JPH1123565A - Corrosion environment scc crack developing prediction method - Google Patents

Corrosion environment scc crack developing prediction method

Info

Publication number
JPH1123565A
JPH1123565A JP9183619A JP18361997A JPH1123565A JP H1123565 A JPH1123565 A JP H1123565A JP 9183619 A JP9183619 A JP 9183619A JP 18361997 A JP18361997 A JP 18361997A JP H1123565 A JPH1123565 A JP H1123565A
Authority
JP
Japan
Prior art keywords
crack
scc
growth
critical
intensity factor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9183619A
Other languages
Japanese (ja)
Inventor
Koichi Saito
耕一 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9183619A priority Critical patent/JPH1123565A/en
Publication of JPH1123565A publication Critical patent/JPH1123565A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Abstract

PROBLEM TO BE SOLVED: To predict the development of a stress corrosion crack (SCC) by calculating the crack developing speed based on the crack tip stress expansion coefficient in the specific equation indicating the relation between the crack tip strain speed of the SCC in the stationary progress state and the stress expansion coefficient. SOLUTION: When an SCC crack reaches the critical crack forming time to grow into a developing crack, a critical SCC crack is formed. When the stress expansion coefficient of the critical SCC crack is the SCC lower limit stress expansion coefficient or above, the stationary progress of the SCC crack occurs. The crack progress speed da/dt and the crack progress quantity are calculated in sequence with the equation indicating the relation between the crack tip strain speed dεct /dt and the stress expansion coefficient in an S-curve starting from the SCC lower limit stress expansion coefficient, where (n) is the active dissolution parameter, κ is the filtered water conductivity, ECP is the corrosion potential, and EPR is the effective electrochemical reactivation factor. The progress of the SCC crack can be predicted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、腐食環境に曝され
る材料の応力腐食割れ(SCC)亀裂の進展を予測する
方法に係わり、特に、原子炉内の高温水・中性子照射下
で使用され、SCCを発生する材料の亀裂進展を予測す
るに好適な、腐食環境SCC亀裂進展予測方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for predicting the development of stress corrosion cracking (SCC) cracks in materials exposed to a corrosive environment, and more particularly, to a method for use under high temperature water and neutron irradiation in a nuclear reactor. The present invention relates to a corrosion environment SCC crack growth prediction method suitable for predicting crack growth of a material that generates SCC.

【0002】[0002]

【従来の技術】原子力発電プラント等の各種プラントの
大型化や複雑化が進むにつれて、構造材の使用環境がま
すます過酷になり、それに伴って腐食環境に起因すると
みられる材料損傷が顕現化している。
2. Description of the Related Art As various types of plants, such as nuclear power plants, become larger and more complex, the environment in which structural materials are used becomes more and more severe. As a result, material damage that may be caused by a corrosive environment becomes apparent. I have.

【0003】構造材料として広く使用されているステン
レス鋼等の合金材料は、高温水中の環境でSCCを起こ
す場合がある。SCCが発生してSCC亀裂が進展する
と、伸長したSCC亀裂によって材料強度が低下し、こ
れが設計強度を下回ると構造材の破壊が起ころため、腐
食環境でのSCC亀裂の進展を精度良く予測する方法が
望まれている。
[0003] Alloy materials such as stainless steel, which are widely used as structural materials, may cause SCC in a high-temperature water environment. When SCC occurs and the SCC crack propagates, the material strength decreases due to the extended SCC crack, and if this falls below the design strength, the structural material may break down. Therefore, it is possible to accurately predict the growth of the SCC crack in a corrosive environment. A method is desired.

【0004】SCCは、材料、応力、環境の3つの要因
が重畳した条件下で生じるとされ、SCC亀裂の発生,
進展機構は、図2に示すように一般に以下の4つの過程
からなると考えられる。
[0004] SCC is said to occur under conditions in which three factors, material, stress, and environment, are superimposed.
The evolution mechanism is generally considered to consist of the following four processes as shown in FIG.

【0005】(1) 亀裂の発生起点でピットが生じ、
これが腐食環境による浸食で成長する。
(1) A pit is formed at a crack starting point,
This grows by erosion by a corrosive environment.

【0006】(2) 成長したピットから微小亀裂が発
生し、これが成長して個々の微小亀裂が連結,合体す
る。
(2) Microcracks are generated from the grown pits, and the micropits are grown and connected and united.

【0007】(3) 微小亀裂の連結,合体で生じた連
結亀裂は、亀裂先端での応力拡大係数が小さいために、
亀裂進展速度が非常に緩慢な遷移進展性を示す。
[0007] (3) The connection crack generated by the connection and coalescence of the microcracks has a small stress intensity factor at the crack tip.
The crack growth rate shows a very slow transition growth.

【0008】(4) 連結亀裂がある一定の亀裂深さ達
し、それが臨界亀裂深さになると、亀裂は定常進展性に
なり、その後一定の亀裂進展速度で進展する。
(4) When the connecting crack reaches a certain crack depth and reaches a critical crack depth, the crack becomes steady growth, and then grows at a certain crack growth speed.

【0009】従来の腐食環境SCC亀裂進展予測方法と
して、例えば、“Development anduse of Predictive
Model of Crack Propagation in 304/316
L,A583B/A508 and Inconel 600/18
2 Alloys in 288℃ Water”Proc.3rd Int.
Symp.on Environmental Degradation of Material
s in Nuclear Power Systems−Water Reactors,
NACE,p789(1988)に記載されている方法
では、上記の(1),(2)の過程を亀裂潜伏期間とみ
なして考慮外とし、(3)の過程で初期亀裂深さ
(a0)の連結亀裂の発生を仮定し、その発生時点
(t0)からSCC亀裂の進展を計算するものである。
As a conventional method for predicting SCC crack growth in a corrosive environment, for example, “Development and use of Predictive”
Model of Crack Propagation in 304/316
L, A583B / A508 and Inconel 600/18
2 Alloys in 288 ° C. Water “Proc. 3rd Int.
Symp. on Environmental Degradation of Material
s in Nuclear Power Systems-Water Reactors,
In the method described in NACE, p789 (1988), the above processes (1) and (2) are regarded as the crack incubation period and are not considered, and the initial crack depth (a 0 ) is obtained in the process (3). Is assumed to occur, and the propagation of the SCC crack is calculated from the time of occurrence (t 0 ).

【0010】[0010]

【発明が解決しようとする課題】従来の方法は、前記
(1),(2)の過程におけるSCC亀裂の発生を亀裂
潜伏期間とみなして考慮外とし、それまでの発生時間を
0としている。
In the conventional method, the occurrence of the SCC crack in the processes (1) and (2) is regarded as a crack incubation period and is not considered, and the time until the occurrence is set to zero.

【0011】また、前記(3)の過程においては、連結
亀裂は微小亀裂であるので、亀裂先端での応力拡大係数
が小さいため、亀裂先端歪み速度が非常に緩慢になる一
方、仮定する初期亀裂深さに強く依存するところのSC
C亀裂の遷移進展挙動を含んでいた。
In the process (3), since the connected crack is a minute crack, the stress intensity at the crack tip is small, so that the crack tip strain rate becomes very slow. SC that strongly depends on depth
The transition propagation behavior of the C crack was included.

【0012】このように、従来の腐食環境SCC亀裂進
展予測方法は、SCC亀裂の発生,進展挙動を亀裂潜伏
期間と亀裂進展期間とに分割すると、亀裂潜伏期間を無
視し、かつ、亀裂進展期間において遷移進展を含めた形
で、SCC亀裂の進展を予測している。
As described above, according to the conventional corrosion environment SCC crack growth prediction method, when the generation and growth behavior of the SCC crack is divided into a crack incubation period and a crack growth period, the crack incubation period is ignored and the crack growth period is ignored. Predicts the growth of SCC cracks, including transition progress.

【0013】本発明の目的は、SCC亀裂の発生,進展
挙動における亀裂潜伏期間と亀裂進展期間の両者を統合
した形で、SCC亀裂の進展を定量的に、かつ、より現
実的に予測するアルゴリズムに基づいた腐食環境SCC
亀裂進展予測方法を提供することにある。
An object of the present invention is to provide an algorithm for quantitatively and more realistically predicting the growth of an SCC crack by integrating both the crack incubation period and the crack growth period in the SCC crack initiation and propagation behavior. Corrosion environment SCC based on
An object of the present invention is to provide a method for predicting crack growth.

【0014】[0014]

【課題を解決するための手段】本発明は、前記のSCC
亀裂の発生,進展機構での前記(4)の過程において、
SCC亀裂が臨界亀裂深さ以上になると、一定の亀裂進
展速度で亀裂が定常進展することから、臨界亀裂形成時
間(tC)、臨界亀裂深さ(aC)、SCC下限界応力拡
大係数(KISCC)の概念を導入し、SCC亀裂の進展を
計算するアルゴリズム(図1)で構成された腐食環境S
CC亀裂進展予測方法にある。
According to the present invention, there is provided the above-mentioned SCC.
In the process of (4) in the crack initiation and propagation mechanism,
When the SCC crack exceeds the critical crack depth, the crack is steadily grown at a constant crack growth rate. Therefore, the critical crack formation time (t C ), the critical crack depth (a C ), the SCC lower critical stress intensity factor ( K ISCC ) and the corrosion environment S composed of an algorithm (Fig. 1) for calculating the propagation of SCC cracks.
CC crack growth prediction method.

【0015】本発明の腐食環境SCC亀裂進展予測方法
は、腐食環境中において、SCC亀裂が進展性の亀裂に
成長する臨界亀裂形成時間tCに達すると、臨界SCC
亀裂が形成されるとし、臨界SCC亀裂の応力拡大係数
(K)がKISCC以上の場合にSCC亀裂の定常進展が起
こり、そのときの亀裂先端歪み速度(dεct/dt)と応
力拡大係数(K)との関係を、KISCCから開始するS字
形曲線で与えられる前記関係式〔1〕,〔2〕を用い
て、亀裂進展量を順次計算するアルゴリズムによってS
CC亀裂の進展を予測するものである。
The method for predicting SCC crack growth in a corrosive environment according to the present invention is characterized in that when the SCC crack reaches a critical crack formation time t C at which the SCC crack grows into a proliferating crack in a corrosive environment,
Assuming that a crack is formed, when the stress intensity factor (K) of the critical SCC crack is equal to or higher than K ISCC , steady growth of the SCC crack occurs. At that time, the crack tip strain rate (dε ct / dt) and the stress intensity factor ( The relationship with K) is determined by an algorithm that sequentially calculates the amount of crack propagation using the above-mentioned relational expressions [1] and [2] given by an S-shaped curve starting from K ISCC.
It predicts the growth of CC cracks.

【0016】本発明を、(a)臨界亀裂形成時間tC
(b)臨界SSC亀裂深さaC、(c)SCC下限界応
力拡大係数KISCC、(d)亀裂進展速度da/dtと亀裂
先端歪み速度dεct/dtの関係に分けて、次に述べる。
According to the present invention, (a) critical crack formation time t C ,
(B) Critical SSC crack depth a C , (c) SCC lower critical stress intensity factor K ISCC , (d) Crack growth rate da / dt and crack tip strain rate dε ct / dt are described below. .

【0017】(a)臨界亀裂形成時間 臨界亀裂形成時間tCは、SCC亀裂が進展性の亀裂に
成長するまでの時間、と考えることができ、破壊靱性試
験の1つである亀裂開口変位(COD)センサーや二重
片持はり(DCB)センサー等で発生時間を検出するこ
とができる。
(A) Critical crack formation time The critical crack formation time t C can be considered as the time required for an SCC crack to grow into a progressive crack, and the crack opening displacement (one of the fracture toughness tests) The occurrence time can be detected by a COD) sensor, a double cantilever (DCB) sensor, or the like.

【0018】図3に、予亀裂を有するDCBセンサーを
原子炉内に設置して得られたSCC亀裂進展と中性子照
射量の関係を示す。中性子照射量がSCC閾照射量(φ
t)thr eに達した時点付近で臨界SCC亀裂が形成され、
亀裂が定常進展を開始している。従って、中性子照射環
境下での臨界亀裂形成時間tCは、原子炉内での中性子
束をφとすると、次式〔3〕で求めることができる。
FIG. 3 shows the relationship between SCC crack growth and neutron irradiation obtained by installing a DCB sensor having a pre-crack in a nuclear reactor. The neutron dose is the SCC threshold dose (φ
critical SCC cracks are formed in the vicinity when it reaches t) thr e,
The crack has begun steady growth. Therefore, the critical crack formation time t C in a neutron irradiation environment can be obtained by the following equation [3], where φ is the neutron flux in the reactor.

【0019】[0019]

【数2】 tC=(φt)thre/φ …〔3〕 (b)臨界SSC亀裂深さ 臨界SCC亀裂深さaCは、SCC亀裂が定常進展する
ことができる亀裂深さの最小臨界値と考えることができ
るので、降伏応力σy相当の応力場が作用するとき次式
〔4〕で求めることができる。
T C = (φ t) thre / φ (3) (b) Critical SSC crack depth Critical SCC crack depth a C is the minimum critical value of the crack depth at which the SCC crack can steadily propagate. Therefore, when a stress field corresponding to the yield stress σ y acts, it can be obtained by the following equation [4].

【0020】[0020]

【数3】 (Equation 3)

【0021】ここで、λは亀裂の形状によって決まる定
数、KISCCはSCC下限界応力拡大係数である。照射腐
食環境下において、定常進展するようなSCC亀裂が生
じた場合は、中性子照射量がSCC閾照射量(φt)thre
に達した時点で、上記式〔4〕で与えられる臨界SCC
亀裂深さaCを持ったSCC亀裂が形成されたと考える
ことができる。
Here, λ is a constant determined by the shape of the crack, and K ISCC is an SCC lower limit stress intensity factor. When an SCC crack that progresses in a steady state occurs in an irradiation corrosive environment, the neutron irradiation amount becomes the SCC threshold irradiation amount (φt) thre
Is reached, the critical SCC given by the above equation [4]
It can be considered that an SCC crack having a crack depth a C was formed.

【0022】(c)SCC下限界応力拡大係数 SCC下限界応力拡大係数KISCCは、この値未満ではS
CCによる亀裂進展が認められず、この値以上になると
SCC亀裂の進展が起こる応力拡大係数の閾値と考える
ことができる。図4に亀裂先端歪み速度と応力拡大係数
の関係を示す。
(C) SCC lower limit stress intensity factor SCC lower limit stress intensity factor K ISCC is less than this value.
Crack growth due to CC is not recognized, and when it exceeds this value, it can be considered as a threshold value of the stress intensity factor at which SCC crack growth occurs. FIG. 4 shows the relationship between the crack tip strain rate and the stress intensity factor.

【0023】亀裂先端歪み速度dεct/dtは、SCC下
限界応力拡大係数KISCCから開始するS字形曲線で与え
られるが、応力拡大係数Kの値に対して、下記の3領域
に分類される依存特性を示すと考えることができる。
The crack tip strain rate dε ct / dt is given by an S-shaped curve starting from the SCC lower limit stress intensity factor K ISCC, and is classified into the following three regions with respect to the value of the stress intensity factor K. It can be considered to show a dependency characteristic.

【0024】[0024]

【数4】 (Equation 4)

【0025】ここで、C1〜C5は環境と材料の組合せに
よって決まる定数である。
Here, C 1 to C 5 are constants determined by the combination of environment and materials.

【0026】SCC亀裂の進展を予測する際は、臨界S
CC亀裂の形成時間tCで生じる進展性のSCC亀裂
が、前記式〔4〕で与えられる臨界SSC亀裂深さを有
するとし、その亀裂深さaCと、亀裂先端での応力場か
ら求められる応力拡大係数KがSCC下限界応力拡大係
数KISCC以上になる場合にはSCC亀裂が進展を起こ
し、KISCCより小さい場合はSCC亀裂が進展しないと
する。
When predicting SCC crack growth, the critical S
Assuming that the evolving SCC crack generated at the CC crack formation time t C has the critical SSC crack depth given by the above equation [4], the crack depth a C and the stress field at the crack tip are obtained. If the obtained stress intensity factor K is equal to or greater than the SCC lower stress intensity factor K ISCC , it is assumed that the SCC crack will grow, and if it is smaller than K ISCC , the SCC crack will not grow.

【0027】SCC亀裂が進展する時は、亀裂先端歪み
速度と応力拡大係数の関係が上記のS字形曲線で与えら
れるとする。
When the SCC crack develops, it is assumed that the relationship between the crack tip strain rate and the stress intensity factor is given by the above-mentioned S-shaped curve.

【0028】(d)亀裂進展速度と亀裂先端歪み速度の
関係 亀裂進展速度da/dtは、亀裂先端歪み速度dεct/dt
と活性溶解パラメータnによって次式〔1〕,〔2〕で
与えられる。
(D) Relationship between Crack Growth Rate and Crack Tip Strain Rate The crack growth rate da / dt is equal to the crack tip strain rate dε ct / dt.
And the active dissolution parameter n are given by the following equations [1] and [2].

【0029】[0029]

【数5】 (Equation 5)

【0030】活性溶解パラメータnは、亀裂の進展によ
り生じる亀裂先端部での新生すべり面の溶解電流密度の
時間変化から求めることができる。亀裂先端歪み速度d
εct/dtは、亀裂先端部での新生すべり面の形成速度と
定義でき、次式〔8〕で与えられる。
The active dissolution parameter n can be determined from the time change of the dissolution current density on the newly formed slip surface at the crack tip caused by the crack propagation. Crack tip strain rate d
ε ct / dt can be defined as the formation speed of a new slip surface at the crack tip, and is given by the following equation [8].

【0031】[0031]

【数6】 dεct/dt=2ρd・b・cosθ・dX/dt …〔8〕 ここで、ρd:転位密度、b:転位のバーガ一スペクト
ル、θ:すべり方向と応力軸とのなす角、dX/dt:転
位の平均運動速度を示す。
D ct / dt = 2ρ d · b · cos θ · dX / dt (8) where, ρ d : dislocation density, b: burger spectrum of dislocation, θ: slip direction and stress axis Angle, dX / dt: Indicates the average moving velocity of dislocation.

【0032】すべり面での転位の平均移動速度を実験的
に測定することで、亀裂先端歪み速度を決定することが
できる。図5に、活性溶解パラメータn:0.5の場合
における亀裂先端歪み速度dεct/dtと亀裂進展速度d
a/dtとの関係を例示する。
By experimentally measuring the average moving speed of dislocations on the slip surface, the crack tip strain speed can be determined. FIG. 5 shows the crack tip strain rate dε ct / dt and the crack growth rate d when the active dissolution parameter n is 0.5.
The relationship with a / dt will be exemplified.

【0033】亀裂先端歪み速度と活性溶解パラメータが
与えられると、前記式〔1〕,〔2〕から求められるS
CC亀裂進展速度da/dtを用いて、亀裂深さaの変化
量を順次求めて行き、亀裂深さaを次式
Given the crack tip strain rate and the active dissolution parameter, S is calculated from the above equations [1] and [2].
Using the CC crack growth rate da / dt, the amount of change in the crack depth a is determined sequentially, and the crack depth a is calculated by the following equation.

〔9〕で計算す
る。亀裂深さと亀裂先端での応力場から求められる応力
拡大係数Kが、SCC下限界応力拡大係数KISCCより小
さくなった時点でSCC亀裂が進展しなくなるとする。
It is calculated in [9]. It is assumed that the SCC crack does not propagate when the stress intensity factor K obtained from the crack depth and the stress field at the crack tip becomes smaller than the SCC lower limit stress intensity factor K ISCC .

【0034】[0034]

【数7】 (Equation 7)

【0035】ここで、aCは臨界亀裂深さ、tCは臨界S
CC亀裂形成時間、da/dtはSCC亀裂進展速度であ
る。
Where a C is the critical crack depth and t C is the critical S
The CC crack formation time, da / dt, is the SCC crack growth rate.

【0036】[0036]

【発明の実施の形態】本発明を実施例に基づき説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described based on embodiments.

【0037】〔実施例 1〕本発明のアルゴリズムに基
づいて開発した、腐食環庚SCC亀裂進展解析計算プロ
グラムを用いて解析した結果について説明する。
[Example 1] The result of analysis using a corrosion ring-growth SCC crack growth analysis calculation program developed based on the algorithm of the present invention will be described.

【0038】ステンレス鋼製原子炉内構造物の溶接部を
対象とし、図6に示すような溶接による残留応力分布が
存在するとして、図7に示す照射SCC亀裂進展予測フ
ローに従って亀裂進展解析を行った。
Assuming that there is a residual stress distribution due to welding as shown in FIG. 6 for the welded portion of the stainless steel reactor internal structure, crack growth analysis is performed according to the irradiation SCC crack growth prediction flow shown in FIG. Was.

【0039】照射環境下でのSCC亀裂進展解析は、S
CC発生の3要因である環境、材料、力学の各因子をパ
ラメータとして取り込み、特に、照射環境特有の事象で
ある照射−EPR、照射硬化、照射応力緩和等のモデル
式を組み込んで亀裂の進展計算を行う。
The SCC crack growth analysis under the irradiation environment
The parameters of environment, material, and dynamics, which are three factors of CC generation, are taken as parameters. In particular, crack growth calculation is performed by incorporating model equations such as irradiation-EPR, irradiation hardening, and irradiation stress relaxation, which are events specific to the irradiation environment. I do.

【0040】亀裂進展の解析対象とするプラントの特定
部位を選定すると、図7に示すように、中性子照射率等
のプラント運転条件や、対象部位の腐食電位等のプラン
トパラメータ、降伏応力等の材料パラメータ、残留応力
分布等の応力パラメータを入力する。
When a specific site of a plant to be analyzed for crack propagation is selected, as shown in FIG. 7, plant operating conditions such as neutron irradiation rate, plant parameters such as corrosion potential at the target site, and materials such as yield stress are used. Input parameters such as parameters and residual stress distribution.

【0041】中性子照射量がSCC閾照射量(φt)thre
に達した時点で、臨界SCC亀裂が形成されるとし、そ
の亀裂深さaと亀裂先端での残留応力場σとからK=F
・σ√πaで求められる応力拡大係数Kが、SCC下限
界応力拡大係数KISCCより小さい場合はSCC亀裂が進
展しないが、KISCC以上の場合にはSCC亀裂の進展が
超こるとした。
The neutron dose is the SCC threshold dose (φt) thre
Is reached, a critical SCC crack is formed, and from the crack depth a and the residual stress field σ at the crack tip, K = F
When the stress intensity factor K obtained by σ√πa is smaller than the lower limit stress intensity factor K ISCC of the SCC, the SCC crack does not grow, but when the stress intensity factor K is more than K ISCC , the growth of the SCC crack exceeds the limit.

【0042】SCC亀裂の進展過程では、中性子照射に
よって部材材料が照射硬化、照射粒界偏析、応力緩和等
で劣化して行くとする。SCC亀裂が進展する時の亀裂
先端歪み速度dεct/dtは、図4に示すように、亀裂先
端での応力拡大係数Kの値によって、亀裂先端歪み速度
の応力拡大係数依存性を第I領域、舞II領域、第III領
域の3つの領域に分けて計算する。
In the propagation process of the SCC crack, it is assumed that the material of the member deteriorates due to irradiation hardening, irradiation grain boundary segregation, stress relaxation, and the like due to neutron irradiation. As shown in FIG. 4, the crack tip strain rate dε ct / dt when the SCC crack propagates is determined by the stress intensity factor K at the crack tip, and the stress intensity factor dependency of the crack tip strain rate is determined in the first region. , Mai II area, and III area.

【0043】活性溶解パラメータnは、炉水導電率、腐
食電位、実効電気化学的再活性化率から与えられる。亀
裂進展速度da/dtは、亀裂先端歪み速度と活性溶解パ
ラメータからなる前記関係式〔1〕から求める。
The active dissolution parameter n is given from reactor water conductivity, corrosion potential, and effective electrochemical reactivation rate. The crack growth rate da / dt is obtained from the above-mentioned relational expression [1] comprising the crack tip strain rate and the active dissolution parameter.

【0044】最終的な亀裂深さaは、式The final crack depth a is given by the equation

〔9〕に示した
ように、臨界亀裂深さaCに亀裂進展速度da/dtを臨
界亀裂形成時間tC,即ち、tC=(φt)threから積分し
て求めた亀裂深さをプラスする。
As shown in [9], the crack depth obtained by integrating the crack growth rate da / dt from the critical crack formation time t C , ie, t C = (φt) thre , is added to the critical crack depth a C. I do.

【0045】図8に、本実施例の方法と従来方法によっ
てSCC亀裂の進展をそれぞれ予測した結果を示す。
FIG. 8 shows the results of predicting the growth of the SCC crack by the method of this embodiment and the conventional method, respectively.

【0046】本実施例方法によるSCC亀裂進展の予測
結果は、年数が相当経過しないとSCC亀裂の進展がみ
られず、それまでの年数は亀裂潜伏期間とみなすことが
できる。つまり、SCC亀裂は亀裂潜伏期間を過ぎた
後、亀裂進展期間になって亀裂が一定の亀裂進展速度で
定常進展することが分かる。
According to the prediction result of the SCC crack growth according to the method of the present embodiment, the SCC crack does not grow until the number of years has passed considerably, and the years up to that can be regarded as the crack incubation period. In other words, it can be seen that the SCC crack passes through the crack incubation period and then enters the crack growth period, where the crack grows steadily at a constant crack growth rate.

【0047】一方、従来方法による予測結果は、SCC
亀裂の深さが早期に立ち上がっていることが分かる。こ
れは、従来方法では亀裂潜伏期間を無視して0としてい
るためである。従って、臨界SCC亀裂形成時間tC
概念を導入することで、SCC亀裂の発生,進展挙動の
亀裂潜伏期間と、亀裂進展期間の両者を統合した本実施
例方法によるSCC亀裂進展予測は、SCC亀裂の進展
を、より現実的に予測することが可能である。
On the other hand, the prediction result by the conventional method is SCC
It can be seen that the depth of the crack has risen early. This is because the conventional method ignores the crack incubation period and sets it to 0. Therefore, by introducing the concept of the critical SCC crack formation time t C , the SCC crack growth prediction by the method of the present embodiment integrating both the crack incubation period of the generation and propagation behavior of the SCC crack and the crack growth period is SCC Crack growth can be predicted more realistically.

【0048】〔実施例 2〕ステンレス鋼製原子炉内構
造物の溶接部を対象とし、図9に示すような溶接による
残留応力分布が存在する場合について、実施例1と同様
に、照射環境下でのSCC亀裂進展解析を行った。図1
0に、本実施例の方法と従来方法によってSCC亀裂の
進展をそれぞれ予測した結果を示す。
[Example 2] In the case where there is a residual stress distribution due to welding as shown in FIG. SCC crack growth analysis was performed. FIG.
FIG. 0 shows the results of predicting the growth of the SCC crack by the method of the present embodiment and the conventional method, respectively.

【0049】本実施例の方法によるSCC亀裂進展の予
測は、SCC亀裂が定常進展しないと云う結果になり、
現実の事象と合致する結果が得られた。これは、溶接に
よる残留応力場が十分に小さいため、臨界SCC亀裂先
端での応力拡大係数が、SCC下限界応力拡大係数K
ISCCより小さくなって、SCC亀裂の進展が起こらなか
ったことによる。
The prediction of the SCC crack growth by the method of the present embodiment results in that the SCC crack does not grow steadily,
Results consistent with real-world events were obtained. This is because the stress intensity factor at the critical SCC crack tip is smaller than the SCC lower stress intensity factor K because the residual stress field due to welding is sufficiently small.
It is smaller than ISCC and no SCC crack growth occurred.

【0050】一方、従来方法による予測は、SCC亀裂
が年数と共に進展して行く結果になる。これは、従来方
法では最初(時間=0)から一定の初期亀裂深さを仮定
して順次亀裂進展量の計算を行うことによるためであ
る。従って、臨界亀裂深さaCとSCC下限界応力拡大
係数KISCCの概念を導入した本発明のSCC亀裂進展予
測は、従来の方法よりもより信頼性の高い予測が可能な
ことが分かる。
On the other hand, the prediction by the conventional method results in that the SCC crack grows with age. This is because in the conventional method, the crack growth amount is sequentially calculated assuming a constant initial crack depth from the beginning (time = 0). Therefore, it can be seen that the SCC crack growth prediction of the present invention, in which the concept of the critical crack depth a C and the SCC lower stress intensity factor K ISCC is introduced, can perform a more reliable prediction than the conventional method.

【0051】[0051]

【発明の効果】以上述べたように、本発明に係る腐食環
境SCC亀裂進展予測方法は、臨界亀裂形成時間tC
臨界亀裂深さaC、SCC下限界応力拡大係数KISCC
概念を導入したアルゴリズムに基づいているので、SC
C亀裂の発生,進展挙動での亀裂潜伏期間と、亀裂進展
期間の両者を統合した形で、SCC亀裂の進展を定量的
に予測することができる。
As described above, the method for predicting the SCC crack growth in the corrosive environment according to the present invention provides a critical crack formation time t C ,
Since it is based on an algorithm that introduces the concept of critical crack depth a C and SCC lower limit stress intensity factor K ISCC , SC
It is possible to quantitatively predict the growth of the SCC crack by integrating both the crack incubation period in the generation and growth behavior of the C crack and the crack growth period.

【0052】また、SCC亀裂の進展予測については、
従来方法の予測よりも、より現実的な予測が可能になる
と共に、信頼性の高い予測ができる。
Further, regarding the prediction of the SCC crack growth,
Compared with the conventional method, more realistic prediction is possible and highly reliable prediction is possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る腐食環境SCC亀裂進展予測方法
のアルゴリズムを説明するフロー図。
FIG. 1 is a flowchart illustrating an algorithm of a method for predicting the growth of a corrosion environment SCC crack according to the present invention.

【図2】SCC亀裂の発生,進展機構を模式的に示す説
明図。
FIG. 2 is an explanatory view schematically showing the generation and propagation mechanism of an SCC crack.

【図3】亀裂進展と中性子照射量の関係を示す特性図。FIG. 3 is a characteristic diagram showing a relationship between crack propagation and neutron irradiation dose.

【図4】亀裂先端歪み速度と応力拡大係数の関係を示す
特性図。
FIG. 4 is a characteristic diagram showing a relationship between a crack tip strain rate and a stress intensity factor.

【図5】亀裂進展速度と亀裂先端歪み速度の関係を示す
特性図。
FIG. 5 is a characteristic diagram showing a relationship between a crack growth rate and a crack tip strain rate.

【図6】実施例1における溶接部の残留応力分布を示す
図。
FIG. 6 is a view showing a residual stress distribution of a welded part in Example 1.

【図7】照射環境SCC亀裂進展を予測するための解析
手順を説明するフロー図。
FIG. 7 is a flowchart illustrating an analysis procedure for predicting irradiation environment SCC crack growth.

【図8】実施例1のSCC亀裂進展の予測結果を示すグ
ラフ図。
FIG. 8 is a graph showing prediction results of SCC crack growth in Example 1.

【図9】実施例2における溶接部の残留応力分布を示す
図。
FIG. 9 is a view showing a residual stress distribution of a welded part in Example 2.

【図10】実施例2のSCC亀裂進展の予測結果を示す
グラフ図。
FIG. 10 is a graph showing prediction results of SCC crack growth in Example 2.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 腐食環境中において、応力腐食割れ(S
CC)亀裂が進展性の亀裂に成長するまでの臨界亀裂形
成時間(tC)で臨界SCC亀裂が形成され、前記臨界
SCC亀裂の応力拡大係数がSCC下限応力拡大係数K
ISCC以上の場合にSCC亀裂の定常進展が起こるとし
て、そのときの亀裂先端歪み速度(dεct/dt)と応力
拡大係数(K)の関係を、前記SCC亀裂の先端におけ
る応力拡大係数(K)に基づき、第I領域(KISCC≦K
<KI-II),第II領域(KI-II≦K<KII-III)および
第III領域(KII-III≦K)の3つの領域で構成される
S字形曲線で与えられる式〔1〕,〔2〕により、 【数1】 亀裂進展速度(da/dt)を求め、これにより亀裂進展
量を計算するアルゴリズムによって、腐食環境でのSC
C亀裂の進展を予測することを特徴とする腐食環境SC
C亀裂進展予測方法。
In a corrosive environment, stress corrosion cracking (S
CC) A critical SCC crack is formed at a critical crack formation time (t C ) until the crack grows into a growing crack, and the stress intensity factor of the critical SCC crack is SCC lower stress intensity factor K
Assuming that steady growth of the SCC crack occurs in the case of ISCC or more, the relationship between the crack tip strain rate (dε ct / dt) and the stress intensity factor (K) at that time is determined by the stress intensity factor (K) at the tip of the SCC crack. Area I (K ISCC ≦ K
<K I-II ), a region II (K I-II ≦ K <K II-III ) and a region III (K II-III ≦ K). According to [1] and [2], The crack growth rate (da / dt) is calculated, and the crack growth amount is calculated by the algorithm.
Corrosion environment SC characterized by predicting the growth of C crack
C crack growth prediction method.
【請求項2】 原子炉内における腐食環境において、中
性子照射量がSCC閾照射量〔(φt)thre〕に達した時
点で臨界SCC亀裂が形成され、前記臨界SCC亀裂の
応力拡大係数がSCC下限界応力拡大係数(KISCC)以
上の場合にSCC亀裂の定常進展が起こるとして、その
ときの亀裂先端歪み速度(dεct/dt)と応力拡大係数
(K)との関係を、前記SCC亀裂の先端における応力
拡大係数(K)に基づき、第I領域(KISCC≦K<K
I-II),第II領域(KI-II≦K<KII-III)および第II
I領域(KII-III≦K)の3つの領域で構成されるS字
形曲線で与えられる前記式〔1〕,〔2〕により亀裂進
展速度(da/dt)を求め、これにより亀裂進展量を計
算するアルゴリズムによって、中性照射環境でのSCC
亀裂の進展を予測することを特徴とする腐食環境SCC
亀裂進展予測方法。
2. In a corrosive environment in a nuclear reactor, a critical SCC crack is formed when a neutron dose reaches an SCC threshold dose [(φt) thre ], and a stress intensity factor of the critical SCC crack is lower than SCC. Assuming that steady growth of the SCC crack occurs when the SCC crack is equal to or greater than the critical stress intensity factor (K ISCC ), the relationship between the crack tip strain rate (dε ct / dt) and the stress intensity factor (K) at that time is determined by Based on the stress intensity factor (K) at the tip, region I (K ISCC ≦ K <K
I-II ), region II (K I-II ≦ K <K II-III ) and region II
The crack growth rate (da / dt) is obtained from the above formulas [1] and [2] given by an S-shaped curve composed of three regions of region I (K II-III ≤ K), and the crack growth amount Algorithm for calculating the SCC in a neutral irradiation environment
Corrosion environment SCC characterized by predicting crack growth
Crack growth prediction method.
JP9183619A 1997-07-09 1997-07-09 Corrosion environment scc crack developing prediction method Pending JPH1123565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9183619A JPH1123565A (en) 1997-07-09 1997-07-09 Corrosion environment scc crack developing prediction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9183619A JPH1123565A (en) 1997-07-09 1997-07-09 Corrosion environment scc crack developing prediction method

Publications (1)

Publication Number Publication Date
JPH1123565A true JPH1123565A (en) 1999-01-29

Family

ID=16138955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9183619A Pending JPH1123565A (en) 1997-07-09 1997-07-09 Corrosion environment scc crack developing prediction method

Country Status (1)

Country Link
JP (1) JPH1123565A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7013224B2 (en) * 2002-07-15 2006-03-14 General Electric Company Method and apparatus to perform crack estimations for nuclear reactor
JP2007178157A (en) * 2005-12-27 2007-07-12 Toshiba Corp Method for preventive maintenance of structure in nuclear power plant
JP2007183929A (en) * 2005-12-07 2007-07-19 Mitsubishi Heavy Ind Ltd Method for making equipment maintenance plan of plant facility
JP2007218826A (en) * 2006-02-20 2007-08-30 Toshiba Corp Method and system for evaluating stress corrosion cracking
WO2011069847A3 (en) * 2009-12-07 2012-01-12 Nuovo Pignone S.P.A. Design method for subsea equipment subject to hydrogen induced stress cracking
JP2013130588A (en) * 2009-12-25 2013-07-04 Mitsubishi Heavy Ind Ltd Soundness evaluation system of nuclear power plant
JP2014062780A (en) * 2012-09-20 2014-04-10 Toshiba Corp Lifetime prediction apparatus, method, and program for in-core structure of reactor
WO2022230255A1 (en) * 2021-04-30 2022-11-03 Jfeスチール株式会社 Method for testing sulfide stress corrosion cracking of steel material
CN116501000A (en) * 2023-06-26 2023-07-28 深圳市鑫典金光电科技有限公司 Control method and system of composite copper heat dissipation bottom plate production equipment

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7013224B2 (en) * 2002-07-15 2006-03-14 General Electric Company Method and apparatus to perform crack estimations for nuclear reactor
JP2007183929A (en) * 2005-12-07 2007-07-19 Mitsubishi Heavy Ind Ltd Method for making equipment maintenance plan of plant facility
JP4699344B2 (en) * 2005-12-07 2011-06-08 三菱重工業株式会社 Equipment maintenance planning method for plant equipment
JP2007178157A (en) * 2005-12-27 2007-07-12 Toshiba Corp Method for preventive maintenance of structure in nuclear power plant
JP2007218826A (en) * 2006-02-20 2007-08-30 Toshiba Corp Method and system for evaluating stress corrosion cracking
CN102741847A (en) * 2009-12-07 2012-10-17 诺沃皮尼奥内有限公司 Design method for subsea equipment subject to hydrogen induced stress cracking
WO2011069847A3 (en) * 2009-12-07 2012-01-12 Nuovo Pignone S.P.A. Design method for subsea equipment subject to hydrogen induced stress cracking
US8386221B2 (en) 2009-12-07 2013-02-26 Nuovo Pignone S.P.A. Method for subsea equipment subject to hydrogen induced stress cracking
JP2013130588A (en) * 2009-12-25 2013-07-04 Mitsubishi Heavy Ind Ltd Soundness evaluation system of nuclear power plant
JP2014062780A (en) * 2012-09-20 2014-04-10 Toshiba Corp Lifetime prediction apparatus, method, and program for in-core structure of reactor
WO2022230255A1 (en) * 2021-04-30 2022-11-03 Jfeスチール株式会社 Method for testing sulfide stress corrosion cracking of steel material
CN116501000A (en) * 2023-06-26 2023-07-28 深圳市鑫典金光电科技有限公司 Control method and system of composite copper heat dissipation bottom plate production equipment
CN116501000B (en) * 2023-06-26 2023-09-05 深圳市鑫典金光电科技有限公司 Control method and system of composite copper heat dissipation bottom plate production equipment

Similar Documents

Publication Publication Date Title
Garcı́a et al. Effects of prior cold work and sensitization heat treatment on chloride stress corrosion cracking in type 304 stainless steels
Parkins et al. Stress corrosion cracking characteristics of a range of pipeline steels in carbonate-bicarbonate solution
Odette et al. Relationship between irradiation hardening and embrittlement of pressure vessel steels
Chen et al. dK/da effects on the SCC growth rates of nickel base alloys in high-temperature water
JP2014071053A (en) Creep damage assessment method and creep damage assessment system for high-temperature members
Andresen Conceptual similarities and common predictive approaches for SCC in high temperature water systems
JPH1123565A (en) Corrosion environment scc crack developing prediction method
He et al. Prediction of creep crack initiation behavior considering constraint effects for cracked pipes
Gonzalez et al. Optimization of the double loop electrochemical potentiokinetic reactivation method for detecting sensitization of nickel alloy 690
Chen et al. Constitutive equations that describe creep stress relaxation for 316H stainless steel at 550 C
Ainsworth et al. Flaw assessment procedure for high-temperature reactor components
Jivkov et al. Rates of intergranular environment assisted cracking in three-dimensional model microstructures
Lee et al. Techniques for intergranular crack formation and assessment in alloy 600 base and alloy 182 weld metals
Aoyagi et al. Crystal plasticity simulation considering oxidation along grain boundary and effect of grain size on stress corrosion cracking
JPH1123776A (en) Composite diagnostic system of reactor internal equipment
Hayhurst et al. Thickness and multi-axial stress creep rupture criteria of the Type IV component of a ferritic steel weld
JP2000258336A (en) Method for creating corrosion environment scc crack progress prediction system
Ogawa et al. SCC growth prediction for surface crack in welded joint using advanced FEA
Shoji et al. Modeling and quantitative prediction of environmentally assisted cracking based upon a deformation-oxidation mechanism
JP2004154807A (en) Welding method for structure and welding support system
Andresen Factors governing the prediction of LWR component SCC behavior from laboratory data
Ainsworth et al. Creep-fatigue crack initiation assessment procedures
Dmytrakh et al. On corrosion fatigue emanating from notches: stress field and electrochemistry
Barua et al. Nickel Cladded Structural Components for Advanced Reactors
Tan et al. Prediction of Keyway Root Cracking in the Graphite Core of Advanced Gas Cooled Nuclear Reactors