JP5267774B2 - Fuel cell separator - Google Patents

Fuel cell separator Download PDF

Info

Publication number
JP5267774B2
JP5267774B2 JP2008077245A JP2008077245A JP5267774B2 JP 5267774 B2 JP5267774 B2 JP 5267774B2 JP 2008077245 A JP2008077245 A JP 2008077245A JP 2008077245 A JP2008077245 A JP 2008077245A JP 5267774 B2 JP5267774 B2 JP 5267774B2
Authority
JP
Japan
Prior art keywords
separator
fuel cell
packaging
filling
packaging member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008077245A
Other languages
Japanese (ja)
Other versions
JP2009231172A (en
Inventor
竜也 矢口
靖志 中島
和史 竹内
寛和 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2008077245A priority Critical patent/JP5267774B2/en
Publication of JP2009231172A publication Critical patent/JP2009231172A/en
Application granted granted Critical
Publication of JP5267774B2 publication Critical patent/JP5267774B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、燃料電池ユニットにおいて、単セルに供給する燃料ガス及び酸化剤ガスの夫々の流域を分離するのに用いられる燃料電池用セパレータに関するものである。   The present invention relates to a fuel cell separator used for separating the flow areas of fuel gas and oxidant gas supplied to a single cell in a fuel cell unit.

従来、燃料電池用のセパレータとしては、固体電解質板の一方の面に燃料極を設けると共に他方の面に空気極を設けた単電池に対して、ランタンクロマイト系のセラミックス材料から成り且つ燃料極側となる表面に耐熱性良導電性材料層を設けたものがあった(特許文献1参照)。
特開平9−190829号公報
Conventionally, as a separator for a fuel cell, it is made of a lanthanum chromite ceramic material and has a fuel electrode side compared to a unit cell in which a fuel electrode is provided on one side of a solid electrolyte plate and an air electrode is provided on the other side. There was one provided with a heat-resistant and good conductive material layer on the surface (see Patent Document 1).
Japanese Patent Laid-Open No. 9-190829

ところで、固体電解質型の燃料電池では、電気化学反応による発熱反応がガスの組成と流す方向に依存するため、温度分布の不均一が発生しやすい。このため、ランタンクロマイトのようなセラミックス材料を用いた従来のセパレータにあっては、熱伝導性が非常に低いことから、燃料電池を急速に起動すると、温度分布の不均一に起因する熱応力によって変形し、電気的抵抗が高くなって出力が低下したり、単セル(単電池)との接合部を破損したりする恐れがあった。   By the way, in the solid electrolyte fuel cell, since the exothermic reaction due to the electrochemical reaction depends on the gas composition and the flowing direction, the temperature distribution is likely to be uneven. For this reason, in a conventional separator using a ceramic material such as lanthanum chromite, the thermal conductivity is very low, so when the fuel cell is started rapidly, it is caused by thermal stress caused by non-uniform temperature distribution. There is a risk of deformation, resulting in an increase in electrical resistance and a decrease in output, or damage to a joint with a single cell (unit cell).

本発明は、上記従来の状況に鑑みて成されたもので、セパレータを高熱伝導化させることで、燃料電池の定常運転時や急速起動時における温度分布の均一化を図ることができる燃料電池用セパレータを提供することを目的としている。   The present invention has been made in view of the above-described conventional situation. By making the separator highly thermally conductive, the fuel cell can be made uniform in temperature distribution during steady operation or rapid start-up of the fuel cell. It aims to provide a separator.

本発明の燃料電池用セパレータは、単セルと、単セルとの間にガス流路を形成する板状のセパレータを備えた燃料電池ユニットのセパレータである。そして、当該セパレータは、Cr含有Fe合金よりも高い熱伝導性を有する材料から成る充填部材と、Cr含有Fe合金よりも高い耐食性・耐酸化性を有する材料及び充填部材よりも高い耐食性・耐酸化性を有する材料のいずれか一方の材料から成る包装部材を備え、包装部材で充填部材を気密的に包装した構成としており、上記構成をもって従来の課題を解決するための手段としている。 The separator for a fuel cell of the present invention is a separator of a fuel cell unit including a single cell and a plate-like separator that forms a gas flow path between the single cells. The separator includes a filling member made of a material having higher thermal conductivity than the Cr-containing Fe alloy, a material having higher corrosion resistance / oxidation resistance than the Cr-containing Fe alloy, and a higher corrosion resistance / oxidation resistance than the filling member. The packaging member made of any one of the materials having the property is provided, and the filling member is hermetically packaged by the packaging member, and the above configuration is a means for solving the conventional problems.

本発明の燃料電池用セパレータは、上記構成を採用したことから、高熱伝導性と充分な耐食性・耐酸化性の両方を備えたものとなり、高熱伝導化により、燃料電池の定常運転時や急速起動時において温度分布を速やかに均一にすることができ、熱応力による変形や性能の低下などを防ぐことができる。また、とくに、包装部材で充填部材を気密的に包装したことから、包装部材の内部に空気や水蒸気が侵入して充填部材が酸化するような事態を未然に阻止することができる。
The fuel cell separator according to the present invention adopts the above-described configuration, so that it has both high thermal conductivity and sufficient corrosion resistance and oxidation resistance. At this time, the temperature distribution can be made uniform quickly, and deformation due to thermal stress, deterioration in performance, and the like can be prevented. In particular, since the filling member is hermetically packaged by the packaging member, it is possible to prevent a situation in which air or water vapor enters the inside of the packaging member and the filling member is oxidized.

図1は、燃料電池ユニットの一例を説明する図である。図示の燃料電池ユニットUは、単セル1を保持した円盤状のセル板2と、単セル1を含むセル板2との間に燃料ガスのガス流路を形成する円盤状のセパレータ3を備えている。単セル1は、固体電解質層を燃料極層と空気極層で挟んで成る発電要素であって、図示例のものは環状を成している。   FIG. 1 is a diagram illustrating an example of a fuel cell unit. The illustrated fuel cell unit U includes a disk-shaped separator 3 that forms a gas flow path for fuel gas between a disk-shaped cell plate 2 that holds a single cell 1 and a cell plate 2 that includes the single cell 1. ing. The single cell 1 is a power generation element in which a solid electrolyte layer is sandwiched between a fuel electrode layer and an air electrode layer, and the illustrated example has an annular shape.

また、セル板2とセパレータ3との間には、中央部にガスの供給路及び排出路を形成する内側リング4と、セル板2とセパレータ3の外周部間を封止する外側リング5と、弾力性を有する材料から成る燃料極側集電体6と、燃料ガスを単セル1の燃料極全体に流通させるための流路部品7が収容してある。さらに、セパレータ3の外側(図1で上側)には、空気極側の流路部品8と、空気極側集電体9と、別の内側リング4が設けてある。   Further, between the cell plate 2 and the separator 3, an inner ring 4 that forms a gas supply path and a discharge path in the center, and an outer ring 5 that seals between the outer periphery of the cell plate 2 and the separator 3. A fuel electrode side current collector 6 made of a material having elasticity and a flow path component 7 for allowing the fuel gas to flow through the entire fuel electrode of the single cell 1 are accommodated. Furthermore, on the outer side (upper side in FIG. 1) of the separator 3, an air electrode-side flow path component 8, an air electrode-side current collector 9, and another inner ring 4 are provided.

燃料電池ユニットUは、単セル1を保持したセル板2、セパレータ3、内側リング4,4、外側リング5、燃料極側集電体6、流路部品7,8及び空気極側集電体9を備えると共に、複数枚を積層して燃料電池スタックを構成する。また、燃料電池スタックは、図示しないケースに収容される。そして、中央に連続するガス供給路からセル板2とセパレータ3との間に燃料ガスを供給すると共に、ケース内に酸化剤ガスである空気を供給し、単セル1において電気化学反応による発電を行う。   The fuel cell unit U includes a cell plate 2 holding a single cell 1, a separator 3, inner rings 4 and 4, an outer ring 5, a fuel electrode side current collector 6, flow path components 7 and 8, and an air electrode side current collector. The fuel cell stack is configured by stacking a plurality of sheets. The fuel cell stack is accommodated in a case (not shown). And while supplying fuel gas between the cell board 2 and the separator 3 from the gas supply path which continues in the center, the air which is oxidant gas is supplied in a case, and electric power generation by an electrochemical reaction in the single cell 1 is carried out. Do.

上記の如き構成を有する固体電解質型の燃料電池は、電気自動車の電源として車載される。このような場合、燃料電池は、急速な起動や運転状況に応じた出力の増減などに対応できなければならない。   The solid electrolyte fuel cell having the above-described configuration is mounted on a vehicle as a power source for an electric vehicle. In such a case, the fuel cell must be able to cope with rapid start-up and increase / decrease in output according to the operating conditions.

以下、上記の燃料電池ユニットUに用いる本発明の燃料電池用セパレータの実施形態を説明する。   Hereinafter, embodiments of the fuel cell separator of the present invention used in the fuel cell unit U will be described.

図2に示すセパレータS1は、高熱伝導性を有する薄板状の充填部材11と、高耐食性及び耐酸化性を有する包装部材12を備え、包装部材12で充填部材11を包装した構成になっている。ここで、充填部材11は、Cr含有Fe合金よりも高い熱伝導性を有する材料から成る。他方、包装部材12は、Cr含有Fe合金よりも高い耐食性・耐酸化性を有する材料及び充填部材11よりも高い耐食性・耐酸化性を有する材料のいずれか一方の材料から成る。   The separator S1 shown in FIG. 2 includes a thin plate-like filling member 11 having high thermal conductivity and a packaging member 12 having high corrosion resistance and oxidation resistance, and the filling member 11 is packaged by the packaging member 12. . Here, the filling member 11 is made of a material having higher thermal conductivity than the Cr-containing Fe alloy. On the other hand, the packaging member 12 is made of any one of a material having higher corrosion resistance and oxidation resistance than the Cr-containing Fe alloy and a material having higher corrosion resistance and oxidation resistance than the filling member 11.

包装部材12は、例えば、SUS430を材料とし且つ厚さが50μm程度の2枚の薄板12a,12aから成るものである。図2(b)に示すセパレータS1は、両薄板12a,12aの外周端部を互いに相手側に約90度折り曲げ、充填部材11を間にして、一方の薄板12aの内側に他方の薄板12aを嵌合することで、包装部材12で充填部材11を包装したものである。また、図2(c)に示すセパレータS1は、充填部材11を間にし、両薄板12a,12aの外周端部を互いに相手側に折り込んで、包装部材12で充填部材11を包装したものである。   The packaging member 12 is made of, for example, two thin plates 12a and 12a made of SUS430 and having a thickness of about 50 μm. In the separator S1 shown in FIG. 2B, the outer peripheral ends of the thin plates 12a and 12a are bent by about 90 degrees toward each other, and the other thin plate 12a is placed inside one thin plate 12a with the filling member 11 therebetween. The filling member 11 is packaged with the packaging member 12 by fitting. Further, the separator S1 shown in FIG. 2C is obtained by packaging the filling member 11 with the packaging member 12 with the filling member 11 in between and the outer peripheral ends of the thin plates 12a and 12a folded into each other. .

図2(d)に示すセパレータS1は、充填部材11を間にして、両薄板12a,12aの外周端部同士を接合し、接合部分をレーザ溶接することで、包装部材12で充填部材11を気密的に包装したものである。また、図2(e)に示すセパレータS1は、両薄板12a,12aの外周端部を互いに相手側に約90度折り曲げ、充填部材11を間にして、一方の薄板12aの内側に他方の薄板12aを嵌合すると共に、嵌合部分を接着することで、包装部材12で充填部材11を気密的に包装したものである。なお、接着剤には、例えば、包装部材12の材料であるSUS430と同等の熱膨張率を有するBa−Ca−Si系ガラス接着剤を用いることができる。   The separator S1 shown in FIG. 2 (d) has the filling member 11 interposed therebetween, and the outer peripheral ends of the thin plates 12a and 12a are joined to each other, and the joined portions are laser-welded. It is airtightly packaged. Further, the separator S1 shown in FIG. 2 (e) is formed by bending the outer peripheral ends of the two thin plates 12a and 12a toward each other by about 90 degrees, with the filling member 11 therebetween, and the other thin plate inside the one thin plate 12a. The filling member 11 is hermetically packaged with the packaging member 12 by fitting the fitting portions 12a and bonding the fitting portions. In addition, for example, a Ba—Ca—Si glass adhesive having a thermal expansion coefficient equivalent to that of SUS430, which is a material of the packaging member 12, can be used as the adhesive.

ここで、高熱伝導性が要求される充填部材11には、Cu,Cu合金,Al,Al合金,Ni合金,Zn合金,Cr,Au,Ag,Mo,Mo合金,W,W合金,AlSi,AlSiC,ダイヤモンド,Alダイヤモンド,Cuダイヤモンド及びAgダイヤモンド等を用いることができる。   Here, the filling member 11 requiring high thermal conductivity includes Cu, Cu alloy, Al, Al alloy, Ni alloy, Zn alloy, Cr, Au, Ag, Mo, Mo alloy, W, W alloy, AlSi, AlSiC, diamond, Al diamond, Cu diamond, Ag diamond, or the like can be used.

また、高耐食性・高耐酸化性が要求される包装部材12には、高温下にて合金表面又は合金表面近傍にCr酸化物が形成されることで導電性が確保され且つ耐食性・耐酸化性に優れた13%以上Cr含有のFe合金を用いることができる。   In addition, the packaging member 12 requiring high corrosion resistance and high oxidation resistance is ensured of conductivity by forming Cr oxide on the alloy surface or in the vicinity of the alloy surface at a high temperature, and also has corrosion resistance and oxidation resistance. It is possible to use an Fe alloy containing 13% or more of Cr, which is excellent in the above.

さらに、包装部材12は、単セル1がイットリア系の固体酸化物型電解質を用いている場合には、単セル1の熱膨張率が11E−6[1/K]程度となるので、この単セル1との熱膨張の整合性から、15%以上Cr含有のフェライト系ステンレスであるSUS430、20%以上Cr含有したZMG232(日立金属)、及び鉄ベースのクロム合金であるCrofer22APU(Thyssen Krupp VDM)などを用いることができる。   Further, when the unit cell 1 uses a yttria-based solid oxide electrolyte, the packaging member 12 has a coefficient of thermal expansion of about 11E-6 [1 / K]. SUS430, which is a ferritic stainless steel containing 15% or more Cr, ZMG232 (Hitachi Metals) containing 20% or more Cr, and Crofer22APU (Thyssen Krupp VDM), which is an iron-based chromium alloy. Etc. can be used.

さらに、包装部材12には、充填部材11よりも高い耐食性・耐酸化性を有する材料として、アルミナ、ジルコニア等のセラミックスや、Pt,Au及びAgなどの貴金属を用いることができる。   Furthermore, ceramics such as alumina and zirconia, and noble metals such as Pt, Au, and Ag can be used for the packaging member 12 as a material having higher corrosion resistance and oxidation resistance than the filling member 11.

上記構成を備えたセパレータS1は、平面方向(平面に沿う方向)の熱伝導性が高いものとなり、発電時に発生する発熱分布による温度分布の不均一化が緩和されると共に、熱応力による変形が抑制され、単セル1に対して燃料極側集電体6を均一に押し付けることができる。これにより、良好な導電性が常に確保され、燃料電池の高効率化に貢献することができる。   The separator S1 having the above configuration has a high thermal conductivity in the plane direction (the direction along the plane), mitigating uneven temperature distribution due to heat generation distribution generated during power generation, and deformation due to thermal stress. The fuel electrode side current collector 6 can be uniformly pressed against the single cell 1. Thereby, good electrical conductivity is always ensured, and it can contribute to high efficiency of the fuel cell.

また、セパレータS1は、燃料電池の急速な起動時には、燃料電池の急加熱に伴って昇温することとなり、この際、均一に加熱することが困難であるが、高熱伝導化したものとなっているので、不均一な加熱であっても温度分布を速やかに均一にすることができ、単セル1及びセル板2に発生する熱応力を緩和させることができる。   Further, the separator S1 is heated with rapid heating of the fuel cell at the time of rapid start-up of the fuel cell. At this time, it is difficult to uniformly heat the separator S1, but it has a high thermal conductivity. Therefore, even if it is non-uniform heating, a temperature distribution can be made uniform quickly and the thermal stress which generate | occur | produces in the single cell 1 and the cell board 2 can be relieved.

さらに、一般に、耐食性・耐酸化性が高く且つ高熱伝導性を有する材料は、貴金属以外には存在しない。これに対して、セパレータS1では、耐食性・耐酸化性及び高熱伝導性の機能を分離して、包装部材12に高耐食性・高耐酸化性を持たせ、また、充填部材11に高熱伝導性を持たせて高熱伝導化しているので、充填部材11として比較的安価なCu,Alなどを用いることができ、製造コストの低減に貢献し得るものとなる。   Furthermore, in general, there is no material other than noble metals that has high corrosion resistance and oxidation resistance and high thermal conductivity. On the other hand, the separator S1 separates the functions of corrosion resistance, oxidation resistance and high thermal conductivity, gives the packaging member 12 high corrosion resistance and high oxidation resistance, and makes the filling member 11 have high thermal conductivity. Since it has a high thermal conductivity, relatively inexpensive Cu, Al, etc. can be used as the filling member 11, which can contribute to a reduction in manufacturing cost.

また、図2(d)(e)に示すセパレータS1のように、包装部材12で充填部材11を気密的に包装する場合、その接合手段には、シーム溶接、レーザ溶接及び拡散接合などを採用することができる。さらに、接着剤には、Ba,Ca及びSiなどを成分とするガラス接着剤や、Ni,Ag及びCu含有Agなどを成分とするロウ材などを用いることができる。   Further, when the filling member 11 is hermetically packaged with the packaging member 12 as in the separator S1 shown in FIGS. 2D and 2E, seam welding, laser welding, diffusion bonding, and the like are adopted as the joining means. can do. Furthermore, a glass adhesive containing Ba, Ca, Si, or the like as a component, a brazing material containing Ni, Ag, Cu-containing Ag, or the like as a component can be used as the adhesive.

上記の如く包装部材12で充填部材11を気密的に包装したセパレータS1は、包装部材12の内部に空気や水蒸気が侵入して充填部材11が酸化するような事態を未然に阻止することができる。   As described above, the separator S1 in which the filling member 11 is hermetically packaged by the packaging member 12 can prevent a situation in which air or water vapor enters the inside of the packaging member 12 and the filling member 11 is oxidized. .

さらに、本発明の燃料電池用セパレータは、より好ましい実施形態として、包装部材12と充填部材11とを密着させた構成にすることができる。   Furthermore, the separator for fuel cells of this invention can be set as the structure which contact | adhered the packaging member 12 and the filling member 11 as more preferable embodiment.

ここで、密着方法は、レーザー溶接、スポット溶接などの溶接や、Ni,Ti,Ag,Cu含有Agロウ付けの他、気密的に充填部材11を包装部材12で封止する場合には、内部を減圧とする手法などを採用することができる。   Here, in the case of sealing the filling member 11 with the packaging member 12 in addition to welding such as laser welding and spot welding, brazing of Ni, Ti, Ag, Cu containing Ag, or the like, A technique for reducing the pressure can be employed.

上記の如く包装部材12と充填部材11とを密着させたセパレータS1は、両部材11,12間の接触熱抵抗や電気的接触抵抗を大きく低減させることができ、また、当該セパレータS1自体の強度も向上させることができる。   The separator S1 in which the packaging member 12 and the filling member 11 are in close contact as described above can greatly reduce the contact thermal resistance and electrical contact resistance between the members 11 and 12, and the strength of the separator S1 itself. Can also be improved.

さらに、本発明の燃料電池用セパレータは、より好ましい実施形態として、包装部材12の熱膨張率と充填部材11の熱膨張率との相対差を概ね10%以下の構成にすることができる。   Furthermore, as a more preferred embodiment, the fuel cell separator of the present invention can have a configuration in which the relative difference between the thermal expansion coefficient of the packaging member 12 and the thermal expansion coefficient of the filling member 11 is approximately 10% or less.

一例として、包装部材12の材料がCrofer22APUである場合には、熱膨張率が10.E−6[1/K]となるため、充填部材11の熱膨張率が10.E−6[1/K]となる30%Cu含有Mo合金や、熱膨張率9〜10.E−6[1/K]の50%Cr含有Cu合金(JFE精密、JFEスチール:特開2005−330583号公報)等を用いることができる。ただし、両部材11,12の材料はこれらの限りではない。   As an example, when the material of the packaging member 12 is Crofer 22APU, the coefficient of thermal expansion is 10. Since E-6 [1 / K], the thermal expansion coefficient of the filling member 11 is 10. 30% Cu-containing Mo alloy that becomes E-6 [1 / K], and a coefficient of thermal expansion of 9 to 10. An E-6 [1 / K] 50% Cr-containing Cu alloy (JFE Precision, JFE Steel: JP-A-2005-330583) or the like can be used. However, the material of both members 11 and 12 is not limited to these.

上記のセパレータS1は、包装部材12の熱膨張率と充填部材11の熱膨張率との相対差を概ね10%以下とすることで、経験的には燃料電池の高温動作時においても、両部材11,12間に発生する熱応力を抑えて、当該セパレータS1の変形を抑えることができる。   The separator S1 has a relative difference between the thermal expansion coefficient of the packaging member 12 and the thermal expansion coefficient of the filling member 11 of approximately 10% or less, so that both members are empirically even during high temperature operation of the fuel cell. It is possible to suppress the deformation of the separator S <b> 1 by suppressing the thermal stress generated between 11 and 12.

さらに、本発明の燃料電池用セパレータは、より好ましい実施形態として、包装部材が、充填部材の熱変形に追従して包装部材と充填部材との密着状態を維持するための可変構造を備えた構成にすることができる。   Furthermore, the fuel cell separator according to the present invention has, as a more preferable embodiment, a structure in which the packaging member has a variable structure for maintaining the tight contact state between the packaging member and the filling member following the thermal deformation of the filling member. Can be.

図3(a)に示すセパレータS2は、図2に示すものと同様に円盤状であって、充填部材11と包装部材12を備えている。包装部材12は、厚さ30μm〜500μm程度の2枚の薄板12a,12aと、互いの外周部間を封止するリング状の外周部材12bで構成してある。また、包装部材12は、外周部材12bと充填部材11との間に隙間13を有し、この隙間13の両側が可変構造としての可撓部12c、12cになっている   The separator S2 shown in FIG. 3 (a) has a disk shape similar to that shown in FIG. 2 and includes a filling member 11 and a packaging member 12. The packaging member 12 includes two thin plates 12a and 12a having a thickness of about 30 μm to 500 μm and a ring-shaped outer peripheral member 12b that seals between the outer peripheral portions. Moreover, the packaging member 12 has the clearance gap 13 between the outer peripheral member 12b and the filling member 11, and both sides of this clearance gap 13 are the flexible parts 12c and 12c as a variable structure.

より具体的には、充填部材11の材料としてCu−Moを用いると共に、包装部材の材料としてCrofer22APUを用い、包装部材12の外周部をレーザ溶接により接合したものである。   More specifically, Cu—Mo is used as the material for the filling member 11 and Crofer 22APU is used as the material for the packaging member, and the outer peripheral portion of the packaging member 12 is joined by laser welding.

上記セパレータS2は、充填部材11が、厚さ方向及び平面方向(平面に沿う方向)に熱膨張した場合には、図3(b)に示すように、包装部材12が、可撓部12c及び隙間13により充填部材11の熱変形に追従する。また、充填部材11が、厚さ方向及び平面方向(平面に沿う方向)に収縮した場合には、図3(c)に示すように、包装部材12が、可撓部12cにより充填部材11の変形に追従する   In the separator S2, when the filling member 11 is thermally expanded in the thickness direction and the planar direction (the direction along the plane), as shown in FIG. The gap 13 follows the thermal deformation of the filling member 11. Further, when the filling member 11 contracts in the thickness direction and the planar direction (direction along the plane), the packaging member 12 is made of the filling member 11 by the flexible portion 12c as shown in FIG. Follow deformation

図3(d)に示すセパレータS2は、充填部材11と、厚さ30μm〜500μm程度の2枚の薄板12a,12aから成る包装部材12を備え、充填部材11を間にして、薄板12a,12aの外周部同士をシーム溶接により接合したものである。この場合、包装部材12は、可変構造として、平坦部から接合部に至る斜辺状の可撓部12c,12cを有している。   The separator S2 shown in FIG. 3D includes a filling member 11 and a packaging member 12 composed of two thin plates 12a and 12a having a thickness of about 30 μm to 500 μm, and the thin plates 12a and 12a are interposed between the filling members 11. Are joined by seam welding. In this case, the packaging member 12 has, as a variable structure, slanted side flexible portions 12c and 12c extending from the flat portion to the joint portion.

上記セパレータS2は、充填部材11が、厚さ方向及び平面方向(平面に沿う方向)に熱膨張した場合には、図3(e)に示すように、包装部材12が、可撓部12c及び隙間13により充填部材11の熱変形に追従する。また、充填部材11が、厚さ方向及び平面方向(平面に沿う方向)に収縮した場合には、図3(f)に示すように、包装部材12が、可撓部12cにより充填部材11の変形に追従する   When the filling member 11 is thermally expanded in the thickness direction and the planar direction (the direction along the plane), the packaging member 12 includes the flexible portion 12c and the separator S2, as shown in FIG. The gap 13 follows the thermal deformation of the filling member 11. In addition, when the filling member 11 contracts in the thickness direction and the planar direction (direction along the plane), the packaging member 12 is made of the filling member 11 by the flexible portion 12c as shown in FIG. Follow deformation

図3(g)に示すセパレータS2は、充填部材11と、厚さ30μm〜500μm程度の2枚の薄板12a,12aから成る包装部材12を備えている。包装部材12は、2枚の薄板12a,12aと、互いの外周部間を封止するリング状の外周部材12bで構成してある。また、包装部材12は、外周部材12bと充填部材11との間に隙間13を有し、この隙間13の両側に、可変構造として、互いに相手側に向けて屈曲した形状の可撓部12c、12cを有している。   A separator S2 shown in FIG. 3G includes a filling member 11 and a packaging member 12 composed of two thin plates 12a and 12a having a thickness of about 30 μm to 500 μm. The packaging member 12 includes two thin plates 12a and 12a and a ring-shaped outer peripheral member 12b that seals between the outer peripheral portions of each other. In addition, the packaging member 12 has a gap 13 between the outer peripheral member 12b and the filling member 11, and on both sides of the gap 13, a flexible portion 12c having a shape bent toward each other as a variable structure, 12c.

上記のセパレータS2の包装部材12は、例えば、可撓部12cをプレス成形し、両薄板12a,12及び外周部材12bをCu−Agロウ材により接合したものである。   For example, the packaging member 12 of the separator S2 is formed by press-molding the flexible portion 12c and joining the thin plates 12a and 12 and the outer peripheral member 12b with a Cu-Ag brazing material.

上記セパレータS2は、充填部材11が、厚さ方向及び平面方向(平面に沿う方向)に熱膨張した場合には、図3(h)に示すように、包装部材12が、可撓部12c及び隙間13により充填部材11の熱変形に追従する。また、充填部材11が、厚さ方向及び平面方向(平面に沿う方向)に収縮した場合には、図3(i)に示すように、包装部材12が、可撓部12cにより充填部材11の変形に追従する   When the filling member 11 is thermally expanded in the thickness direction and the planar direction (direction along the plane), the packaging member 12 includes the flexible portion 12c and the separator S2, as shown in FIG. The gap 13 follows the thermal deformation of the filling member 11. Further, when the filling member 11 contracts in the thickness direction and the planar direction (direction along the plane), the packaging member 12 is formed by the flexible portion 12c of the filling member 11 as shown in FIG. Follow deformation

上記の各セパレータS2は、包装部材12に可変構造としての可撓部12cを備えたものとしたことから、充填部材11に熱変形が生じても、これに追従して充填部材11と包装部材12との密着状態を維持することができ、両部材11,12間の伝導伝熱経路を常に確保することができる。   Since each of the separators S2 includes the flexible member 12c as a variable structure in the packaging member 12, even when the filling member 11 is thermally deformed, the filling member 11 and the packaging member follow the same. 12 can be maintained, and a conduction heat transfer path between the members 11 and 12 can always be secured.

また、上記の如く包装部材12に可変構造を設けたことにより、例えば450℃以上の高温動作をする燃料電池において、両部材11,12に異なる熱膨張率による変位差、とくに長手方向の変位差が大きくなる場合でも、包装部剤12の端部が変形することで、熱膨張に伴う熱応力を抑えることができる。   Further, by providing the variable structure in the packaging member 12 as described above, in the fuel cell that operates at a high temperature of, for example, 450 ° C. or more, the difference in displacement between the members 11 and 12 due to different coefficients of thermal expansion, particularly the displacement difference in the longitudinal direction. Even when becomes larger, the end portion of the packaging material 12 is deformed, so that thermal stress accompanying thermal expansion can be suppressed.

さらに、セル板2は、セラミックスや、セラミックスと金属との混合体であるサーメットなどで形成してあるため、厚みに若干のばらつきがある。しかし、当該セパレータS2を含む燃料電池ユニットUを積層した燃料電池スタックは、セル板2の厚みにばらつきがあるとしても、各燃料電池ユニットUにおけるセパレータS2の端部が可変構造により変形するので、セル板2の厚みに応じて積層順番や積層間隔を変えることなく、燃料電池ユニットUを容易に積層することができる。   Furthermore, since the cell plate 2 is formed of ceramics, cermet that is a mixture of ceramics and metal, etc., the thickness varies slightly. However, in the fuel cell stack in which the fuel cell units U including the separator S2 are stacked, even if the thickness of the cell plate 2 varies, the end of the separator S2 in each fuel cell unit U is deformed by the variable structure. The fuel cell unit U can be easily stacked without changing the stacking order or stacking interval according to the thickness of the cell plate 2.

さらに、本発明の燃料電池用セパレータは、より好ましい実施形態として、図1に示す如くセル板2とセパレータ3との間に弾力性を有する燃料極側集電体6を収容した燃料電池ユニットUに対し、充填部材11の領域が、当該セパレータの厚さ方向において、燃料極側集電体6の領域の少なくとも一部と重重なり合う構成にすることができる。   Further, the fuel cell separator according to the present invention is a fuel cell unit U in which a fuel electrode side current collector 6 having elasticity is accommodated between the cell plate 2 and the separator 3 as shown in FIG. On the other hand, the region of the filling member 11 can overlap with at least a part of the region of the fuel electrode side current collector 6 in the thickness direction of the separator.

図4(a)に示すセパレータS3は、先の実施形態と同様に円盤状を成していて、環状の充填部材11と包装部材12を備えている。セパレータS3とセル板2との間に介装した燃料極側集電体6も環状を成している。そして、図示のセパレータS3は、充填部材11の領域と燃料極側集電体6の領域とが、ほぼ全体で重なり合う状態になっている。   The separator S <b> 3 shown in FIG. 4A has a disk shape as in the previous embodiment, and includes an annular filling member 11 and a packaging member 12. The fuel electrode side current collector 6 interposed between the separator S3 and the cell plate 2 also has an annular shape. In the illustrated separator S3, the region of the filling member 11 and the region of the fuel electrode side current collector 6 are almost entirely overlapped.

図4(b)に示すセパレータS3は、円盤状を成していて、充填部材11が、円周方向に四分割してある。燃料極側充填部材6は環状を成している。これにより、図示のセパレータS3は、燃料極側集電体6に対して、充填部材11の領域が部分的に重なり合う状態になっている。   The separator S3 shown in FIG. 4B has a disc shape, and the filling member 11 is divided into four in the circumferential direction. The fuel electrode side filling member 6 has an annular shape. Thus, the illustrated separator S3 is in a state where the region of the filling member 11 partially overlaps the fuel electrode side current collector 6.

上記のセパレータS3は、燃料電池ユニットUを構成し、複数の燃料電池ユニットUを積層した際に、弾力性を有する燃料極側集電体6の反力により充填部材11と包装部材12との間に荷重が発生し、両部材11,12間に生じる接触熱抵抗を低減することができる。なお、充填部材の領域と集電体の領域とが全く重なり合わないセパレータでは、接触熱抵抗の低減効果が得られないことを確認した。   The separator S3 constitutes the fuel cell unit U. When the plurality of fuel cell units U are stacked, the separator S3 is formed between the filling member 11 and the packaging member 12 by the reaction force of the fuel electrode side current collector 6 having elasticity. A load is generated between them, and the contact thermal resistance generated between the members 11 and 12 can be reduced. It was confirmed that the effect of reducing contact thermal resistance could not be obtained with a separator in which the region of the filling member and the region of the current collector did not overlap at all.

また、図4(a)及び(b)には燃料極側集電体6の実施形態を示したが、空気極側集電体9に弾力性を備えることでも同様の効果を得ることができる。さらに、燃料極側集電体6と空気極側集電体9の両方に弾力性を備えることで、上記セパレータS3の両側にある集電体6,9の反力により、充填部材11と包装部材12に対して空気極側と燃料極側の両側で荷重を発生させることとなり、接触熱抵抗をさらに低減することができる。   4 (a) and 4 (b) show the embodiment of the fuel electrode side current collector 6, but the same effect can be obtained by providing the air electrode side current collector 9 with elasticity. . Furthermore, both the fuel electrode side current collector 6 and the air electrode side current collector 9 are provided with elasticity, so that the filling member 11 and the packaging are provided by the reaction force of the current collectors 6 and 9 on both sides of the separator S3. Loads are generated on both the air electrode side and the fuel electrode side of the member 12, and the contact thermal resistance can be further reduced.

さらに、本発明の燃料電池用セパレータは、より好ましい実施形態として、包装部材12の熱膨張率よりも充填部材11の熱膨張率が大きい構成とすることができる。   Furthermore, the separator for fuel cells of the present invention can be configured such that the thermal expansion coefficient of the filling member 11 is larger than the thermal expansion coefficient of the packaging member 12 as a more preferred embodiment.

図5(a)〜(d)に示すセパレータS4は、可変構造を有する包装部材12を備えたもの、すなわち図3(d)〜(i)に示すセパレータS2と同等の構成を備えると共に、充填部材11の材料として、包装部材12の材料であるCrofer22APUよりも高い熱膨張率を有するCuを用いたものである。   The separator S4 shown in FIGS. 5 (a) to 5 (d) has the same structure as the separator S2 shown in FIGS. 3 (d) to (i) and is filled with a packaging member 12 having a variable structure. As the material of the member 11, Cu having a higher thermal expansion coefficient than that of Crofer 22APU which is the material of the packaging member 12 is used.

また、包装部材12の材料として18%Cr含有Fe合金であるSUS430を用いた場合には、充填部材11の材料には、Cu,Cu合金,Al,Al合金,Ni合金,Zn合金,Au及びAgなどを用いることができる。   When SUS430, which is an 18% Cr-containing Fe alloy, is used as the material of the packaging member 12, the material of the filling member 11 includes Cu, Cu alloy, Al, Al alloy, Ni alloy, Zn alloy, Au and Ag or the like can be used.

上記のセパレータS4は、包装部材12の熱膨張率よりも充填部材11の熱膨張率を大きくすることで、少なくとも燃料電池の動作時に、充填部材11の熱膨張によって包装部材11と充填部材12とを密着させ、両部材11,12間の接触熱抵抗を低減させることができる。   Said separator S4 makes the thermal expansion coefficient of the filling member 11 larger than the thermal expansion coefficient of the packaging member 12, so that the packaging member 11, the filling member 12, The contact thermal resistance between the members 11 and 12 can be reduced.

さらに、本発明の燃料電池用セパレータは、より好ましい実施形態として、中央穴を有する円盤状を成し、包装部材12が、その外周端部に、本体部よりも熱膨張率の高い材料から成る外周部材12bを備えている構成とすることができる。また、燃料電池用セパレータは、さらに好ましい実施形態として、中央穴を有する円盤状を成し、包装部材12が、その内周端部に、本体部よりも熱膨張率の低い材料から成る内周部材12dを備えている構成とすることができる。   Further, as a more preferred embodiment, the fuel cell separator of the present invention has a disk shape having a central hole, and the packaging member 12 is made of a material having a higher thermal expansion coefficient than that of the main body at the outer peripheral end thereof. It can be set as the structure provided with the outer peripheral member 12b. Further, as a further preferred embodiment, the fuel cell separator has a disk shape having a central hole, and the packaging member 12 has an inner circumference made of a material having a lower thermal expansion coefficient than the main body at the inner circumference end. It can be set as the structure provided with the member 12d.

図6に示す燃料電池用セパレータS5は、中央穴Hを有する円盤状を成しており、環状の充填部材11を備えると共に、この充填部材11を包装部材12で包装した構成になっている。包装部材12は、2枚の薄板12a,12aを有し、両薄板12a,12aの外周部間に外周部材12bを介装すると共に、両薄板12a,12aの内周部間に内周部材12dを介装している。   The fuel cell separator S5 shown in FIG. 6 has a disk shape having a central hole H, and includes an annular filling member 11 and the filling member 11 is packaged by a packaging member 12. The packaging member 12 includes two thin plates 12a and 12a, and an outer peripheral member 12b is interposed between the outer peripheral portions of the two thin plates 12a and 12a, and an inner peripheral member 12d is provided between the inner peripheral portions of the two thin plates 12a and 12a. Is intervening.

また、先の図3(g)に示すセパレータS2では、可変構造として、包装部材12の外周部のみに屈曲形状の可撓部12cを備えている。これに対して、この実施形態のセパレータS5は、包装部材12の外周側と内周側に、可変構造としての可撓部12c,12cを備えている。よって、図3(g)と図6(b)は同様の断面形状を示すが、双方は切断位置が異なる。   Further, in the separator S2 shown in FIG. 3 (g), a flexible portion 12c having a bent shape is provided only on the outer peripheral portion of the packaging member 12 as a variable structure. On the other hand, the separator S5 of this embodiment includes flexible portions 12c and 12c as variable structures on the outer peripheral side and the inner peripheral side of the packaging member 12. Therefore, FIG. 3 (g) and FIG. 6 (b) show the same cross-sectional shape, but both have different cutting positions.

より具体的には、この実施形態の充填部材11の材料は、先の実施形態と同様に、Cu,Cu合金,Al,Al合金,Ni合金,Zn合金,Au及びAgなどであり、包装部材12の薄板12aの材料は、Crofer22APUやZMG232などである。   More specifically, the material of the filling member 11 of this embodiment is Cu, Cu alloy, Al, Al alloy, Ni alloy, Zn alloy, Au, Ag, etc., as in the previous embodiment. The material of the 12 thin plates 12a is Crofer 22APU, ZMG232, or the like.

そして、外周部材12bの材料には、例えばSUS316Lが用いられ、このほか、薄板12aにCrofer22APUを用いた場合には、オーステナイトステンレス、インコネル等のNi含有Fe合金などを用いることができる。また、内周部材12dの材料には、アルミナが用いられ、とくに、薄板12aにZMG232用いた場合には、アルミナのほかにシリカなどを用いることができる。   For example, SUS316L is used as the material of the outer peripheral member 12b. In addition, when Crofer 22APU is used for the thin plate 12a, Ni-containing Fe alloys such as austenitic stainless steel and inconel can be used. Further, alumina is used as the material of the inner peripheral member 12d. In particular, when ZMG232 is used for the thin plate 12a, silica or the like can be used in addition to alumina.

上記のセパレータS5は、包装部材12が、本体部よりも熱膨張率の高い材料から成る外周部材12bを備え、且つ外周部材12bが全周にわたって連続していることから、燃料電池の動作時において、包装部材12の外周部分が大きく熱膨張する。これにより、包装部材12の本体部が外側に引っ張られる状態になって、包装部材12が充填部材11に押付けられ、両部材11,12間の接触熱抵抗を低減させることができる。   In the separator S5, the packaging member 12 includes the outer peripheral member 12b made of a material having a higher thermal expansion coefficient than that of the main body, and the outer peripheral member 12b is continuous over the entire circumference. The outer peripheral portion of the packaging member 12 greatly expands. Thereby, the main-body part of the packaging member 12 will be in the state pulled outside, the packaging member 12 is pressed against the filling member 11, and the contact thermal resistance between both the members 11 and 12 can be reduced.

さらに、上記のセパレータS5は、包装部材12が、本体部よりも熱膨張率の低い材料から成る内周部材12dを備え、且つ内周部材12dが全周にわたって連続していることから、燃料電池の動作時において、包装部材12の内周部分が熱膨張しないので、包装部材12の本体部が内側に引っ張られる状態になる。これにより、包装部材12が充填部材11に押付けられ、両部材11,12間の接触熱抵抗を低減させることができる。   Further, in the separator S5 described above, the packaging member 12 includes an inner peripheral member 12d made of a material having a lower coefficient of thermal expansion than the main body, and the inner peripheral member 12d is continuous over the entire circumference. Since the inner peripheral portion of the packaging member 12 does not thermally expand during the operation, the main body of the packaging member 12 is pulled inward. Thereby, the packaging member 12 is pressed against the filling member 11, and the contact thermal resistance between the members 11 and 12 can be reduced.

したがって、図6に示すセパレータS5のように、外周部材12bと内周部材12dの両方を有する包装部材12を備えたものとすれば、熱変形した際に生じる包装部材12の押付け作用がより高められ、充填部材11と包装部材12の間の接触熱抵抗をより一層低減させるものとなる。   Therefore, if the packaging member 12 having both the outer peripheral member 12b and the inner peripheral member 12d is provided as in the separator S5 shown in FIG. 6, the pressing action of the packaging member 12 generated when thermally deformed is further increased. Thus, the contact thermal resistance between the filling member 11 and the packaging member 12 is further reduced.

さらに、本発明の燃料電池用セパレータは、より好ましい実施形態として、充填部材11と包装部材12の熱膨張率を一致させた構成にしても良い。   Furthermore, the fuel cell separator of the present invention may be configured such that the thermal expansion coefficients of the filling member 11 and the packaging member 12 are matched as a more preferred embodiment.

図7に示す燃料電池用セパレータS6は、先の図3(a)に示すものと同等の構成を備えている。そして、上記セパレータS6は、包装部材12の材料に、熱膨張率が10E−6[1/K]のSUS430を用いると共に、充填部材11の材料に、熱膨張率がほぼ同一で且つ熱伝導率が200[W/K]のCr−Cu複合材を用い、充填部材11包装部材12を図示しないドットパターンでスポット溶接したものである。   The fuel cell separator S6 shown in FIG. 7 has the same configuration as that shown in FIG. The separator S6 uses SUS430 having a thermal expansion coefficient of 10E-6 [1 / K] as the material of the packaging member 12, and has the same thermal expansion coefficient as the material of the filling member 11 and the thermal conductivity. Is 200 [W / K] Cr—Cu composite material, and the filling member 11 and the packaging member 12 are spot-welded with a dot pattern (not shown).

上記のセパレータS6は、充填部材11と包装部材12の熱膨張率が等しいので、溶接やロウ付等の手段により両部材11,12を容易に接合することができ、これにより両部材11,12間の接触熱抵抗を低減し得ると共に、セパレータ自体の機械強度を高めることもできる。   In the separator S6, since the thermal expansion coefficients of the filling member 11 and the packaging member 12 are equal, both the members 11 and 12 can be easily joined by means such as welding or brazing. In addition to reducing the contact thermal resistance, the mechanical strength of the separator itself can be increased.

さらに、本発明の燃料電池用セパレータは、より好ましい実施形態として、セル板2との間にガス流路を形成するための流路部品(図1参照)を一体的に備えた構成にすることができる。   Furthermore, the fuel cell separator of the present invention has a configuration in which a flow path component (see FIG. 1) for forming a gas flow path between the cell plate 2 and the cell plate 2 is integrally provided as a more preferred embodiment. Can do.

図8(a)及び(b)に示すセパレータS7は、セル板2との間に燃料ガスのガス流路を形成するためのアノード側の流路部品7を一体的に備えたものである。流路部品7は、包装部材12と同質の材料から成る包装用部品7aと、充填部材11と同質の材料から成る充填用部品7bを備えている。したがって、包装用部品7aに対して、充填用部品7bの方が高熱伝導性を有するものとなっている。   The separator S7 shown in FIGS. 8A and 8B is integrally provided with an anode side flow path component 7 for forming a fuel gas flow path between the separator S7. The flow path component 7 includes a packaging component 7 a made of the same material as the packaging member 12 and a filling component 7 b made of the same material as the filling member 11. Therefore, the filling component 7b has higher thermal conductivity than the packaging component 7a.

また、図8(c)及び(d)に示すセパレータS7は、酸化剤ガス(空気)のガス流路を形成するためのカソード側の流路部品8を一体的に備えたものである。流路部品8は、包装部材12と同質の材料から成り且つ包装部材12と一体化した包装用部品7aと、充填部材11と同質の材料から成り且つ充填部材11と一体化した充填用部品8bを備えている   Further, the separator S7 shown in FIGS. 8 (c) and 8 (d) is integrally provided with a cathode side flow path component 8 for forming a gas flow path of an oxidizing gas (air). The flow path component 8 is made of the same material as the packaging member 12 and integrated with the packaging member 12, and the filling component 8 b made of the same material as the filling member 11 and integrated with the filling member 11. Has

さらに、図8(e)に示すセパレータS7は、上記したアノード側の流路部品7とカソード側の流路部品8の両方を一体的に備えたものである。   Further, the separator S7 shown in FIG. 8 (e) integrally includes both the anode-side channel component 7 and the cathode-side channel component 8 described above.

上記のセパレータS7は、燃料ガスを流通させる流路部品7及び酸化剤ガスを流通させる流路部品8の少なくとも一方を一体化することで、セパレータ自体の機械強度を向上させることができると共に、流路部品内にも高熱伝導性を有する充填用部品7b、8bを設けることで、熱伝導を促進させる断面積が大きくなって、さらなる高熱伝導化を図ることができる。   The separator S7 can improve the mechanical strength of the separator itself by integrating at least one of the flow path component 7 for flowing the fuel gas and the flow path component 8 for flowing the oxidant gas. By providing the filling parts 7b and 8b having high thermal conductivity also in the road part, the cross-sectional area that promotes thermal conduction is increased, and higher thermal conductivity can be achieved.

さらに、本発明の燃料電池用セパレータは、より好ましい実施形態として、上記の如く流路部品7,8を一体化したうえで、包装用部品7a,8aの熱膨張率よりも充填用部品7b,8bの熱膨張率の方が大きい構成にすることができる。   Furthermore, as a more preferred embodiment, the fuel cell separator according to the present invention integrates the flow path parts 7 and 8 as described above, and then fills the parts 7b and 8b for filling more than the thermal expansion coefficients of the packaging parts 7a and 8a. It can be configured such that the thermal expansion coefficient of 8b is larger.

図9に示すセパレータS8は、アノード側の流路部材7を一体的に備えると共に、流路部材7が、包装部材12と別体の包装用部品7aと、充填部材11と別体の充填用部品7bを備えている。このとき、包装用部品7aの材料には、ZMG232を用いており、これに対して、充填用部品7bの材料には、ZMG232よりも熱膨張率が高いAuを用いている。   The separator S8 shown in FIG. 9 is integrally provided with the anode-side flow path member 7, and the flow path member 7 is a separate packaging component 7a from the packaging member 12, and the filling member 11 is a separate filling. A component 7b is provided. At this time, ZMG232 is used as the material of the packaging part 7a, whereas Au having a higher thermal expansion coefficient than that of ZMG232 is used as the material of the filling part 7b.

上記のセパレータS8は、図8に示す実施形態のセパレータS7と同等の効果を得ることができるうえに、充包装用部品7aの熱膨張率よりも充填用部品7bの熱膨張率を高いものとすることで、燃料電池の動作時に流路部品7における両形成部7a,7b間の接触熱抵抗をも低減させることができる。   The separator S8 can obtain the same effect as the separator S7 of the embodiment shown in FIG. 8, and has a higher thermal expansion coefficient of the filling part 7b than the thermal expansion coefficient of the filling and packaging part 7a. By doing so, the contact thermal resistance between the two forming portions 7a and 7b in the flow path component 7 can also be reduced during operation of the fuel cell.

また、図9中の拡大図に示すように、流路部品7とセル板2とが接触する部分において、充填用部品8bが熱膨張することで、セル板2への密着性が向上する。これにより、セル板2と流路部品7間の接触熱抵抗を低減させるだけでなく、セル板2と流路部品7との間の僅かな隙間を埋めることで、ガスの迂回を阻止することができると共に、電気的接触抵抗を低減させることができる。   Moreover, as shown in the enlarged view in FIG. 9, the adhesiveness to the cell plate 2 is improved by the thermal expansion of the filling component 8 b in the portion where the flow path component 7 and the cell plate 2 are in contact with each other. This not only reduces the contact thermal resistance between the cell plate 2 and the flow path component 7 but also prevents gas detouring by filling a slight gap between the cell plate 2 and the flow path component 7. And electrical contact resistance can be reduced.

さらに、本発明の燃料電池用セパレータは、より好ましい実施形態として、充填部材11と包装部材12の間に、双方の溶着を防止する溶着防止層を備えた構成とすることができる。   Furthermore, as a more preferred embodiment, the separator for a fuel cell of the present invention can be configured to include a welding prevention layer that prevents welding of both of the filling member 11 and the packaging member 12.

ここで、図2及び図3に示すセパレータS1,S2は、充填部材11と包装部材12とを密着させ、これにより、両部材11,12間の接触熱抵抗や電気的接触抵抗を低減するようにしている。ところが、充填部材11及び包装部材12の材料によっては、燃料電池の動作時の高熱により、とくに高熱伝導材である充填部材11が解けて包装部材12と溶着することがあり、この際、両部材11,12の熱膨張率が大きく異なると、一方の部材の熱変形によってセパレータ全体が変形する恐れがある。   Here, the separators S1 and S2 shown in FIGS. 2 and 3 bring the filling member 11 and the packaging member 12 into close contact with each other, thereby reducing the contact thermal resistance and the electrical contact resistance between the members 11 and 12. I have to. However, depending on the material of the filling member 11 and the packaging member 12, the filling member 11, which is a particularly high heat conductive material, may be dissolved and welded to the packaging member 12 due to high heat during operation of the fuel cell. If the thermal expansion coefficients of 11 and 12 are greatly different, the entire separator may be deformed due to thermal deformation of one member.

そこで、図10に示すセパレータS9は、充填部材11及び包装部材12の材料に応じて、両部材11,12の間に、双方の溶着を防止する溶着防止層14を設けている。より具体的には、充填部材11の材料はAuであり、包装部材12の材料はSUS316Lであり、充填部材11の表面にボロンナイトライド(BN)をスプレーコートしてこれを溶着防止層14とした。   Accordingly, the separator S9 shown in FIG. 10 is provided with a welding prevention layer 14 between the members 11 and 12 according to the material of the filling member 11 and the packaging member 12 to prevent the welding of both. More specifically, the material of the filling member 11 is Au, and the material of the packaging member 12 is SUS316L. The surface of the filling member 11 is spray coated with boron nitride (BN), and this is coated with the anti-welding layer 14. did.

なお、充填部材11が、Cu,Al,Ag及びAu等の比較的融点の低い材料である場合には、焼き付き防止剤であるAgペーストや、BNや、高耐熱コーティングであるTiNや、CrN等を溶着防止層14とする。   In addition, when the filling member 11 is a material having a relatively low melting point such as Cu, Al, Ag, and Au, Ag paste that is an anti-seize agent, BN, TiN that is a high heat resistant coating, CrN, or the like Is referred to as a welding prevention layer 14.

上記のセパレータS9は、充填部材11と包装部材12の間に溶着防止層14を設けたことにより、燃料電池の動作時の高温で充填部材11の表面が解けたとしても、両部材11,12の溶着や溶着に起因するセパレータの変形を未然に防ぐことができる。   Even if the surface of the filling member 11 is unraveled at a high temperature during the operation of the fuel cell by providing the welding prevention layer 14 between the filling member 11 and the packaging member 12 in the separator S9, both the members 11 and 12 are used. It is possible to prevent the separator from deforming due to welding or welding.

さらに、本発明の燃料電池用セパレータは、より好ましい実施形態として、包装部材12の外表面に、水素の拡散係数が包装部材12に比べて小さい膜を形成した構成とすることができる。   Furthermore, the fuel cell separator of the present invention can be configured such that a film having a smaller hydrogen diffusion coefficient than the packaging member 12 is formed on the outer surface of the packaging member 12 as a more preferred embodiment.

図11に示すセパレータS10は、Cu製の充填部材11と、厚さ100μmのSUS430製薄板12a,12a及び外周部材12bから成る包装部材12を備え、燃料電池ユニットUを構成する以前に、電気炉にて大気雰囲気900℃で3時間の焼成を行い、包装部材12の表面に、水素の拡散係数が包装部材12に比べて小さい被膜(例えば酸化被膜)15を形成したものである。   A separator S10 shown in FIG. 11 includes a packing member 11 made of Cu, a packaging member 12 made of SUS430 thin plates 12a, 12a and an outer peripheral member 12b having a thickness of 100 μm, and before constituting the fuel cell unit U, an electric furnace And a film (for example, an oxide film) 15 having a hydrogen diffusion coefficient smaller than that of the packaging member 12 is formed on the surface of the packaging member 12.

上記のセパレータS10は、充填部材11がCu等の水素脆化を起こす材料であって、なお且つCr含有Fe合金を含む包装部材12の薄板12aの厚みが200μm以下である場合には、水素が包装部材12中を拡散することがある。そこで、包装部材12の表面に上記の被膜5を形成しておくことで、包装部材12の厚み方向に拡散する水素の拡散係数を小さくして、包装部材12内に透過する水素量を低減することができ、これにより、Cu等から成る充填部材11の水素脆化を抑制することができる。   The separator S10 is a material in which the filling member 11 causes hydrogen embrittlement such as Cu, and when the thickness of the thin plate 12a of the packaging member 12 including the Cr-containing Fe alloy is 200 μm or less, The wrapping member 12 may diffuse. Therefore, by forming the coating film 5 on the surface of the packaging member 12, the diffusion coefficient of hydrogen diffusing in the thickness direction of the packaging member 12 is reduced, and the amount of hydrogen permeating into the packaging member 12 is reduced. Accordingly, hydrogen embrittlement of the filling member 11 made of Cu or the like can be suppressed.

上記の各実施形態で説明したセパレータS1〜S10は、図1に示すような燃料電池ユニットUを構成すると共に、その燃料電池ユニットUを積層して固体電解質型燃料電池を構成するものとなる。この際、燃料電池は、高温下で動作する固体酸化物型燃料電池である。固体酸化物型燃料電池に用いる材料としては、ジルコニア系電解質、セリア系の電解
質及びランタンガレード系電解質などがあるが、これらに限るものではない。
The separators S1 to S10 described in the above embodiments constitute a fuel cell unit U as shown in FIG. 1, and the fuel cell unit U is laminated to constitute a solid oxide fuel cell. In this case, the fuel cell is a solid oxide fuel cell that operates at a high temperature. Materials used for the solid oxide fuel cell include, but are not limited to, zirconia-based electrolytes, ceria-based electrolytes, and lanthanum garade-based electrolytes.

そして、本発明の燃料電池用セパレータを備えた燃料電池は、例えば450℃以上の高温下で動作することとなるが、セパレータが耐食性・耐酸化性を有するとともに高熱伝導化されたものとなっているので、セパレータにおける温度分布が速やかに均一になって、熱応力による変形を防止すると同時に、接触熱抵抗や電気的接触抵抗を大きく低減させることができ、良好な発電性能を維持することができる。   The fuel cell equipped with the fuel cell separator of the present invention operates at a high temperature of, for example, 450 ° C. or more, and the separator has corrosion resistance and oxidation resistance and is highly thermally conductive. As a result, the temperature distribution in the separator becomes uniform quickly, preventing deformation due to thermal stress, and at the same time, contact thermal resistance and electrical contact resistance can be greatly reduced, and good power generation performance can be maintained. .

本発明の燃料電池用セパレータは、その詳細な構成が上記各実施形態に限定されるものではなく、全体形状や各構成部位の形状、各構成部位の数、各構成部材の材料及びその組み合わせを適宜変更することが可能である。   The detailed configuration of the separator for a fuel cell of the present invention is not limited to each of the above embodiments, but the overall shape, the shape of each component, the number of each component, the material of each component, and the combination thereof It can be changed as appropriate.

本発明の燃料電池用セパレータを構成部材とする燃料電池ユニットを説明する分解状態の斜視図である。It is a perspective view of the decomposition | disassembly state explaining the fuel cell unit which uses the separator for fuel cells of this invention as a structural member. 本発明の燃料電池用セパレータの一実施形態を説明する図であって、セパレータの平面図(a)及び細部が異なる4形態の各々断面図(b)〜(e)である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure explaining one Embodiment of the separator for fuel cells of this invention, Comprising: It is each sectional drawing (b)-(e) of 4 forms from which the top view (a) and detail differ of a separator. 本発明の燃料電池用セパレータの他の実施形態を説明する図であって、細部が異なる3形態の各々断面図(a)〜(i)である。It is a figure explaining other embodiment of the separator for fuel cells of this invention, Comprising: It is each sectional drawing (a)-(i) of three forms from which a detail differs. 本発明の燃料電池用セパレータのさらに他の実施形態を説明する図であって、充填部材と集電体が全体的に重なり合った形態と部分的に重なり合った形態を示すセパレータの各々平面図(a)(d)、集電体の各々平面図(b)(e)及び燃料電池ユニットの各々断面図(c)(f)である。FIG. 9 is a diagram for explaining still another embodiment of the fuel cell separator of the present invention, and is a plan view of each separator showing a form in which the filling member and the current collector are entirely overlapped and partially overlapped (a) ) (D), (b) and (e), respectively, and cross-sectional views (c) and (f) of the fuel cell unit. 本発明の燃料電池用セパレータのさらに他の実施形態を説明する図であって、細部が異なる2形態の各々断面図(a)(c)及び各形態の要部の各々断面図(b)(d)である。It is a figure explaining other embodiment of the separator for fuel cells of this invention, Comprising: Each sectional drawing (a) (c) of two forms from which details differ, and each sectional drawing (b) of each principal part of each form ( d). 本発明の燃料電池用セパレータのさらに他の実施形態を説明する図であって、セパレータの平面図(a)及び断面図(b)である。It is a figure explaining other embodiment of the separator for fuel cells of the present invention, and is a top view (a) and a sectional view (b) of a separator. 本発明の燃料電池用セパレータのさらに他の実施形態を説明する図であって、セパレータの平面図(a)及び断面図(b)である。It is a figure explaining other embodiment of the separator for fuel cells of the present invention, and is a top view (a) and a sectional view (b) of a separator. 本発明の燃料電池用セパレータのさらに他の実施形態を説明する図であって、細部が異なる3形態の各々斜視図(a)(c)(e)及び各々断面図(b)(d)である。It is a figure explaining other embodiment of the separator for fuel cells of this invention, Comprising: In each perspective view (a) (c) (e) and each sectional drawing (b) (d) of three forms from which a detail differs is there. 本発明の燃料電池用セパレータのさらに他の実施形態を説明する図であって、セパレータの拡大図付の断面図である。It is a figure explaining other embodiment of the separator for fuel cells of the present invention, and is a sectional view with an enlarged drawing of a separator. 本発明の燃料電池用セパレータのさらに他の実施形態を説明する図であって、セパレータの平面図(a)及び断面図(b)である。It is a figure explaining other embodiment of the separator for fuel cells of the present invention, and is a top view (a) and a sectional view (b) of a separator. 本発明の燃料電池用セパレータのさらに他の実施形態を説明する図であって、セパレータの断面図である。It is a figure explaining other embodiment of the separator for fuel cells of the present invention, and is a sectional view of a separator.

符号の説明Explanation of symbols

S1〜S10 セパレータ
U 燃料電池ユニット
1 単セル
2 セル板
3 セパレータ
6 燃料極側集電体
7 8 流路部品
7a 8a 包装用部品
7b 6b 充填用部品
11 充填部材
12 包装部材
12a 薄板(包装部材)
12b 外周部材(包装部材)
12c 可撓部(可変構造)
12d 内周部材(包装部材)
14 溶着防止層
15 被膜
S1 to S10 Separator U Fuel cell unit 1 Single cell 2 Cell plate 3 Separator 6 Fuel electrode side current collector 7 8 Flow path component 7a 8a Packaging component 7b 6b Filling component 11 Filling member 12 Packaging member 12a Thin plate (packaging member)
12b Peripheral member (packaging member)
12c Flexible part (variable structure)
12d Inner peripheral member (packaging member)
14 Welding prevention layer 15 Coating

Claims (13)

単セルと、単セルとの間にガス流路を形成する板状のセパレータを備えた燃料電池ユニットのセパレータであって、
Cr含有Fe合金よりも高い熱伝導性を有する材料から成る充填部材と、
Cr含有Fe合金よりも高い耐食性・耐酸化性を有する材料及び充填部材よりも高い耐食性・耐酸化性を有する材料のいずれか一方の材料から成る包装部材を備え、
包装部材で充填部材を気密的に包装したことを特徴とする燃料電池用セパレータ。
A separator of a fuel cell unit comprising a plate-like separator that forms a gas flow path between a single cell and a single cell,
A filling member made of a material having higher thermal conductivity than the Cr-containing Fe alloy;
A packaging member made of any one of a material having higher corrosion resistance and oxidation resistance than a Cr-containing Fe alloy and a material having higher corrosion resistance and oxidation resistance than a filling member;
A separator for a fuel cell, wherein a filling member is hermetically packaged with a packaging member.
包装部材と充填部材とを密着させたことを特徴とする請求項1に記載の燃料電池用セパレータ。   The fuel cell separator according to claim 1, wherein the packaging member and the filling member are in close contact with each other. 包装部材が、充填部材の熱変形に追従して包装部材と充填部材との密着状態を維持するための可変構造を備えていることを特徴とする請求項2に記載の燃料電池用セパレータ。   The fuel cell separator according to claim 2, wherein the packaging member has a variable structure for following the thermal deformation of the filling member and maintaining a close contact state between the packaging member and the filling member. 燃料電池ユニットが、セル板とセパレータとの間に、弾力性を有する集電体を収容しており、充填部材の領域が、当該セパレータの厚さ方向において、集電体の領域の少なくとも一部と重なり合うことを特徴とする請求項1〜3のいずれか1項に記載の燃料電池用セパレータ。   The fuel cell unit accommodates an elastic current collector between the cell plate and the separator, and the region of the filling member is at least a part of the region of the current collector in the thickness direction of the separator. The fuel cell separator according to claim 1, wherein the fuel cell separator overlaps with the fuel cell separator. 包装部材の熱膨張率よりも充填部材の熱膨張率が大きいことを特徴とする請求項1〜4のいずれか1項に記載の燃料電池用セパレータ。   The separator for a fuel cell according to any one of claims 1 to 4, wherein a thermal expansion coefficient of the filling member is larger than a thermal expansion coefficient of the packaging member. 中央穴を有する円盤状のセパレータであって、包装部材が、その外周端部に、本体部よりも熱膨張率の高い材料から成る外周部材を備えていることを特徴とする請求項1〜5のいずれか1項に記載の燃料電池用セパレータ   6. A disc-shaped separator having a central hole, wherein the packaging member includes an outer peripheral member made of a material having a higher coefficient of thermal expansion than that of the main body at an outer peripheral end portion thereof. The separator for fuel cells according to any one of the above 中央穴を有する円盤状のセパレータであって、包装部材が、その内周端部に、本体部よりも熱膨張率の低い材料から成る内周部材を備えていることを特徴とする請求項1〜6のいずれか1項に記載の燃料電池用セパレータ。   2. A disc-shaped separator having a central hole, wherein the packaging member includes an inner peripheral member made of a material having a lower coefficient of thermal expansion than that of the main body at the inner peripheral end thereof. The separator for fuel cells according to any one of -6. セル板との間にガス流路を形成するための流路部品を一体的に備えたことを特徴とする請求項1〜7のいずれか1項に記載の燃料電池用セパレータ。   The fuel cell separator according to any one of claims 1 to 7, wherein a flow path component for forming a gas flow path between the cell plate and the cell plate is integrally provided. 流路部品が、包装部材と同質の材料から成る包装用部品と、充填部材と同質の材料から成る充填用部品を備えていることを特徴とする請求項8に記載の燃料電池用セパレータ。   9. The fuel cell separator according to claim 8, wherein the flow path component includes a packaging component made of the same material as the packaging member and a filling component made of the same material as the filling member. 包装用部品の熱膨張率よりも充填用部品の熱膨張率の方が大きいことを特徴とする請求項9に記載の燃料電池用セパレータ。   10. The fuel cell separator according to claim 9, wherein the thermal expansion coefficient of the filling part is larger than the thermal expansion coefficient of the packaging part. 充填部材と包装部材の間に、双方の溶着を防止する溶着防止層を備えたことを特徴とする請求項1記載の燃料電池用セパレータ。   The fuel cell separator according to claim 1, further comprising a welding prevention layer between the filling member and the packaging member to prevent welding of both. 包装部材の外表面に、水素の拡散係数が包装部材に比べて小さい膜を形成したことを特徴とする請求項1〜11のいずれか1項に記載の燃料電池用セパレータ。   The fuel cell separator according to any one of claims 1 to 11, wherein a film having a hydrogen diffusion coefficient smaller than that of the packaging member is formed on the outer surface of the packaging member. 請求項1〜12のいずれか1項の記載のセパレータを備えた燃料電池ユニットを積層して成ることを特徴とする固体電解質型燃料電池。   A solid oxide fuel cell comprising a stack of fuel cell units each including the separator according to any one of claims 1 to 12.
JP2008077245A 2008-03-25 2008-03-25 Fuel cell separator Expired - Fee Related JP5267774B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008077245A JP5267774B2 (en) 2008-03-25 2008-03-25 Fuel cell separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008077245A JP5267774B2 (en) 2008-03-25 2008-03-25 Fuel cell separator

Publications (2)

Publication Number Publication Date
JP2009231172A JP2009231172A (en) 2009-10-08
JP5267774B2 true JP5267774B2 (en) 2013-08-21

Family

ID=41246322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008077245A Expired - Fee Related JP5267774B2 (en) 2008-03-25 2008-03-25 Fuel cell separator

Country Status (1)

Country Link
JP (1) JP5267774B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101222722B1 (en) * 2010-09-13 2013-01-15 삼성전기주식회사 Interconnecting plate for solid oxide fuel cell and manufacturing method thereof, and solid oxide fuel cell using said interconnecting plate
EP3204975A4 (en) 2014-10-07 2018-11-21 Protonex Technology Corporation Sofc-conduction
JP6435785B2 (en) * 2014-11-07 2018-12-12 株式会社デンソー Fuel cell separator and fuel cell stack
KR101956235B1 (en) * 2015-09-15 2019-03-11 주식회사 엘지화학 Sealing material for solid oxide fuel cell, solid oxide fuel cell comprising the same and method for manufacturing the same
CN109845009B (en) * 2016-08-11 2022-10-25 新兴电力公司 Planar solid oxide fuel cell and stack

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4848664B2 (en) * 2005-04-22 2011-12-28 日産自動車株式会社 Solid oxide fuel cell and stack structure
JP5017857B2 (en) * 2005-12-16 2012-09-05 三菱マテリアル株式会社 Separator for fuel cell and solid oxide fuel cell

Also Published As

Publication number Publication date
JP2009231172A (en) 2009-10-08

Similar Documents

Publication Publication Date Title
US9812716B2 (en) Sealing assembly for a fuel cell stack having a coated metallic sheet intermediate element
JP4848664B2 (en) Solid oxide fuel cell and stack structure
JP4854237B2 (en) Solid oxide fuel cell and stack structure
TWI604656B (en) Hermetic high temperature dielectric conduit assemblies
JP5679893B2 (en) Solid oxide fuel cell and method for producing the same
JP5267774B2 (en) Fuel cell separator
JP5313128B2 (en) Electrochemical equipment
EP1249050A1 (en) Bipolar separator plate with improved wet seals
JP4438295B2 (en) Fuel cell
JP6147606B2 (en) Solid oxide fuel cell stack
US7601450B2 (en) Hybrid interconnect for a solid-oxide fuel cell stack
JP5093833B2 (en) Single cell for fuel cell
JP4666279B2 (en) Solid oxide fuel cell stack and solid oxide fuel cell
JP2011503790A (en) High temperature fuel cell stack and manufacturing method thereof
JP4900364B2 (en) Fuel cell
JP2014049324A (en) Fuel battery cell with separator, and fuel battery
JP5504145B2 (en) Fuel cell stack
JP2004281353A (en) Separator for fuel cell
JP6377177B2 (en) Airtight high temperature dielectric conduit assembly
JP2015032557A (en) Solid oxide fuel cell stack and interconnector with separator
JP6847401B2 (en) Cell unit
JP6177620B2 (en) Solid oxide fuel cell stack and interconnector with separator
JP5727432B2 (en) Fuel cell with separator, method for manufacturing the same, and fuel cell stack
JP5083644B2 (en) Stack structure and fuel cell
JP5492436B2 (en) Fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130423

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5267774

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees