JP2007178157A - Method for preventive maintenance of structure in nuclear power plant - Google Patents

Method for preventive maintenance of structure in nuclear power plant Download PDF

Info

Publication number
JP2007178157A
JP2007178157A JP2005374187A JP2005374187A JP2007178157A JP 2007178157 A JP2007178157 A JP 2007178157A JP 2005374187 A JP2005374187 A JP 2005374187A JP 2005374187 A JP2005374187 A JP 2005374187A JP 2007178157 A JP2007178157 A JP 2007178157A
Authority
JP
Japan
Prior art keywords
preventive maintenance
power plant
nuclear power
maintenance method
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005374187A
Other languages
Japanese (ja)
Inventor
Tatsuya Kubo
達也 久保
Masayuki Asano
政之 淺野
Minoru Obata
稔 小畑
Rie Sumiya
利恵 角谷
Masao Itaya
雅雄 板谷
Shohei Kawano
昌平 川野
Masaaki Kikuchi
正明 菊池
Norihiko Tanaka
徳彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005374187A priority Critical patent/JP2007178157A/en
Publication of JP2007178157A publication Critical patent/JP2007178157A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for the preventive maintenance of structures in a nuclear power plant which restrains stress corrosion cracking (SCC) from appearing with neither high residual stress nor high hardness portions remaining in any members of the structures. <P>SOLUTION: The method for the preventive maintenance of the structures in the nuclear power plant in this invention includes processes 11 and 12 for evaluating the stress distribution and/or the strength distribution of the structures in the nuclear power plant, a process 13 for judging a region requiring any measure against the SCC in the structures on the basis of the evaluation in the processes 11 and 12 and a process 14 for removing a region tangent to a corrosion environment in the region judged to require the measure against stress corrosion cracking. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、原子力プラント構造物の予防保全方法に関する。   The present invention relates to a preventive maintenance method for a nuclear plant structure.

原子炉圧力容器の内部に配置された炉内構造物は、オーステナイト系ステンレス鋼あるいは高ニッケル合金等の耐食性および高温強度に優れた材料を使用しているが、高温高圧の環境下での長期に亘る運転および中性子照射に起因して材料劣化の心配がある。   The reactor internal structure placed inside the reactor pressure vessel uses materials with excellent corrosion resistance and high temperature strength, such as austenitic stainless steel or high nickel alloy, but for long periods in high temperature and high pressure environments. There is a risk of material degradation due to extended operation and neutron irradiation.

特に、炉内構造物の溶接部あるいはその近傍は、溶接入熱による材料の鋭敏化および引張り残留応力の影響で潜在的に応力腐食割れが発生することがある。   In particular, stress corrosion cracking may occur potentially at the welded portion of the furnace internal structure or in the vicinity thereof due to the sensitization of the material due to welding heat input and the influence of tensile residual stress.

この応力腐食割れ(Stress Corrosion Cracking:以下SCCと記す)は、腐食性環境におかれた金属材料に引張応力が作用して生ずる割れ現象のことであり、材料、環境、応力の3つの因子が重なったときに発生すると考えられている。   This stress corrosion cracking (hereinafter referred to as SCC) is a cracking phenomenon caused by the application of tensile stress to a metal material in a corrosive environment. There are three factors: material, environment and stress. It is thought to occur when they overlap.

これら3つの因子のうち、応力の因子については、不働態皮膜を継続的に破壊するような引張応力や歪、腐食速度よりも遅くゆっくりした変形の進行がSCCの発生に影響があるとされている。   Of these three factors, the stress factor is considered to have an effect on the occurrence of SCC due to the tensile stress, strain, and slow deformation progressing slower than the corrosion rate that continuously destroy the passive film. Yes.

また、軽水炉の一次冷却系のステンレス鋼やニッケル基合金等の材料に発生したSCCの要因についても、通常のステンレス鋼の溶接熱影響部の粒界応力腐食割れ(Inter granular SSC)は、溶接熱影響による材料の鋭敏化と溶接残留応力とが重なったために発生したとされている。   In addition, regarding the SCC factors that occur in materials such as stainless steel and nickel base alloys in the primary cooling system of light water reactors, the intergranular stress corrosion cracking (Inter granular SSC) in the weld heat affected zone of ordinary stainless steel It is said that it was caused by the overlap of material sensitization due to the influence and welding residual stress.

さらにまた、低炭素ステンレス鋼では、表層部に残留している機械加工等による硬化層、溶接、加工による引張残留応力との3つの要因が重なることがSCC発生の主要因になっている。   Furthermore, in the low carbon stainless steel, the main cause of the occurrence of SCC is that the three factors of the hardened layer by machining or the like remaining in the surface layer portion, the tensile residual stress by welding, and processing overlap.

このため、SCCの発生を防ぐ手段には、材料の耐食性向上、原子炉運転水質の改善など、材料、腐食環境の改善が図られてきた。   For this reason, as a means for preventing the occurrence of SCC, improvement of materials and corrosive environments such as improvement of corrosion resistance of materials and improvement of reactor operating water quality have been attempted.

また、応力因子については、例えば、非特許文献1にも見られるように、表面圧縮応力を対象部分に与え、あるいは、配管の場合、高周波加熱による内面に圧縮力を与えるなどの施工を行ってきた。   As for the stress factor, for example, as seen in Non-Patent Document 1, surface compression stress is applied to the target portion, or in the case of piping, construction is performed such as applying a compression force to the inner surface by high-frequency heating. It was.

このような技術の推移、進展の中、SCC対策に係る技術には、例えば、特許文献1、特許文献2、特許文献3等数多くの発明が開示されている。   Among such technological transitions and developments, many inventions such as Patent Document 1, Patent Document 2, and Patent Document 3 are disclosed as technologies related to SCC countermeasures.

例えば、特許文献1では、原子炉炉内構造物にレーザ光を照射し、残留応力の改善を行い、また、特許文献2では、対象部分にウォータジェットピーニングを施工して残留応力の改善を行い、また、特許文献3では、溶接施工後、溶接変形の矯正処理を行うため、溶接部分の端部に付加ビードとしてマルテンサイト変態開始温度300〜150℃または400〜200℃の溶接金属を被着させている。   For example, in Patent Document 1, laser beam is irradiated to the reactor internal structure to improve the residual stress, and in Patent Document 2, water jet peening is applied to the target portion to improve the residual stress. Moreover, in patent document 3, in order to correct a welding deformation after welding construction, the weld metal of martensite transformation start temperature 300-150 degreeC or 400-200 degreeC is attached to the edge part of a welding part as an additional bead. I am letting.

このように、従来の構造物では、構造物自身に発生する事象に適した施工手段を選択し、高い強度維持への予防保全を行っていた。
特許第3306040号公報 特許第299545号公報 特開2003−103393号公報 原子力百科事典 URL http://mext−atm.jst.go.jp/atomica/02070222
Thus, in the conventional structure, the construction means suitable for the event occurring in the structure itself is selected, and preventive maintenance for maintaining high strength is performed.
Japanese Patent No. 3306040 Japanese Patent No. 299545 JP 2003-103393 A Nuclear Encyclopedia URL http: // mext-atm. jst. go. jp / atomica / 020070222

構造物部材の応力改善対策に、上述特許文献1〜3または非特許文献1を適用する場合、構造物部材の残留応力は改善されるものの、高硬度部は、依然として構造物部材の表面に残留している。   When applying the above-mentioned Patent Documents 1 to 3 or Non-Patent Document 1 as a measure for improving the stress of a structural member, although the residual stress of the structural member is improved, the high hardness portion still remains on the surface of the structural member. is doing.

このため、追加補修溶接など何らかの形で外部より新たな負荷が加わった場合などは、再びSCC発生の可能性が高まるおそれがある。   For this reason, when a new load is applied from the outside in some form such as additional repair welding, the possibility of occurrence of SCC may increase again.

本発明は、このような事情にもとづいてなされたものであり、構造物部材の表面処理後、高残留応力あるいは高硬度部が残留することなくSCC発生を抑制する原子力プラント構造物の予防保全方法を提供することを目的とする。   The present invention has been made based on such circumstances, and a preventive maintenance method for a nuclear plant structure that suppresses the occurrence of SCC without leaving a high residual stress or a high hardness portion after the surface treatment of the structural member. The purpose is to provide.

本発明に係る原子力プラント構造物の予防保全方法は、上述の目的を達成するために、原子力プラント構造物の応力分布・強度分布のいずれか一方、またはその両方を評価する工程と、この評価にもとづいて前記構造物の応力腐食割れ対策が必要な領域を判定する工程と、前記対策が必要と判定された領域の腐食環境に接する領域を除去する工程とを備えたことを特徴とする方法である。   In order to achieve the above object, the preventive maintenance method for a nuclear plant structure according to the present invention includes a step of evaluating one or both of stress distribution and strength distribution of the nuclear plant structure, and this evaluation. A method comprising: determining a region where stress corrosion cracking countermeasures of the structure are required based on the step; and removing a region in contact with the corrosive environment of the region where the countermeasures are determined to be necessary. is there.

本発明に係る原子力プラント構造物の予防保全方法は応力腐食割れの要因となる高残留応力部、高強度部を事前に検出し、設定し、除去するので、応力腐食割れの発生を的確に抑制することができる。   The preventive maintenance method for nuclear power plant structures according to the present invention detects, sets and removes high residual stress parts and high strength parts that cause stress corrosion cracking in advance, so that the occurrence of stress corrosion cracking is accurately suppressed. can do.

以下、本発明に係る原子力プラント構造物の予防保全方法の実施形態を図面および図面に付した符号を引用して説明する。   Hereinafter, embodiments of a preventive maintenance method for a nuclear power plant structure according to the present invention will be described with reference to the drawings and the reference numerals attached to the drawings.

図1は、本発明に係る原子力プラント構造物の予防保全方法の手順を示すブロック図である。   FIG. 1 is a block diagram showing a procedure of a preventive maintenance method for a nuclear power plant structure according to the present invention.

本実施形態に係る原子力プラント構造物の予防保全方法は、構造物中の応力分布、強度分布のいずれか一方、またはその両方を評価する応力分布、強度分布評価としての第1工程11と、この評価にもとづいて構造物中で応力腐食割れ対策が必要な領域に予め定められたしきい値を基に判定を行う応力・強度しきい値判定としての第2工程12と、この第2工程12における判定結果に基づいて対策範囲を策定する対策範囲策定工程としての第3工程13と、対策が必要と判定された領域の腐食環境に接する部分の一部と除去する要対策領域除去工程としての第4工程14とを備える構成になっている。   The preventive maintenance method for a nuclear power plant structure according to the present embodiment includes a first step 11 as a stress distribution and strength distribution evaluation for evaluating either or both of a stress distribution and a strength distribution in the structure, A second step 12 as a stress / strength threshold judgment for making a judgment based on a predetermined threshold in an area where stress corrosion cracking countermeasures are required in the structure based on the evaluation, and the second step 12 The third step 13 as a countermeasure range formulation process for formulating a countermeasure range based on the determination result in step 3, and a part of the area in contact with the corrosive environment in which the countermeasure is determined to be necessary and a countermeasure area removal step to be removed The fourth step 14 is provided.

また、構造物中、高応力、高強度部の除去は、構造物の製作過程において、その一部を除去することを前提とし、構造物の完成形状に除去分の寸法を予め加えて作製した構造物についても上述の各工程を採ることができる。   Also, removal of high stress and high strength parts in the structure was made by preliminarily adding the dimensions of the removal to the completed shape of the structure on the premise that part of the structure will be removed in the manufacturing process of the structure. The above-described steps can also be taken for the structure.

また、除去施工は、構造物の工場製作工程、現地据付工程、運転開始後の検査工程のいずれの工程終了後に行ってもよい。   The removal construction may be performed after any of the factory manufacturing process of the structure, the field installation process, and the inspection process after the start of operation.

このような各工程を採る本実施形態に係る原子力プラント構造物の予防保全方法は、部分除去対策を行った領域において、高温純水中のSCCの要因となる高残留応力部、高強度部を除去しているので、SCC割れの発生を未然に防ぐことができる。   The preventive maintenance method for a nuclear power plant structure according to the present embodiment that employs each of the above steps includes a high residual stress portion and a high strength portion that cause SCC in high-temperature pure water in a region where partial removal measures have been taken. Since it is removed, the occurrence of SCC cracks can be prevented.

一方、上述の各工程中、応力分布・強度分布を評価する第1工程11の具体的手法は、図2に示すように、実際の製作物あるいは製作物と同様の手順を用いて製作した製作物と同一形状、あるいはその一部の模擬試験体を用い、例えばX線法、ひずみゲージ法、光弾性法等に基づいて応力を測定し、応力数値解析を行うか、あるいは、例えばビッカース硬さ、タープ硬さ等により硬さを実測し、数値解析を行うか、さらには構造物の幾何学的形状を基にした数値解析のいずれかの手法を用いて行われる。   On the other hand, the specific method of the first step 11 for evaluating the stress distribution / intensity distribution during each of the above-described steps is an actual product or a production manufactured using a procedure similar to that of the product as shown in FIG. Using the same shape of the object or a part of the simulated test specimen, measure the stress based on the X-ray method, strain gauge method, photoelasticity method, etc., and perform the stress numerical analysis, or, for example, Vickers hardness The hardness is measured by tarp hardness or the like and numerical analysis is performed, or further, numerical analysis based on the geometric shape of the structure is used.

応力分布評価手段21は、例えば、「最新応力・ひずみ測定・評価技術(監修:河田幸三 イーティーエス社 1992年5月)」に記載されているように、ひずみゲージ法、光弾性法、X線応力測定法、数値解析、磁気ひずみ法、ホログラフィ法、スペックル法、画像処理法、音弾性法、赤外線法、アコーステックス法、応力塗料膜法、モアレトポグラフィ・ホログラフィ干渉などのうち、いずれかの手法を用いる。   The stress distribution evaluation means 21 is, for example, as described in “Latest Stress / Strain Measurement / Evaluation Technology (Supervision: Kozo Kawada, ETS Corp. May 1992)”, strain gauge method, photoelastic method, X-ray method. Stress measurement method, numerical analysis, magnetostriction method, holography method, speckle method, image processing method, acoustoelastic method, infrared method, acoustic tex method, stress paint film method, moire topography, holographic interference, etc. Use the technique.

また、強度(硬さ)分布評価手段22には、硬さ分布、残留ひずみ分布などのうち、いずれかが用いられる。なかでも、硬さ分布の評価には、ビッカース硬さ、タープ硬さ、ブリネル硬さ、ロックウェル硬さ、ショア硬さ、スーパーフィシャル硬さ、反発硬度などのうち、いずれかが用いられる。   In addition, the strength (hardness) distribution evaluation means 22 uses any one of hardness distribution, residual strain distribution, and the like. In particular, any one of Vickers hardness, tarp hardness, Brinell hardness, Rockwell hardness, Shore hardness, superficial hardness, rebound hardness, and the like is used for evaluation of the hardness distribution.

また、残留ひずみ分布の評価には、数値解析が用いられる。   Numerical analysis is used for evaluation of the residual strain distribution.

他方、構造物中、応力腐食割れ対策が必要な部分に予め定められたしきい値を基に判定を行う第2工程12の具体的手法は、図3に示すように、上述の第1工程で求めた応力・強度分布から、実機運転中の各部分について、SCC感受性を示すと考えられている応力のしきい値、強度のしきい値を超えるか否かについて判定を行うSCC発生環境判定工程23を備えている。   On the other hand, as shown in FIG. 3, the specific method of the second step 12 for performing the determination based on the threshold value predetermined for the portion in the structure where the countermeasure against the stress corrosion cracking is necessary is the first step described above. SCC generation environment determination that determines whether or not the stress threshold value and strength threshold value that are considered to exhibit SCC sensitivity are exceeded for each part during actual machine operation from the stress / intensity distribution obtained in Step 23 is provided.

すなわち、このSCC発生環境判定工程23は、計測応力値が応力しきい値を超えているか否かの判定を行う応力判定工程24、強度値が強度しきい値を超えているか否かの判定を行う強度判定工程25、評価対象の構造物と同様の形状の構造物における割れ事例から実機中の対象部分についてSCC感受性を示すか否かについて判定を行う割れ事例有無判定工程26を備えるとともに、これら各判定工程24、25、26のうち、少なくとも二つ以上の判定結果を組み合わせて総合的に検討し、構造物中におけるSCC発生の可能性の高い領域を定めるSCC対策必要性領域判定工程27とを備える構成になっている。   That is, this SCC occurrence environment determination step 23 is a stress determination step 24 for determining whether or not the measured stress value exceeds the stress threshold value, and whether or not the strength value exceeds the strength threshold value. A strength determination step 25 to be performed, a crack case presence / absence determination step 26 for determining whether or not the target portion in the actual machine shows SCC sensitivity from the crack case in the structure having the same shape as the structure to be evaluated, and these Of each determination step 24, 25, 26, at least two or more determination results are combined and comprehensively examined, and an SCC countermeasure necessity region determination step 27 for determining a region where the possibility of occurrence of SCC in the structure is high. It is the composition provided with.

第2工程12でSCC対策必要性領域が設定されると、対策範囲策定工程としての第3工程13では、図4に示すように、第2工程12で求めたSCC対策必要性領域の設定結果から除去対策を行う領域の設定をSCC対策必要性設定判定工程28で行い、その設定に基づいて対策項目範囲策定工程29でSCC対策項目範囲を策定するようになっている。   When the SCC countermeasure necessity area is set in the second process 12, in the third process 13 as the countermeasure range formulation process, as shown in FIG. 4, the setting result of the SCC countermeasure necessity area obtained in the second process 12 is obtained. The area for performing the removal countermeasure is set in the SCC countermeasure necessity setting determination step 28, and the SCC countermeasure item range is formulated in the countermeasure item range formulation step 29 based on the setting.

第3工程13における対策項目範囲策定工程29でSCC対策項目範囲が策定されると、要対策部分除去工程としての第4工程14では、SCC対策項目範囲の策定に基づいて、順次、対策範囲の選定が対策範囲選定工程30で行われ、対策工法の選定が対策工法選定工程31で行われ、対策実施の判定が対策実施判定工程32でそれぞれ行われる。   When the SCC countermeasure item range is formulated in the countermeasure item range formulation process 29 in the third process 13, the fourth process 14 as the countermeasure required partial removal process is sequentially performed based on the formulation of the SCC countermeasure item range. Selection is performed in the countermeasure range selection step 30, selection of the countermeasure method is performed in the countermeasure method selection step 31, and determination of countermeasure implementation is performed in the countermeasure implementation determination step 32.

対策実施の判定は、第3工程13でのSCC対策項目範囲の策定について、施工後の強度計算に基づく設計基準との比較による対策範囲の策定、選択した除去加工方法による難易度の検討を行い、これらの検討結果から除去加工実施の最終判定がなされる。そして、最終判定の結果、除去実施を行わない場合、経過監視が行われ、除去加工が行われると、次の手段が採られる。   Judgment of countermeasure implementation is based on the formulation of the SCC countermeasure item range in the third step 13 by formulating the countermeasure range by comparison with the design standard based on the strength calculation after construction, and examining the degree of difficulty by the selected removal processing method. The final determination of the removal processing is made from these examination results. As a result of final determination, when removal is not performed, progress monitoring is performed, and when removal processing is performed, the following measures are taken.

除去加工手段33は、「最新切断技術総覧(株)産業技術サービスセンター刊」に記載されているように、(1)機械的切断(バイト・カッタによる切断、のこ切断(丸のこ、帯のこ)、砥粒による切断、研削砥石による切断、電解切断)、(2)溶断(ガス切断、プラズマ切断、ワイヤカット放電加工、放電減肉加工)や(3)化学的切断等のうち、いずれかの切断手法が少なくとも1つ以上用いられる。   As described in "Latest Cutting Technology Overview Co., Ltd., Industrial Technology Service Center", the removal processing means 33 is (1) mechanical cutting (cutting with a bite cutter, saw cutting (circular saw, band) Saw), cutting with abrasive grains, cutting with grinding wheel, electrolytic cutting), (2) fusing (gas cutting, plasma cutting, wire cut electric discharge machining, electric discharge thinning), and (3) chemical cutting, Any one or more cutting methods are used.

また、除去施工後の作業は、仕上げ加工{粗さ改善(表面みがき加工(CNSなど))}や、応力改善(SP、LP、WJPなど)、組織・応力改善(SR、脱鋭敏化熱処理などのいずれか一つ、あるいは二つ以上組み合わせて行われる。   In addition, the work after the removal work is finished processing {roughness improvement (surface polishing (CNS, etc.))}, stress improvement (SP, LP, WJP, etc.), structure / stress improvement (SR, desensitization heat treatment, etc.) Any one of these or a combination of two or more.

このように、本実施形態は、構造物のSCC割れの予防保全にあたり、構造物の応力・強度を評価し、評価する応力・強度のしきい値を基に応力腐食割れ対策が必要な領域を判定し、判定した応力腐食割れ対策領域の範囲を策定した後、その範囲の除去施工を行うので、適切にして的確に応力腐食割れの発生を未然に防止することができる。   As described above, this embodiment evaluates the stress / strength of the structure in the preventive maintenance of the SCC crack of the structure, and defines the area where the stress corrosion crack countermeasure is required based on the threshold value of the stress / strength to be evaluated. After the determination and determination of the range of the determined stress corrosion cracking area, the removal of the range is performed, so that the occurrence of stress corrosion cracking can be prevented appropriately and accurately.

本発明に係る原子力プラント構造物の予防保全方法の手順を示すブロック図。The block diagram which shows the procedure of the preventive maintenance method of the nuclear power plant structure which concerns on this invention. 図1における応力分布・強度分布評価としての第1工程を示すブロック図。The block diagram which shows the 1st process as stress distribution and intensity distribution evaluation in FIG. 図1における応力・強度しきい値判定としての第2工程を示すブロック図。The block diagram which shows the 2nd process as stress and intensity | strength threshold value determination in FIG. 図1における対策範囲策定工程としての第3工程を示すブロック図。The block diagram which shows the 3rd process as a countermeasure range formulation process in FIG. 図1における要対策領域除去工程としての第4工程を示すブロック図。The block diagram which shows the 4th process as a countermeasure area removal process in FIG.

符号の説明Explanation of symbols

11 応力分布・強度分布評価としての第1工程
12 応力・強度しきい値判定としての第2工程
13 対策範囲策定工程としての第3工程
14 要対策領域除去工程としての第4工程
21 応力分布評価手段
22 強度(硬さ)分布評価手段
23 SCC発生環境判定工程
24 応力判定工程
25 強度判定工程
26 割れ事例有無判定工程
27 SCC対策必要性領域判定工程
28 SCC対策必要性設定判定工程
29 対策項目範囲策定工程
30 対策範囲選定工程
31 対策工法選定工程
32 対策実施判定工程
33 除去加工手段
11 First Process as Stress Distribution / Strength Distribution Evaluation 12 Second Process as Stress / Strength Threshold Judgment 13 Third Process as Countermeasure Range Setting Process 14 Fourth Process 21 as Countermeasure Area Removal Process 21 Stress Distribution Evaluation Means 22 Strength (hardness) distribution evaluation means 23 SCC generation environment determination step 24 Stress determination step 25 Strength determination step 26 Crack case presence / absence determination step 27 SCC countermeasure necessity region determination step 28 SCC countermeasure necessity setting determination step 29 Measure item range Formulation process 30 Countermeasure range selection process 31 Countermeasure construction method selection process 32 Countermeasure execution determination process 33 Removal processing means

Claims (12)

原子力プラント構造物の応力分布・強度分布のいずれか一方、またはその両方を評価する工程と、この評価にもとづいて前記構造物の応力腐食割れ対策が必要な領域を判定する工程と、前記対策が必要と判定された領域の腐食環境に接する領域を除去する工程とを備えたことを特徴とする原子力プラント構造物の予防保全方法。 A step of evaluating one or both of stress distribution and strength distribution of a nuclear power plant structure, a step of determining an area where stress corrosion cracking countermeasures of the structure are required based on the evaluation, and the countermeasure And a step of removing a region in contact with the corrosive environment determined to be necessary. 請求項1記載の原子力プラント構造物の予防保全方法において、前記構造物の応力分布を評価する工程は、応力測定、数値解析のいずれか一方または両方の組み合わせの工程で行うことを特徴とする原子力プラント構造物の予防保全方法。 2. The preventive maintenance method for a nuclear power plant structure according to claim 1, wherein the step of evaluating the stress distribution of the structure is performed by one of stress measurement and numerical analysis or a combination of both. Preventive maintenance method for plant structures. 請求項1記載の原子力プラント構造物の予防保全方法において、前記構造物の強度分布を評価する工程は、硬さ分布測定、数値解析のいずれか一方または両方の組み合わせの工程で行うことを特徴とする原子力プラント構造物の予防保全方法。 2. The preventive maintenance method for a nuclear power plant structure according to claim 1, wherein the step of evaluating the strength distribution of the structure is performed by a step of any one or a combination of hardness distribution measurement and numerical analysis. To prevent and maintain nuclear plant structures. 請求項1記載の原子力プラント構造物の予防保全方法において、前記構造物の応力腐食割れ対策が必要な領域の判定は、応力分布が予め定められたしきい値以上となる領域を要対策領域としていることを特徴とする原子力プラント構造物の予防保全方法。 2. The preventive maintenance method for a nuclear power plant structure according to claim 1, wherein an area where stress corrosion cracking countermeasures of the structure are required is determined by setting an area where the stress distribution is equal to or greater than a predetermined threshold as a countermeasure area. A preventive maintenance method for a nuclear power plant structure. 請求項1記載の原子力プラント構造物の予防保全方法において、前記構造物の応力腐食割れ対策が必要な領域の判定は、強度分布が予め定められたしきい値以上となる領域を要対策領域としていることを特徴とする原子力プラント構造物の予防保全方法。 2. The preventive maintenance method for a nuclear power plant structure according to claim 1, wherein the region where the stress corrosion cracking countermeasure of the structure is necessary is determined by setting a region where the strength distribution is equal to or greater than a predetermined threshold as a necessary countermeasure region. A preventive maintenance method for a nuclear power plant structure. 請求項1記載の原子力プラント構造物の予防保全方法において、前記構造物の応力腐食割れ対策が必要な領域の判定は、過去の割れ事例から対策領域を設定することを特徴とする原子力プラント構造物の予防保全方法。 2. The nuclear power plant structure according to claim 1, wherein the determination of the area where stress corrosion cracking countermeasures of the structure are necessary sets a countermeasure area from past cracking cases. Preventive maintenance methods. 請求項1記載の原子力プラント構造物の予防保全方法において、前記構造物の応力腐食割れ対策が必要な領域の判定は、請求項4、請求項5、および請求項6のうち、少なくともいずれか2つ以上を組み合わせて行うことを特徴とする原子力プラント構造物の予防保全方法。 2. The preventive maintenance method for a nuclear power plant structure according to claim 1, wherein the determination of the region where the stress corrosion cracking countermeasure of the structure is necessary is at least one of claims 4, 5, and 6. A preventive maintenance method for a nuclear power plant structure characterized by combining two or more. 請求項1記載の原子力プラント構造物の予防保全方法において、前記構造物を除去する工程は、機械的切断、溶断、化学的切断のうち、少なくとも1つ以上で行うことを特徴とする原子力プラント構造物の予防保全方法。 The nuclear power plant structure according to claim 1, wherein the step of removing the structure is performed by at least one of mechanical cutting, fusing, and chemical cutting. Preventive maintenance method of things. 請求項1記載の原子力プラント構造物の予防保全方法において、前記構造物を除去する工程は、除去後、平滑仕上げあるいは残留応力の改善のいずれか一方、あるいはその両方により表面仕上げを行うことを特徴とする原子力プラント構造物の予防保全方法。 2. The preventive maintenance method for a nuclear power plant structure according to claim 1, wherein in the step of removing the structure, after the removal, surface finishing is performed by one of or both of smooth finishing and improvement of residual stress. A preventive maintenance method for nuclear plant structures. 請求項1記載の原子力プラント構造物の予防保全方法において、前記構造物の応力腐食割れ対策が必要な領域の判定は、除去を行う構造物の設計基準に基づいて除去範囲を選定することを特徴とする原子力プラント構造物の予防保全方法。 2. The preventive maintenance method for a nuclear power plant structure according to claim 1, wherein the determination of the area where the stress corrosion cracking countermeasure of the structure is required selects a removal range based on a design standard of the structure to be removed. A preventive maintenance method for nuclear plant structures. 請求項1記載の原子力プラント構造物の予防保全方法において、前記構造物の製作過程において除去することを前提として、完成形状に除去分をあらかじめ加えた寸法の構造物を製作することを特徴とする原子力プラント構造物の予防保全方法。 2. The preventive maintenance method for a nuclear power plant structure according to claim 1, wherein a structure having a size obtained by adding a removal amount to a completed shape in advance is manufactured on the premise that the structure is removed in a manufacturing process of the structure. A preventive maintenance method for nuclear plant structures. 請求項1記載の原子力プラント構造物の予防保全方法において、前記構造物の除去を、当該構造物の工場製作、現地据付、運転開始後の検査のうち、いずれかの終了後に行うことを特徴とする原子力プラント構造物の予防保全方法。 2. The preventive maintenance method for a nuclear power plant structure according to claim 1, wherein the removal of the structure is performed after completion of any one of factory manufacture, field installation, and inspection after the start of operation of the structure. To prevent and maintain nuclear plant structures.
JP2005374187A 2005-12-27 2005-12-27 Method for preventive maintenance of structure in nuclear power plant Pending JP2007178157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005374187A JP2007178157A (en) 2005-12-27 2005-12-27 Method for preventive maintenance of structure in nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005374187A JP2007178157A (en) 2005-12-27 2005-12-27 Method for preventive maintenance of structure in nuclear power plant

Publications (1)

Publication Number Publication Date
JP2007178157A true JP2007178157A (en) 2007-07-12

Family

ID=38303512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005374187A Pending JP2007178157A (en) 2005-12-27 2005-12-27 Method for preventive maintenance of structure in nuclear power plant

Country Status (1)

Country Link
JP (1) JP2007178157A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015198708A1 (en) * 2014-06-24 2015-12-30 日立Geニュークリア・エナジー株式会社 Comprehensive information management system
CN106078008A (en) * 2016-06-24 2016-11-09 中车南京浦镇车辆有限公司 A kind of intercity track train bogie residual stress safety control system and control method

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62194429A (en) * 1986-02-21 1987-08-26 Hitachi Ltd Method for measuring residual stress
JPH07284925A (en) * 1994-04-19 1995-10-31 Ishikawajima Harima Heavy Ind Co Ltd Method for butt-welding tube materials
JPH08174422A (en) * 1994-12-27 1996-07-09 Toshiba Corp Method for reforming surface of in-pile structure of nuclear reactor
JPH08320307A (en) * 1995-05-25 1996-12-03 Hitachi Ltd Degradation-detection sensor and its measuring method
JPH10170691A (en) * 1996-12-09 1998-06-26 Hitachi Ltd Surface reforming method of metallic member
JPH1123565A (en) * 1997-07-09 1999-01-29 Hitachi Ltd Corrosion environment scc crack developing prediction method
JPH11175134A (en) * 1997-12-16 1999-07-02 Mitsubishi Electric Corp System and method for plant preventive maintenance
JP2001194482A (en) * 2000-01-13 2001-07-19 Toshiba Corp Preventive maintenance method for reactor in-core structure and preventive maintenance device
JP2003028978A (en) * 2001-07-12 2003-01-29 Toshiba Corp Method and program for determining inspection timing for in-vessel structure
JP2003329790A (en) * 2002-05-08 2003-11-19 Toshiba Corp Material degradation evaluation method for nuclear power plant structure
JP2004219180A (en) * 2003-01-10 2004-08-05 Toshiba Corp Irradiation deterioration diagnostic method of nuclear reactor incore equipment and its system
JP2005131704A (en) * 2003-10-08 2005-05-26 Japan Atom Energy Res Inst Method for relieving stress from surface of stainless steel using ultrashort pulsed laser beam

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62194429A (en) * 1986-02-21 1987-08-26 Hitachi Ltd Method for measuring residual stress
JPH07284925A (en) * 1994-04-19 1995-10-31 Ishikawajima Harima Heavy Ind Co Ltd Method for butt-welding tube materials
JPH08174422A (en) * 1994-12-27 1996-07-09 Toshiba Corp Method for reforming surface of in-pile structure of nuclear reactor
JPH08320307A (en) * 1995-05-25 1996-12-03 Hitachi Ltd Degradation-detection sensor and its measuring method
JPH10170691A (en) * 1996-12-09 1998-06-26 Hitachi Ltd Surface reforming method of metallic member
JPH1123565A (en) * 1997-07-09 1999-01-29 Hitachi Ltd Corrosion environment scc crack developing prediction method
JPH11175134A (en) * 1997-12-16 1999-07-02 Mitsubishi Electric Corp System and method for plant preventive maintenance
JP2001194482A (en) * 2000-01-13 2001-07-19 Toshiba Corp Preventive maintenance method for reactor in-core structure and preventive maintenance device
JP2003028978A (en) * 2001-07-12 2003-01-29 Toshiba Corp Method and program for determining inspection timing for in-vessel structure
JP2003329790A (en) * 2002-05-08 2003-11-19 Toshiba Corp Material degradation evaluation method for nuclear power plant structure
JP2004219180A (en) * 2003-01-10 2004-08-05 Toshiba Corp Irradiation deterioration diagnostic method of nuclear reactor incore equipment and its system
JP2005131704A (en) * 2003-10-08 2005-05-26 Japan Atom Energy Res Inst Method for relieving stress from surface of stainless steel using ultrashort pulsed laser beam

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015198708A1 (en) * 2014-06-24 2015-12-30 日立Geニュークリア・エナジー株式会社 Comprehensive information management system
CN106078008A (en) * 2016-06-24 2016-11-09 中车南京浦镇车辆有限公司 A kind of intercity track train bogie residual stress safety control system and control method
CN106078008B (en) * 2016-06-24 2018-01-09 中车南京浦镇车辆有限公司 A kind of intercity track train bogie residual stress safety control system and control method

Similar Documents

Publication Publication Date Title
Chang et al. Stress corrosion crack initiation in machined type 316L austenitic stainless steel in simulated pressurized water reactor primary water
Zhang et al. Effect of machining-induced surface residual stress on initiation of stress corrosion cracking in 316 austenitic stainless steel
Telang et al. Effects of laser shock peening on SCC behavior of Alloy 600 in tetrathionate solution
Pineault et al. X-Ray Diffraction Residual-Stress Measurement in Failure Analysis
JP2009161802A (en) Highly corrosion-resistant austenitic stainless steel, nuclear power generation plant constructed by using the stainless steel, weld joint and structural member
Fueki et al. Prediction of fatigue limit improvement in needle peened welded joints containing crack-like defects
Kim et al. C-ring stress corrosion test for Inconel 600 and Inconel 690 sleeve joint welded by Nd: YAG laser
Hanninen et al. Dissimilar metal weld joints and their performance in nuclear power plant and oil refinery conditions
Gronostajski et al. Selected effective methods of increasing the durability of forging tools in hot forging processes
JP2017035712A (en) Peening processing method and turbine rotor wheel
JP2010142899A (en) Stress improvement processing method
JP2007178157A (en) Method for preventive maintenance of structure in nuclear power plant
Li et al. Failure analysis of reheater tubes in a 350 MW supercritical circulating fluidized bed boiler
JP4503483B2 (en) Material to be welded, welded structure using the same and high corrosion resistance austenitic stainless steel
Kim et al. Continuous tempering effect induced PWHT alternative technology using wire arc additive manufacturing for application in replacing nuclear pressurized water reactor system repairing: CALPHAD, FEM simulation, and EBSD investigation
KR101457340B1 (en) Tube sheet of Steam Generator and manufacturing method thereof
JP2007044698A (en) Welded structure, and welding method of structure
Hilson et al. Spatial variation of residual stresses in a welded pipe for high temperature applications
JP2007225387A (en) Method for predicting fatigue property in weld zone of reactor structure and system and program for such method
JP2009287104A (en) Thin sheet of austenitic stainless steel and manufacturing method therefor
Ehrnstén et al. Deformation localisation and EAC in inhomogeneous microstructures of austenitic stainless steels
JP3046090B2 (en) Evaluation method for characteristic reliability of component materials
Easton et al. Residual stress in case hardened steel gears
Platts et al. Effect of surface condition on the fatigue life of austenitic stainless steels in high temperature water environments
Júnior et al. Effect of Specimen Cross Section and Notch Radius on the Hydrogen Embrittlement Susceptibility of Tempered and Quenched AISI 4140 Steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20111214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120131