JP2007178204A - Human body detecting sensor - Google Patents

Human body detecting sensor Download PDF

Info

Publication number
JP2007178204A
JP2007178204A JP2005375464A JP2005375464A JP2007178204A JP 2007178204 A JP2007178204 A JP 2007178204A JP 2005375464 A JP2005375464 A JP 2005375464A JP 2005375464 A JP2005375464 A JP 2005375464A JP 2007178204 A JP2007178204 A JP 2007178204A
Authority
JP
Japan
Prior art keywords
human body
detection
area
detection area
detection sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005375464A
Other languages
Japanese (ja)
Other versions
JP4607757B2 (en
Inventor
Tsutomu Shoji
勉 庄司
Naoteru Yatame
直輝 矢田目
Koji Takahashi
公司 高橋
Yasunari Shibata
恭成 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamagata Chino Corp
Chino Corp
Original Assignee
Yamagata Chino Corp
Chino Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamagata Chino Corp, Chino Corp filed Critical Yamagata Chino Corp
Priority to JP2005375464A priority Critical patent/JP4607757B2/en
Publication of JP2007178204A publication Critical patent/JP2007178204A/en
Application granted granted Critical
Publication of JP4607757B2 publication Critical patent/JP4607757B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a human body detection sensor capable of surely detecting the human body approaching toward the sensor entering into the detection area. <P>SOLUTION: The human detection sensor composed of a plurality of pyroelectric elements of dual element constitution paired with plus polarity elements and minus polarity elements, a plurality of pyroelectric elements 12 and a plurality of detection areas are formed, wherein the plurality of detection areas, the detection areas of plus polarity adjoining to other groups and at least either area of the minus polarity elements are in relation of inverse polarity, based on the energy variation amount of infrared collected from the plurality of detection areas, the wave from signal and previously set threshold value are compared, from this comparison result the logic synthesis is performed, then the approaching of the human body is detected. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、設定された検知エリア内への人体の進入を赤外線エネルギーの変動によって人体を検知するデュアルエレメント焦電素子を備えた人体検知センサに係り、特にセンサ本体の設置位置方向に向かって監視エリア内に進入する人体を確実に検知することのできる人体検知センサに関するものである。   The present invention relates to a human body detection sensor equipped with a dual element pyroelectric element that detects a human body by a change in infrared energy as the human body enters the set detection area, and particularly monitors the sensor body in the direction of the installation position. The present invention relates to a human body detection sensor that can reliably detect a human body entering an area.

従来より、例えば商業ビル、公共施設、集合住宅などの様々な場所において、人体等の移動物体の特定の監視エリア内への進入を検知するため、物体から放射される赤外線を利用した人体検知センサが備えられている。この人体検知センサは、検出素子として温度変化による誘電体内の自発分極の変化(焦電効果:pyroelectric effect )が誘起する電圧を検出する焦電素子を具備し、強誘電体(例えばPZT)の温度変化によって電荷を生じる焦電効果(パイロ効果)を利用しているセンサである(詳細は非特許文献1又は非特許文献2)。   Conventionally, in various places such as commercial buildings, public facilities, and apartment buildings, a human body detection sensor using infrared rays emitted from an object to detect the entry of a moving object such as a human body into a specific monitoring area. Is provided. This human body sensor includes a pyroelectric element that detects a voltage induced by a change in spontaneous polarization (pyroelectric effect) in a dielectric due to a temperature change as a detection element, and the temperature of a ferroelectric (eg, PZT). This is a sensor that uses a pyroelectric effect (pyro effect) that generates a charge by a change (for details, Non-Patent Document 1 or Non-Patent Document 2).

検知方法としては、例えば図12(a)に示すように、物の影や強風が吹く等に起因する検知エリアの背景の温度変化、外来の電波ノイズまたは太陽光等の外乱光等による誤検知をしないようにするため、建物の床面等に極性(「+」又は「−」)を有する2個一対の逆極性の検知エリア(E1)、(E2)を設定する。そして、この各検知エリアから放射される赤外線を集光してデュアルエレメント構成の焦電素子にそれぞれ入射させる。移動物体が(E1)から(E2)内へ移動した場合、まず、図12(b)に示すように、移動物体が(E1)内に進入したことにより(E1)内の赤外線エネルギー量が変化する(この場合、進入した検知エリアE1が+極性のため+側に出力する)。そして、(E1)から(E2)エリアへ移動物体が移動すると、図12(c)に示すように移動物体が(E2)内に進入したことで(E2)内の赤外線エネルギー量が変化する(この場合、E1と逆極性のため−側に出力する)。なお、移動物体が各エリア内で停止状態を維持した場合には、赤外線エネルギーの変化がないため波形が出力されない。そして、(E2)から移動物体が退去すると、図12(c)の波形は徐々に変化前に戻る。そして、図12(d)に示すように、この合成した赤外線エネルギー量の変化を焦電素子から電圧に変換して出力される電気信号により検知し、この電気信号が所定の閾値を超えた時に人体等の検知信号を出力している。また、外乱光や背景温度等赤外線エネルギー変化は、互いに打ち消し合ってキャンセルされるため、例えば図12(e)のようにほとんど出力されない。   As a detection method, for example, as shown in FIG. 12 (a), erroneous detection due to a change in the background temperature of the detection area caused by a shadow of an object or a strong wind blowing, external radio noise or ambient light such as sunlight. Therefore, two pairs of detection areas (E1) and (E2) having opposite polarities (“+” or “−”) on the floor of the building are set. And the infrared rays radiated from the respective detection areas are condensed and made incident on the pyroelectric elements having a dual element configuration. When the moving object moves from (E1) to (E2), first, as shown in FIG. 12B, the amount of infrared energy in (E1) changes due to the moving object entering (E1). (In this case, since the entering detection area E1 has a + polarity, it is output to the + side). When the moving object moves from (E1) to (E2) area, the amount of infrared energy in (E2) changes because the moving object enters (E2) as shown in FIG. In this case, it is output to the negative side because of the reverse polarity to E1). Note that when the moving object is kept stopped in each area, no waveform is output because there is no change in infrared energy. When the moving object leaves from (E2), the waveform in FIG. 12 (c) gradually returns to before the change. Then, as shown in FIG. 12 (d), the change in the synthesized infrared energy amount is detected by an electric signal output by converting the pyroelectric element into a voltage, and when the electric signal exceeds a predetermined threshold value. The detection signal of the human body etc. is output. Infrared energy changes such as ambient light and background temperature cancel each other and are therefore hardly output as shown in FIG.

また、各検知エリア(E1)、(E2)をセンサ設置方向に対して縦長形状に設定することにより、人体が検知エリア(E1)、(E2)に進入した場合は、人体が検知エリア(E1)、(E2)の上下方向の殆どのスペースを占めるよう位置して通過することにより、所定閾値よりも高いレベルの信号が出力され、一方、人体に対し格段に背の低い犬、猫等の小動物が検知エリア(E1)、(E2)に進入した場合には、検知エリア(E1)、(E2)の下部の一部分のスペースを占めるだけであって所定閾値よりも低いレベルの信号が出力されることにより、小動物による誤検知動作を防止するようにしている。   In addition, by setting the detection areas (E1) and (E2) to be vertically long with respect to the sensor installation direction, when the human body enters the detection areas (E1) and (E2), the human body is detected in the detection area (E1). ) And (E2) are positioned so as to occupy most of the vertical space, and a signal having a level higher than a predetermined threshold is output. On the other hand, a dog, cat, or the like that is much shorter than the human body is output. When a small animal enters the detection areas (E1) and (E2), it only occupies a part of the space below the detection areas (E1) and (E2), and a signal having a level lower than a predetermined threshold is output. This prevents false detection operations by small animals.

そして、上記構成による人体検知をより信頼性の高いものにするための、例えば図13(a)に示すように、(E1)をY1 方向に通過する場合、各検知エリア(E1)、(E2)間をY2 方向に通過する場合、(E2)をY3 方向に通過する場合など移動物体の通過方向に応じて各検知エリアごとに所定の閾値を設け、図13(b)〜(d)に示すように、移動物体がY1 〜Y3 の何れかの方向から検知エリア内に移動してきた際の赤外線エネルギー量を検知し、この赤外線エネルギー量が所定閾値を複数回越えた場合に、人体として判別する人体検知センサなども提案されている。
奥田晋也、金田重郎、芳賀博英著、「情報処理学会研究報告(アナログセンサ型焦電センサによる人間の室内位置・身長の判別法の提案)」、社団法人 情報処理学会(2004) 高野将一、伊藤 顕著、「光アライアンス(人体検知センサモジュール−焦電素子型赤外線センサと測距センサの人体検知への応用)」、日本工業出版(株)(2003)
Then, in order to make higher the reliability of the human body detection by the above configuration, for example, as shown in FIG. 13 (a), when passing through the (E1) in the Y 1 direction, the detection area (E1), ( when passing E2) between the in Y 2 direction, (the E2) is provided a predetermined threshold value for each detection area in response to the passing direction of the moving object such as when passing through the Y 3 direction, FIG. 13 (b) ~ ( As shown in d), when the amount of infrared energy is detected when the moving object moves into the detection area from any of Y 1 to Y 3 , and the amount of infrared energy exceeds a predetermined threshold value a plurality of times In addition, a human body detection sensor for determining a human body has been proposed.
Shinya Okuda, Shigeo Kaneda, Hirohide Haga, "Information Processing Society Research Report (Proposal of Discrimination Method of Human Indoor Position and Height Using Analog Sensor Type Pyroelectric Sensor)", Information Processing Society of Japan (2004) Shoichi Takano, Akira Ito, “Optical Alliance (Human Body Detection Sensor Module-Application of Pyroelectric Element Type Infrared Sensor and Ranging Sensor to Human Body Detection)”, Nihon Kogyo Publishing Co., Ltd. (2003)

ところで、この種の人体検知センサでは、特定の監視エリア内に進入する移動物体を検知するため、複数の検知エリアを設定して監視エリア内全てを監視する必要がある。よって、移動物体が検知エリア内のどの方向から進入した場合であっても検知できることが重要である。しかしながら、この種の人体検知センサにおいて、検知エリア内の赤外線エネルギーを集光する方向に対して直交する方向、すなわち検知エリアを横断する移動物体に対しては優れた検知能力を有するが、移動物体が人体検知センサの方向、すなわち検知エリアを縦断して人体検知センサの方向に進入してくる場合は、移動物体が徐々に検知エリア内に進入してくるため赤外線エネルギー量の変化が表れにくく、所定閾値を超える回数が1回であったりすることから人体であるか否かの判別に正確さを欠く性質がある。   By the way, in this type of human body detection sensor, in order to detect a moving object entering a specific monitoring area, it is necessary to set a plurality of detection areas and monitor all of the monitoring area. Therefore, it is important that a moving object can be detected from any direction in the detection area. However, this type of human body detection sensor has an excellent detection capability for a moving object that crosses the detection area in a direction orthogonal to the direction in which infrared energy is collected in the detection area, that is, a moving object. When moving in the direction of the human body detection sensor, that is, in the direction of the human body detection sensor through the detection area, the moving object gradually enters the detection area, so the change in the amount of infrared energy hardly appears. Since the number of times exceeding the predetermined threshold is one time, there is a property of lacking accuracy in determining whether or not it is a human body.

そこで、本発明は上記問題点に鑑みてなされたものであり、人体等の移動物体がセンサ設置位置方向に向かって監視エリア内に進入した場合であっても確実に進入を検知することのできる人体検知センサを提供することを目的とするものである。   Therefore, the present invention has been made in view of the above problems, and even when a moving object such as a human body enters the monitoring area toward the sensor installation position direction, the entry can be reliably detected. The object is to provide a human body detection sensor.

上記した目的を達成するために、請求項1記載の人体検知センサは、+極性の素子と−極性の素子を一対とするデュアルエレメント構成の焦電素子を複数組備えた人体検知センサであって、
前記複数組の焦電素子は、複数の検知エリアを形成し、且つ、該複数の検知エリアにおいて前記センサ本体を中心とする略放射線上で隣接する異なる組の+極性の素子の検知エリアと−極性の検知エリアの少なくとも一方のエリアが逆極性の関係にあり、
前記複数組の検知エリアから集光した赤外線のエネルギー変化量に基づく波形信号と予め設定した閾値とを比較し、この比較結果に基づく信号の論理合成によって人体の進入を判別することを特徴とする。
In order to achieve the above object, a human body detection sensor according to claim 1 is a human body detection sensor comprising a plurality of pyroelectric elements having a dual element configuration in which a + polar element and a -polar element are paired. ,
The plurality of sets of pyroelectric elements form a plurality of detection areas, and in the plurality of detection areas, the detection areas of different sets of + polar elements adjacent to each other substantially on the center of the sensor body and − At least one of the polarity detection areas has a reverse polarity relationship,
A waveform signal based on an energy change amount of infrared rays collected from the plurality of detection areas is compared with a preset threshold value, and the approach of a human body is determined by logical synthesis of signals based on the comparison result. .

本発明の人体検知センサによれば、デュアルエレメント構成の焦電素子の複数組がセンサ本体を中心に複数の検知エリアを形成し、且つ、複数の検知エリアにおいてセンサ本体を中心とする略放射線上で隣接する+極性の素子の検知エリアと異なる組の−極性の検知エリアの少なくとも一方のエリアが逆極性の関係に配置されているため、センタ本体に向かって進入する人体を確実に検知することができ、高性能の人体検知センサを提供することができる。   According to the human body detection sensor of the present invention, a plurality of sets of pyroelectric elements having a dual element configuration form a plurality of detection areas centering on the sensor body, and the plurality of detection areas are substantially on the radiation centered on the sensor body. Since at least one of the -polarity detection areas of a set different from the detection area of the adjacent + polarity element is arranged in a reverse polarity relationship, it is possible to reliably detect a human body entering toward the center body. Therefore, a high-performance human body detection sensor can be provided.

以下、本発明の最良の形態について、添付した図面を参照しながらそれぞれ説明する。図1は本発明に係る人体検知センサの概略構成を示すブロック図、図2は本発明に係る人体検知センサの概略を説明するための概念図、図3は本発明に係る人体検知センサの検知エリアを説明するための説明図、図4(a)は本発明に係る人体検知センサの概略配光図、図4(b)は本発明に係る人体検知センサの第1焦電素子の配光図、図4(c)は本発明に係る人体検知センサの第2焦電素子の配光図、図5(a)〜(f)は本発明に係る人体検知センサの検知エリアA、Bにおいて人体検知した際に変化する赤外線エネルギーの波形図、図6は本発明に係る人体検知センサの動作を説明するためのフローチャート図、図7は本発明に係る人体検知センサの第2形態を説明するための説明図、図8は本発明に係る人体検知センサの第3形態を説明するための説明図、図9は図8に示した配置図と異なる配置例を示す説明図、図10は本発明に係る人体検知センサの応用例1を説明するための説明図、図11は本発明に係る人体検知センサの応用例2を説明するための説明図である。   The best mode of the present invention will be described below with reference to the accompanying drawings. 1 is a block diagram showing a schematic configuration of a human body detection sensor according to the present invention, FIG. 2 is a conceptual diagram for explaining an outline of the human body detection sensor according to the present invention, and FIG. 3 is a detection of the human body detection sensor according to the present invention. FIG. 4 (a) is a schematic light distribution diagram of the human body detection sensor according to the present invention, and FIG. 4 (b) is a light distribution of the first pyroelectric element of the human body detection sensor according to the present invention. FIG. 4 (c) is a light distribution diagram of the second pyroelectric element of the human body detection sensor according to the present invention, and FIGS. 5 (a) to 5 (f) are detection areas A and B of the human body detection sensor according to the present invention. FIG. 6 is a flowchart for explaining the operation of the human body detection sensor according to the present invention, and FIG. 7 is a second embodiment of the human body detection sensor according to the present invention. FIG. 8 is an explanatory diagram for the third type of human body detection sensor according to the present invention. FIG. 9 is an explanatory view showing an arrangement example different from the arrangement shown in FIG. 8, and FIG. 10 is an explanatory view for explaining an application example 1 of the human body detection sensor according to the present invention. 11 is explanatory drawing for demonstrating the application example 2 of the human body detection sensor which concerns on this invention.

なお、以下に説明する人体検知センサにおいて、人体が人体検知センサに向かって進入しない場合(例えば監視エリア内の横断など)の検知動作及び構成は従来の人体検知センサと同様である。従って、以下に説明する最良の形態では説明を省略し、人体が人体検知センサに向かって進入した場合についてのみ説明する。   In the human body detection sensor described below, the detection operation and configuration when the human body does not enter the human body detection sensor (for example, crossing within the monitoring area) are the same as those of the conventional human body detection sensor. Accordingly, the description of the best mode described below is omitted, and only the case where the human body enters the human body detection sensor will be described.

まず、図1〜図5を参照しながら、本例の第1形態である人体検知センサの概略について説明する。第1形態では、図2に示すように、監視対象となる監視エリア全体を監視するため例えば建物の壁の上方や天井に設置され、監視エリア内の赤外線を受光する焦電素子として+極性の素子と−極性の素子の両極性を一対としたデュアルエレメント構成の焦電素子である第1焦電素子と第2焦電素子の2つを具備し、人体検知センサを中心とした場合に、第1焦電素子の検知エリアAが第2焦電素子の検知エリアBの外側に配置される例について説明する。   First, an outline of a human body detection sensor according to the first embodiment of the present example will be described with reference to FIGS. In the first mode, as shown in FIG. 2, in order to monitor the entire monitoring area to be monitored, for example, it is installed above the wall of the building or on the ceiling, and has a positive polarity as a pyroelectric element that receives infrared rays in the monitoring area. In the case of having a first pyroelectric element and a second pyroelectric element, which are pyroelectric elements having a dual element configuration in which both polarities of the element and the -polar element are paired, and centering on a human body detection sensor, An example in which the detection area A of the first pyroelectric element is arranged outside the detection area B of the second pyroelectric element will be described.

図1に示すように、人体検知センサ1は、集光手段11、第1及び第2の焦電素子12(12a、12b)、第1及び第2の信号処理手段13(13a、13b)、第1及び第2の状態比較手段14(14a、14b)、及び判別制御手段15とで概略構成されている。なお、図中一点鎖線内の構成(第1焦電素子12a、第1信号処理手段13a、第1比較手段14a)と(第2焦電素子12b、第2信号処理手段13b、第2比較手段14b)とは同一構成である。   As shown in FIG. 1, the human body detection sensor 1 includes a condensing unit 11, first and second pyroelectric elements 12 (12a, 12b), first and second signal processing units 13 (13a, 13b), The first and second state comparison means 14 (14a, 14b) and the discrimination control means 15 are schematically configured. In the figure, the configuration (first pyroelectric element 12a, first signal processing means 13a, first comparison means 14a) and (second pyroelectric element 12b, second signal processing means 13b, second comparison means) within the dashed line in the figure. 14b) has the same configuration.

集光手段11は、例えば多分割レンズや集光ミラーなどで構成される監視エリア内の赤外線を集光する。集光手段11は、図3と図4に示すように、監視エリア内に+極性の素子の検知エリアと−極性の素子の検知エリアを一対とした検知エリアA及びBがセンサ本体を中心とする略同心円状に複数の検知エリアを形成し、且つ、該複数の検知エリアにおいて前記センサ本体を中心とする略放射線上で隣接する異なる組の+極性の素子の検知エリアと−極性の素子の検知エリアの少なくとも一方のエリアが逆極性の関係に配置(人体検知で使用するため、間隔は少なくとも人体の肩幅以下にすることが好ましい)するような形状に形成され、この検知エリアA及びBから赤外線を集光する。また、集光手段11には、集光した赤外線の光学経路を制限して各素子ごとに集光する第1焦電素子用集光領域と第2焦電素子用集光領域を設けるための遮蔽用壁11aが設けられている。
なお、検知エリアA、Bの配置数や配置エリアの大小は、集光手段11の分割数によって設定可能であるため、人体検知センサ1の設置場所や監視エリアの大きさなどによって所望の検知エリアを設定することができる。また、遮蔽部材11aは、集光手段11側に形成される必要なく、他の機構要素側に設けても同様の効果を奏する。
The condensing unit 11 condenses infrared rays in a monitoring area configured by, for example, a multi-segment lens or a condensing mirror. As shown in FIGS. 3 and 4, the condensing unit 11 includes a detection area A and B in which a detection area for a + polar element and a detection area for a −polar element are paired in the monitoring area. A plurality of detection areas are formed in a substantially concentric circle shape, and in the plurality of detection areas, detection areas of different pairs of + polar elements and -polar elements adjacent to each other on a substantially radial line centering on the sensor body. From the detection areas A and B, at least one of the detection areas is formed in a reverse polarity relationship (for use in human body detection, the interval is preferably at least the shoulder width of the human body). Condenses infrared light. Further, the condensing means 11 is provided with a first pyroelectric element condensing region and a second pyroelectric element condensing region for condensing each element by limiting the optical path of the condensed infrared light. A shielding wall 11a is provided.
Note that the number of detection areas A and B and the size of the arrangement area can be set according to the number of divisions of the light condensing means 11, so that the desired detection area depends on the installation location of the human body detection sensor 1 and the size of the monitoring area. Can be set. Further, the shielding member 11a does not need to be formed on the light condensing means 11 side, and the same effect can be obtained even if it is provided on the other mechanism element side.

焦電素子12(12a、12b)は、+極性の素子と−極性の素子の両極性を一対としたデュアルエレメント構成の焦電素子からなり、焦電効果を利用して+極性の素子の検知エリアと−極性の素子の検知エリア内から赤外線を集光手段11を介してそれぞれ受光する。そして、受光した赤外線のエネルギー変化量を電圧に変換して、この電圧信号を信号処理手段13(13a、13b)に出力する。   The pyroelectric element 12 (12a, 12b) is composed of a pyroelectric element having a dual element configuration in which both of a positive polarity element and a negative polarity element are paired, and detects a positive polarity element using the pyroelectric effect. Infrared rays are received through the light collecting means 11 from within the detection area of the area and the negative polarity element. And the energy change amount of the received infrared rays is converted into a voltage, and this voltage signal is output to the signal processing means 13 (13a, 13b).

信号処理手段13(13a、13b)は、第1焦電素子12a及び第2焦電素子12bから出力された電圧信号を増幅し、この増幅した電圧信号のレベルに応じた波形を生成する。そして、この波形の波形信号を状態比較手段14(14a、14b)に出力する。   The signal processing means 13 (13a, 13b) amplifies the voltage signals output from the first pyroelectric element 12a and the second pyroelectric element 12b, and generates a waveform corresponding to the level of the amplified voltage signal. And the waveform signal of this waveform is output to the state comparison means 14 (14a, 14b).

出力される波形としては、図3に示すように、人体が各検知エリアA、Bから人体検知センサ1に向かってY1 〜Y3 の各方向から進入した場合、図5に示すように各進入方向によって波形(a)〜(f)として出力される。人体が検知エリアAに進入した場合、波形(a)〜(c)が出力される。波形(a)は、+極性の検知エリアに人体が進入した場合の波形であり+方向に出力する。一方、波形(c)は、波形(a)と逆極性である−極性の検知エリアに人体が進入した場合の波形であり−方向に出力される。また、波形(b)は、+極性または−極性の検知エリア内を完全に通過しないがどちらの検知エリア上も多少は通過する場合であり、+極性または−極性の検知エリアを通過した際に波形(a)または(c)よりも微弱な波形が出力される。
一方、検知エリアBは、検知エリアAよりも人体検知センサ1側で、且つ、検知エリアの並びが逆極性になってるため検知エリアAを通過後に検知エリアBに進入する。従って、Y1 の方向から進入した場合、人体の進入により検知エリアAで波形(a)が出力後に検知エリアBに人体が進入すると、検知エリアBで波形(a)と逆極性の波形(d)が出力される。また、Y3 の方向から進入した場合、人体の進入により検知エリアAで波形(c)が出力後に検知エリアBに人体が進入すると、検知エリアBで波形(c)と逆極性の波形(f)が出力される。さらに、Y2 の方向から進入した場合、人体の進入により検知エリアAで波形(b)が出力後に検知エリアBに人体が進入すると、検知エリアBで波形(b)と逆極性の波形(e)が出力される。なお、検知エリアAから検知エリアBに人体が進入した際の検知エリアBから出力される波形は、検知エリアA、Bの配置位置関係や人体の進入速度等によって様々である。
As shown in FIG. 3, when the human body enters from the respective detection areas A and B toward the human body detection sensor 1 from each of the directions Y 1 to Y 3 as shown in FIG. Waveforms (a) to (f) are output depending on the approach direction. When the human body enters the detection area A, the waveforms (a) to (c) are output. Waveform (a) is a waveform when a human body enters a + polarity detection area and is output in the + direction. On the other hand, the waveform (c) is a waveform when a human body enters the detection area of the negative polarity, which is opposite in polarity to the waveform (a), and is output in the negative direction. Waveform (b) shows a case where the signal does not pass completely through the + polarity or -polarity detection area but passes slightly over either of the detection areas. A weaker waveform than the waveform (a) or (c) is output.
On the other hand, the detection area B is closer to the human body detection sensor 1 than the detection area A, and the detection area is in reverse polarity, so the detection area B enters the detection area B after passing through the detection area A. Therefore, when the human body enters the detection area B after the waveform (a) is output in the detection area A due to the approach of the human body when entering from the direction of Y 1 , the waveform (d) having the opposite polarity to the waveform (a) in the detection area B ) Is output. Further, when entering from the direction of Y 3 , if a human body enters the detection area B after the waveform (c) is output in the detection area A due to the approach of the human body, the waveform (f) having the opposite polarity to the waveform (c) in the detection area B ) Is output. Further, when entering from the direction of Y 2 , if the human body enters the detection area B after the waveform (b) is output in the detection area A due to the entry of the human body, the waveform (e) having the opposite polarity to the waveform (b) in the detection area B ) Is output. The waveform output from the detection area B when the human body enters the detection area B from the detection area A varies depending on the arrangement positional relationship between the detection areas A and B, the human body entry speed, and the like.

状態比較手段14(14a、14b)は、信号処理手段13a、13bのそれぞれから出力された波形信号が予め設定した高い閾値H(−H)または低い閾値L(−L)を超えているか否か、各素子12a、12bの波形信号の出力が所定時間以内に閾値を超えている回数などを比較し、この比較結果に基づいて下記表1に示した各状態A0(B0)〜A4(B4)に状態分けを行い、この状態に応じた状態比較信号を判別処理手段に出力する。   The state comparison unit 14 (14a, 14b) determines whether or not the waveform signals output from the signal processing units 13a and 13b exceed a preset high threshold H (-H) or low threshold L (-L). The number of times that the output of the waveform signal of each element 12a, 12b exceeds the threshold value within a predetermined time is compared, and based on the comparison result, states A0 (B0) to A4 (B4) shown in Table 1 below are compared. And the state comparison signal corresponding to this state is output to the discrimination processing means.

各状態について説明すると、まず、第1焦電素子12aの波形信号をA、第2焦電素子12bの波形信号をBとし、出力した波形信号が「閾値L(−L)以下」のときはA0(B0)、「閾値L(−L)以上閾値H(−H)以下の回数が1回または閾値L(−L)以上閾値H(−H)以下の回数が所定時間以外で複数回」のときはA1(B1)、「閾値L(−L)以上閾値H(−H)以下の回数が所定時間以内で複数回」のときはA2(B2)、「閾値H(−H)以上の回数が1回」のときはA3(B3)、「所定時間以内で閾値H(−H)以上の回数が複数回」のときはA4(B4)と、出力された各波形により状態分けされる。なお、第1焦電素子12aや第2焦電素子12bの波形出力の状態がA2(B2)、A3(B3)の場合は、検知エリアAで人体を検知してから検知エリアBが人体を検知するまでの時間として検知間隔時間(各検知エリアとの間隔によって自由に設定可能である)を設定している。   Each state will be described. First, when the waveform signal of the first pyroelectric element 12a is A, the waveform signal of the second pyroelectric element 12b is B, and the output waveform signal is “threshold L (−L) or less”. A0 (B0), “the number of times from the threshold value L (−L) to the threshold value H (−H) is one time, or the number of times from the threshold value L (−L) to the threshold value H (−H) is a plurality of times other than the predetermined time” Is A1 (B1), A2 (B2) when “the number of times not less than the threshold L (−L) and not more than the threshold H (−H) within a predetermined time” is A2 (B2), When the number of times is “1”, A3 (B3), and when “the number of times equal to or greater than the threshold value H (−H) within a predetermined time is a plurality of times”, A4 (B4) and the output waveforms are divided into states. . When the waveform output states of the first pyroelectric element 12a and the second pyroelectric element 12b are A2 (B2) and A3 (B3), the detection area B detects the human body after detecting the human body in the detection area A. Detection interval time (which can be set freely depending on the interval between each detection area) is set as the time until detection.

Figure 2007178204
Figure 2007178204

判別制御手段15は、上述した各状態比較手段14a、14bから出力された状態比較信号を上記表1に示すような論理合成を行って人体の有無を判別し、この判別結果に基づいて例えば人体を検知したことを示す検知信号を外部に出力したり不図示の警報装置を駆動させるなど判別結果に応じた各種制御を行う。   The discrimination control means 15 performs the logical synthesis as shown in Table 1 above on the state comparison signals output from the state comparison means 14a and 14b described above to determine the presence or absence of a human body. Based on the determination result, for example, the human body Various controls are performed in accordance with the determination result, such as outputting a detection signal indicating that the signal is detected to the outside or driving an alarm device (not shown).

次に、上記構成の人体検知センサ1の動作について図6及び上記表1を参照しながら説明する。まず、第1焦電素子12aの動作について説明すると、図6に示すように、第1焦電素子12aが検知した検知エリアAの波形出力が閾値L以上であるか否かを判別する(ST1)。波形出力が閾値L以上であると判別されると(ST1−Yes)、次に波形出力が閾値H以上であるか否かの判別を行う(ST2)。一方、波形出力が閾値L以下である場合(ST1−No)、状態A0(B0)と判別される。   Next, the operation of the human body detection sensor 1 having the above configuration will be described with reference to FIG. First, the operation of the first pyroelectric element 12a will be described. As shown in FIG. 6, it is determined whether or not the waveform output of the detection area A detected by the first pyroelectric element 12a is greater than or equal to a threshold value L (ST1). ). If it is determined that the waveform output is greater than or equal to the threshold L (ST1-Yes), it is then determined whether or not the waveform output is greater than or equal to the threshold H (ST2). On the other hand, when the waveform output is equal to or less than the threshold value L (ST1-No), it is determined that the state is A0 (B0).

そして、波形出力が閾値H以上であると判別されると(ST2−Yes)、次に閾値H以上の波形出力が所定時間以内で複数回あるか否かを判別する(ST3)。一方、波形出力が閾値H以下であると判別されると(ST2−No)、次に閾値L以上の波形出力が複数回であるか否かを判別する(ST4)。このとき、閾値L以上の波形出力が複数回でない場合は(ST4−No)、状態A1(B1)と判別される。一方、閾値L以上の波形出力が複数回であると判別されると(ST4−Yes)、次に閾値L以上の波形出力が所定時間以内で複数回出力されているか否かを判別する(ST5)。このとき、閾値L以上の波形出力が所定時間以内で複数回出力されていない場合は(ST5−No)、状態A1(B1)と判別される。一方、閾値L以上の波形出力が所定時間以内で複数回出力されている場合は(ST5−Yes)、状態A2(B2)と判別される。   If it is determined that the waveform output is greater than or equal to the threshold value H (ST2-Yes), it is then determined whether or not there are multiple waveform outputs greater than or equal to the threshold value H within a predetermined time (ST3). On the other hand, if it is determined that the waveform output is equal to or less than the threshold value H (ST2-No), it is next determined whether or not the waveform output equal to or more than the threshold value L is multiple times (ST4). At this time, when the waveform output equal to or greater than the threshold value L is not a plurality of times (ST4-No), it is determined as the state A1 (B1). On the other hand, if it is determined that the waveform output equal to or greater than the threshold L is a plurality of times (ST4-Yes), it is then determined whether or not the waveform output equal to or greater than the threshold L is output a plurality of times within a predetermined time (ST5). ). At this time, when the waveform output equal to or greater than the threshold value L is not output a plurality of times within a predetermined time (ST5-No), it is determined as the state A1 (B1). On the other hand, when the waveform output equal to or greater than the threshold value L is output a plurality of times within the predetermined time (ST5-Yes), it is determined as the state A2 (B2).

ST3において、所定時間以内で閾値H以上の波形出力が2回以上であるか否かを判別し、所定時間以内で閾値H以上の波形出力が複数回でないと判別されると(ST3−No)、状態A3(B3)と判別される。また、所定時間以内で閾値H以上の波形出力が複数回であると判別されると(ST3−Yes)、状態A4(B4)と判別される。なお、所定時間以内、以外に関わらず閾値H以上が1回の場合、所定時間以外で閾値H以上の波形出力が複数回の場合は、それぞれ状態A3(B3)と判別される。   In ST3, it is determined whether or not the waveform output equal to or higher than the threshold value H is two or more within a predetermined time, and if it is determined that the waveform output equal to or higher than the threshold value H is not a plurality of times within a predetermined time (ST3-No). The state is determined as state A3 (B3). If it is determined that the waveform output equal to or greater than the threshold value H is a plurality of times within a predetermined time (ST3-Yes), it is determined that the state is A4 (B4). It should be noted that if the threshold value H is equal to or greater than one time regardless of other than within the predetermined time, and the waveform output equal to or greater than the threshold value H is multiple times other than the predetermined time, the state is determined as state A3 (B3).

そして、上記第1焦電素子12aと同様に第2焦電素子12bの波形信号についても比較して各波形出力に応じた状態判別を行う(B0〜B4)。そして、上記表1に基づいて第1焦電素子12a及び第2焦電素子12bのそれぞれの波形出力の状態を論理合成し、人体が監視エリア内に進入したか否かの判別を行い、この判別結果に基づいて各種制御を行う。なお、第1焦電素子12aや第2焦電素子12bの波形出力の状態がA2(B2)、A3(B3)の場合は、各波形出力が検知間隔時間外か検知間隔時間内かに応じて、表1の論理合成に基づいて人体の進入の有無を判別している。   Then, similarly to the first pyroelectric element 12a, the waveform signal of the second pyroelectric element 12b is also compared to determine the state according to each waveform output (B0 to B4). Then, based on Table 1 above, the respective waveform output states of the first pyroelectric element 12a and the second pyroelectric element 12b are logically synthesized to determine whether or not the human body has entered the monitoring area. Various controls are performed based on the determination results. When the waveform output state of the first pyroelectric element 12a or the second pyroelectric element 12b is A2 (B2) or A3 (B3), it depends on whether each waveform output is outside the detection interval time or within the detection interval time. Thus, the presence or absence of the human body is determined based on the logic synthesis in Table 1.

次に、本例の人体検知センサ1の第2形態として、上述した第1形態における2つの焦電素子をさらに2つ増やして4つの焦電素子を備えた人体検知センサ1について説明する。なお、以下に説明する第2形態の人体検知センサ1において、第1形態の人体検知センサ1と同一の構成部分については説明は省略し、異なる構成部分についてのみ説明する。   Next, as a second form of the human body detection sensor 1 of this example, a human body detection sensor 1 provided with four pyroelectric elements by further adding two pyroelectric elements in the first form described above will be described. In addition, in the human body detection sensor 1 of the 2nd form demonstrated below, description is abbreviate | omitted about the component same as the human body detection sensor 1 of a 1st form, and only a different component is demonstrated.

第2形態では、図1における一点鎖線の構成を4つ用いて、第3の焦電素子として第3焦電素子12c、第4の焦電素子として第4焦電素子12dを備えた構成である。検知エリアの配置としては、図7に示すように、第3焦電素子12cの検知エリアとして検知エリアC、第4焦電素子12dの検知エリアとして検知エリアDをそれぞれ第1形態と同様に隣接する検知エリアの極性が全て逆極性になるように配置する。そして、検知エリアAと検知エリアBとの論理合成(表1に基づく)、検知エリアCと検知エリアDとの論理合成(表1に準ずる)により人体の進入の有無を検知している。このように、第2形態では、第1、第2焦電素子12a、12bと第3、第4焦電素子12c、12dとを組み合わせることで、第1形態に比べてより広範囲で密な監視エリアを設定することが可能となり、より確実に人体検知を行うことができる。   In the second mode, the configuration of the fourth pyroelectric element 12d as the third pyroelectric element and the fourth pyroelectric element 12d as the fourth pyroelectric element using the four dot-dash lines in FIG. is there. As shown in FIG. 7, the detection areas are arranged in the same manner as in the first embodiment, with the detection area C as the detection area of the third pyroelectric element 12c and the detection area D as the detection area of the fourth pyroelectric element 12d. The detection areas are arranged so that all the polarities of the detection areas are reversed. The presence / absence of a human body is detected by logical synthesis of detection area A and detection area B (based on Table 1) and logical synthesis of detection area C and detection area D (according to Table 1). As described above, in the second embodiment, the first and second pyroelectric elements 12a and 12b are combined with the third and fourth pyroelectric elements 12c and 12d, so that the monitoring can be performed more extensively and compared with the first embodiment. An area can be set, and human body detection can be performed more reliably.

次に、本例の人体検知センサ1の第3形態として、上述した第1形態の人体検知センサ1に焦電素子に1つ焦電素子を増やして3つの焦電素子を具備した構成例について説明する。なお、以下に説明する第3形態の人体検知センサ1において、第1形態の人体検知センサ1と同一の構成部分については説明は省略し、異なる構成部分についてのみ説明する。   Next, as a third form of the human body detection sensor 1 of the present example, a configuration example in which one pyroelectric element is added to the human body detection sensor 1 of the first form described above and three pyroelectric elements are provided. explain. In addition, in the human body detection sensor 1 of the 3rd form demonstrated below, description is abbreviate | omitted about the component same as the human body detection sensor 1 of a 1st form, and only a different component is demonstrated.

第3形態では、図1における一点鎖線の構成を3つ用いて、第3の焦電素子として第3焦電素子12cを備えた構成である。検知エリアの配置としては、図8や図9に示すように、第3焦電素子12cの検知エリアとして検知エリアCを第1形態と同様にセンサ本体を中心とする略放射線上で隣接する検知エリアの極性が全て逆極性になるように配置する。そして、図8のような配置の場合は、検知エリアA−検知エリアBとの間で論理合成(表1に基づく)、検知エリアB−検知エリアCとの間で論理合成(表1に準ずる)、検知エリアA−検知エリアCとの間で論理合成(表1に準ずる)に基づいて人体の進入の有無を検知している。また、図9のような配置の場合は、検知エリアA−検知エリアBとの間で論理合成(表1に準ずる)、検知エリアB−検知エリアCとの間で論理合成(表1に準ずる)の何れかに基づいて人体の進入の有無を検知している。このように第1、第2焦電素子12a、12bに第3焦電素子12cを組み合わせて、第1形態における検知エリアA、検知エリアBに加えて検知エリアCを配置することで、より正確な人体検知を実現することができる。なお、図8に示すような配置例の場合、検知エリアA−検知エリアCとの間は検知エリアA、検知エリアBとの間よりも間隔が広くなっているため、検知検知エリアA−検知エリアCとの間の検知間隔時間は、検知エリアA、検知エリアBとの間における検知間隔時間よりも長く設定されている。   In the third embodiment, the configuration of the third pyroelectric element 12c is provided as the third pyroelectric element by using the configuration of the one-dot chain line in FIG. As shown in FIG. 8 and FIG. 9, the detection area is arranged as a detection area of the third pyroelectric element 12c, and the detection area C is adjacently detected on substantially the radiation centering on the sensor body as in the first embodiment. Arrange the areas so that all the polarities are reversed. In the case of the arrangement as shown in FIG. 8, logic synthesis (based on Table 1) between detection area A and detection area B, and logic synthesis (based on Table 1) between detection area B and detection area C. ), The presence / absence of a human body is detected between the detection area A and the detection area C based on logical synthesis (according to Table 1). In the case of the arrangement as shown in FIG. 9, logic synthesis is performed between detection area A and detection area B (according to Table 1), and logic synthesis between detection area B and detection area C (according to Table 1). ) To detect whether or not a human body has entered. In this way, the first and second pyroelectric elements 12a and 12b are combined with the third pyroelectric element 12c, and the detection area C is arranged in addition to the detection area A and the detection area B in the first embodiment, thereby making it more accurate. Human body detection can be realized. In the case of the arrangement example as shown in FIG. 8, since the interval between the detection area A and the detection area C is wider than between the detection area A and the detection area B, the detection detection area A-detection The detection interval time between the area C and the area C is set longer than the detection interval time between the detection area A and the detection area B.

次に、図10と図11を参照しながら、上記構成の人体検知センサ1を用いた応用例を、応用例1、応用例2としてそれぞれ具体的に説明する。   Next, application examples using the human body detection sensor 1 configured as described above will be specifically described as application examples 1 and 2 with reference to FIGS. 10 and 11.

(応用例1)
応用例1として、夜間等における監視エリア内への進入者の顔や姿を撮像して記録メディアなどに記録する装置などに採用される例である。従来では、遠くの人体を撮像するために比較的光量を多くして遠くまで撮像できるようにしていた。しかし、この状態でカメラから近距離に近接した人体を撮像すると、光量の関係でハレーションを起こしてしまい撮像した顔や姿がぼやけて確認しにくいという問題があった。
そこで、人体が進入した際の進入場所に応じて人体とカメラとの遠近間隔を測り、画像撮像時のライトの光量調整を行うため、図10に示すように、本例の人体検知センサ1の検知エリアである検知エリアA、Bを例えばx1〜x4のようにそれぞれ交互にエリア分けして配置し、配置した全エリアを監視エリアX1〜X0、X1〜X2としている。光量の調整方法としては、X0〜X1の間に人体が進入した場合、第1焦電素子12aのみで検知していることになるため、カメラから遠い位置に人体を検知していることになるので、通常通りの光量で照射する。また、X1〜X2の間に人体が進入した場合、第1焦電素子12a及び/又は第2焦電素子12bで検知していることになるため、カメラから近い位置に人体を検知していることになるので、光量を抑えてエリア位置に応じて光量調整を行う。
従って、x1〜x4のエリア間に人体が進入した際の進入場所に応じて光量調整が行えるので、撮像時のハレーションを起こすことなく確実に人体の撮像が可能となる。
(Application 1)
Application example 1 is an example that is employed in a device that captures the face and figure of an intruder entering a monitoring area at night or the like and records the image on a recording medium or the like. Conventionally, in order to image a distant human body, a relatively large amount of light can be captured so that it can be imaged far. However, when a human body close to a short distance from the camera is imaged in this state, there is a problem that halation occurs due to the amount of light, and the captured face and figure are blurred and difficult to check.
Therefore, in order to measure the distance between the human body and the camera according to the place where the human body has entered and to adjust the light amount of the light at the time of image capture, as shown in FIG. Detection areas A and B, which are detection areas, are alternately divided into areas such as x1 to x4, for example, and all the arranged areas are set as monitoring areas X1 to X0 and X1 to X2. As a light amount adjustment method, when a human body enters between X0 and X1, since it is detected only by the first pyroelectric element 12a, the human body is detected at a position far from the camera. Therefore, irradiate with the usual amount of light. In addition, when a human body enters between X1 and X2, since the first pyroelectric element 12a and / or the second pyroelectric element 12b detects the human body, the human body is detected at a position close to the camera. Therefore, the amount of light is adjusted according to the area position while suppressing the amount of light.
Therefore, since the light amount can be adjusted according to the place where the human body enters between the areas x1 to x4, the human body can be reliably imaged without causing halation during imaging.

(応用例2)
応用例2では、検知エリア内に進入する小動物による誤報検知を改善するため、図11に示すように、本例の人体検知センサ1の検知エリアである検知エリアA、Bを例えばx1〜x4のようにそれぞれ交互にエリア分けして配置し、各エリアの大きさを小動物が1エリア内に入る程度の領域に設定し、且つ、両エリアにまたがって入らないように所定間隔(領域間隔としては小動物が入れる程度の大きさ)を設ける。これにより、片方のエリアのみで検知した場合は小動物であると判別し、各エリアx1〜x4のうち少なくとも2つのエリアに亘って検知した場合にのみ人体であると検知する。これにより、人体と小動物との判別が可能となり、小動物が検知エリア内への進入に伴う誤報検知を改善することができる。
(Application example 2)
In application example 2, in order to improve false alarm detection by a small animal entering the detection area, as shown in FIG. 11, detection areas A and B, which are detection areas of the human body detection sensor 1 of this example, are set to x1 to x4, for example. In this way, each area is arranged in an alternating manner, and the size of each area is set to an area that allows small animals to enter one area, and a predetermined interval (as the area interval is set so as not to extend across both areas). Provide a size enough for small animals to enter. Thereby, when it detects only in one area, it discriminate | determines that it is a small animal, and it detects that it is a human body only when it detects over at least two areas among each area x1-x4. As a result, it is possible to discriminate between a human body and a small animal, and it is possible to improve false alarm detection accompanying the small animal entering the detection area.

このように、上述した人体検知センサ1は、+極性と−極性の両極性を一対としたデュアルエレメント構成の焦電素子を用いて複数の検知エリアを形成し、且つ、複数の検知エリアにおいてセンサ本体を中心とする略放射線上で隣接する異なる組の+極性の素子の検知エリアと−極性の検知エリアの少なくとも一方のエリアが逆極性の関係になるように配置する。そして、各検知エリアA、Bのそれぞれから出力された波形信号と予め設定された閾値とを比較してそれぞれ状態比較し、この比較結果に基づいた状態比較信号を基に論理合成して検知エリア内への人体の進入の有無を判別する。
これにより、人体が人体検知センサ1に向かって進入した場合であっても、各検知エリアから出力される波形信号に基づいて検知エリア内に人体が進入したか否かを判別できるので、確実に人体検知を行うことができる。
As described above, the human body detection sensor 1 described above forms a plurality of detection areas by using a pyroelectric element having a dual element configuration in which both the positive polarity and the negative polarity are paired. Arrangement is made so that at least one of the detection areas of the positive polarity elements and the negative polarity detection areas of different sets adjacent to each other on the substantial radiation centering on the main body has a reverse polarity relationship. Then, the waveform signal output from each of the detection areas A and B is compared with a preset threshold value, and the respective states are compared, and logical detection is performed based on the state comparison signal based on the comparison result to detect the detection area. It is determined whether or not a human body has entered.
Thus, even when the human body enters the human body detection sensor 1, it can be determined whether or not the human body has entered the detection area based on the waveform signal output from each detection area. Human body detection can be performed.

ところで、上述した形態では、監視エリアの外側から順に検知エリアA、検知エリアB(第2形態では検知エリアC、検知エリアD)のように配置される例について説明したが、センサ本体を中心とする略同心円状に複数の検知エリアを形成し、且つ、複数の検知エリアにおいてセンサ本体を中心とする略放射線上で隣接する異なる組の+極性の素子の検知エリアと−極性の検知エリアの少なくとも一方のエリアが逆極性の関係にあれば、人体検知センサ1の配置場所や配置位置によって各検知エリアの位置を自由に設定することができる。   By the way, in the above-described embodiment, an example in which the detection area A and the detection area B (the detection area C and the detection area D in the second embodiment) are sequentially arranged from the outside of the monitoring area has been described. A plurality of detection areas are formed in a substantially concentric shape, and at least of the detection areas of the + polarity elements and the -polarity detection areas of different pairs adjacent to each other on the substantially radiation centering on the sensor body in the plurality of detection areas. If one of the areas has a reverse polarity relationship, the position of each detection area can be freely set according to the arrangement location or arrangement position of the human body detection sensor 1.

以上、本願発明における最良の形態について説明したが、この形態による記述及び図面により本発明が限定されることはない。すなわち、この形態に基づいて当業者等によりなされる他の形態、実施例及び運用技術等はすべて本発明の範疇に含まれることは勿論である。   As mentioned above, although the best form in this invention was demonstrated, this invention is not limited with the description and drawing by this form. That is, it is a matter of course that all other forms, examples, operation techniques, and the like made by those skilled in the art based on this form are included in the scope of the present invention.

本発明に係る人体検知センサの概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the human body detection sensor which concerns on this invention. 本発明に係る人体検知センサの概略を説明するための概念図である。It is a conceptual diagram for demonstrating the outline of the human body detection sensor which concerns on this invention. 図3は本発明に係る人体検知センサの検知エリアを説明するための説明図である。FIG. 3 is an explanatory diagram for explaining a detection area of the human body detection sensor according to the present invention. (a) 本発明に係る人体検知センサの概略配光図である。 (b) 本発明に係る人体検知センサの第1焦電素子の配光図である。 (c) 本発明に係る人体検知センサの第2焦電素子の配光図である。(A) It is a schematic light distribution diagram of the human body detection sensor which concerns on this invention. (B) It is a light distribution diagram of the 1st pyroelectric element of the human body detection sensor which concerns on this invention. (C) It is a light distribution diagram of the 2nd pyroelectric element of the human body detection sensor which concerns on this invention. (a)〜(f) 本発明に係る人体検知センサの検知エリアA、Bにおいて人体検知した際に変化する赤外線エネルギーの波形図である。(A)-(f) It is a wave form diagram of the infrared energy which changes when a human body is detected in the detection areas A and B of the human body detection sensor which concerns on this invention. 本発明に係る人体検知センサの動作を説明するためのフローチャート図である。It is a flowchart figure for demonstrating operation | movement of the human body detection sensor which concerns on this invention. 本発明に係る人体検知センサの第2形態を説明するための説明図である。It is explanatory drawing for demonstrating the 2nd form of the human body detection sensor which concerns on this invention. 本発明に係る人体検知センサの第3形態を説明するための説明図である。It is explanatory drawing for demonstrating the 3rd form of the human body detection sensor which concerns on this invention. 本発明に係る人体検知センサの第3形態の他の異なる配置例を示す説明図である。It is explanatory drawing which shows the other different example of arrangement | positioning of the 3rd form of the human body detection sensor which concerns on this invention. 本発明に係る人体検知センサの応用例1を説明するための説明図である。It is explanatory drawing for demonstrating the application example 1 of the human body detection sensor which concerns on this invention. 本発明に係る人体検知センサの応用例2を説明するための説明図である。It is explanatory drawing for demonstrating the application example 2 of the human body detection sensor which concerns on this invention. (a)〜(d) 一般的な人体検知センサの検知方法を説明するための説明図である。(A)-(d) It is explanatory drawing for demonstrating the detection method of a general human body detection sensor. (a)〜(d) 図12の人体検知センサと他方法の検知方法を説明するための説明図である。(A)-(d) It is explanatory drawing for demonstrating the detection method of the human body detection sensor of FIG. 12, and another method.

符号の説明Explanation of symbols

1 人体検知センサ
11 集光手段
12(12a、12b) 焦電素子
13(13a、13b) 信号処理手段
14(14a、14b) 状態比較手段
15 判別処理手段
DESCRIPTION OF SYMBOLS 1 Human body detection sensor 11 Condensing means 12 (12a, 12b) Pyroelectric element 13 (13a, 13b) Signal processing means 14 (14a, 14b) State comparison means 15 Discrimination processing means

Claims (1)

+極性の素子と−極性の素子を一対とするデュアルエレメント構成の焦電素子を複数組備えた人体検知センサであって、
前記複数組の焦電素子は、複数の検知エリアを形成し、且つ、該複数の検知エリアにおいて前記センサ本体を中心とする略放射線上で隣接する異なる組の+極性の素子の検知エリアと−極性の素子の検知エリアの少なくとも一方のエリアが逆極性の関係にあり、
前記複数組の検知エリアから集光した赤外線のエネルギー変化量に基づく波形信号と予め設定した閾値とを比較し、この比較結果に基づく信号の論理合成によって人体の進入を判別することを特徴とする人体検知センサ。
A human body detection sensor comprising a plurality of pyroelectric elements having a dual element configuration in which a + polar element and a -polar element are paired,
The plurality of sets of pyroelectric elements form a plurality of detection areas, and in the plurality of detection areas, the detection areas of different sets of + polar elements adjacent to each other substantially on the center of the sensor body and − At least one of the detection areas of the polar element is in a reverse polarity relationship,
A waveform signal based on an energy change amount of infrared rays collected from the plurality of detection areas is compared with a preset threshold value, and the approach of a human body is determined by logical synthesis of signals based on the comparison result. Human body detection sensor.
JP2005375464A 2005-12-27 2005-12-27 Human body detection sensor Active JP4607757B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005375464A JP4607757B2 (en) 2005-12-27 2005-12-27 Human body detection sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005375464A JP4607757B2 (en) 2005-12-27 2005-12-27 Human body detection sensor

Publications (2)

Publication Number Publication Date
JP2007178204A true JP2007178204A (en) 2007-07-12
JP4607757B2 JP4607757B2 (en) 2011-01-05

Family

ID=38303551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005375464A Active JP4607757B2 (en) 2005-12-27 2005-12-27 Human body detection sensor

Country Status (1)

Country Link
JP (1) JP4607757B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100955888B1 (en) * 2008-03-31 2010-05-06 주식회사 센서프로 Direction Sensing Apparatus for the Moving body
JP2013164389A (en) * 2012-02-13 2013-08-22 Mitsubishi Electric Corp Detector and detection system
CN103676532A (en) * 2012-09-03 2014-03-26 柯尼卡美能达株式会社 Image forming apparatus and power control method
JP2014059186A (en) * 2012-09-14 2014-04-03 Konica Minolta Inc Image forming apparatus, power control method, and power control program
CN104519222A (en) * 2013-09-26 2015-04-15 佳能株式会社 Information processing apparatus and method for controlling the same
WO2015190036A1 (en) * 2014-06-09 2015-12-17 パナソニックIpマネジメント株式会社 Infrared detection device and detection method
KR101611883B1 (en) * 2014-12-31 2016-04-26 센시(주) An apparatus for objects sensing and method of thereof sensing
JP2016176801A (en) * 2015-03-19 2016-10-06 Ai Technology株式会社 Detecting device
WO2019039498A1 (en) * 2017-08-24 2019-02-28 パナソニックIpマネジメント株式会社 Infrared detection device
WO2019098069A1 (en) * 2017-11-16 2019-05-23 パナソニックIpマネジメント株式会社 Sensor device, control system, lighting control system, and program
JP2020051757A (en) * 2018-09-21 2020-04-02 パナソニックIpマネジメント株式会社 Person detection system and program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06186352A (en) * 1992-12-22 1994-07-08 Matsushita Electric Works Ltd Multi-beam human body detector
JPH1172386A (en) * 1997-08-29 1999-03-16 Matsushita Electric Works Ltd Human-body detecting sensor
JP2005134309A (en) * 2003-10-31 2005-05-26 Seiko Precision Inc Infrared detection method
JP2005274581A (en) * 2005-04-25 2005-10-06 Matsushita Electric Works Ltd Infrared-ray human body detector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06186352A (en) * 1992-12-22 1994-07-08 Matsushita Electric Works Ltd Multi-beam human body detector
JPH1172386A (en) * 1997-08-29 1999-03-16 Matsushita Electric Works Ltd Human-body detecting sensor
JP2005134309A (en) * 2003-10-31 2005-05-26 Seiko Precision Inc Infrared detection method
JP2005274581A (en) * 2005-04-25 2005-10-06 Matsushita Electric Works Ltd Infrared-ray human body detector

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100955888B1 (en) * 2008-03-31 2010-05-06 주식회사 센서프로 Direction Sensing Apparatus for the Moving body
JP2013164389A (en) * 2012-02-13 2013-08-22 Mitsubishi Electric Corp Detector and detection system
US9116484B2 (en) 2012-09-03 2015-08-25 Konica Minolta, Inc. Image forming apparatus, power control method, and recording medium
CN103676532A (en) * 2012-09-03 2014-03-26 柯尼卡美能达株式会社 Image forming apparatus and power control method
CN105911829A (en) * 2012-09-03 2016-08-31 柯尼卡美能达株式会社 Image forming apparatus, power control method, and recording medium
JP2014059186A (en) * 2012-09-14 2014-04-03 Konica Minolta Inc Image forming apparatus, power control method, and power control program
CN104519222A (en) * 2013-09-26 2015-04-15 佳能株式会社 Information processing apparatus and method for controlling the same
WO2015190036A1 (en) * 2014-06-09 2015-12-17 パナソニックIpマネジメント株式会社 Infrared detection device and detection method
JP2015232475A (en) * 2014-06-09 2015-12-24 パナソニックIpマネジメント株式会社 Radiation detection device and detection method
KR101611883B1 (en) * 2014-12-31 2016-04-26 센시(주) An apparatus for objects sensing and method of thereof sensing
JP2016176801A (en) * 2015-03-19 2016-10-06 Ai Technology株式会社 Detecting device
WO2019039498A1 (en) * 2017-08-24 2019-02-28 パナソニックIpマネジメント株式会社 Infrared detection device
WO2019098069A1 (en) * 2017-11-16 2019-05-23 パナソニックIpマネジメント株式会社 Sensor device, control system, lighting control system, and program
JP2020051757A (en) * 2018-09-21 2020-04-02 パナソニックIpマネジメント株式会社 Person detection system and program
JP7253728B2 (en) 2018-09-21 2023-04-07 パナソニックIpマネジメント株式会社 Human detection system and program

Also Published As

Publication number Publication date
JP4607757B2 (en) 2011-01-05

Similar Documents

Publication Publication Date Title
JP4607757B2 (en) Human body detection sensor
US7075431B2 (en) Logical pet immune intrusion detection apparatus and method
JP5308898B2 (en) Human detection sensor
CN102472030B (en) Pir motion sensor system
CN106600777A (en) Infrared array number-of-personnel sensor-based counting method and apparatus
CN104094594A (en) 3D zoom imager
JP2017505919A (en) Motion detection
US20080074252A1 (en) Pir motion sensor
US6552345B2 (en) Thermopile far infrared radiation detection apparatus for crime prevention
JP5864335B2 (en) Human body detection device
JP2013061273A (en) Object detection device using near infrared ray and far infrared ray
CN103984040A (en) Biological recognition method based on infrared sensor array algorithm
RU2661751C1 (en) Passive infrared device for detecting intruder with generation of boundary signals
RU2571589C1 (en) Passive infrared system for detecting intruder with generation of boundary signals
JP2008171195A (en) Crime-preventive sensor
JP4002365B2 (en) Combined monitoring device
JP2013210307A (en) Human body detector
JPH1151764A (en) Passive infrared detector
CN202471260U (en) Pyroelectric infrared detection device
JP6279407B2 (en) Human body detection device
JP2007048320A (en) Crime-prevention sensor
Wong et al. Off-time swimming pool surveillance using thermal imaging system
US6744049B2 (en) Detection of obstacles in surveillance systems using pyroelectric arrays
JPH06194459A (en) Infrared-ray type human body detector
CN210667075U (en) Infrared detection alarm device based on pyroelectric

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101007

R150 Certificate of patent or registration of utility model

Ref document number: 4607757

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250