JPH08320307A - Degradation-detection sensor and its measuring method - Google Patents

Degradation-detection sensor and its measuring method

Info

Publication number
JPH08320307A
JPH08320307A JP7126222A JP12622295A JPH08320307A JP H08320307 A JPH08320307 A JP H08320307A JP 7126222 A JP7126222 A JP 7126222A JP 12622295 A JP12622295 A JP 12622295A JP H08320307 A JPH08320307 A JP H08320307A
Authority
JP
Japan
Prior art keywords
deterioration
surveillance
degree
actual
plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7126222A
Other languages
Japanese (ja)
Inventor
Toshihiko Yoshimura
敏彦 吉村
Yuichi Ishikawa
雄一 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7126222A priority Critical patent/JPH08320307A/en
Publication of JPH08320307A publication Critical patent/JPH08320307A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE: To obtain a degradation detection sensor which can monitor a degradation degree under the same condition as a data-base, by which the accuracy and the reliability of the evaluation of a remaining life are enhanced and by which the replacement time and the repair time of an apparatus material can be decided on the safer side. CONSTITUTION: A weld 11 whose degradation in a nuclear plant is estimated to be remarkable is provided with a surveillance sample 12 whose degradation has been accelerated more than that of the weld 11, and a magnetic signal is monitored by a monitor at the outside of the nuclear plant. The magnetic signal is compared with a data-base which has been found in advance, a degradation degree is found, and whether the weld is to be replaced or repaired is decided by whether the degradation degree exceeds a replacement reference value or not. In addition, the surveillance sample 12 is measured under the same sample condition and the same measuring condition as in the construction of the data-base.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、原子力プラントに係
り、特に、原子力プラント機器材料の余寿命評価、及び
長寿命化に好適な劣化検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nuclear power plant, and more particularly to a deterioration detecting device suitable for evaluating the remaining life of nuclear plant equipment materials and prolonging its life.

【0002】[0002]

【従来の技術】従来、原子力プラントの劣化診断技術で
は、特開平1−147360 号、及び特開昭63−212844号公報
に記述されているように、プラント実機材の磁気的又は
電気的信号を直接測定し、予め求めておいた実機模擬材
の磁気的又は電気的信号と材料強度との関係のデータベ
ースと比較検討することにより、プラント実機材の劣化
度を推定していた。また、特願昭63−228735号明細書に
示されているように、プラント実機材から直接微小サン
プルを採取し、サンプリング材料の強度や組織を測定す
ることにより実機材の劣化度を検出していた。
2. Description of the Related Art Conventionally, in a deterioration diagnosis technique for a nuclear power plant, as described in JP-A-1-147360 and JP-A-63-212844, a magnetic or electrical signal of a plant actual equipment is detected. The degree of deterioration of the actual plant equipment was estimated by direct measurement and comparison with a previously obtained database of the relationship between the magnetic or electrical signal of the simulated material and the material strength. Further, as shown in Japanese Patent Application No. 63-228735, a micro sample is directly collected from the actual equipment of the plant, and the deterioration degree of the actual equipment is detected by measuring the strength and structure of the sampling material. It was

【0003】[0003]

【発明が解決しようとする課題】特開平1−147360 号、
及び特開昭63−212844号公報では、プラント機器材料の
劣化を直接評価するための裕度がなく、機器材料の交換
時期が適切でなくなる可能性が生じるという問題があっ
た。また、予め求めておいたデータベースの測定条件と
実機部材での測定条件が異なるため、劣化診断の精度と
信頼性が低下するという問題があった。さらに、定期検
査時にのみ劣化を測定するので、定検間での異常を検知
することができなかった。
[Patent Document 1] Japanese Patent Application Laid-Open No. 1-147360
Further, in Japanese Patent Laid-Open No. 63-212844, there is a margin for directly evaluating the deterioration of plant equipment materials, and there is a possibility that the replacement time of equipment materials may not be appropriate. Further, since the measurement conditions of the database obtained in advance and the measurement conditions of the actual machine member are different, there is a problem that the accuracy and reliability of deterioration diagnosis decrease. Furthermore, since the deterioration is measured only during the periodic inspection, it is not possible to detect an abnormality between regular inspections.

【0004】特願昭63−228735号公報では、プラント実
機材料から直接サンプリングするので、少なからずサン
プリングによる実機への影響があった。また、サンプリ
ング後の実機部材の表面を補修しなければならないとい
う問題もあった。
In Japanese Patent Application No. 63-228735, the actual material of the plant is directly sampled, so that the sampling has a considerable effect on the actual equipment. There is also a problem in that the surface of the actual machine member after sampling must be repaired.

【0005】[0005]

【課題を解決するための手段】上記従来の方法の問題点
を解決するために、本発明は以下の技術的手段を採用し
た。すなわち、実機部材の劣化診断の裕度をもたせるた
めに、実機部材を直接測定せず、予め実機部材で求めて
おいた磁気的特性や電気的特性と材料強度のデータベー
スより実機部材の劣化度を推定し、前記劣化度より高い
劣化度を有するサーベランス材を作製して実機部材の近
傍に設置する。さらにデータベース測定時と同一条件で
磁気的又は電気的特性を測定するセンサを、前記サーベ
ランス材近傍に装着する。ここで前記サーベランス材の
サイズや形態,表面状態、さらに前記サーベランス材と
センサとの位置関係等の測定条件は、データベース構築
時の測定条件と全て同一とする。以上のようなサーベラ
ンス材とセンサを組み合わせたいわゆる加速劣化センサ
からの磁気的又は電気的信号を原子力プラントから取り
出し、プラントの外部でモニタする。実機材よりも劣化
させたサーベランス材料からの磁気的又は電気的信号
が、予め求めておいた磁気的特性や電気的特性と材料強
度との関係における敷居値(設計基準値又は取換え基準
値)よりも大きくなった場合には、異常と判断し実機部
材の補修又は取換えを行う。
In order to solve the above problems of the conventional method, the present invention employs the following technical means. In other words, in order to provide a margin for deterioration diagnosis of actual machine parts, the actual machine parts are not directly measured, but the deterioration degree of the actual machine parts is determined from the database of magnetic properties and electrical characteristics and material strength that were obtained in advance for the actual machine parts. It is estimated that a surveillance material having a deterioration degree higher than the above-described deterioration degree is manufactured and installed in the vicinity of the actual machine member. Further, a sensor for measuring magnetic or electrical characteristics under the same conditions as when measuring the database is mounted near the surveillance material. Here, the measurement conditions such as the size and shape of the surveillance material, the surface state, and the positional relationship between the surveillance material and the sensor are all the same as the measurement conditions when the database was constructed. A magnetic or electrical signal from a so-called accelerated deterioration sensor, which is a combination of the above surveillance materials and sensors, is taken out from the nuclear power plant and monitored outside the plant. The magnetic or electrical signal from the surveillance material that is deteriorated compared to the actual equipment is the threshold value (design standard value or replacement standard value) in the relationship between the magnetic property or electrical property and the material strength that have been obtained in advance. If it becomes larger than the above, it is judged to be abnormal and repair or replacement of the actual machine member is performed.

【0006】[0006]

【作用】サーベランス材は実機材料よりも劣化させてい
るので、サーベランス材の磁気的又は電気的信号がデー
タベースの敷居値に到達しても、安全サイドで実機材の
補修や交換を行うことができる。また、サーベランス材
の形態や寸法,加工条件,サーベランス材とセンサとの
位置関係等の測定条件を、データベース構築時の測定条
件と全て同一とするので、両者間の測定上の誤差が減少
し、劣化診断の精度と信頼性が向上する。プラント稼働
中も劣化度を連続的に評価できるので、定検間に発生す
る異常を検知することができる。また、サーベランス材
を測定するので、非破壊で実機部材の補修や取換え時期
を推定することができる。
[Function] Since the surveillance material is deteriorated compared to the actual equipment material, even if the magnetic or electrical signal of the surveillance material reaches the threshold value of the database, it is possible to repair or replace the actual equipment on the safety side. . In addition, since the measurement conditions such as the form and dimensions of the surveillance material, the processing conditions, and the positional relationship between the surveillance material and the sensor are all the same as the measurement conditions when the database was constructed, the measurement error between them is reduced, The accuracy and reliability of deterioration diagnosis are improved. Since the degree of deterioration can be continuously evaluated even during plant operation, it is possible to detect abnormalities that occur during regular inspections. Further, since the surveillance material is measured, it is possible to estimate the repair or replacement time of the actual machine member nondestructively.

【0007】[0007]

【実施例】以下、本発明の1実施例を図面を用いて説明
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0008】図1は本発明の劣化検出センサを示す説明
図である。原子力プラントの中で例えば劣化が予想され
る溶接部11に、予想される溶接部11よりさらに劣化
させた溶接部と同一材料からなるサーベランス試料12
を定検時に設置する。サーベランス試料12にはSQU
ID等の磁気的な検出センサ13を設置するか、又は電
気的な検出センサ13を具備する。サーベランス試料1
2と検出センサ13は鉛ケース14の中に納め、センサ
を中性子照射15や炉水16から保護するとともに、外
来ノイズ17を低減させる。さらに全体をセンサハウジ
ング18の中に装着する。センサハウジング18はメッ
シュ状の材料からなり、炉水16の出入りを自由とす
る。またサーベランス試料12は、予め求めておいた磁
気的又は電気的信号と材料強度の関係のデータベースを
求めた条件と同じ試料サイズ,形態とし、同一の表面処
理を施す必要がある。サーベランス試料と磁気的検出セ
ンサは劣化事象としては、照射脆化,時効脆化、又は応
力腐食割れ等がある。これらのいわゆる加速サーベラン
スセンサ19を取り付ける位置は、極値統計等の統計的
手法により決定した劣化が最も激しく起こると推定され
る機器部材の場所とする。加速サーベランスセンサ19
は、図2のように原子力プラント21の外部に光ファイ
バ22で伝送するか、ワイヤレスで信号を送りモニタ2
3上で磁気的又は電気的信号を常時監視する。
FIG. 1 is an explanatory view showing a deterioration detecting sensor of the present invention. In a nuclear power plant, for example, in a weld 11 that is expected to deteriorate, a surveillance sample 12 made of the same material as the weld 11 that is further deteriorated than the weld 11 that is expected
Will be installed at the time of regular inspection. SQU for surveillance sample 12
A magnetic detection sensor 13 such as an ID is installed, or an electric detection sensor 13 is provided. Surveillance sample 1
The sensor 2 and the detection sensor 13 are housed in a lead case 14 to protect the sensor from neutron irradiation 15 and reactor water 16 and reduce external noise 17. Further, the whole is mounted in the sensor housing 18. The sensor housing 18 is made of a mesh material and allows the reactor water 16 to freely enter and leave. Further, the surveillance sample 12 needs to have the same sample size and morphology as the conditions for which the database of the relationship between the magnetic or electrical signal and the material strength, which has been obtained in advance, is obtained, and the same surface treatment must be performed. Degradation events of the surveillance sample and the magnetic detection sensor include irradiation embrittlement, age embrittlement, and stress corrosion cracking. The positions where these so-called acceleration surveillance sensors 19 are attached are the positions of the equipment members where the deterioration determined by a statistical method such as extreme value statistics is estimated to occur most severely. Acceleration surveillance sensor 19
Is transmitted to the outside of the nuclear power plant 21 through the optical fiber 22 as shown in FIG.
Always monitor magnetic or electrical signals on the 3.

【0009】モニタ23上には、予め求めておいた磁気
的出力や電気的出力と照射脆化の場合は図3に示すよう
に中性子照射率との関係から、また時効脆化の場合は図
4に示すように時効パラメータ(材料が受けた時効時間
や温度,材料組成から決定される)との関係から加速サ
ーベランスセンサの照射率31や時効の程度41を推定
する。図3の中性子照射率の場合に、データカーブより
裕度をもった加速サーベランスセンサの外挿カーブ33
を設定する。また、図4の時効パラメータの場合でも、
データベースカーブ42より裕度をもった加速サーベラ
ンスセンサの外挿カーブ43を定めて、加速サーベラン
スセンサの時効の程度41を求める。ここで加速サーベ
ランスセンサ19は、データベースを求めた測定条件と
ほぼ同一の条件に設定してあるので、推定値の信頼性は
高まる。さらに、図5に示すように、予め求めておいた
中性子照射率や時効パラメータ等の劣化パラメータと破
壊靭性値J1cや衝撃エネルギ値E等との関係より、サ
ーベランス試料12の破壊靭性値51等の材料強度を推
定する。推定値が設計基準値又は取換え基準値51より
も小さくなった場合には、溶接部11のリプレイスを行
うか、又は溶接部11に補修を施す。また、加速サーベ
ランスセンサ19からの磁気的又は電気的信号を原子力
プラント外部で常時モニタするのではなく、定検時に適
宜取り出して劣化度を測定することも可能である。
On the monitor 23, as shown in FIG. 3 in the case of irradiation embrittlement with magnetic output or electric output previously obtained, as shown in FIG. As shown in FIG. 4, the irradiation rate 31 and the aging degree 41 of the acceleration surveillance sensor are estimated from the relationship with the aging parameters (determined from the aging time and temperature of the material, and the material composition). In the case of the neutron irradiation rate shown in FIG. 3, the extrapolation curve 33 of the acceleration surveillance sensor having a margin greater than that of the data curve.
Set. Moreover, even in the case of the aging parameter of FIG.
An extrapolation curve 43 of the acceleration surveillance sensor having a tolerance from the database curve 42 is determined, and the aging degree 41 of the acceleration surveillance sensor is obtained. Here, since the acceleration surveillance sensor 19 is set under almost the same conditions as the measurement conditions for which the database is obtained, the reliability of the estimated value is enhanced. Further, as shown in FIG. 5, the fracture toughness value 51, etc. Estimate material strength. When the estimated value becomes smaller than the design reference value or the replacement reference value 51, the welded portion 11 is replaced or the welded portion 11 is repaired. Further, instead of constantly monitoring the magnetic or electrical signal from the acceleration surveillance sensor 19 outside the nuclear power plant, it is also possible to take out the deterioration degree appropriately at the time of regular inspection.

【0010】本実施例は、原子力プラント機器材料の劣
化部位を直接モニタせず、劣化を加速した模擬試料の磁
気的又は電気的信号を測定するので、安全側に劣化度を
評価することができる。また、劣化事象や劣化部位に応
じて加速サーベランスセンサの劣化度を調整することが
できるので、機器材料の余寿命評価やリプレイス,補修
時期の裕度を自由に選択することができる。
In this embodiment, since the deterioration site of the nuclear plant equipment material is not directly monitored and the magnetic or electrical signal of the simulated sample in which the deterioration is accelerated is measured, the deterioration degree can be evaluated on the safe side. . Further, since the degree of deterioration of the acceleration surveillance sensor can be adjusted according to the deterioration event or the deteriorated portion, it is possible to freely select the margin of the remaining life evaluation of the equipment material, replacement, and repair time.

【0011】[0011]

【発明の効果】本発明によれば、原子力プラントの劣化
部位を直接モニタせず、劣化部位の劣化度よりも加速し
たサーベランスの劣化度より、劣化部位の余寿命評価を
行うことができるので、劣化部位のリプレイス時期や補
修時間をより安全側に決定することができる。また、デ
ータベースと同じ条件でモニタするので余寿命評価の精
度が向上する。
According to the present invention, it is possible to evaluate the remaining life of the deteriorated part from the deterioration degree of the surveillance which is accelerated more than the deterioration degree of the deteriorated part without directly monitoring the deteriorated part of the nuclear power plant. The replacement time and repair time of the deteriorated part can be determined on the safer side. Moreover, since the monitoring is performed under the same conditions as the database, the accuracy of the remaining life evaluation is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の劣化検出センサの説明図。FIG. 1 is an explanatory diagram of a deterioration detection sensor of the present invention.

【図2】劣化検出センサと外部モニタの関係を示す説明
図。
FIG. 2 is an explanatory diagram showing a relationship between a deterioration detection sensor and an external monitor.

【図3】データベースと加速サーベランスセンサの磁気
的信号と中性子照射率との関係を示す特性図。
FIG. 3 is a characteristic diagram showing a relationship between a magnetic signal of a database and an acceleration surveillance sensor and a neutron irradiation rate.

【図4】データベースと加速サーベランスセンサの磁気
的信号と時効パラメータとの関係を示す特性図。
FIG. 4 is a characteristic diagram showing a relationship between a magnetic signal of a database, an acceleration surveillance sensor, and an aging parameter.

【図5】データベースと加速サーベランスセンサの劣化
パラメータと破壊靭性値の関係と、設計基準,取換え基
準の関係を示す特性図。
FIG. 5 is a characteristic diagram showing the relationship between the deterioration parameter and the fracture toughness value of the database and the acceleration surveillance sensor, and the relationship between the design standard and the replacement standard.

【符号の説明】[Explanation of symbols]

11…溶接部、12…サーベランス試料、13…検出セ
ンサ、14…鉛ケース、15…中性子照射、16…炉
水、17…外来ノイズ、18…センサハウジング、19
…加速サーベランスセンサ。
11 ... Welded portion, 12 ... Surveillance sample, 13 ... Detection sensor, 14 ... Lead case, 15 ... Neutron irradiation, 16 ... Reactor water, 17 ... External noise, 18 ... Sensor housing, 19
… Acceleration surveillance sensor.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】原子力プラントの実機部材近傍に、予想さ
れる実機材の劣化度よりも劣化させたサーベランス材料
を装着し、前記サーベランス材料の劣化度を磁気的信号
又は電気的信号を検出することによりプラント外部でモ
ニタし、予め求めておいた強度特性と磁気的信号又は電
気的信号のデータベースと比較することにより、実機材
の劣化度と取換え時期を推定することを特徴とする劣化
検出方法。
1. A surveillance material, which is deteriorated to a degree lower than the expected deterioration of actual equipment, is mounted in the vicinity of an actual machine member of a nuclear power plant, and the deterioration degree of the surveillance material is detected by a magnetic signal or an electrical signal. Deterioration detection method characterized by estimating deterioration degree and replacement time of actual equipment by monitoring outside the plant with a database and comparing it with a database of strength characteristics and magnetic signals or electrical signals obtained in advance. .
【請求項2】原子力プラント実機部材近傍に、予想され
る実機材の劣化度よりも劣化させたサーベランス材料
と、前記サーベランス材料の劣化度をプラント外部でモ
ニタし、予め求めておいた強度特性と磁気的信号又は電
気的信号のデータベースと比較することにより、プラン
ト実機材料の劣化度と取換え磁気を推定するための磁気
的信号又は電気的信号を検出するセンサと、磁気的又は
電気的な励起装置を具備したことを特徴とする劣化検出
センサ。
2. A surveillance material which has deteriorated to a degree closer to the expected degree of deterioration of actual equipment in the vicinity of an actual nuclear power plant material, and a deterioration degree of the surveillance material which is monitored outside the plant and has strength characteristics which are obtained in advance. A sensor for detecting a magnetic signal or an electrical signal for estimating the deterioration degree and the replacement magnetism of the plant actual material by comparing with a database of the magnetic signal or the electrical signal, and the magnetic or electrical excitation. A deterioration detection sensor comprising a device.
【請求項3】請求項1または2において、磁気的信号を
モニタするセンサが超電導量子干渉素子である劣化検出
方法。
3. The deterioration detecting method according to claim 1, wherein the sensor for monitoring the magnetic signal is a superconducting quantum interference device.
【請求項4】請求項1または2において、前記サーベラ
ンス材料の劣化度を定期検査毎に調べ、前記プラント実
機材料の劣化度と取換え時期を推定する劣化検出方法。
4. The deterioration detecting method according to claim 1, wherein the deterioration degree of the surveillance material is checked at every periodic inspection, and the deterioration degree of the plant actual material and the replacement time are estimated.
【請求項5】請求項1において、前記サーベランス材料
の劣化度を定期検査毎に調べ、前記プラント実機材料の
劣化度と取換え時期を推定する劣化検出方法。
5. The deterioration detecting method according to claim 1, wherein the deterioration degree of the surveillance material is examined at every periodic inspection, and the deterioration degree of the plant actual material and the replacement time are estimated.
【請求項6】請求項2において、前記サーベランス材料
の劣化度を定期検査毎に調べ、前記プラント実機材料の
劣化度と取換え時期を推定する劣化検出センサ。
6. The deterioration detection sensor according to claim 2, wherein the deterioration degree of the surveillance material is checked at every periodic inspection, and the deterioration degree of the actual plant material and the replacement time are estimated.
【請求項7】請求項1,2,3,4,5または6におい
て、前記劣化事象が照射脆化,時効脆化,腐食疲労であ
る劣化検出センサ及びその方法。
7. A deterioration detecting sensor and method according to claim 1, 2, 3, 4, 5 or 6, wherein the deterioration event is irradiation embrittlement, aging embrittlement, and corrosion fatigue.
JP7126222A 1995-05-25 1995-05-25 Degradation-detection sensor and its measuring method Pending JPH08320307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7126222A JPH08320307A (en) 1995-05-25 1995-05-25 Degradation-detection sensor and its measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7126222A JPH08320307A (en) 1995-05-25 1995-05-25 Degradation-detection sensor and its measuring method

Publications (1)

Publication Number Publication Date
JPH08320307A true JPH08320307A (en) 1996-12-03

Family

ID=14929778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7126222A Pending JPH08320307A (en) 1995-05-25 1995-05-25 Degradation-detection sensor and its measuring method

Country Status (1)

Country Link
JP (1) JPH08320307A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005257589A (en) * 2004-03-15 2005-09-22 Japan Atom Energy Res Inst Method for evaluating soundness in stainless steel for nuclear reactor
JP2007178157A (en) * 2005-12-27 2007-07-12 Toshiba Corp Method for preventive maintenance of structure in nuclear power plant
CN106227906A (en) * 2016-05-20 2016-12-14 广州韵脉质量技术服务有限公司 A kind of appraisal procedure of the intelligent manufacturing equipment reliability analyzed based on performance degradation
JP2022011603A (en) * 2020-06-30 2022-01-17 三菱重工業株式会社 Radioactive material storage container protection device, and radioactive material storage container

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005257589A (en) * 2004-03-15 2005-09-22 Japan Atom Energy Res Inst Method for evaluating soundness in stainless steel for nuclear reactor
JP2007178157A (en) * 2005-12-27 2007-07-12 Toshiba Corp Method for preventive maintenance of structure in nuclear power plant
CN106227906A (en) * 2016-05-20 2016-12-14 广州韵脉质量技术服务有限公司 A kind of appraisal procedure of the intelligent manufacturing equipment reliability analyzed based on performance degradation
CN106227906B (en) * 2016-05-20 2019-08-30 广东科鉴检测工程技术有限公司 A kind of appraisal procedure of the intelligent manufacturing equipment reliability based on performance degradation analysis
JP2022011603A (en) * 2020-06-30 2022-01-17 三菱重工業株式会社 Radioactive material storage container protection device, and radioactive material storage container

Similar Documents

Publication Publication Date Title
ES2226100T3 (en) SYSTEM FOR A PREDICTIVE DIAGNOSIS OF MACHINE PARTS.
DE60313698T2 (en) System for monitoring the condition of a vehicle
EP2156159B1 (en) System and method for bearing fault detection using stator current noise cancellation
EP1903335B1 (en) Process of ultrasonic detection and preventive control of defects in parts made from composite materials
KR101482509B1 (en) Diagnosis System and Method of Bearing Defect
CN110319957B (en) Fault diagnosis method for irregular abnormal value of sensor of ship structure stress monitoring system
CN110553770B (en) Fault diagnosis method for large drift abnormal value of sensor of ship structure stress monitoring system
CN104360178B (en) A kind of inverter low-frequency noise measurement and method for diagnosing faults
JPH08320307A (en) Degradation-detection sensor and its measuring method
JP2005017128A (en) Metod and apparatus for observing condition of machine equipment
CN117368644A (en) Sensor cable detection method
Schwarz et al. Diagnostic methods for transformers
CN116735223A (en) Multi-parameter anomaly detection method for gas turbine
JP2713967B2 (en) Diagnostic equipment for pneumatic equipment
CN110057872A (en) A kind of cable fracture of wire monitoring method based on detection self inductance effect inductance
CN110553807B (en) Open-circuit fault diagnosis method for sensor of ship structure stress monitoring system
CN112345648A (en) High-voltage circuit breaker cam crack fault detection device and method
JP2967240B2 (en) Automatic continuous analyzer with alarm transmission function
JP4212419B2 (en) Mold crack initiation prediction system
KR100330258B1 (en) Inspecting method for generator stator windings
CN111521358A (en) Vibration testing device for mechanical and electrical equipment
Gopal et al. Experiences with diagnostic instrumentation in nuclear power plants
KR20190044999A (en) Cable cleat for the diagnosis of partial discharge and partial discharge diagnosis system of power cable using the same
RU2753578C1 (en) Method for diagnostics of the technical conditions of rotary equipment
WO2022004110A1 (en) Rotating electrical machine damage diagnostic system and damage diagnostic method