素11は出力信号を合成するために互いに接続されており、合成された信号はA-相信号として出力される。検出領域DA14の受光要素11は出力信号を合成するために互いに接続されており、合成された信号はB-相信号として出力される。 The light receiving elements 11 of the detection region DA11 are connected to each other in order to synthesize an output signal, and the combined signal is output as an A phase signal. The light receiving elements 11 of the detection region DA12 are connected to each other in order to synthesize an output signal, and the combined signal is output as a B phase signal. The light receiving elements 11 of the detection region DA13 are connected to each other in order to synthesize an output signal, and the combined signal is output as an A-phase signal. The light receiving elements 11 of the detection region DA14 are connected to each other in order to synthesize an output signal, and the combined signal is output as a B-phase signal.

検出列DS11及びDS12から出力される同相の信号は合成され、合成された信号は信号処理部3へ出力される。具体的には、検出列DS11及びDS12から出力されたA相信号は合成され、合成されたA相信号は信号処理部3へ出力される。検出列DS11及びDS12から出力されたB相信号は合成され、合成されたB相信号は信号処理部3へ出力される。検出列DS11及びDS12から出力されたA-相信号は合成され、合成されたA-相信号は信号処理部3へ出力される。検出列DS11及びDS12から出力されたB-相信号は合成され、合成されたB-相信号は信号処理部3へ出力される。 The in-phase signals output from the detection columns DS11 and DS12 are combined, and the combined signal is output to the signal processing unit 3. Specifically, the A-phase signals output from the detection columns DS11 and DS12 are combined, and the combined A-phase signal is output to the signal processing unit 3. The B-phase signals output from the detection columns DS11 and DS12 are combined, and the combined B-phase signal is output to the signal processing unit 3. The A-phase signals output from the detection columns DS11 and DS12 are combined, and the combined A-phase signals are output to the signal processing unit 3. The B-phase signals output from the detection columns DS11 and DS12 are combined, and the combined B-phase signals are output to the signal processing unit 3.

本構成によれば、検出領域DA11~DA14は、それぞれ、A相信号(0°)、B相信号(90°)、A-相信号(180°)及びB-相信号(270°)を出力することができる。よって、実施の形態2と同様に、位相差信号を生成してより精密な位置検出を行うことができる。 According to this configuration, the detection regions DA11 to DA14 output an A-phase signal (0 °), a B-phase signal (90 °), an A-phase signal (180 °), and a B-phase signal (270 °), respectively. can do. Therefore, as in the second embodiment, it is possible to generate a phase difference signal and perform more precise position detection.

さらに、検出領域は測定方向(X方向)と交差するY方向に配列されているので、汚染された又は欠陥を有する検出領域がある場合でも、他の汚染されていない又は欠陥を有しない他の検出領域は、汚染又は欠陥の影響を補償することができる。よって、受光部の出力信号の精度を好適に維持することができる。 Further, since the detection regions are arranged in the Y direction intersecting the measurement direction (X direction), even if there is a detection region that is contaminated or has a defect, other uncontaminated or defect-free detection regions are present. The detection area can compensate for the effects of contamination or defects. Therefore, the accuracy of the output signal of the light receiving unit can be suitably maintained.

次いで、受光部の他の構成について説明する。図26に、実施の形態5にかかる他の受光部LRU2の構成を模式的に示す。この例では、受光部LRU2は3相構造を有する。 Next, another configuration of the light receiving unit will be described. FIG. 26 schematically shows the configuration of another light receiving unit LRU2 according to the fifth embodiment. In this example, the light receiving unit LRU2 has a three-phase structure.

受光部LRU2は、受光部LRU1の検出列DS11及びDS12を検出列DS21及びDS22にそれぞれ置換した構成を有する。 The light receiving unit LRU2 has a configuration in which the detection columns DS11 and DS12 of the light receiving unit LRU1 are replaced with the detection columns DS21 and DS22, respectively.

検出列DS21及びDS22のそれぞれは、3つの検出領域DA21~DA23を有する。検出領域DA21~DA23は、それぞれ、A相、B相及びC相の信号を与えるように構成される。 Each of the detection columns DS21 and DS22 has three detection regions DA21 to DA23. The detection regions DA21 to DA23 are configured to give A-phase, B-phase, and C-phase signals, respectively.

検出領域DA21~DA23のそれぞれは、受光要素11の配列ピッチを除き、受光領域DA11~DA14のそれぞれと同様の構成を有する。検出領域DA21~DA23は、Y方向に配列される一方で、3相信号を与えるために、それぞれX方向に基本周期Pの1/3(P/3)だけシフトしている。 Each of the detection regions DA21 to DA23 has the same configuration as each of the light receiving regions DA11 to DA14 except for the arrangement pitch of the light receiving elements 11. While the detection regions DA21 to DA23 are arranged in the Y direction, they are each shifted in the X direction by 1/3 (P / 3) of the basic period P in order to give a three-phase signal.

検出領域DA22の受光要素11は、検出領域DA21の受光要素11に対してX方向にP/3だけシフトしている。検出領域DA23の受光要素11は、検出領域DA22の受光要素11に対してX方向にP/3だけシフトしている。 The light receiving element 11 in the detection area DA22 is shifted in the X direction by P / 3 with respect to the light receiving element 11 in the detection area DA21. The light receiving element 11 of the detection area DA23 is shifted in the X direction by P / 3 with respect to the light receiving element 11 of the detection area DA22.

検出領域DA21の受光要素11は出力信号を合成するために互いに接続されており、合成された信号はA相信号として出力される。検出領域DA22の受光要素11は出力信号を合成するために互いに接続されており、合成された信号はB相信号として出力される。検出領域DA23の受光要素11は出力信号を合成するために互いに接続されており、合成された信号はC相信号として出力される。 The light receiving elements 11 of the detection region DA21 are connected to each other in order to synthesize an output signal, and the combined signal is output as an A phase signal. The light receiving elements 11 of the detection region DA22 are connected to each other in order to synthesize an output signal, and the combined signal is output as a B phase signal. The light receiving elements 11 of the detection region DA23 are connected to each other in order to synthesize an output signal, and the combined signal is output as a C phase signal.

検出列DS21及びDS22から出力される同相の信号は合成され、合成された信号は信号処理部3へ出力される。具体的には、検出列DS21及びDS22から出力されたA相信号は合成され、合成されたA相信号は信号処理部3へ出力される。検出列DS21及びDS22から出力されたB相信号は合成され、合成されたB相信号は信号処理部3へ出力される。検出列DS21及びDS22から出力されたC相信号は合成され、合成されたC相信号は信号処理部3へ出力される。 The in-phase signals output from the detection columns DS21 and DS22 are combined, and the combined signal is output to the signal processing unit 3. Specifically, the A-phase signals output from the detection columns DS21 and DS22 are combined, and the combined A-phase signal is output to the signal processing unit 3. The B-phase signals output from the detection columns DS21 and DS22 are combined, and the combined B-phase signal is output to the signal processing unit 3. The C-phase signals output from the detection columns DS21 and DS22 are combined, and the combined C-phase signal is output to the signal processing unit 3.

本構成によれば、検出領域DA21~DA23は、それぞれ、A相信号(0°)、B相信号(120°)及びC相信号(240°)を出力することができる。よって、受光部LRU1と同様に、位相差信号を生成してより精密な位置検出を行うことができる。 According to this configuration, the detection regions DA21 to DA23 can output an A-phase signal (0 °), a B-phase signal (120 °), and a C-phase signal (240 °), respectively. Therefore, similarly to the light receiving unit LRU1, it is possible to generate a phase difference signal and perform more precise position detection.

さらに、受光部LRU1と同様に、受光部の出力信号の精度を好適に維持することができる。 Further, similarly to the light receiving unit LRU1, the accuracy of the output signal of the light receiving unit can be suitably maintained.

なお、本実施の形態で説明した受光部を変形することで、多相信号に対応する受光部を実現することが可能である。具体的には、k相信号に対応可能な受光部が実現可能である。ここで、kは2以上の整数である。この場合、1つの検出列において、受光要素が測定方向(X方向)に配列されたk個の検出領域を測定方向(X方向)と交差する方向(Y方向)に周期Pで配列すればよく、k個の検出領域を測定方向に互いにピッチP/kだけシフトさせればよい。 By modifying the light receiving unit described in the present embodiment, it is possible to realize a light receiving unit corresponding to a polyphase signal. Specifically, it is possible to realize a light receiving unit that can handle k-phase signals. Here, k is an integer of 2 or more. In this case, in one detection row, k detection regions in which the light receiving elements are arranged in the measurement direction (X direction) may be arranged in the direction (Y direction) intersecting the measurement direction (X direction) with a period P. , K detection regions may be shifted from each other in the measurement direction by pitch P / k.

実施の形態6
本実施の形態では、実施の形態5にかかる受光部LRU1及びLRU2の変形例について説明する。
Embodiment 6
In this embodiment, a modified example of the light receiving portions LRU1 and LRU2 according to the fifth embodiment will be described.

図27に、実施の形態6にかかる受光部LRU3の構成を模式的に示す。受光部LRU3は、受光部LRU1の変形例である。受光部LRU3は、4相構造を有するものとして構成される。 FIG. 27 schematically shows the configuration of the light receiving unit LRU3 according to the sixth embodiment. The light receiving unit LRU3 is a modification of the light receiving unit LRU1. The light receiving unit LRU3 is configured to have a four-phase structure.

受光部LRU3は、4つの検出列DS11がX方向にnP+P/4のピッチで配列され、4つの検出列DS12がX方向にnP+P/4のピッチで配列されている。ここで、nは、1以上の整数である。この例では、DS11_1~DS11_4は、それぞれ、図の紙面のX方向に沿って左から右へ配列されている4つの検出列DS11を示している。DS12_1~DS12_4は、それぞれ、図の紙面のX方向に沿って左から右へ配列されている4つの検出列DS12を示している。 In the light receiving unit LRU3, the four detection rows DS11 are arranged at a pitch of nP + P / 4 in the X direction, and the four detection rows DS12 are arranged at a pitch of nP + P / 4 in the X direction. Here, n is an integer of 1 or more. In this example, DS11_1 to DS11_4 each show four detection columns DS11 arranged from left to right along the X direction of the paper in the figure. DS12_1 to DS12_1 show four detection columns DS12 arranged from left to right along the X direction of the paper in the figure, respectively.

検出列DS11_1は、受光部LRU1の検出列DS11と同様に、A相、B相、A-相及びB-相の信号を出力する。 The detection row DS11_1 outputs A-phase, B-phase, A-phase, and B-phase signals in the same manner as the detection row DS11 of the light receiving unit LRU1.

本構成では、隣接する2つの検出領域は実質的にnP+P/4だけX方向にシフトしているので、隣接する2つの検出領域の一方の受光要素に対応する位相は、隣接する2つの検出領域の他方の受光要素に対応する位相に対して、実質的に90°シフトしている。 In this configuration, since the two adjacent detection regions are substantially shifted in the X direction by nP + P / 4, the phase corresponding to one light receiving element of the two adjacent detection regions is the phase corresponding to the two adjacent detection regions. There is a substantial 90 ° shift with respect to the phase corresponding to the other light receiving element of.

よって、検出列DS11_1~DS11_4の検出領域DA11は、それぞれ、A相、B相、A-相及びB-相の信号を出力する。検出列DS11_1~DS11_4の検出領域DA12は、それぞれ、B相、A-相、B-相及びA相の信号を出力する。検出列DS11_1~DS11_4の検出領域DA13は、それぞれ、A-相、B-相、A相及びB相の信号を出力する。検出列DS11_1~DS11_4の検出領域DA14は、それぞれ、B-相、A相、B相及びA-相の信号を出力する。検出列DS11_1~DS11_4から出力される同相の信号は合成され、合成された信号は信号処理部3へ出力される。 Therefore, the detection regions DA11 of the detection columns DS11_1 to DS11_4 output signals of A phase, B phase, A-phase, and B-phase, respectively. The detection regions DA12 of the detection columns DS11_1 to DS11_4 output B-phase, A-phase, B-phase, and A-phase signals, respectively. The detection regions DA13 of the detection columns DS11_1 to DS11_1 output signals of A-phase, B-phase, A-phase, and B-phase, respectively. The detection regions DA14 of the detection columns DS11_1 to DS11_4 output B-phase, A-phase, B-phase, and A-phase signals, respectively. The in-phase signals output from the detection columns DS11_1 to DS11_4 are combined, and the combined signals are output to the signal processing unit 3.

検出列DS11_1~DS11_4の原理は、検出列DS12_1~DS12_4にも適用できるので、検出列DS12_1~DS12_4については説明を省略する。 Since the principle of the detection columns DS11_1 to DS11_1 can be applied to the detection columns DS12_1 to DS12_1, the description of the detection columns DS12_1 to DS12_1 will be omitted.

本構成によれば、受光部LRU1と比べて、検出領域が測定方向(X方向)にも配列されるため、汚染された又は欠陥を有する検出領域がある場合でも、他の汚染されていない又は欠陥を有しない他の検出領域は、X方向における汚染又は欠陥の不要な影響を補償することができる。よって、汚染又は欠陥の影響をより抑制することができる。故に、受光部の出力信号の精度を好適に維持することができる。 According to this configuration, since the detection region is also arranged in the measurement direction (X direction) as compared with the light receiving unit LRU1, even if there is a detection region contaminated or has a defect, other uncontaminated or defective detection regions are present. Other detection regions without defects can compensate for contamination or unwanted effects of defects in the X direction. Therefore, the influence of contamination or defects can be further suppressed. Therefore, the accuracy of the output signal of the light receiving unit can be suitably maintained.

受光部LRU3を変形することで、さらに改善された構成を実現することが可能である。本構成では、検出列DS11_1~DS11_4が4相信号を与えるセットを構成し、検出列DS12_1~DS12_4も相信号を与えるセットを構成する。よって、このような4つの検出列を有するセットを測定方向(X方向)に2以上配列することで、X方向における汚染又は欠陥の不要な影響をさらに抑制することができる。 By deforming the light receiving unit LRU3, it is possible to realize a further improved configuration. In this configuration, the detection columns DS11_1 to DS11_4 form a set that gives a four-phase signal, and the detection columns DS12_1 to DS12_1 also form a set that gives a phase signal. Therefore, by arranging two or more sets having such four detection rows in the measurement direction (X direction), it is possible to further suppress the unnecessary influence of contamination or defects in the X direction.

次いで、受光部の他の構成について説明する。図28に、実施の形態6にかかる他の受光部LRU4の構成を模式的に示す。受光部LRU4は、3相構造を有する受光部LRU2の変形例である。 Next, another configuration of the light receiving unit will be described. FIG. 28 schematically shows the configuration of another light receiving unit LRU4 according to the sixth embodiment. The light receiving unit LRU4 is a modified example of the light receiving unit LRU2 having a three-phase structure.

受光部LRU4は、3つの検出列DS21がX方向にnP+P/3のピッチで配列され、3つの検出列DS22がX方向にnP+P/3のピッチで配列されている。この例では、DS21_1~DS21_3は、それぞれ、図の紙面のX方向に沿って左から右へ配列されている3つの検出列DS21を示している。DS22_1~DS22_3は、それぞれ、図の紙面のX方向に沿って左から右へ配列されている3つの検出列DS22を示している。 In the light receiving unit LRU4, the three detection rows DS21 are arranged at a pitch of nP + P / 3 in the X direction, and the three detection rows DS22 are arranged at a pitch of nP + P / 3 in the X direction. In this example, DS21_1 to DS21_3 show three detection columns DS21 arranged from left to right along the X direction of the paper in the figure, respectively. DS22_1 to DS22_3 show three detection columns DS22 arranged from left to right along the X direction of the paper in the figure, respectively.

検出列DS21_1は、受光部LRU2の検出列DS21と同様に、A相、B相及びC相の信号を出力する。 The detection row DS21_1 outputs A-phase, B-phase, and C-phase signals in the same manner as the detection row DS21 of the light receiving unit LRU2.

本構成では、隣接する2つの検出領域は実質的にnP+P/3だけX方向にシフトしているので、隣接する2つの検出領域の一方の受光要素に対応する位相は、隣接する2つの検出領域の他方の受光要素に対応する位相に対して、実質的に120°シフトしている。 In this configuration, since the two adjacent detection regions are substantially shifted in the X direction by nP + P / 3, the phase corresponding to one light receiving element of the two adjacent detection regions is the phase corresponding to the two adjacent detection regions. There is a substantial 120 ° shift with respect to the phase corresponding to the other light receiving element of.

よって、検出列DS21_1~DS21_3の検出領域DA21は、それぞれ、A相、B相及びC相の信号を出力する。検出列DS21_1~DS21_3の検出領域DA22は、それぞれ、B相、C相及びA相の信号を出力する。検出列DS21_1~DS21_3の検出領域DA23は、それぞれ、C相、A相及びB相の信号を出力する。検出列DS21_1~DS21_3から出力される同相の信号は合成され、合成された信号は信号処理部3へ出力される。 Therefore, the detection regions DA21 of the detection columns DS21_1 to DS21_3 output the signals of the A phase, the B phase, and the C phase, respectively. The detection regions DA22 of the detection columns DS21_1 to DS21_3 output B-phase, C-phase, and A-phase signals, respectively. The detection regions DA23 of the detection columns DS21_1 to DS21_3 output C-phase, A-phase, and B-phase signals, respectively. The in-phase signals output from the detection columns DS21_1 to DS21_3 are combined, and the combined signals are output to the signal processing unit 3.

検出列DS21_1~DS21_3の原理は、検出列DS22_1~DS22_3にも適用できるので、検出列DS22_1~DS22_3については説明を省略する。 Since the principle of the detection columns DS21_1 to DS21_3 can be applied to the detection columns DS22_1 to DS22___, the description of the detection columns DS22_1 to DS22_3 will be omitted.

本構成によれば、受光部LRU2と比べて、検出領域が測定方向(X方向)にも配列されるため、汚染された又は欠陥を有する検出領域がある場合でも、他の汚染されていない又は欠陥を有しない他の検出領域は、X方向における汚染又は欠陥の不要な影響を補償することができる。よって、汚染又は欠陥の影響をより抑制することができる。故に、受光部の出力信号の精度を好適に維持することができる。 According to this configuration, since the detection region is also arranged in the measurement direction (X direction) as compared with the light receiving unit LRU2, even if there is a detection region contaminated or has a defect, other uncontaminated or defective detection regions are present. Other detection regions without defects can compensate for contamination or unwanted effects of defects in the X direction. Therefore, the influence of contamination or defects can be further suppressed. Therefore, the accuracy of the output signal of the light receiving unit can be suitably maintained.

受光部LRU4を変形することで、さらに改善された構成を実現することが可能である。本構成では、検出列DS21_1~DS21_3が3相信号を与えるセットを構成し、検出列DS22_1~DS22_3も3相信号を与えるセットを構成する。よって、このような3つの検出列を有するセットを測定方向(X方向)に2以上配列することで、測定方向(X方向)における汚染又は欠陥の不要な影響をさらに抑制することができる。 By deforming the light receiving unit LRU4, it is possible to realize a further improved configuration. In this configuration, the detection columns DS21_1 to DS21_3 form a set that gives a three-phase signal, and the detection columns DS22_1 to DS22_3 also form a set that gives a three-phase signal. Therefore, by arranging two or more sets having such three detection rows in the measurement direction (X direction), it is possible to further suppress the unnecessary influence of contamination or defects in the measurement direction (X direction).

なお、本実施の形態で説明した受光部を変形することで、多相信号に対応する受光部を実現することが可能である。具体的には、k相信号に対応可能な受光部が実現可能である。ここで、kは2以上の整数である。この場合、1つの検出列において、受光要素が測定方向(X方向)に配列されたk個の検出領域を測定方向(X方向)と交差する方向(Y方向)に周期Pで配列すればよく、k個の検出領域を測定方向に互いにピッチP/kだけシフトさせればよい。 By modifying the light receiving unit described in the present embodiment, it is possible to realize a light receiving unit corresponding to a polyphase signal. Specifically, it is possible to realize a light receiving unit that can handle k-phase signals. Here, k is an integer of 2 or more. In this case, in one detection row, k detection regions in which the light receiving elements are arranged in the measurement direction (X direction) may be arranged in the direction (Y direction) intersecting the measurement direction (X direction) with a period P. , K detection regions may be shifted from each other in the measurement direction by pitch P / k.

また、k個の検出領域が、測定方向(X方向)の同じ列にnP+P/kのピッチで配列されている。この場合、X方向に配列されたj番目の検出領域は位相が2π(j-1)/k+θintの信号を出力することができる。ただし、jは2以上k以下の整数(2≦j≦k)であり、θintは1番目(j=1)の検出領域における初期位相である。 Further, k detection regions are arranged in the same row in the measurement direction (X direction) at a pitch of nP + P / k. In this case, the j-th detection region arranged in the X direction can output a signal having a phase of 2π (j-1) / k + θ int . However, j is an integer (2 ≦ j ≦ k) of 2 or more and k or less, and θ int is the initial phase in the first (j = 1) detection region.

その他の実施の形態
なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。上述の実施の形態では、光学式エンコーダ100を透過型のエンコーダとして説明したが、これは例示に過ぎない。すなわち、光学式エンコーダ100を反射型のエンコーダとして構成してもよいことは、勿論である。
Other Embodiments The present invention is not limited to the above embodiments, and can be appropriately modified without departing from the spirit. In the above-described embodiment, the optical encoder 100 has been described as a transmissive encoder, but this is merely an example. That is, of course, the optical encoder 100 may be configured as a reflection type encoder.

また、上述したエンコーダにおいて、光源とスケールとの間、及び、スケールと検出部との間の一方又は両方に、伝搬する回折光の次数を選択するためのインデックス格子を配置してもよい。また、スケールと検出部との間に、スケールからの回折光を結像させる回折格子やレンズ等の光学素子を配置してもよい。 Further, in the above-mentioned encoder, an index grid for selecting the order of the diffracted light to be propagated may be arranged between the light source and the scale and / or between the scale and the detection unit. Further, an optical element such as a diffraction grating or a lens that forms an image of the diffracted light from the scale may be arranged between the scale and the detection unit.

上述の実施の形態では、A相信号(0°)、B相信号(90°)、A-信号(180°)及びB-信号(270°)を生成する構成について説明した。位相の順序は変更可能であり、1/4、1/2、-1/2及び-1/4のようにシフトしていてもよい。例えば、1/2、-1/4、1/2及び-1/4だけシフトしているA相、A-相、B相及びB-相のようにしてもよい。 In the above-described embodiment, a configuration for generating an A-phase signal (0 °), a B-phase signal (90 °), an A- signal (180 °), and a B- signal (270 °) has been described. The order of the phases can be changed and may be shifted such as 1/4, 1/2, −1 / 2 and -1/4. For example, there may be A phase, A-phase, B phase and B-phase shifted by 1/2, -1/4, 1/2 and -1/4.

干渉縞の基本周期の少なくとも3つの異なる位相を有し、かつ、少なくとも3つの位相のそれぞれに対応した分だけシフトされた受光要素を有する構成としてもよい。少なくとも3つの位相に対応する要素は、それぞれの位相について1以上のグループにまとめてもよい。 A configuration may be configured in which the light receiving elements have at least three different phases of the basic period of the interference fringes and are shifted by the amount corresponding to each of the at least three phases. Elements corresponding to at least three phases may be grouped into one or more groups for each phase.

3以上の位相に対応する検出領域は、所定の順序にてX方向に配列されつる必要はない。検出領域は、X方向と同様のレンジでY方向にも所定の順序にて配列されてもよい。3以上の位相に対応する検出領域は、X方向及びY方向に、2次元的に配列されてもよい。 The detection regions corresponding to three or more phases do not need to be arranged in the X direction in a predetermined order. The detection regions may be arranged in a predetermined order in the Y direction in the same range as in the X direction. The detection regions corresponding to three or more phases may be two-dimensionally arranged in the X direction and the Y direction.

上述したエンコーダでは、スケールと検出部との間の距離は特に限定されるものではない。但し、スケールからの回折光を結像させる回折格子やレンズ等の光学素子をスケールと検出部との間に配置しない場合、スケールと検出部との距離は、検出部上に干渉縞が好適に生じる距離とすることが望ましい。 In the above-mentioned encoder, the distance between the scale and the detection unit is not particularly limited. However, when an optical element such as a diffraction grating or a lens that forms an image of diffracted light from the scale is not arranged between the scale and the detection unit, the distance between the scale and the detection unit is preferably an interference fringe on the detection unit. It is desirable to set the distance to occur.

1、90 スケール
2 検出ヘッド
3 信号処理部
4 光源
4A 平行光
5 検出部
6 原点パターン
6A、7A 光透過部
7 インクリメンタルパターン
8、9、LRU1~LRU4 受光部
10、11、11A、11B 受光要素
20、30 干渉縞
7A 光透過部
7B 不透過部
31、32 ピーク
40、50、60 受光部
41、42、51~54、61~63 検出領域
70、80 光学素子
70A 光透過部
70B 平板部材
71 回折格子
72 レンズ
73、74 ミラー
100、300、400 光学式エンコーダ
C 基本周期
DET 検出信号
OUT 出力信号
81 周期的パターン
82 透明基板
1, 90 scale 2 Detection head 3 Signal processing unit 4 Light source 4A Parallel light 5 Detection unit 6 Origin pattern 6A, 7A Light transmission unit 7 Incremental pattern 8, 9, LRU1 to LRU4 Light receiving unit 10, 11, 11A, 11B Light receiving element 20 , 30 Interference fringe 7A Light transmitting part 7B Non-transmitting part 31, 32 Peak 40, 50, 60 Light receiving part 41, 42, 51 to 54, 61 to 63 Detection area 70, 80 Optical element 70A Light transmitting part 70B Flat plate member 71 Diffraction Lattice 72 Lens 73, 74 Mirror 100, 300, 400 Optical Encoder C Basic Period DET Detection Signal OUT Output Signal 81 Periodic Pattern 82 Transparent Substrate

Claims (5)

インクリメンタルパターンが設けられたスケールと、
前記スケールに対して測定方向に相対的に移動可能であり、前記スケールに照射される光が前記インクリメンタルパターンで回折された回折光を検出し、検出結果を出力する検出ヘッドと、
前記検出ヘッドでの前記検出結果に応じて、前記スケールと前記検出ヘッドとの間の相対的な変位を算出する信号処理部と、を備え、
前記検出ヘッドは、
前記スケールに光を照射する光源と、
前記スケールからの前記回折光の検出信号を出力する複数の受光要素が所定の周期で前記測定方向に周期的に配列された受光部を有する検出部と、
前記回折光を前記検出部へ導く光学素子と、を備え、
前記複数の受光要素は、前記測定方向に偶数個配列され、
前記所定の周期は、前記回折光のうちで+1次回折光と-1次回折光とによって前記受光部上に生じる干渉縞の周期である基本周期の奇数倍であり、
前記受光要素の前記測定方向の幅は、前記基本周期の整数倍ではない値であり、
前記検出部には、前記スケールからの+1次回折光、-1次回折光及び0次回折光が入射し、
kは、2以上の整数であり、
前記基本周期はPであり、
前記測定方向に交差する方向に配列されたk個の検出領域が検出列を構成し、
検出領域は、互いに前記測定方向にP/kのピッチでシフトしている、
エンコーダ。
A scale with an incremental pattern and
A detection head that is movable in the measurement direction relative to the scale, detects diffracted light diffracted by the incremental pattern of light radiated to the scale, and outputs a detection result.
A signal processing unit that calculates a relative displacement between the scale and the detection head according to the detection result of the detection head is provided.
The detection head is
A light source that irradiates the scale with light,
A detection unit having a light receiving unit in which a plurality of light receiving elements for outputting a detection signal of the diffracted light from the scale are periodically arranged in the measurement direction at a predetermined period.
An optical element that guides the diffracted light to the detection unit is provided.
The plurality of light receiving elements are arranged in an even number in the measurement direction.
The predetermined period is an odd multiple of the basic period, which is the period of the interference fringes generated on the light receiving portion by the +1st order diffracted light and the -1st order diffracted light among the diffracted light.
The width of the light receiving element in the measurement direction is a value that is not an integral multiple of the basic period .
The +1st-order diffracted light, the -1st-order diffracted light, and the 0th-order diffracted light from the scale are incident on the detection unit.
k is an integer greater than or equal to 2 and
The basic period is P,
The k detection regions arranged in the directions intersecting the measurement directions form a detection row.
The detection regions are shifted from each other in the measurement direction at a pitch of P / k.
Encoder.
nは、1以上の整数であり、
k個の検出列は、前記測定方向にnP+P/kのピッチで周期的に配列されている、
請求項に記載のエンコーダ。
n is an integer of 1 or more,
The k detection rows are periodically arranged at a pitch of nP + P / k in the measurement direction.
The encoder according to claim 1 .
前記光学素子は、+1次回折光と-1次回折光とを前記検出部上に集光して、前記干渉縞を形成する、
請求項1又は2に記載のエンコーダ。
The optical element collects the +1st-order diffracted light and the -1st-order diffracted light on the detection unit to form the interference fringes.
The encoder according to claim 1 or 2 .
前記光学素子は、回折格子及びレンズのいずれかである、
請求項に記載のエンコーダ。
The optical element is either a diffraction grating or a lens.
The encoder according to claim 3 .
前記光学素子は、2枚のミラーで構成され、
一方のミラーは、前記検出部へ向けて+1次回折光を反射し、
他方のミラーは、前記検出部へ向けて-1次回折光を反射する、
請求項に記載のエンコーダ。
The optical element is composed of two mirrors.
One mirror reflects the +1st order diffracted light toward the detection unit.
The other mirror reflects the -1st order diffracted light toward the detection unit.
The encoder according to claim 3 .
JP2018118943A 2018-06-19 2018-06-22 Encoder Active JP7063743B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/012,064 2018-06-19
US16/012,064 US10274344B2 (en) 2016-12-27 2018-06-19 Displacement encoder

Publications (2)

Publication Number Publication Date
JP2019219347A JP2019219347A (en) 2019-12-26
JP7063743B2 true JP7063743B2 (en) 2022-05-09

Family

ID=68724843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018118943A Active JP7063743B2 (en) 2018-06-19 2018-06-22 Encoder

Country Status (4)

Country Link
JP (1) JP7063743B2 (en)
CN (1) CN110617844B (en)
DE (1) DE102018210382A1 (en)
GB (1) GB2574900B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7474186B2 (en) * 2020-11-30 2024-04-24 株式会社ミツトヨ Photoelectric Rotary Encoder
JP2024053373A (en) 2022-10-03 2024-04-15 株式会社ミツトヨ Optical Encoders

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000205819A (en) 1999-01-13 2000-07-28 Olympus Optical Co Ltd Optical displacement sensor
JP2001289674A (en) 2000-02-03 2001-10-19 Mitsutoyo Corp Displacement measuring device
JP2002296075A (en) 2001-04-02 2002-10-09 Canon Inc Optical encoder
JP2004309366A (en) 2003-04-09 2004-11-04 Sankyo Seiki Mfg Co Ltd Position detecting device
JP2011059004A (en) 2009-09-11 2011-03-24 Canon Inc Optical encoder
JP2013221829A (en) 2012-04-16 2013-10-28 Fujitsu Ltd Displacement measuring device, displacement measuring method, and displacement measuring program
JP2015078861A (en) 2013-10-16 2015-04-23 キヤノン株式会社 Fringe scan light reception module, interference measurement tool, encoder and interference type displacement measurement tool
JP2017058132A (en) 2015-09-14 2017-03-23 株式会社ミツトヨ Photoelectric encoder

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4856844A (en) 1971-11-17 1973-08-09
JP2619566B2 (en) 1990-11-20 1997-06-11 オ−クマ株式会社 Optical position detector
JP3218657B2 (en) * 1991-12-04 2001-10-15 キヤノン株式会社 Rotary encoder
JPH08219812A (en) 1995-02-15 1996-08-30 Canon Inc Device and scale for detecting displacement information, and drive control device using it
CN102223046B (en) * 2010-04-19 2013-10-09 爱三工业株式会社 Position sensor
JP5679136B2 (en) * 2011-11-24 2015-03-04 トヨタ自動車株式会社 Rotation angle detection device and electric power steering device provided with rotation angle detection device
JP6400036B2 (en) * 2016-03-14 2018-10-03 キヤノン株式会社 Position detection device, machine tool, and exposure device
US10077991B2 (en) * 2016-09-27 2018-09-18 Mitutoyo Corporation Optical encoder configured to mitigate undesired interfering light components

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000205819A (en) 1999-01-13 2000-07-28 Olympus Optical Co Ltd Optical displacement sensor
JP2001289674A (en) 2000-02-03 2001-10-19 Mitsutoyo Corp Displacement measuring device
JP2002296075A (en) 2001-04-02 2002-10-09 Canon Inc Optical encoder
JP2004309366A (en) 2003-04-09 2004-11-04 Sankyo Seiki Mfg Co Ltd Position detecting device
JP2011059004A (en) 2009-09-11 2011-03-24 Canon Inc Optical encoder
JP2013221829A (en) 2012-04-16 2013-10-28 Fujitsu Ltd Displacement measuring device, displacement measuring method, and displacement measuring program
JP2015078861A (en) 2013-10-16 2015-04-23 キヤノン株式会社 Fringe scan light reception module, interference measurement tool, encoder and interference type displacement measurement tool
JP2017058132A (en) 2015-09-14 2017-03-23 株式会社ミツトヨ Photoelectric encoder

Also Published As

Publication number Publication date
CN110617844A (en) 2019-12-27
CN110617844B (en) 2022-10-11
DE102018210382A1 (en) 2019-12-19
JP2019219347A (en) 2019-12-26
GB2574900A (en) 2019-12-25
GB201810421D0 (en) 2018-08-08
GB2574900B (en) 2022-06-01

Similar Documents

Publication Publication Date Title
JP5268529B2 (en) Displacement measuring device and semiconductor manufacturing device
JP6312505B2 (en) Optical encoder and apparatus equipped with the same
KR101184167B1 (en) Interferometric position encoder employing spatial filtering of diffraction orders
EP2511669B1 (en) Encoder
JPH08145724A (en) Optical encoder
CN105547338B (en) Optical encoder
JP7063743B2 (en) Encoder
US6552810B1 (en) Optical measuring system
JP2018105845A (en) Encoder
JP5154072B2 (en) Photoelectric encoder
US10274344B2 (en) Displacement encoder
JP6571393B2 (en) Optical encoder
JP2015078861A (en) Fringe scan light reception module, interference measurement tool, encoder and interference type displacement measurement tool
JP2018096807A (en) Photoelectric encoder
JPH06174424A (en) Length measuring and angle measuring device
JP2009069033A (en) Photoelectric incremental type encoder
US20240110816A1 (en) Optical encoder
JPS5999220A (en) Photoelectric encoder
JP2004037275A (en) Optical encoder
JPH0444211B2 (en)
JP2017009335A (en) Displacement measurement device, displacement measurement signal processing device and displacement measurement signal processing method
JP4578210B2 (en) Optical displacement measuring device
JP2018132408A (en) Photoelectric encoder
JPH068737B2 (en) Optical displacement detector
JPS63109321A (en) Optical displacement detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220421

R150 Certificate of patent or registration of utility model

Ref document number: 7063743

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150