JP2007179965A - Solid electrolyte fuel cell, and method of manufacturing same - Google Patents

Solid electrolyte fuel cell, and method of manufacturing same Download PDF

Info

Publication number
JP2007179965A
JP2007179965A JP2005379597A JP2005379597A JP2007179965A JP 2007179965 A JP2007179965 A JP 2007179965A JP 2005379597 A JP2005379597 A JP 2005379597A JP 2005379597 A JP2005379597 A JP 2005379597A JP 2007179965 A JP2007179965 A JP 2007179965A
Authority
JP
Japan
Prior art keywords
fuel cell
stress relaxation
solid oxide
oxide fuel
joined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005379597A
Other languages
Japanese (ja)
Inventor
Itaru Shibata
格 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005379597A priority Critical patent/JP2007179965A/en
Publication of JP2007179965A publication Critical patent/JP2007179965A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid electrolyte fuel cell having flexibility required when stacking it as a matter of course, and having little possibility of causing a fault such as a crack or the like in a join part of a unit cell and a support plate supporting it. <P>SOLUTION: This solid electrolyte fuel cell is equipped with the unit cell 2 formed by holding an electrolyte layer 5 between a pair of electrode layers 3, 4, and the cell support plate 6 supporting the unit cell 2. A highly rigid join part 11 joined to the unit cell 2, and an assembly 10 positioned around the join part 11 while having a stress relaxing part 12 having rigidity lower than that of the join part 11 are provided between the unit cell 12 and the support plate 6. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、一対の電極層で固体電解質層を挟持して成る単セルを有する固体電解質型燃料電池及びその製造方法に関するものである。   The present invention relates to a solid oxide fuel cell having a single cell in which a solid electrolyte layer is sandwiched between a pair of electrode layers, and a method for manufacturing the same.

従来の固体電解質型燃料電池としては、例えば、燃料極層上に電解質層及び空気極層を順次積層して成る単セルと、この単セルを支持する金属製のセル支持板を備えたものがあり、この固体電解質型燃料電池では、単セルの電解質層とセル支持板とを接合するようにしている。   As a conventional solid electrolyte fuel cell, for example, a cell having a single cell formed by sequentially laminating an electrolyte layer and an air electrode layer on a fuel electrode layer, and a metal cell support plate that supports the single cell. In this solid oxide fuel cell, the electrolyte layer of the single cell and the cell support plate are joined.

このような固体電解質型燃料電池は、積層してスタック化する都合上、小型軽量化が要求されるうえ、熱的衝撃及び機械的衝撃を緩和するために柔軟性も要求されることから、セル支持板として金属製の薄板を使用するようにしている。
特開2004−220954号公報
Such a solid oxide fuel cell is required to be compact and lightweight for the convenience of stacking and stacking, and also to be flexible in order to mitigate thermal and mechanical shocks. A thin metal plate is used as the support plate.
JP 2004-220954 A

ところが、上記した従来の固体電解質型燃料電池において、セル支持板として金属製の薄板を使用するようにしているので、このセル支持板が組み立て時や電池使用時に変形して、単セルの電解質層との接合部分に熱的及び機械的ストレスが加わり、その結果、接合部分に亀裂などの不具合が生じる恐れがあるという問題を有しており、この問題を解決することが従来の課題となっていた。   However, in the above-described conventional solid oxide fuel cell, since a metal thin plate is used as the cell support plate, the cell support plate is deformed during assembly or when the battery is used. There is a problem that thermal and mechanical stress is applied to the joint part with the material, and as a result, there is a risk that a defect such as a crack may occur in the joint part. It has been a conventional problem to solve this problem It was.

本発明は、上記した従来の課題に着目してなされたものであり、スタック化に際して要求される柔軟性を有しているのは勿論のこと、単セルとこれを支持するセル支持板との接合部分に亀裂などの不具合が生じる可能性がほとんどない固体電解質型燃料電池及びその製造方法を提供することを目的としている。   The present invention has been made paying attention to the above-described conventional problems, and of course has the flexibility required for stacking, as well as a single cell and a cell support plate that supports the cell. It is an object of the present invention to provide a solid oxide fuel cell and a method for manufacturing the same, which are unlikely to cause defects such as cracks at the joint.

本発明は、一対の電極層間に電解質層を挟み込んで形成した単セルと、この単セルを支持する金属製のセル支持板を備えた固体電解質型燃料電池において、単セルとセル支持板との間には、単セルに接合する高剛性の接合部と、この接合部の周囲に位置して接合部よりも剛性を低くした応力緩和部を有する接合体を設けた構成としたことを特徴としており、この固体電解質型燃料電池の構成を前述した従来の課題を解決するための手段としている。   The present invention relates to a solid oxide fuel cell including a single cell formed by sandwiching an electrolyte layer between a pair of electrode layers, and a metal cell support plate that supports the single cell. In the meantime, it is characterized in that a joined body having a highly rigid joint part joined to a single cell and a stress relaxation part located around the joint part and having lower rigidity than the joint part is provided. Therefore, the configuration of the solid oxide fuel cell is used as a means for solving the above-described conventional problems.

本発明の固体電解質型燃料電池では、金属製のセル支持板が、組み立て時や電池使用時に変形したとしても、単セルとセル支持板との間に位置する接合体の低剛性の応力緩和部が、セル支持板の変形を柔軟に吸収するので、単セルと接合体との接合部分には熱的及び機械的ストレスがほとんど伝わらないこととなり、また、例え単セルと接合体との接合部分に僅かながら熱的及び機械的ストレスが加わったとしても、接合体の接合部を高剛性としていることから、単セルとの接合部分に亀裂などの不具合が生じることが回避されることとなる。   In the solid oxide fuel cell of the present invention, even if the metal cell support plate is deformed during assembly or when the battery is used, the low-rigidity stress relaxation portion of the joined body located between the single cell and the cell support plate However, since the deformation of the cell support plate is flexibly absorbed, thermal and mechanical stress is hardly transmitted to the joint portion between the single cell and the joined body, and for example, the joint portion between the single cell and the joined body. Even if a slight amount of thermal and mechanical stress is applied, since the joint portion of the joined body has high rigidity, it is possible to avoid the occurrence of defects such as cracks at the joint portion with the single cell.

本発明によれば、上記した構成としているので、スタック化する際に要求される柔軟性を従来同様に保持することができるのは言うまでもなく、単セルとこれを支持するセル支持板との接合部分に亀裂などの不具合が生じる可能性がほとんど皆無の固体電解質型燃料電池を提供することができるという非常に優れた効果がもたらされる。   According to the present invention, since it is configured as described above, it is needless to say that the flexibility required for stacking can be maintained as in the conventional case, and the unit cell and the cell support plate that supports the cell are joined. This provides an excellent effect that a solid oxide fuel cell can be provided which has almost no possibility of occurrence of defects such as cracks in the portion.

本発明の固体電解質型燃料電池において、単セルと集電体を介して接触する金属製のセパレータと、このセパレータを支持する金属製のセパレータ支持板との間にも、セパレータに接合する高剛性の接合部と、この接合部の周囲に位置して接合部よりも剛性を低くした応力緩和部を有する接合体を設けた構成とすることができる。   In the solid oxide fuel cell of the present invention, high rigidity that is bonded to a separator between a metal separator that contacts a single cell via a current collector and a metal separator support plate that supports the separator. And a joined body having a stress relieving portion which is positioned around the joint portion and has rigidity lower than that of the joint portion.

この場合には、金属製のセパレータが、組み立て時や電池使用時に変形したとしても、セパレータとセパレータ支持板との間に位置する接合体の低剛性の応力緩和部が、セパレータの変形を柔軟に吸収するので、セパレータと集電体との間及び集電体と単セルの電極部分との間に接触不良が生じることが回避されることとなる。   In this case, even if the metal separator is deformed during assembly or when the battery is used, the low-rigidity stress relaxation portion of the joined body located between the separator and the separator support plate flexibly deforms the separator. Absorption causes avoidance of contact failure between the separator and the current collector and between the current collector and the electrode portion of the single cell.

また、本発明の固体電解質型燃料電池において、接合体の応力緩和部の周囲に位置してセル支持板又はセパレータ支持板と接合する接合部を、応力緩和部よりも高い剛性の接合部とした構成を採用することが可能であり、この際、接合体の応力緩和部を挟んで位置する接合部は、いずれも略同一の断面形状を成している構成とすることができる。   Further, in the solid oxide fuel cell of the present invention, the joint portion that is positioned around the stress relaxation portion of the joined body and is joined to the cell support plate or the separator support plate is a joint portion having higher rigidity than the stress relaxation portion. It is possible to adopt a configuration, and in this case, all of the joint portions located across the stress relaxation portion of the joined body may have a substantially identical cross-sectional shape.

この構成を採用すると、例えば、金属製のセル支持板が、組み立て時や電池使用時に変形したとしても、接合体の低剛性の応力緩和部が、セル支持板の変形を柔軟に吸収するので、セル支持板に対する接合体の接合部分には熱的及び機械的ストレスがほとんどかからないこととなり、また、例え接合部分に僅かながら熱的及び機械的ストレスが加わったとしても、接合体の接合部を高剛性としていることから、セル支持板に対する接合部分に亀裂などの不具合が生じることが回避されることとなる。   Adopting this configuration, for example, even if the metal cell support plate is deformed at the time of assembly or battery use, the low-rigidity stress relaxation part of the joined body flexibly absorbs the deformation of the cell support plate. The joined part of the joined body to the cell support plate is hardly subjected to thermal and mechanical stress, and even if a slight thermal and mechanical stress is applied to the joined part, the joined part of the joined body is increased. Since it is rigid, it is avoided that defects such as cracks occur in the joint portion with respect to the cell support plate.

さらに、本発明の固体電解質型燃料電池において、接合体の接合部及び応力緩和部を同一の材料、例えば、フェライト系ステンレスで形成した構成を採用することができ、この際、接合体の接合部及び応力緩和部を一体で成形して成るものとしたり、互いに別体を成す接合部及び応力緩和部をロウ付けなどによって接合して成るものとしたりしてもよい。   Furthermore, in the solid oxide fuel cell according to the present invention, it is possible to employ a configuration in which the joint portion and the stress relaxation portion of the joined body are formed of the same material, for example, ferritic stainless steel. In addition, the stress relaxation portion may be integrally formed, or the joint portion and the stress relaxation portion that are separate from each other may be joined by brazing or the like.

ここで、接合体の接合部及び応力緩和部に剛性の差を持たせる手段として、接合体の応力緩和部の肉厚を高剛性の接合部よりも薄くして剛性を低くする構成を用いることが可能であり、具体的には、接合体の応力緩和部をその断面が溝形状や鉤形状や波形を成すものとした構成とすることが望ましい。   Here, as a means for giving a difference in rigidity between the joint part and the stress relaxation part of the joined body, use a configuration in which the thickness of the stress relaxation part of the joined body is made thinner than that of the high-rigidity joint to lower the rigidity. Specifically, it is desirable that the stress relaxation portion of the joined body has a configuration in which the cross section has a groove shape, a saddle shape, or a waveform.

さらにまた、本発明の固体電解質型燃料電池において、接合体の接合部及び応力緩和部を互いに異なる材料で形成してもよい。例えば、接合体の接合部をフェライト系ステンレスから成るものとし、応力緩和部をオーステナイト系ステンレスから成るものとすることができる。   Furthermore, in the solid oxide fuel cell of the present invention, the joint portion and the stress relaxation portion of the joined body may be formed of different materials. For example, the joint of the joined body can be made of ferritic stainless steel, and the stress relaxation part can be made of austenitic stainless steel.

上記した固体電解質型燃料電池のいずれかを製造するに際しては、単セルとセル支持板との間に、高剛性の接合部及びこの接合部よりも剛性を低くした応力緩和部を有する接合体を配置し、接合体の接合部を単セルに接合すると共に、応力緩和部側をセル支持板に接合して、単セルとセル支持板とを結合する製造方法を採用することができる。   When manufacturing any of the solid oxide fuel cells described above, a joined body having a highly rigid joint portion and a stress relaxation portion having a rigidity lower than that of the joint portion between the single cell and the cell support plate. It is possible to employ a manufacturing method in which the single cell and the cell support plate are joined by arranging and joining the joint portion of the joined body to the single cell and joining the stress relaxation portion side to the cell support plate.

この際、接合体の接合部と単セルとの接合には、熱膨張率を合わせることを考慮して、バリウム酸化物,シリカ,アルミナ及びカルシアから成るガラス(BSACガラスと称する;Ba(52wt%)−SiO(33wt%)−Al(3wt%)−CaO(12wt%))を用いることが望ましい。 At this time, in consideration of matching the coefficient of thermal expansion for joining the joint portion of the joined body and the single cell, glass composed of barium oxide, silica, alumina and calcia (referred to as BSAC glass; Ba (52 wt%) ) -SiO 2 (33wt%) - Al 2 O 3 (3wt%) - it is desirable to use CaO (12wt%)).

そして、本発明において、上記した固体電解質型燃料電池のいずれかを積層することで、固体電解質型燃料電池のスタック構造体を形成することができ、この際、固体電解質型燃料電池の金属製のセル支持板やセパレータが柔軟性を有しているので、運転時における熱的衝撃及び機械的衝撃が緩和されることとなる。   In the present invention, by stacking any of the solid oxide fuel cells described above, a stack structure of the solid oxide fuel cell can be formed. At this time, the metal structure of the solid oxide fuel cell is made of metal. Since the cell support plate and the separator have flexibility, thermal shock and mechanical shock during operation are alleviated.

以下、本発明を実施例により更に詳細に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention still in detail, this invention is not limited to a following example.

[実施例1]
図1は、本発明の固体電解質型燃料電池の一実施例を示しており、図1に示すように、この固体電解質型燃料電池1は、一対の電極層3,4間に電解質層5を挟み込んで形成した単セル2と、この単セル2を支持する金属製のセル支持板6を備た全体で円盤状を成すものであって、単セル2とセル支持板6との間には、単セル2に接着材14を介して接合する高剛性の接合部11と、この接合部11の周囲に位置して接合部11よりも剛性を低くした応力緩和部12と、この応力緩和部の周囲に位置してセル支持板6と接合する高剛性の接合部13を有する接合体10が設けてあり、この際、接合体10の応力緩和部12を挟んで位置する接合部11,13は、いずれも略同一の断面四角形状を成している。
[Example 1]
FIG. 1 shows an embodiment of a solid oxide fuel cell according to the present invention. As shown in FIG. 1, this solid oxide fuel cell 1 has an electrolyte layer 5 between a pair of electrode layers 3 and 4. The single cell 2 formed by sandwiching it and a metal cell support plate 6 that supports the single cell 2 form a disk shape as a whole, and between the single cell 2 and the cell support plate 6 A high-rigidity joint 11 joined to the single cell 2 via the adhesive 14, a stress relaxation part 12 positioned around the joint 11 and having a lower rigidity than the joint 11, and the stress relaxation part Is provided with a joint 10 having a highly rigid joint 13 that is joined to the cell support plate 6, and at this time, joints 11 and 13 that are located across the stress relaxation part 12 of the joint 10. Have substantially the same cross-sectional square shape.

この実施例において、単セル2は、いわゆる燃料極支持型セルであって、ニッケル及び8YSZ(8mol%イットリア安定化ジルコニア)から成るφ80mmで且つ厚さ0.6mmのNi−YSZサーメット多孔質層を燃料極層3とし、この燃料極層3の上面の全面に、電解質層5として膜厚8μmの8YSZを成膜すると共に、この電解質層5の上面における中心からφ60mmの範囲に、空気極層4として膜厚15μmのランタン−ストロンチウム−マンガン酸化物を成膜して単セル2を形成した。   In this embodiment, the unit cell 2 is a so-called fuel electrode support type cell, and has a Ni—YSZ cermet porous layer having a diameter of 80 mm and a thickness of 0.6 mm made of nickel and 8YSZ (8 mol% yttria stabilized zirconia). As the fuel electrode layer 3, 8YSZ having a thickness of 8 μm is formed as the electrolyte layer 5 on the entire upper surface of the fuel electrode layer 3, and the air electrode layer 4 is within a range of φ60 mm from the center on the upper surface of the electrolyte layer 5. A single cell 2 was formed by forming a lanthanum-strontium-manganese oxide film having a thickness of 15 μm.

一方、セル支持板6は、肉厚100μmのフェライト系ステンレス(SUS430)を用いて、ドーナツ形状に形成した。   On the other hand, the cell support plate 6 was formed into a donut shape using a ferrite stainless steel (SUS430) having a thickness of 100 μm.

単セル2とセル支持板6との間に位置する接合体10は、図2にも示すように、厚さ0.4mmで且つ幅4mmの四角形断面を有する外径φ80mmのリング状を成すフェライト系ステンレス(SUS430)製の接合部11と、厚さ0.4mmで且つ幅4mmの四角形断面を有する外径φ100mmのリング状を成すフェライト系ステンレス(SUS430)製の接合部13とを、応力緩和部12としての厚み50μmのフェライト系ステンレス(SUS430)箔で接合して成り、接合部11,13は、応力緩和部12に対してニッケル/銀ロウによるロウ付けにより接合した。   As shown in FIG. 2, the joined body 10 positioned between the single cell 2 and the cell support plate 6 is a ferrite having a ring shape with an outer diameter of φ80 mm having a square cross section with a thickness of 0.4 mm and a width of 4 mm. Stress relaxation between a joint 11 made of a stainless steel (SUS430) and a joint 13 made of a ferritic stainless steel (SUS430) having a ring shape with an outer diameter of φ100 mm having a square cross section with a thickness of 0.4 mm and a width of 4 mm The part 12 is formed by joining with a ferritic stainless steel (SUS430) foil having a thickness of 50 μm, and the joints 11 and 13 are joined to the stress relaxation part 12 by brazing with nickel / silver brazing.

この場合、接合体10の応力緩和部12をその断面が溝形状となるように成形し、溝の深さを約0.2mmに調整した。   In this case, the stress relaxation part 12 of the joined body 10 was molded so that the cross section thereof had a groove shape, and the depth of the groove was adjusted to about 0.2 mm.

そして、単セル2の電解質層5と接合体10の接合部11とをBSACガラス14を介して接合すると共に、接合体10の接合部13とセル支持板6とを接合して、この実施例の固体電解質型燃料電池1を得た。   And while joining the electrolyte layer 5 of the single cell 2 and the junction part 11 of the conjugate | zygote 10 via the BSAC glass 14, the junction part 13 and the cell support plate 6 of the conjugate | zygote 10 are joined, and this Example The solid oxide fuel cell 1 was obtained.

次いで、このようにして得た固体電解質型燃料電池1を順次積層し、すなわち、図3に示すように、接合体10で接合して成る単セル2及びセル支持板6を平板状のセパレータ7及び図4に示す集電体8とともに順次積層し、セル支持板6及びセパレータ7をステンレス製のフレーム9にBSACガラス14を介して接合固定して、15段(図3では3段)のスタック構造体を得た。   Next, the solid oxide fuel cells 1 thus obtained are sequentially stacked, that is, as shown in FIG. 3, the single cell 2 and the cell support plate 6 joined by the joined body 10 are formed into a flat plate separator 7. 4 and the current collector 8 shown in FIG. 4, and the cell support plate 6 and the separator 7 are joined and fixed to the stainless steel frame 9 through the BSAC glass 14 to form a 15-stage stack (3 stages in FIG. 3). A structure was obtained.

そこで、上記スタック構造体における固体電解質型燃料電池1の単セル2の空気極層4側に空気を供給すると共に、単セル2の燃料極層3側に水素を供給して、室温から700℃の範囲で運転させたところ、30回の昇降温を繰り返しても、単セル2及びセル支持板6のみならず、単セル2と接合体10の接合部11との接合部分にも亀裂などの不具合が生じることはなかった。また、当然のことながら、アノード室及びカソード室間のガスリークも発生しなかった。   Accordingly, air is supplied to the air electrode layer 4 side of the unit cell 2 of the solid oxide fuel cell 1 in the stack structure, and hydrogen is supplied to the fuel electrode layer 3 side of the unit cell 2 to increase the temperature from room temperature to 700 ° C. When the temperature was increased and decreased 30 times, not only the single cell 2 and the cell support plate 6 but also the joint portion between the single cell 2 and the joint portion 11 of the joined body 10 were cracked. There were no problems. As a matter of course, no gas leak occurred between the anode chamber and the cathode chamber.

これにより、この実施例における固体電解質型燃料電池1及びこれを積層して成るスタック構造体が、要求される柔軟性を従来同様に保持しつつ、優れた耐久性を有していることが実証できた。   As a result, it has been demonstrated that the solid oxide fuel cell 1 and the stack structure formed by laminating the same in this example have excellent durability while maintaining the required flexibility as in the past. did it.

[実施例2]
図5は、本発明の固体電解質型燃料電池の他の実施例を示しており、図5に示すように、この実施例の固体電解質型燃料電池21が、先の実施例の固体電解質型燃料電池1と相違するところは、接合体30が、厚さ0.4mmで且つ幅4mmの四角形断面を有する外径φ80mmのリング状を成すフェライト系ステンレス(SUS430)製の接合部31と、厚さ1.0mmで且つ幅4mmの四角形断面を有する外径φ100mmのリング状を成すフェライト系ステンレス(SUS430)製の接合部33とを、応力緩和部32としての厚み50μmのフェライト系ステンレス(SUS430)箔で接合して成っている点にあり、他の構成は先の実施例と同じである。
[Example 2]
FIG. 5 shows another embodiment of the solid oxide fuel cell of the present invention. As shown in FIG. 5, the solid oxide fuel cell 21 of this embodiment is the same as that of the previous embodiment. The battery 1 is different from the battery 1 in that a joined body 30 is formed of a ferritic stainless steel (SUS430) joined portion 31 having a ring shape with an outer diameter of φ80 mm having a square cross section with a thickness of 4 mm and a thickness of 4 mm. A ferritic stainless steel (SUS430) foil having a thickness of 50 μm as a stress relieving portion 32 is formed by joining a joint 33 made of ferritic stainless steel (SUS430) having an outer diameter of φ100 mm having a square cross section of 1.0 mm and a width of 4 mm. The other structure is the same as the previous embodiment.

この実施例における固体電解質型燃料電池21を積層して成るスタック構造体を、先の実施例と同様に、室温から700℃の範囲で運転させたところ、30回の昇降温を繰り返しても、単セル2及びセル支持板6のみならず、単セル2と接合体30の接合部31との接合部分にも亀裂などの不具合が生じることはなかった。   The stack structure formed by laminating the solid oxide fuel cells 21 in this example was operated in the range of room temperature to 700 ° C. as in the previous example. In addition to the single cell 2 and the cell support plate 6, defects such as cracks did not occur in the joint portion between the single cell 2 and the joint portion 31 of the joined body 30.

したがって、この実施例における固体電解質型燃料電池21及びこれを積層して成るスタック構造体も、要求される柔軟性を従来同様に保持しつつ、優れた耐久性を有していることが実証できた。   Therefore, it can be demonstrated that the solid oxide fuel cell 21 and the stack structure formed by laminating the same in this embodiment also have excellent durability while maintaining the required flexibility as in the past. It was.

[実施例3]
図6は、本発明の固体電解質型燃料電池のさらに他の実施例を示しており、図6に示すように、この実施例の固体電解質型燃料電池41が、先の実施例の固体電解質型燃料電池1と相違するところは、接合体50の応力緩和部52をその断面が鉤形状となるように成形した点にあり、他の構成は先の実施例と同じである。
[Example 3]
FIG. 6 shows still another embodiment of the solid oxide fuel cell of the present invention. As shown in FIG. 6, the solid electrolyte fuel cell 41 of this embodiment is the same as the solid electrolyte type of the previous embodiment. The difference from the fuel cell 1 is that the stress relaxation portion 52 of the joined body 50 is formed so that the cross section thereof has a bowl shape, and other configurations are the same as those of the previous embodiment.

この実施例における固体電解質型燃料電池41を積層して成るスタック構造体を、先の実施例と同様に、室温から700℃の範囲で運転させたところ、30回の昇降温を繰り返しても、単セル2及びセル支持板6のみならず、単セル2と接合体50の接合部51との接合部分にも亀裂などの不具合が生じることはなかった。   When the stack structure formed by stacking the solid oxide fuel cells 41 in this example was operated in the range of room temperature to 700 ° C. as in the previous example, even if the temperature was raised and lowered 30 times, In addition to the single cell 2 and the cell support plate 6, defects such as cracks did not occur in the joint portion between the single cell 2 and the joint portion 51 of the joined body 50.

したがって、この実施例における固体電解質型燃料電池41及びこれを積層して成るスタック構造体も、要求される柔軟性を従来同様に保持しつつ、優れた耐久性を有していることが実証できた。   Therefore, it can be demonstrated that the solid oxide fuel cell 41 and the stack structure formed by laminating the same in this embodiment also have excellent durability while maintaining the required flexibility as in the past. It was.

[実施例4]
図7は、本発明の固体電解質型燃料電池のさらに他の実施例を示しており、図7に示すように、この実施例の固体電解質型燃料電池61が、先の実施例の固体電解質型燃料電池1と相違するところは、接合体70の応力緩和部72をその断面が波形となるように成形した点にあり、他の構成は先の実施例と同じである。
[Example 4]
FIG. 7 shows still another embodiment of the solid oxide fuel cell of the present invention. As shown in FIG. 7, the solid electrolyte fuel cell 61 of this embodiment is the same as the solid electrolyte type of the previous embodiment. The difference from the fuel cell 1 is that the stress relaxation portion 72 of the joined body 70 is shaped so that its cross section has a waveform, and other configurations are the same as in the previous embodiment.

この実施例における固体電解質型燃料電池61を積層して成るスタック構造体を、先の実施例と同様に、室温から700℃の範囲で運転させたところ、30回の昇降温を繰り返しても、単セル2及びセル支持板6のみならず、単セル2と接合体70の接合部71との接合部分にも亀裂などの不具合が生じることはなかった。   The stack structure formed by stacking the solid oxide fuel cells 61 in this example was operated in the range of room temperature to 700 ° C. as in the previous example. In addition to the single cell 2 and the cell support plate 6, defects such as cracks did not occur in the joint portion between the single cell 2 and the joint portion 71 of the joined body 70.

したがって、この実施例における固体電解質型燃料電池61及びこれを積層して成るスタック構造体も、要求される柔軟性を従来同様に保持しつつ、優れた耐久性を有していることが実証できた。   Therefore, it can be proved that the solid oxide fuel cell 61 and the stack structure formed by laminating the same in this embodiment also have excellent durability while maintaining the required flexibility as in the past. It was.

[実施例5]
図8は、本発明のさらに他の実施例における固体電解質型燃料電池81の金属製セパレータ87及びこのセパレータ87を支持する金属製セパレータ支持板88を示している。この実施例では、セパレータ87とセパレータ支持板88との間にも接合体90を設けており、他の構成は先の実施例1と同じである。
[Example 5]
FIG. 8 shows a metal separator 87 of a solid oxide fuel cell 81 and a metal separator support plate 88 that supports the separator 87 in still another embodiment of the present invention. In this embodiment, a joined body 90 is also provided between the separator 87 and the separator support plate 88, and other configurations are the same as those of the first embodiment.

この実施例において、セパレータ87及びセパレータ支持板88には、いずれも肉厚100μmのフェライト系ステンレス(SUS430)を用いた。   In this example, the separator 87 and the separator support plate 88 are both made of ferrite stainless steel (SUS430) having a thickness of 100 μm.

セパレータ87とセパレータ支持板88との間に位置する接合体90は、厚さ0.4mmで且つ幅4mmの四角形断面を有する外径φ80mmのリング状を成すフェライト系ステンレス(SUS430)製の接合部91と、厚さ0.4mmで且つ幅4mmの四角形断面を有する外径φ100mmのリング状を成すフェライト系ステンレス(SUS430)製の接合部93とを、応力緩和部92としての厚み50μmのフェライト系ステンレス(SUS430)箔で接合して成り、接合部91,93は、応力緩和部92に対してニッケル/銀ロウによるロウ付けにより接合した。   The joined body 90 positioned between the separator 87 and the separator support plate 88 is a joined part made of ferritic stainless steel (SUS430) having a ring shape with an outer diameter of φ80 mm having a square cross section with a thickness of 0.4 mm and a width of 4 mm. 91 and a ferrite-based stainless steel (SUS430) joint 93 having a ring shape with an outer diameter of φ100 mm having a square cross section with a thickness of 0.4 mm and a width of 4 mm is used as a stress-relieving portion 92 of a ferrite system having a thickness of 50 μm. It joined by stainless steel (SUS430) foil, and the joining parts 91 and 93 were joined to the stress relaxation part 92 by brazing with nickel / silver brazing.

この場合、接合体90の応力緩和部92をその断面が波形となるように成形した。   In this case, the stress relaxation portion 92 of the joined body 90 was molded so that the cross section thereof was a waveform.

そして、セパレータ87と接合体90の接合部91とを接合すると共に、接合体90の接合部93とセパレータ支持板88とを接合して、この実施例の固体電解質型燃料電池81を得た。   And while joining the separator 87 and the junction part 91 of the conjugate | zygote 90, the junction part 93 and the separator support plate 88 of the conjugate | zygote 90 were joined, and the solid oxide fuel cell 81 of this Example was obtained.

次いで、図9に示すように、このようにして得た固体電解質型燃料電池81を順次積層し、セル支持板6及びセパレータ支持板88をステンレス製のフレーム9にBSACガラス14を介して接合固定して、15段(図9では3段)のスタック構造体を得た。   Next, as shown in FIG. 9, the solid oxide fuel cells 81 thus obtained are sequentially stacked, and the cell support plate 6 and the separator support plate 88 are bonded and fixed to the stainless steel frame 9 via the BSAC glass 14. Thus, a stack structure having 15 levels (3 levels in FIG. 9) was obtained.

そこで、上記スタック構造体における固体電解質型燃料電池81の単セル2の空気極層4側に空気を供給すると共に、単セル2の燃料極層3側に水素を供給して、室温から700℃の範囲で運転させたところ、30回の昇降温を繰り返しても、単セル2及びセル支持板6のみならず、単セル2と接合体10との接合部分や、セパレータ87と接合体90との接合部分にも亀裂などの不具合が生じることはなかった。また、当然のことながら、アノード室及びカソード室間のガスリークも発生しなかった。   Accordingly, air is supplied to the air electrode layer 4 side of the single cell 2 of the solid oxide fuel cell 81 in the stack structure, and hydrogen is supplied to the fuel electrode layer 3 side of the single cell 2 so that the temperature is 700 ° C. from room temperature. When the temperature was raised and lowered 30 times, not only the single cell 2 and the cell support plate 6 but also the joined portion of the single cell 2 and the joined body 10 or the separator 87 and the joined body 90 There were no defects such as cracks at the joints. As a matter of course, no gas leak occurred between the anode chamber and the cathode chamber.

これにより、この実施例における固体電解質型燃料電池81及びこれを積層して成るスタック構造体が、要求される柔軟性を従来同様に保持しつつ、優れた耐久性を有していることが実証できた。   As a result, it has been demonstrated that the solid oxide fuel cell 81 and the stack structure formed by laminating the same in this embodiment have excellent durability while maintaining the required flexibility as in the past. did it.

加えて、この実施例では、金属製のセパレータ87及び金属製のセパレータ支持板88が、いずれも柔軟性を保ち得るので、セパレータ87と集電体8との間に接触不良が生じることが回避されることとなる。   In addition, in this embodiment, since both the metal separator 87 and the metal separator support plate 88 can maintain flexibility, it is avoided that a contact failure occurs between the separator 87 and the current collector 8. Will be.

上記した実施例では、本発明の固体電解質型燃料電池がいずれも円盤状を成している場合を例に挙げて説明したが、これに限定されるものではなく、例えば、四角形状を成していてもよい。   In the above-described embodiments, the solid oxide fuel cells of the present invention have been described by way of example in the form of a disk, but the present invention is not limited to this, and for example, a square shape is formed. It may be.

また、上記した実施例では、接合体の接合部及び応力緩和部をいずれもフェライト系ステンレスで形成した場合を例に挙げて説明したが、接合体の接合部及び応力緩和部を互いに異なる材料で形成して、応力緩和部のヤング率を接合部のヤング率よりも大きく設定するように成してもよく、例えば、接合体の接合部をフェライト系ステンレスから成るものとし、応力緩和部をオーステナイト系ステンレスから成るものとすることができる。   Further, in the above-described embodiment, the case where both the joint portion and the stress relaxation portion of the joined body are made of ferritic stainless steel has been described as an example, but the joint portion and the stress relaxation portion of the joined body are made of different materials. The Young's modulus of the stress relaxation part may be set to be larger than the Young's modulus of the joint part. For example, the joint part of the joined body is made of ferritic stainless steel, and the stress relaxation part is made of austenite. It can be made of a stainless steel.

本発明の固体電解質型燃料電池の一実施例を示す平面説明図(a)及び断面説明図(b)である。(実施例1)BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory plan view (a) and an explanatory sectional view (b) showing one embodiment of a solid oxide fuel cell of the present invention. Example 1 図1の固体電解質型燃料電池の接合体を示す表裏からの全体斜視説明図(a),(b)である。(実施例1)It is the whole perspective explanatory drawing (a), (b) from the front and back which shows the assembly of the solid oxide fuel cell of FIG. Example 1 図1の固体電解質型燃料電池を積層して成るスタック構造体の断面説明図である。(実施例1)FIG. 2 is a cross-sectional explanatory view of a stack structure formed by stacking the solid oxide fuel cells of FIG. 1. Example 1 図3に示した集電体の全体斜視説明図である。(実施例1)FIG. 4 is an overall perspective view of the current collector shown in FIG. 3. Example 1 本発明の固体電解質型燃料電池の他の実施例を示す断面説明図である。(実施例2)It is a section explanatory view showing other examples of a solid oxide fuel cell of the present invention. (Example 2) 本発明の固体電解質型燃料電池のさらに他の実施例を示す断面説明図である。(実施例3)FIG. 6 is a cross-sectional explanatory view showing still another embodiment of the solid oxide fuel cell of the present invention. (Example 3) 本発明の固体電解質型燃料電池のさらに他の実施例を示す断面説明図である。(実施例4)FIG. 6 is a cross-sectional explanatory view showing still another embodiment of the solid oxide fuel cell of the present invention. (Example 4) 本発明のさらに他の実施例による固体電解質型燃料電池のセパレータを示す断面説明図である。(実施例5)FIG. 6 is a cross-sectional explanatory view showing a separator of a solid oxide fuel cell according to still another embodiment of the present invention. (Example 5) 図8の固体電解質型燃料電池を積層して成るスタック構造体の断面説明図である。(実施例5)FIG. 9 is a cross-sectional explanatory view of a stack structure formed by stacking the solid oxide fuel cells of FIG. 8. (Example 5)

符号の説明Explanation of symbols

1,21,41,61,81 固体電解質型燃料電池
2 単セル
3 燃料極層(電極層)
4 空気極層(電極層)
5 電解質層
6 セル支持板
7,87 セパレータ
8 集電体
10,30,50,70,90 接合体
11,13,31,33,51,71,91,93 接合部
12,32,52,72,92 応力緩和部
88 セパレータ支持板
1, 21, 41, 61, 81 Solid oxide fuel cell 2 Single cell 3 Fuel electrode layer (electrode layer)
4 Air electrode layer (electrode layer)
5 Electrolyte layer 6 Cell support plate 7, 87 Separator 8 Current collector 10, 30, 50, 70, 90 Junction 11, 13, 31, 33, 51, 71, 91, 93 Junction 12, 32, 52, 72 , 92 Stress relief part 88 Separator support plate

Claims (14)

一対の電極層間に電解質層を挟み込んで形成した単セルと、この単セルを支持する金属製のセル支持板を備えた固体電解質型燃料電池において、単セルとセル支持板との間には、単セルに接合する高剛性の接合部と、この接合部の周囲に位置して接合部よりも剛性を低くした応力緩和部を有する接合体を設けたことを特徴とする固体電解質型燃料電池。   In a solid electrolyte fuel cell including a single cell formed by sandwiching an electrolyte layer between a pair of electrode layers and a metal cell support plate that supports the single cell, between the single cell and the cell support plate, A solid oxide fuel cell comprising: a high-rigidity joint that is joined to a single cell; and a joined body that includes a stress relaxation portion that is positioned around the joint and has rigidity lower than that of the joint. 単セルと集電体を介して接触する金属製のセパレータと、このセパレータを支持する金属製のセパレータ支持板を備え、セパレータとセパレータ支持板との間にも、セパレータに接合する高剛性の接合部と、この接合部の周囲に位置して接合部よりも剛性を低くした応力緩和部を有する接合体を設けた請求項1に記載の固体電解質型燃料電池。   A metal separator that comes into contact with a single cell via a current collector and a metal separator support plate that supports the separator, and a high-rigidity bond between the separator and the separator support plate that is also bonded to the separator 2. The solid oxide fuel cell according to claim 1, further comprising a joint and a stress relaxation portion that is positioned around the joint and has rigidity lower than that of the joint. 接合体の応力緩和部の周囲に位置してセル支持板又はセパレータ支持板と接合する接合部を、応力緩和部よりも高い剛性の接合部とした請求項1又は2に記載の固体電解質型燃料電池。   3. The solid electrolyte fuel according to claim 1, wherein a joint portion positioned around the stress relaxation portion of the joined body and joined to the cell support plate or the separator support plate is a joint portion having higher rigidity than the stress relaxation portion. battery. 接合体の応力緩和部を挟んで位置する接合部は、いずれも略同一の断面形状を成している請求項3に記載の固体電解質型燃料電池。   4. The solid oxide fuel cell according to claim 3, wherein joints located across the stress relaxation part of the joined body have substantially the same cross-sectional shape. 5. 接合体の接合部及び応力緩和部を同一の材料で形成した請求項1〜4のいずれか一つの項に記載の固体電解質型燃料電池。   The solid oxide fuel cell according to any one of claims 1 to 4, wherein a joint portion and a stress relaxation portion of the joined body are formed of the same material. 接合体の応力緩和部の肉厚を高剛性の接合部よりも薄くして剛性を低くしてある請求項5に記載の固体電解質型燃料電池。   6. The solid oxide fuel cell according to claim 5, wherein the thickness of the stress relaxation part of the joined body is made thinner than that of the highly rigid joined part to lower the rigidity. 接合体の応力緩和部が断面溝形状を成している請求項6に記載の固体電解質型燃料電池。   The solid oxide fuel cell according to claim 6, wherein the stress relaxation portion of the joined body has a cross-sectional groove shape. 接合体の応力緩和部が断面鉤形状を成している請求項6に記載の固体電解質型燃料電池。   The solid oxide fuel cell according to claim 6, wherein the stress relaxation portion of the joined body has a cross-sectional saddle shape. 接合体の応力緩和部が断面波形を成している請求項6に記載の固体電解質型燃料電池。   The solid oxide fuel cell according to claim 6, wherein the stress relaxation portion of the joined body has a corrugated cross section. 接合部及び応力緩和部を一体で有する接合体がフェライト系ステンレスから成っている請求項1〜9のいずれか一つの項に記載の固体電解質型燃料電池。   The solid oxide fuel cell according to any one of claims 1 to 9, wherein the joined body having the joint portion and the stress relaxation portion integrally is made of ferritic stainless steel. 接合体の接合部及び応力緩和部を互いに異なる材料で形成し、応力緩和部のヤング率を接合部のヤング率よりも大きく設定した請求項1〜4のいずれか一つの項に記載の固体電解質型燃料電池。   The solid electrolyte according to any one of claims 1 to 4, wherein the bonded portion and the stress relaxation portion of the bonded body are formed of different materials, and the Young's modulus of the stress relaxation portion is set larger than the Young's modulus of the bonded portion. Type fuel cell. 接合体の接合部がフェライト系ステンレスから成り、応力緩和部がオーステナイト系ステンレスから成っている請求項11に記載の固体電解質型燃料電池。   The solid oxide fuel cell according to claim 11, wherein the joined portion of the joined body is made of ferritic stainless steel, and the stress relaxation portion is made of austenitic stainless steel. 請求項1〜12のいずれかに記載の固体電解質型燃料電池を製造するに際して、単セルとセル支持板との間に、高剛性の接合部及びこの接合部よりも剛性を低くした応力緩和部を有する接合体を配置し、接合体の接合部を単セルに接合すると共に、応力緩和部側をセル支持板に接合して、単セルとセル支持板とを結合することを特徴とする固体電解質型燃料電池の製造方法。   When manufacturing the solid oxide fuel cell according to any one of claims 1 to 12, between the single cell and the cell support plate, a high-rigidity joint and a stress relaxation part with lower rigidity than the joint. A solid body characterized in that a joined body having a structure is disposed, a joined portion of the joined body is joined to a single cell, a stress relaxation portion side is joined to a cell support plate, and the single cell and the cell support plate are joined. A method for producing an electrolyte fuel cell. 請求項1〜12のいずれかに記載の固体電解質型燃料電池を積層して成ることを特徴とする固体電解質型燃料電池のスタック構造体。   A stack structure of a solid oxide fuel cell, comprising the solid oxide fuel cell according to any one of claims 1 to 12.
JP2005379597A 2005-12-28 2005-12-28 Solid electrolyte fuel cell, and method of manufacturing same Withdrawn JP2007179965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005379597A JP2007179965A (en) 2005-12-28 2005-12-28 Solid electrolyte fuel cell, and method of manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005379597A JP2007179965A (en) 2005-12-28 2005-12-28 Solid electrolyte fuel cell, and method of manufacturing same

Publications (1)

Publication Number Publication Date
JP2007179965A true JP2007179965A (en) 2007-07-12

Family

ID=38304924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005379597A Withdrawn JP2007179965A (en) 2005-12-28 2005-12-28 Solid electrolyte fuel cell, and method of manufacturing same

Country Status (1)

Country Link
JP (1) JP2007179965A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119107A1 (en) * 2008-03-28 2009-10-01 三菱マテリアル株式会社 Flat-plate solid oxide fuel cell
JP2010021038A (en) * 2008-07-11 2010-01-28 Nippon Telegr & Teleph Corp <Ntt> Solid oxide fuel cell stack
JP2010021037A (en) * 2008-07-11 2010-01-28 Nippon Telegr & Teleph Corp <Ntt> Solid oxide fuel cell stack, and manufacturing method therefor
JP2011503790A (en) * 2007-11-09 2011-01-27 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング High temperature fuel cell stack and manufacturing method thereof
JP2015022925A (en) * 2013-07-19 2015-02-02 本田技研工業株式会社 Fuel cell module
JP2015032559A (en) * 2013-08-06 2015-02-16 日本特殊陶業株式会社 Solid oxide fuel cell stack and interconnector with separator
JP2019216041A (en) * 2018-06-13 2019-12-19 日産自動車株式会社 Cell unit of solid oxide fuel cell and solid oxide fuel cell

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011503790A (en) * 2007-11-09 2011-01-27 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング High temperature fuel cell stack and manufacturing method thereof
WO2009119107A1 (en) * 2008-03-28 2009-10-01 三菱マテリアル株式会社 Flat-plate solid oxide fuel cell
JP2010021038A (en) * 2008-07-11 2010-01-28 Nippon Telegr & Teleph Corp <Ntt> Solid oxide fuel cell stack
JP2010021037A (en) * 2008-07-11 2010-01-28 Nippon Telegr & Teleph Corp <Ntt> Solid oxide fuel cell stack, and manufacturing method therefor
JP2015022925A (en) * 2013-07-19 2015-02-02 本田技研工業株式会社 Fuel cell module
US9972856B2 (en) 2013-07-19 2018-05-15 Honda Motor Co., Ltd. Fuel cell module
JP2015032559A (en) * 2013-08-06 2015-02-16 日本特殊陶業株式会社 Solid oxide fuel cell stack and interconnector with separator
JP2019216041A (en) * 2018-06-13 2019-12-19 日産自動車株式会社 Cell unit of solid oxide fuel cell and solid oxide fuel cell
JP7095425B2 (en) 2018-06-13 2022-07-05 日産自動車株式会社 Solid oxide fuel cell cell unit and solid oxide fuel cell

Similar Documents

Publication Publication Date Title
JP2007179965A (en) Solid electrolyte fuel cell, and method of manufacturing same
JP5679893B2 (en) Solid oxide fuel cell and method for producing the same
US8043760B2 (en) Electrochemical cell stacks
JP5233181B2 (en) Fuel cell
JP6147606B2 (en) Solid oxide fuel cell stack
JP5203569B2 (en) Solid oxide fuel cell and solid oxide fuel cell stack
JP2006236989A (en) Unit battery cell for fuel battery
JP2007115481A (en) Solid oxide fuel cell board
JP4940536B2 (en) Fuel cell
JP5255327B2 (en) Reactor
JP5007918B2 (en) Gas seal part for fuel cell and manufacturing method thereof
JP5267774B2 (en) Fuel cell separator
JP2006172964A (en) Stack structure of solid electrolyte fuel cell
JP5280173B2 (en) Reactor
EP1936725B1 (en) Device with ceramic thin plate member and metal thin plate member
JP6177620B2 (en) Solid oxide fuel cell stack and interconnector with separator
JP2009054599A (en) Fuel cell
JP5208622B2 (en) Method for assembling a solid oxide fuel cell
JP2007018855A (en) Fuel cell stack structural body
JP2008034229A (en) Manufacturing method of hydrogen separation membrane fuel cell
JP5727915B2 (en) Solid oxide fuel cell, solid oxide fuel cell main body, and method for producing solid oxide fuel cell
JP2015032557A (en) Solid oxide fuel cell stack and interconnector with separator
JP2008004427A (en) Fuel cell
JP6741218B2 (en) Fuel cell
JP6856125B2 (en) Fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090915