JP2007181089A - Serial connection inverter piezoelectric oscillator - Google Patents

Serial connection inverter piezoelectric oscillator Download PDF

Info

Publication number
JP2007181089A
JP2007181089A JP2005379502A JP2005379502A JP2007181089A JP 2007181089 A JP2007181089 A JP 2007181089A JP 2005379502 A JP2005379502 A JP 2005379502A JP 2005379502 A JP2005379502 A JP 2005379502A JP 2007181089 A JP2007181089 A JP 2007181089A
Authority
JP
Japan
Prior art keywords
circuit
oscillation
terminal impedance
shows
inverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005379502A
Other languages
Japanese (ja)
Inventor
Yoshinori Kanno
善則 管野
Tomio Sato
富雄 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005379502A priority Critical patent/JP2007181089A/en
Publication of JP2007181089A publication Critical patent/JP2007181089A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To apply a serial connection inverter piezoelectric oscillator to a sensor oscillator of QCM or the like which detects a fine mass using a piezoelectric vibration chip, or an oscillation circuit of an osicllator used for a frequency reference for communication. <P>SOLUTION: A piezoelectric oscillation circuit is provided in which oscillation conditions of the circuit are made clear by simulation to facilitate the configuration of the oscillation circuit on the basis of a result, power supply variation characteristics are improved, a variable range is widened and further, reliability is improved. Thus, oscillation can be easily performed particularly in low frequency oscillation and further, reactance of the circuit can be enlarged to an inductive range without using an inductor. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、圧電振動子を用い微少質量を検出するQCM等のセンサー発振器、通信用の周波数基準に用いる発振器の発振回路に関する。   The present invention relates to a sensor oscillator such as a QCM that detects a minute mass using a piezoelectric vibrator, and an oscillation circuit of an oscillator used as a frequency reference for communication.

図25に従来の発振回路例を示す。同回路ではインバーターの出力より入力へ大きな帰還抵抗:Rf(ここでは、20KHz〜60KHzで20MΩ)を挿入し動作点の安定化を図る。インバーター入力から、コンデンサCgを介し接地(GND)し、更に同インバーター入力より圧電振動子、抵抗:Rdを介し同インバーター出力に接続する。また、同コンデンサと抵抗の接続点よりコンデンサ:Cdを介し接地(GND)する。インバーターの接地(GND)端子を接地、電源端子を電源に接続、また電源端子と接地間にパスコンデンサを挿入し、電源ラインを交流的に接地する。   FIG. 25 shows a conventional oscillation circuit example. In this circuit, the feedback point: Rf (in this case, 20 MΩ at 20 KHz to 60 KHz) larger than the output of the inverter is inserted to stabilize the operating point. The inverter input is grounded (GND) via a capacitor Cg, and is further connected to the inverter output via a piezoelectric vibrator and resistor Rd from the inverter input. In addition, the ground is connected (GND) through a capacitor: Cd from the connection point of the capacitor and the resistor. Connect the ground (GND) terminal of the inverter to the ground, connect the power supply terminal to the power supply, insert a pass capacitor between the power supply terminal and the ground, and ground the power supply line in an AC manner.

図26に図25に示す回路の発振出力波形を示す。出力波形の立ち上がり、立下りが緩やかで完全な矩形波になっていない。   FIG. 26 shows an oscillation output waveform of the circuit shown in FIG. The output waveform rises and falls slowly and is not a perfect rectangular wave.

図27に同回路の発振周波数及び消費電流対電源電圧の関係を示す。電源電圧が3.7Vdcで発振停止する。   FIG. 27 shows the relationship between the oscillation frequency and current consumption versus power supply voltage of the circuit. The oscillation stops when the power supply voltage is 3.7 Vdc.

図28には圧電振動子に直列にコンデンサを挿入し、同コンデンサ容量による発振周波数の変化を示す。可変範囲としてΔf/f0≒35ppmを得る。(Δf=発振周波数−f0;f0=公称周波数(=32.768kHz))
次に図29の従来回路の回路ブロック図に従いシミュレーションを行う。コンデンサ:C5はインバーター1の出力容量とする。同図にキルヒホッフの法則を適用する。電流の関係より(1)式、(2)式、(3)式を得る。電圧の関係より(4)式、(5)式、(6)式を得る。
(1)式〜(6)式より発振の臨界条件を示す(7)式を得る。
(7)式より振動子インピーダンス:zxtからの回路インピーダンスを求め(8)式を得る。
z1〜z6のインピーダンスを(9)式に示す設定を行い、(8)式へ代入し(7)式より振動子インピーダンス:zxtからの回路インピーダンスを求める。回路の抵抗:Rci、回路容量:Cciとし(10)式を得る。
(10)式のra.ca.rb.cbを(11)式に示す。
(10)式に示すRci、Cciのシミュレーション結果を図30〜図32に示す。図30は抵抗:R4をパラメーターとし発振周波数と回路抵抗:Rci,回路容量:Cciの関係であり、定数をC1=14pF、C3=10pF,C5=4pF、R6=20MΩ、gm=0.1mA/Vと設定したときのものである。C1及びC5に内に含まれる4pFはインバーター内の寄生容量とする。抵抗値を大きくすることで負性抵抗が小さくなる。
FIG. 28 shows a change in oscillation frequency due to the capacitance of the capacitor inserted in series with the piezoelectric vibrator. As a variable range, Δf / f0≈35 ppm is obtained. (Δf = oscillation frequency−f0; f0 = nominal frequency (= 32.768 kHz))
Next, simulation is performed according to the circuit block diagram of the conventional circuit of FIG. Capacitor: C5 is the output capacity of the inverter 1. Kirchhoff's law is applied to the figure. Equations (1), (2), and (3) are obtained from the current relationship. Equations (4), (5), and (6) are obtained from the voltage relationship.
Equation (7) indicating the critical condition of oscillation is obtained from Equations (1) to (6).
The circuit impedance from the oscillator impedance: zxt is obtained from the equation (7) to obtain the equation (8).
The impedances z1 to z6 are set as shown in the equation (9), and substituted into the equation (8), and the circuit impedance from the transducer impedance: zxt is obtained from the equation (7). Assuming that the circuit resistance is Rci and the circuit capacitance is Cci, the equation (10) is obtained.
The ra. ca. rb. cb is shown in equation (11).
The simulation results of Rci and Cci shown in Expression (10) are shown in FIGS. FIG. 30 shows the relationship between the oscillation frequency and circuit resistance: Rci, circuit capacitance: Cci, with resistance: R4 as a parameter, and constants C1 = 14 pF, C3 = 10 pF, C5 = 4 pF, R6 = 20 MΩ, gm = 0.1 mA / This is when V is set. 4pF included in C1 and C5 is a parasitic capacitance in the inverter. Increasing the resistance value decreases the negative resistance.

図31は入出力間抵抗:R6をパラメーターとし発振周波数と回路抵抗:Rci,回路容量:Cciの関係であり、定数をC1=14pF、C3=10pF,C5=4pF、R4=0.5MΩ、gm=0.1mA/Vと設定した時のものである。発振周波数=32KHz近傍では抵抗値:R6=10MΩ以下で負性抵抗を失う。   FIG. 31 shows the relationship between the input / output resistance: R6 and the oscillation frequency and circuit resistance: Rci, circuit capacitance: Cci. The constants are C1 = 14 pF, C3 = 10 pF, C5 = 4 pF, R4 = 0.5 MΩ, gm = When 0.1 mA / V is set. In the vicinity of the oscillation frequency = 32 KHz, the negative resistance is lost when the resistance value is R6 = 10 MΩ or less.

図32は相互コンダクタンス:gmをパラメーターとし発振周波数と回路抵抗:Rci,回路容量:Cciの関係でありC1=14pF、C3=10pF,C5=4pF、C5=4pF、R4=0.5MΩ、R6=20MΩと設定した時のものである。発振周波数=32KHz近傍では、gm:0.1mA/Vで負性抵抗値は最大値を示し、それより大きくても、小さくても負性抵抗は小さくなる。このことは電源変動による相互コンダクタンスの変動により発振範囲が狭くなることを示す。   FIG. 32 shows the relationship between oscillation frequency and circuit resistance: Rci, circuit capacitance: Cci with mutual conductance: gm as a parameter. C1 = 14 pF, C3 = 10 pF, C5 = 4 pF, C5 = 4 pF, R4 = 0.5 MΩ, R6 = This is when 20 MΩ is set. In the vicinity of the oscillation frequency = 32 KHz, the negative resistance value shows the maximum value at gm: 0.1 mA / V, and the negative resistance becomes small whether it is larger or smaller. This indicates that the oscillation range is narrowed due to the mutual conductance variation caused by the power source variation.

図33に従来回路例−2を示す。同図はインバーターゲートを2段で発振させる回路であり、「CRYSTAL OSCILLATOR DESIGN AND TEMPERATURE COMPENSATION Marvin E. Frenking Copyright 1978」に掲載されている。インバーターとインバーターの入出力間にインダクターとコンデンサの直列回路を挿入している。しかしながら、発振条件が不明であり、実用化には至っていない。   FIG. 33 shows a conventional circuit example-2. This figure is a circuit for causing an inverter gate to oscillate in two stages, and is described in “CRYSTAL OSCILLATOR DESIGN AND TEMPERATURE COMPENSATION MARVIN E. FRENKING COPYRIGHT 1978”. A series circuit of inductor and capacitor is inserted between the inverter and the input and output of the inverter. However, the oscillation condition is unknown and has not been put into practical use.

図34に従来回路例−3を示す。同図は、「水晶周波数制御デバイス、岡野庄太郎著」より引用した。TTLのNANDゲートを使用するもので、NANDゲートによる遅延に相当するインダクターによる発振とし、不安定であり実用化できないとしている。
CRYSTAL OSCILLATOR DESIGN AND TEMPERATURE COMPENSATION Marvin E.Frenking Copyright 1978 水晶周波数制御デバイス、岡野庄太郎著
FIG. 34 shows a conventional circuit example-3. The figure is quoted from “Crystal Frequency Control Device by Shotaro Okano”. Since a TTL NAND gate is used, the oscillation is caused by an inductor corresponding to the delay caused by the NAND gate, which is unstable and cannot be put into practical use.
CRYSTAL OSCILLATOR DESIGN AND TEMPERATURE COMPENSATION MARVIN E. Frenking Copyright 1978 Quartz frequency control device by Shotaro Okano

上述のように、従来から提案されている技術では、実用化を図ることは容易ではない。本発明は、このような事情に鑑みてなされたものであり、特に低周波圧電発振回路において、発振回路の構成が容易で、電源変動特性に優れ、可変範囲が広く、さらに回路の発振条件を明確にし、信頼性の高い圧電発振回路を提供することを目的とする。   As described above, it is not easy to put it to practical use with the conventionally proposed technology. The present invention has been made in view of such circumstances, and particularly in a low-frequency piezoelectric oscillation circuit, the configuration of the oscillation circuit is easy, the power supply variation characteristics are excellent, the variable range is wide, and the oscillation conditions of the circuit are further improved. It is an object to provide a piezoelectric oscillation circuit that is clear and highly reliable.

(1)上記の目的を達成するために、本発明は、以下のような手段を講じた。すなわち、本発明に係る発振回路は、複数のロジックインバーターを備える発振回路であって、第1のロジックインバーターの入力と接地間に設けられた第1の2端子インピーダンス回路と、前記第1のロジックインバーターの出力と接地間に設けられた第2の2端子インピーダンス回路と、前記第1のロジックインバーターの出力と第2のロジックインバーターの入力とを接続する第3の2端子インピーダンス回路と、前記第2のロジックインバーターの入力と接地間に設けられた第4の2端子インピーダンス回路と、前記第2のロジックインバーターの出力と接地間に設けられた第5の2端子インピーダンス回路と、前記第2のロジックインバーターの出力と前記第1のロジックインバーターの入力間に設けられた第6の2端子インピーダンス回路と、前記第1のロジックインバーターの入出力間に設けられた第7の2端子インピーダンス回路と、を備えることを特徴としている。   (1) In order to achieve the above object, the present invention takes the following measures. That is, the oscillation circuit according to the present invention is an oscillation circuit including a plurality of logic inverters, and includes a first two-terminal impedance circuit provided between an input of the first logic inverter and the ground, and the first logic. A second two-terminal impedance circuit provided between the output of the inverter and the ground; a third two-terminal impedance circuit connecting the output of the first logic inverter and the input of the second logic inverter; A second two-terminal impedance circuit provided between the input of the second logic inverter and the ground, a fifth two-terminal impedance circuit provided between the output of the second logic inverter and the ground, and the second A sixth two-terminal impedance provided between the output of the logic inverter and the input of the first logic inverter And Nsu circuit is characterized in that it comprises a two-terminal impedance circuit of a seventh provided between the input and output of the first logic inverter.

(2)また、本発明に係る発振回路は、前記第1の2端子インピーダンス回路、第2の2端子インピーダンス回路、第4の2端子インピーダンス回路、および第5の2端子インピーダンス回路は、容量性リアクタンスであり、前記第3の2端子インピーダンス回路、および第7の2端子インピーダンス回路は抵抗であり、前記第6の2端子インピーダンス回路は圧電振動子と発振周波数調整用回路であることを特徴としている。   (2) Further, the oscillation circuit according to the present invention includes the first two-terminal impedance circuit, the second two-terminal impedance circuit, the fourth two-terminal impedance circuit, and the fifth two-terminal impedance circuit. Reactance, wherein the third two-terminal impedance circuit and the seventh two-terminal impedance circuit are resistors, and the sixth two-terminal impedance circuit is a piezoelectric vibrator and an oscillation frequency adjusting circuit. Yes.

(3)また、本発明に係る発振回路は、前記第1及び第2のロジックインバーターの電源端子と接地端子間に、所定の電圧を供給する電圧部と、交流を接地するバイパス容量とをさらに備えることを特徴としている。   (3) Further, the oscillation circuit according to the present invention further includes a voltage unit for supplying a predetermined voltage between a power supply terminal and a ground terminal of the first and second logic inverters, and a bypass capacitor for grounding an alternating current. It is characterized by providing.

(4)また、本発明に係る発振回路は、前記第3の2端子インピーダンス回路の抵抗を0Ωとすることを特徴としている。   (4) Further, the oscillation circuit according to the present invention is characterized in that the resistance of the third two-terminal impedance circuit is set to 0Ω.

(5)また、本発明に係る発振回路は、前記第1、第2、第4、第5の2端子インピーダンス回路の容量性リアクタンス回路をインバーター内部の寄生容量で置き換えると共に、前記第3の2端子インピーダンス回路の抵抗を0Ωとすることを特徴としている。   (5) Further, in the oscillation circuit according to the present invention, the capacitive reactance circuit of the first, second, fourth, and fifth two-terminal impedance circuits is replaced with a parasitic capacitance inside the inverter, and the third 2 The terminal impedance circuit has a resistance of 0Ω.

(6)また、本発明に係る発振器は、請求項1から請求項5のいずれかに記載の発振回路を備えることを特徴としている。   (6) Further, an oscillator according to the present invention includes the oscillation circuit according to any one of claims 1 to 5.

本発明によれば、以上に示す様な発振回路の構成を行うことにより、特に低周波発振においては発振を容易に行うことができ、しかも回路のリアクタンスを、インダクターを用いること無く誘導性の範囲まで大きくすることができる。そのことは図24にしめす可変容量比較で明らかなように、容量可変において大きな周波数可変範囲を得ることができる。これらの特徴はQCM(水晶振動子を用いる微少質量測定)、などのセンサー発振、通信向け発振に対し大きな効果を与え、これらの分野の技術発展に期待を与えるものである。   According to the present invention, by configuring the oscillation circuit as described above, it is possible to easily oscillate particularly in the low frequency oscillation, and the reactance of the circuit can be reduced within an inductive range without using an inductor. Can be up to. As is clear from the variable capacity comparison shown in FIG. 24, a large frequency variable range can be obtained in variable capacity. These features have a great effect on sensor oscillation such as QCM (micromass measurement using a quartz resonator) and oscillation for communication, and are expected to develop technology in these fields.

本発明は、第1のロジックインバーターと第2のロジックインバーターを用意し、第1のロジックインバーターの入力と接地間に第1の2端子インピーダンス回路を、出力と接地間に第2の2端子インピーダンス回路を挿入する。第1のロジックインバーター出力から第3の2端子インピーダンス回路を介し第2のロジックインバーターの入力に接続する。第2のロジックインバーターの入力と接地間に第4の2端子インピーダンス回路を、出力と接地間に第5の2端子インピーダンス回路を挿入する。第2のロジックインバーターの出力から第1のロジックインバーターの入力間に第6の2端子インピーダンス回路を挿入、第1のロジックインバーターの入出力間に第7の2端子インピーダンス回路を挿入する発振回路、及び同発振回路を使用する発振器を構成している。   The present invention provides a first logic inverter and a second logic inverter, a first two-terminal impedance circuit between the input and ground of the first logic inverter, and a second two-terminal impedance between the output and ground. Insert the circuit. The first logic inverter output is connected to the input of the second logic inverter through a third two-terminal impedance circuit. A fourth two-terminal impedance circuit is inserted between the input of the second logic inverter and the ground, and a fifth two-terminal impedance circuit is inserted between the output and the ground. An oscillation circuit in which a sixth two-terminal impedance circuit is inserted between the output of the second logic inverter and the input of the first logic inverter, and a seventh two-terminal impedance circuit is inserted between the input and output of the first logic inverter; And an oscillator using the oscillation circuit.

但し、第1の2端子インピーダンス回路、第2の2端子インピーダンス回路、第4の2端子インピーダンス回路、第5の2端子インピーダンス回路を容量性リアクタンスとし、第3の2端子インピーダンス回路、第7の2端子インピーダンス回路を抵抗、第6の2端子インピーダンス回路を圧電振動子と発振周波数調整用回路とする。   However, the first two-terminal impedance circuit, the second two-terminal impedance circuit, the fourth two-terminal impedance circuit, and the fifth two-terminal impedance circuit are capacitive reactances, and the third two-terminal impedance circuit, the seventh The two-terminal impedance circuit is a resistor, and the sixth two-terminal impedance circuit is a piezoelectric vibrator and an oscillation frequency adjusting circuit.

尚、第1及び第2のロジックインバーターの電源端子と接地端子間には適切な電圧と、交流を接地するバイパス容量を挿入する。   An appropriate voltage and a bypass capacitor for grounding an alternating current are inserted between the power supply terminal and the ground terminal of the first and second logic inverters.

また、本発明は、上記第3の2端子インピーダンス回路の抵抗を0Ω(ショート)とする発振回路、同発振回路を使用する発振器を構成する。   Further, the present invention constitutes an oscillation circuit in which the resistance of the third two-terminal impedance circuit is 0Ω (short) and an oscillator using the oscillation circuit.

また、上記第1、第2、第4、第5の2端子インピーダンス回路の容量性リアクタンス回路をインバーター内部の寄生容量で置き換え、さらに第3の2端子インピーダンス回路の抵抗を0Ω(ショート)とする発振回路、同発振回路を使用する発振器を構成する。   Further, the capacitive reactance circuit of the first, second, fourth, and fifth two-terminal impedance circuits is replaced with a parasitic capacitance inside the inverter, and the resistance of the third two-terminal impedance circuit is set to 0Ω (short). An oscillation circuit and an oscillator using the oscillation circuit are configured.

以下、本発明の実施形態について、図面を参照しながら説明する。図1に本発明に係る発振回路ブロックモデルを示す。z1〜z7は2端子のインピーダンス回路を示す。INVはインバーターロジック、gmは相互コンダクタンスを示す。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows an oscillation circuit block model according to the present invention. z1 to z7 denote two-terminal impedance circuits. INV represents inverter logic, and gm represents mutual conductance.

同図1にキルヒホッフの法則を適応する。電流の関係より(12)式〜(14)式、電圧の関係より(15)式〜(17)式を得る。
(12)式〜(17)式より発振回路の発振に至る臨界条件を与える(18)式を得る。
(18)式を展開し、さらにz6を圧電振動子と見なし(z6=zxt)、振動子と回路インピーダンスを分離し(19)式を得る。
(20)式に各インピーダンスの設定を行い、(19)式へ代入する。
発振回路の抵抗をRci、容量性リアクタンスをCci、誘導性リアクタンスをLciとし(21)式に示す。Ra.xa,rb,xbはそれぞれ(22)式で与えられる。
(21)式に基づき下記条件設定で、シミュレーションを行う。その時の定数はC1=C2=C4=C5=14pF(インバーターの入出力と接地間寄生容量を4pFとする。)とし、R3、R7、gmをパラメーターとして可変する。
Figure 1 applies Kirchhoff's law. Equations (12) to (14) are obtained from the current relationship, and equations (15) to (17) are obtained from the voltage relationship.
From Expressions (12) to (17), Expression (18) giving a critical condition leading to oscillation of the oscillation circuit is obtained.
The expression (18) is expanded, z6 is regarded as a piezoelectric vibrator (z6 = zxt), and the vibrator and the circuit impedance are separated to obtain the expression (19).
Each impedance is set in equation (20) and substituted into equation (19).
The resistance of the oscillation circuit is Rci, the capacitive reactance is Cci, and the inductive reactance is Lci. Ra. xa, rb, and xb are each given by equation (22).
Based on the equation (21), simulation is performed under the following condition settings. The constant at that time is C1 = C2 = C4 = C5 = 14 pF (the input / output of the inverter and the parasitic capacitance between the grounds is 4 pF), and is variable with R3, R7, and gm as parameters.

図2に第1インバーター(INV−1)出力と第2インバーター(INV−2)入力間抵抗:R3をパラメーターとする、発振周波数と起動時回路抵抗:Rci及び起動時の回路誘導性リアクタンスの関係を示す。その時の定数はR7=820KΩ、gm=1μA/Vである。   FIG. 2 shows the relationship between the resistance between the output of the first inverter (INV-1) and the input of the second inverter (INV-2): R3, and the oscillation frequency, circuit resistance at startup: Rci, and circuit inductive reactance at startup. Indicates. The constants at that time are R7 = 820 KΩ and gm = 1 μA / V.

Rciの最大値近傍ではR3の値による「差」は多きいが、30KHz近傍ではほとんどその差はない。またリアクタンスについては、30KHz近傍では誘導性(L性)であるが、10KHz近傍では容量性を示し、誘導性は失われる。   The “difference” due to the value of R3 is large near the maximum value of Rci, but there is almost no difference near 30 KHz. Further, the reactance is inductive (L property) in the vicinity of 30 KHz, but exhibits capacitive properties in the vicinity of 10 KHz, and the inductivity is lost.

図3に第1インバーター入出力力間抵抗:R7をパラメーターとする、発振周波数対起動時回路抵抗:Rci及び起動時の回路誘導性リアクタンスの関係を示す。その時の定数はR3=20KΩ、gm=1μA/Vである。   FIG. 3 shows the relationship between the oscillation frequency versus the circuit resistance at start-up: Rci and the circuit-inductive reactance at start-up using the first inverter input / output resistance: R7 as a parameter. The constants at that time are R3 = 20 KΩ and gm = 1 μA / V.

抵抗:R7を大きくすることにより負性抵抗の周波数特性は急峻となり、その最大値は急激に増し、周波数の低い方に移行する。抵抗:R7を小さくすることにより負性抵抗は低下、周波数特性は鈍化する。但し、30kHzでは抵抗値の最も小さいR7=560kHzで最大値を示す。   Resistance: By increasing R7, the frequency characteristic of the negative resistance becomes steep, its maximum value increases rapidly, and shifts to the lower frequency side. Resistance: By making R7 small, the negative resistance is lowered and the frequency characteristic is slowed down. However, the maximum value is shown at R7 = 560 kHz having the smallest resistance value at 30 kHz.

図4にインバーターの相互コンダクタンス:gmをパラメーターとする、発振周波数と起動時回路抵抗:Rci及び起動時の回路誘導性リアクタンスの関係を示す。その時の定数はR3=20KΩ、R7=820KΩである。   FIG. 4 shows the relationship between the oscillation frequency, start-up circuit resistance: Rci, and start-up circuit inductive reactance using the inverter mutual conductance: gm as a parameter. The constants at that time are R3 = 20 KΩ and R7 = 820 KΩ.

gmが1μA/V以下では周波数特性に大きな変化はないが、5μA/Vで特性に大きな変化が現われ、負性抵抗値及びリアクタンスの最大値が極端に高周波側に移行する。但し、周波数が30kHz近傍においてはその変化ほとんど見られない。   When gm is 1 μA / V or less, there is no significant change in the frequency characteristic, but when the characteristic is 5 μA / V, a large change appears in the characteristic, and the negative resistance value and the maximum value of reactance shift extremely to the high frequency side. However, the change is hardly seen when the frequency is around 30 kHz.

(実施例1)
図5に本発明に係る発振回路の実施例1を示す。設定定数はC1=C2=C4=C5=10pF、C6=0.1μF、C7=33μF、R3=20kΩ、R4=820kΩ、INV1&2:TC7SU04F(東芝)、Zxt(Xtal):音叉型32.76KHz、VCC=3Vとする。
Example 1
FIG. 5 shows a first embodiment of an oscillation circuit according to the present invention. Setting constants are C1 = C2 = C4 = C5 = 10 pF, C6 = 0.1 μF, C7 = 33 μF, R3 = 20 kΩ, R4 = 820 kΩ, INV1 & 2: TC7SU04F (Toshiba), Zxt (Xtal): tuning fork type 32.76 KHz, VCC = 3V.

図6に出力波形を示す。図26に示す従来回路の出力波形に比べ、明確な矩形波を示している。   FIG. 6 shows the output waveform. Compared to the output waveform of the conventional circuit shown in FIG. 26, a clear rectangular wave is shown.

図7に電源電圧対発振周波数及び消費電流特性を示す。図27に示す従来回路の特性に比べ、電流の低下、特に発振出力が電圧:5Vまで確実に発振していることが分る。   FIG. 7 shows power supply voltage versus oscillation frequency and current consumption characteristics. Compared with the characteristics of the conventional circuit shown in FIG. 27, it can be seen that the current decreases, in particular, the oscillation output reliably oscillates to a voltage of 5V.

図8に振動子の直列容量:Cx対発振周波数特性を示す。図28の従来回路の周波数可変特性に比べ、周波数可変範囲としてΔf/f0≒200ppm、およそ5倍の可変範囲を得る。   FIG. 8 shows the series capacitance of the vibrator: Cx vs. oscillation frequency characteristics. Compared with the frequency variable characteristic of the conventional circuit of FIG. 28, Δf / f0≈200 ppm, which is a variable range of about 5 times, is obtained as the frequency variable range.

(実施例2)
図9に本発明に係る発振回路の実施例2を示す。本回路は基本的に図5の発振回路の実施例1と同じである。即ち、図5の第1のインバーター(INV1)と第2のインバーター(INV2)を入れ替えた形である。設定定数はC1=C2=C4=C5=10pF、C6=0.1μF、C7=33μF、R4=560kΩ、R6=20kΩ、INV1&2:TC7SU04F(東芝)、Zxt(Xtal):音叉型32.76KHz、VCC=3Vdcとする。
(Example 2)
FIG. 9 shows a second embodiment of the oscillation circuit according to the present invention. This circuit is basically the same as the first embodiment of the oscillation circuit of FIG. That is, the first inverter (INV1) and the second inverter (INV2) in FIG. 5 are interchanged. Setting constants are C1 = C2 = C4 = C5 = 10 pF, C6 = 0.1 μF, C7 = 33 μF, R4 = 560 kΩ, R6 = 20 kΩ, INV1 & 2: TC7SU04F (Toshiba), Zxt (Xtal): tuning fork type 32.76 KHz, VCC = 3Vdc.

図10に出力波形を示す。図26に示す従来回路の出力波形に比べ、図6と同じく明確な矩形波を示している。   FIG. 10 shows the output waveform. Compared with the output waveform of the conventional circuit shown in FIG. 26, a clear rectangular wave is shown as in FIG.

図11に電源電圧対発振周波数及び消費電流特性を示す。図27に示す従来回路の特性に比べ、図7と同じく、電流の低下、特に発振出力が電圧:5Vまで確実に発振していることが分る。   FIG. 11 shows power supply voltage versus oscillation frequency and current consumption characteristics. Compared with the characteristics of the conventional circuit shown in FIG. 27, it can be seen that, as in FIG. 7, the current decreases, in particular, the oscillation output reliably oscillates to a voltage of 5V.

図12に振動子の直列容量:Cx対発振周波数特性を示す。図28の従来回路の周波数可変特性に比べ、図7と同じく、周波数可変範囲としてΔf/f0≒200ppm、およそ5倍の可変範囲を得る。   FIG. 12 shows the series capacitance of the vibrator: Cx vs. oscillation frequency characteristics. Compared with the frequency variable characteristic of the conventional circuit of FIG. 28, as in FIG. 7, a variable range of Δf / f0≈200 ppm, which is approximately five times the variable range, is obtained.

(実施例3)
図13に本発明に係る発振回路の実施例3を示す。本回路は、図5に示す発振回路の実施例1の抵抗:R3を0Ω(ショート)としたものである。設定定数はC1=C2=C3=10pF、C4=0.1μF、C7=33μF、R1=820kΩ、INV1&2:TC7SU04F(東芝)、Zxt(Xtal):音叉型32.76KHz、VCC=3Vとする。
(Example 3)
FIG. 13 shows a third embodiment of the oscillation circuit according to the present invention. In this circuit, the resistance R3 of the oscillation circuit shown in FIG. 5 is set to 0Ω (short). The setting constants are C1 = C2 = C3 = 10 pF, C4 = 0.1 μF, C7 = 33 μF, R1 = 820 kΩ, INV1 & 2: TC7SU04F (Toshiba), Zxt (Xtal): tuning fork type 32.76 KHz, VCC = 3V.

図14に出力波形−1を示す。図26に示す従来回路の出力波形に比べ、図6と同じく明確な矩形波を示している。   FIG. 14 shows output waveform-1. Compared with the output waveform of the conventional circuit shown in FIG. 26, a clear rectangular wave is shown as in FIG.

図15に電源電圧対発振周波数及び消費電流特性を示す。図27に示す従来回路の特性に比べ、図7と同じく、電流の低下、特に発振出力が電圧:5Vまで確実に発振していることが分る。   FIG. 15 shows power supply voltage versus oscillation frequency and current consumption characteristics. Compared with the characteristics of the conventional circuit shown in FIG. 27, it can be seen that, as in FIG. 7, the current decreases, in particular, the oscillation output reliably oscillates to a voltage of 5V.

図16に振動子の直列容量:Cx対発振周波数特性を示す。図28の従来回路の周波数可変特性に比べ、図7と同じく、周波数可変範囲としてΔf/f0≒170ppm、およそ5倍の可変範囲を得る。   FIG. 16 shows the series capacitance of the vibrator: Cx vs. oscillation frequency characteristics. Compared to the frequency variable characteristic of the conventional circuit of FIG. 28, as in FIG. 7, a variable range of Δf / f0≈170 ppm, which is approximately five times the variable range, is obtained.

(実施例4)
図17に本発明に係る発振回路の実施例4を示す。本回路は、図5に示す発振回路の実施例1の、コンデンサC1、C2、C4、C5をインバーター内寄生容量:Caで代替させ、さらに抵抗:R3を0Ω(ショート)としたものである。設定定数はC4=0.1μF、C7=33μF、R1=820kΩ、INV1&2:TC7SU04F(東芝)、Zxt(Xtal):音叉型32.76KHz、VCC=3Vdcとする。
Example 4
FIG. 17 shows a fourth embodiment of the oscillation circuit according to the present invention. In this circuit, the capacitors C1, C2, C4, and C5 of the oscillation circuit shown in FIG. 5 are replaced with the parasitic capacitance in the inverter: Ca, and the resistance: R3 is set to 0Ω (short). The setting constants are C4 = 0.1 μF, C7 = 33 μF, R1 = 820 kΩ, INV1 & 2: TC7SU04F (Toshiba), Zxt (Xtal): tuning fork type 32.76 KHz, VCC = 3 Vdc.

図18にシミュレーション結果を示す。但し、Caはインバーターの入出力と接地間の寄生容量とし、Ca=4pFとする。C1、C2、C4、C5をインバーター内寄生容量:Caで代替させ、さらに抵抗:R3を0Ω(ショート)としても、シミュレーション上十分発振可能であることを示す。   FIG. 18 shows the simulation result. However, Ca is a parasitic capacitance between the input / output of the inverter and the ground, and Ca = 4 pF. This shows that even if C1, C2, C4, and C5 are replaced by the parasitic capacitance in the inverter: Ca and the resistance: R3 is 0Ω (short), the oscillation is sufficiently possible in the simulation.

図19に出力波形−1を示す。図26に示す従来回路の出力波形に比べ、図6と同じく明確な矩形波を示している。   FIG. 19 shows output waveform-1. Compared with the output waveform of the conventional circuit shown in FIG. 26, a clear rectangular wave is shown as in FIG.

図20に電源電圧対発振周波数及び消費電流特性を示す。図27に示す従来回路の特性に比べ、図7と同じく、電流の低下、特に発振出力が電圧:5Vまで確実に発振していることが分る。   FIG. 20 shows power supply voltage versus oscillation frequency and current consumption characteristics. Compared with the characteristics of the conventional circuit shown in FIG. 27, it can be seen that, as in FIG. 7, the current decreases, in particular, the oscillation output reliably oscillates to a voltage of 5V.

図21に振動子の直列容量:Cx対発振周波数特性を示す。図28の従来回路の周波数可変特性に比べ、周波数可変範囲としてΔf/f0≒120ppm、およそ4倍の可変範囲を得る。他の実施例に係る回路に比べやや周波数可変範囲は狭くなる。   FIG. 21 shows the series capacitance of the vibrator: Cx vs. oscillation frequency characteristics. Compared with the frequency variable characteristic of the conventional circuit of FIG. 28, Δf / f0≈120 ppm, which is approximately four times the variable range as the frequency variable range. The frequency variable range is slightly narrower than the circuits according to other embodiments.

図22に本発明に係る発振回路と従来回路の消費電流の比較を示す。従来回路に比べインバーターを2個使用しているにもかかわらず、実施例1〜4のいずれも、消費電流は少ない。   FIG. 22 shows a comparison of current consumption between the oscillation circuit according to the present invention and the conventional circuit. Despite using two inverters compared to the conventional circuit, all of Examples 1 to 4 consume less current.

図23に本発明に係る発振回路と従来回路の周波数電源変動の特性比較を示す。従来回路は変動も大きく、しかも発振が3.7Vdcで停止に比べ、本発明に係る発振回路は周波数の変動が少ない。   FIG. 23 shows a comparison of frequency power supply fluctuation characteristics between the oscillation circuit according to the present invention and the conventional circuit. The conventional circuit has a large fluctuation, and the oscillation circuit according to the present invention has a small fluctuation in frequency as compared with the case where the oscillation is stopped at 3.7 Vdc.

図24に本発明に係る発振回路と従来回路の周波数可変の比較を示す。実施例1〜4は従来回路に比べて著しく可変範囲が広いことが分る。但し実施例4(コンデンサをインバーター内部寄生容量で代替)に付いては多少狭くなっている。   FIG. 24 shows a comparison of the variable frequency of the oscillation circuit according to the present invention and the conventional circuit. It can be seen that the first to fourth embodiments have a significantly wider variable range than the conventional circuit. However, Example 4 (capacitor is replaced with an inverter internal parasitic capacitance) is somewhat narrower.

発振回路ブロックモデルを示す図である。It is a figure which shows an oscillation circuit block model. 本発明に係る発振回路ブロックモデル−1のシミュレーション結果−1を示す図である。It is a figure which shows the simulation result-1 of the oscillation circuit block model-1 which concerns on this invention. 本発明に係る発振回路ブロックモデル−1のシミュレーション結果−2を示す図である。It is a figure which shows the simulation result-2 of the oscillation circuit block model-1 which concerns on this invention. 本発明に係る発振回路ブロックモデル−1のシミュレーション結果−3を示す図である。It is a figure which shows the simulation result-3 of the oscillation circuit block model-1 which concerns on this invention. 本発明に係る発振回路の実施例1を示す図である。1 is a diagram illustrating a first embodiment of an oscillation circuit according to the present invention. FIG. 本発明に係る発振回路の実施例1の出力波形を示す図である。It is a figure which shows the output waveform of Example 1 of the oscillation circuit which concerns on this invention. 本発明に係る発振回路の実施例1の電源電圧対発振周波数及び消費電流特性を示す図である。It is a figure which shows the power supply voltage vs. oscillation frequency and current consumption characteristic of Example 1 of the oscillation circuit which concerns on this invention. 本発明に係る発振回路の実施例1の周波数可変容量:Cx対発振周波数特性を示す図である。It is a figure which shows the frequency variable capacity: Cx vs. oscillation frequency characteristic of Example 1 of the oscillation circuit according to the present invention. 本発明に係る発振回路の実施例2を示す図である。It is a figure which shows Example 2 of the oscillation circuit which concerns on this invention. 本発明に係る発振回路の実施例2の出力波形を示す図である。It is a figure which shows the output waveform of Example 2 of the oscillation circuit which concerns on this invention. 本発明に係る発振回路の実施例2の電源電圧対発振周波数及び消費電流特性を示す図である。It is a figure which shows the power supply voltage vs. oscillation frequency and current consumption characteristic of Example 2 of the oscillation circuit which concerns on this invention. 本発明に係る発振回路の実施例2の周波数可変容量:Cx対発振周波数特性を示す図である。It is a figure which shows the frequency variable capacity | capacitance: Cx vs. oscillation frequency characteristic of Example 2 of the oscillation circuit based on this invention. 本発明に係る発振回路の実施例3を示す図である。FIG. 10 is a diagram illustrating a third embodiment of the oscillation circuit according to the invention. 本発明に係る発振回路の実施例3の出力波形を示す図である。It is a figure which shows the output waveform of Example 3 of the oscillation circuit which concerns on this invention. 本発明に係る発振回路の実施例3の電源電圧対発振周波数及び消費電流特性を示す図である。It is a figure which shows the power supply voltage vs. oscillation frequency and current consumption characteristic of Example 3 of the oscillation circuit which concerns on this invention. 本発明に係る発振回路の実施例3の周波数可変容量:Cx対発振周波数特性を示す図である。It is a figure which shows the frequency variable capacitor: Cx vs. oscillation frequency characteristic of Example 3 of the oscillation circuit according to the present invention. 本発明に係る発振回路の実施例4を示す図である。FIG. 9 is a diagram illustrating a fourth embodiment of the oscillation circuit according to the present invention. 本発明に係る発振回路の実施例4のシミュレーション結果を示す図である。It is a figure which shows the simulation result of Example 4 of the oscillation circuit which concerns on this invention. 本発明に係る発振回路の実施例4の出力波形を示す図である。It is a figure which shows the output waveform of Example 4 of the oscillation circuit which concerns on this invention. 本発明に係る発振回路の実施例4の電源電圧対発振周波数及び消費電流特性を示す図である。It is a figure which shows the power supply voltage vs. oscillation frequency and consumption current characteristic of Example 4 of the oscillation circuit which concerns on this invention. 本発明に係る発振回路の実施例4の周波数可変容量:Cx対発振周波数特性を示す図である。FIG. 10 is a diagram showing a frequency variable capacitor: Cx vs. oscillation frequency characteristic of an oscillation circuit according to Example 4 of the present invention. 本発明に係る発振回路と従来回路の消費電流の比較を示す図である。It is a figure which shows the comparison of the consumption current of the oscillation circuit which concerns on this invention, and a conventional circuit. 本発明に係る発振回路と従来回路の電源変動特性比較を示す図である。It is a figure which shows the power supply fluctuation characteristic comparison of the oscillation circuit which concerns on this invention, and a conventional circuit. 本発明に係る発振回路と従来回路の周波数可変特性比較を示す図である。It is a figure which shows the frequency variable characteristic comparison of the oscillation circuit which concerns on this invention, and a conventional circuit. 従来の発振回路例−1を示す図である。It is a figure which shows the conventional oscillation circuit example-1. 従来の発振回路例−1の出力波形を示す図である。It is a figure which shows the output waveform of the conventional oscillation circuit example-1. 従来の発振回路例−1の電源電圧対発振周波数及び消費電流を示す図である。It is a figure which shows the power supply voltage versus the oscillating frequency, and current consumption of the conventional oscillation circuit example-1. 従来の発振回路例の周波数可変容量:Cx対発振周波数特性を示す図である。It is a figure which shows the frequency variable capacitor: Cx vs. oscillation frequency characteristic of the example of the conventional oscillation circuit. 従来のインバーター発振回路ブロックを示す図である。It is a figure which shows the conventional inverter oscillation circuit block. 従来回路−1の発振周波数対回路抵抗及び容量シミュレーション結果−1を示す図である。It is a figure which shows the oscillation frequency versus circuit resistance and capacity | capacitance simulation result-1 of the conventional circuit-1. 従来回路−1の発振周波数対回路抵抗及び容量シミュレーション結果−2を示す図である。It is a figure which shows the oscillation frequency versus circuit resistance and capacity | capacitance simulation result-2 of the conventional circuit-1. 従来回路−1の発振周波数対回路抵抗及び容量シミュレーション結果−3を示す図である。It is a figure which shows the oscillation frequency versus circuit resistance and capacity | capacitance simulation result-3 of the conventional circuit-1. 従来のインバーター発振回路例−2を示す図である。It is a figure which shows the conventional inverter oscillation circuit example-2. 従来のインバーター発振回路例−3を示す図である。It is a figure which shows the conventional inverter oscillation circuit example-3.

符号の説明Explanation of symbols

z1〜z7 2端子のインピーダンス回路
INV インバーターロジック
gm 相互コンダクタンス
z1-z7 2-terminal impedance circuit INV inverter logic gm mutual conductance

Claims (6)

複数のロジックインバーターを備える発振回路であって、
第1のロジックインバーターの入力と接地間に設けられた第1の2端子インピーダンス回路と、
前記第1のロジックインバーターの出力と接地間に設けられた第2の2端子インピーダンス回路と、
前記第1のロジックインバーターの出力と第2のロジックインバーターの入力とを接続する第3の2端子インピーダンス回路と、
前記第2のロジックインバーターの入力と接地間に設けられた第4の2端子インピーダンス回路と、
前記第2のロジックインバーターの出力と接地間に設けられた第5の2端子インピーダンス回路と、
前記第2のロジックインバーターの出力と前記第1のロジックインバーターの入力間に設けられた第6の2端子インピーダンス回路と、
前記第1のロジックインバーターの入出力間に設けられた第7の2端子インピーダンス回路と、を備えることを特徴とする発振回路。
An oscillation circuit including a plurality of logic inverters,
A first two-terminal impedance circuit provided between the input of the first logic inverter and the ground;
A second two-terminal impedance circuit provided between the output of the first logic inverter and the ground;
A third two-terminal impedance circuit connecting the output of the first logic inverter and the input of the second logic inverter;
A fourth two-terminal impedance circuit provided between the input of the second logic inverter and the ground;
A fifth two-terminal impedance circuit provided between the output of the second logic inverter and the ground;
A sixth two-terminal impedance circuit provided between the output of the second logic inverter and the input of the first logic inverter;
And a seventh two-terminal impedance circuit provided between the input and output of the first logic inverter.
前記第1の2端子インピーダンス回路、第2の2端子インピーダンス回路、第4の2端子インピーダンス回路、および第5の2端子インピーダンス回路は、容量性リアクタンスであり、前記第3の2端子インピーダンス回路、および第7の2端子インピーダンス回路は抵抗であり、前記第6の2端子インピーダンス回路は圧電振動子と発振周波数調整用回路であることを特徴とする請求項1記載の発振回路。   The first two-terminal impedance circuit, the second two-terminal impedance circuit, the fourth two-terminal impedance circuit, and the fifth two-terminal impedance circuit are capacitive reactances, and the third two-terminal impedance circuit, 8. The oscillation circuit according to claim 1, wherein the seventh two-terminal impedance circuit is a resistor, and the sixth two-terminal impedance circuit is a piezoelectric vibrator and an oscillation frequency adjusting circuit. 前記第1及び第2のロジックインバーターの電源端子と接地端子間に、所定の電圧を供給する電圧部と、交流を接地するバイパス容量とをさらに備えることを特徴とする請求項2記載の発振回路。   3. The oscillation circuit according to claim 2, further comprising: a voltage unit that supplies a predetermined voltage between a power supply terminal and a ground terminal of the first and second logic inverters; and a bypass capacitor that grounds an alternating current. . 前記第3の2端子インピーダンス回路の抵抗を0Ωとすることを特徴とする請求項2または請求項3記載の発振回路。   4. The oscillation circuit according to claim 2, wherein the resistance of the third two-terminal impedance circuit is 0Ω. 前記第1、第2、第4、第5の2端子インピーダンス回路の容量性リアクタンス回路をインバーター内部の寄生容量で置き換えると共に、前記第3の2端子インピーダンス回路の抵抗を0Ωとすることを特徴とする請求項2または請求項3記載の発振回路。   The capacitive reactance circuit of the first, second, fourth, and fifth two-terminal impedance circuits is replaced with a parasitic capacitance inside an inverter, and the resistance of the third two-terminal impedance circuit is set to 0Ω. 4. The oscillation circuit according to claim 2 or 3, wherein: 請求項1から請求項5のいずれかに記載の発振回路を備えることを特徴とする発振器。   An oscillator comprising the oscillation circuit according to any one of claims 1 to 5.
JP2005379502A 2005-12-28 2005-12-28 Serial connection inverter piezoelectric oscillator Pending JP2007181089A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005379502A JP2007181089A (en) 2005-12-28 2005-12-28 Serial connection inverter piezoelectric oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005379502A JP2007181089A (en) 2005-12-28 2005-12-28 Serial connection inverter piezoelectric oscillator

Publications (1)

Publication Number Publication Date
JP2007181089A true JP2007181089A (en) 2007-07-12

Family

ID=38305748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005379502A Pending JP2007181089A (en) 2005-12-28 2005-12-28 Serial connection inverter piezoelectric oscillator

Country Status (1)

Country Link
JP (1) JP2007181089A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3676801A (en) * 1970-10-28 1972-07-11 Motorola Inc Stabilized complementary micro-power square wave oscillator
US4139826A (en) * 1977-12-27 1979-02-13 Rca Corporation Crystal overtone oscillator using cascade connected transistors
JPS5812402A (en) * 1981-07-15 1983-01-24 Seikosha Co Ltd Quartz oscillating circuit
JPS62213403A (en) * 1986-03-14 1987-09-19 Nippon Dempa Kogyo Co Ltd Charge prevention type mos-ic crystal oscillator
JPH07131249A (en) * 1993-10-29 1995-05-19 Meidensha Corp Crystal oscillation circuit
JPH07147512A (en) * 1993-11-22 1995-06-06 Hitachi Ltd Semiconductor integraed circuit and high frequency oscillating circuit
JPH08250686A (en) * 1995-03-14 1996-09-27 Kawasaki Steel Corp Oscillator circuit
JP2002204128A (en) * 2000-10-27 2002-07-19 Nippon Precision Circuits Inc Oscillation circuit and integrated circuit for oscillation

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3676801A (en) * 1970-10-28 1972-07-11 Motorola Inc Stabilized complementary micro-power square wave oscillator
US4139826A (en) * 1977-12-27 1979-02-13 Rca Corporation Crystal overtone oscillator using cascade connected transistors
JPS5812402A (en) * 1981-07-15 1983-01-24 Seikosha Co Ltd Quartz oscillating circuit
JPS62213403A (en) * 1986-03-14 1987-09-19 Nippon Dempa Kogyo Co Ltd Charge prevention type mos-ic crystal oscillator
JPH07131249A (en) * 1993-10-29 1995-05-19 Meidensha Corp Crystal oscillation circuit
JPH07147512A (en) * 1993-11-22 1995-06-06 Hitachi Ltd Semiconductor integraed circuit and high frequency oscillating circuit
JPH08250686A (en) * 1995-03-14 1996-09-27 Kawasaki Steel Corp Oscillator circuit
JP2002204128A (en) * 2000-10-27 2002-07-19 Nippon Precision Circuits Inc Oscillation circuit and integrated circuit for oscillation

Similar Documents

Publication Publication Date Title
TWI481187B (en) Piezoelectric oscillator
US20120197568A1 (en) Method of determining load capacitance of crystal oscillation circuit, and electronic apparatus using the same
JP2003243932A (en) Temperature compensated crystal oscillator
JP4892267B2 (en) Dual mode crystal oscillation circuit
JP2006197294A (en) Piezoelectric oscillator with a pair of symmetrical inverters
JP2007181089A (en) Serial connection inverter piezoelectric oscillator
JP2007116487A (en) High frequency colpitts oscillation circuit
CN111082802B (en) Crystal oscillator driving circuit
JP5262956B2 (en) Oscillator circuit
TW201240331A (en) Crystal oscillation circuit
JP5861221B2 (en) Piezoelectric vibration circuit
JP2007103985A (en) Crystal oscillator
JP2007266911A (en) Oscillator circuit
JP4165127B2 (en) Oscillation circuit and electronic equipment using the same
JP2004048652A (en) High frequency piezo-oscillator
JP2008005251A (en) Oscillation circuit
JP5796464B2 (en) OSCILLATION CIRCUIT AND METHOD FOR MANUFACTURING OSCILLATION CIRCUIT
JPH09223930A (en) Colpitts oscillation circuit
JP3299055B2 (en) Piezoelectric oscillation circuit
JP2004048667A (en) Piezoelectric oscillator
JP2008311980A (en) Piezoelectric oscillation circuit
JP2015171080A (en) voltage-controlled oscillator
JP2017046049A (en) Piezoelectric oscillation circuit
JPH03285403A (en) Piezoelectric oscillation circuit
JP4604825B2 (en) Piezoelectric oscillator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081002

A977 Report on retrieval

Effective date: 20110411

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110809