JP2000258336A - Method for creating corrosion environment scc crack progress prediction system - Google Patents

Method for creating corrosion environment scc crack progress prediction system

Info

Publication number
JP2000258336A
JP2000258336A JP11059723A JP5972399A JP2000258336A JP 2000258336 A JP2000258336 A JP 2000258336A JP 11059723 A JP11059723 A JP 11059723A JP 5972399 A JP5972399 A JP 5972399A JP 2000258336 A JP2000258336 A JP 2000258336A
Authority
JP
Japan
Prior art keywords
scc
crack growth
crack
equation
environment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11059723A
Other languages
Japanese (ja)
Inventor
Koichi Saito
耕一 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11059723A priority Critical patent/JP2000258336A/en
Publication of JP2000258336A publication Critical patent/JP2000258336A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PROBLEM TO BE SOLVED: To create an SCC crack progress prediction expression under wide environmental conditions by obtaining a crack tip distortion speed and an active solution characteristic constant (n value) in the theoretical model expression of SCC crack progress, rearranging the n value with the independent variable of environmental/ material factors, and determining a parameter constant in an n-value analysis expression by the multivariate analysis. SOLUTION: The database of SCC(stress corrosion crack) crack progress is rearranged by environment/stress/material factors. The database and the theoretical model expression of SCC crack progress in high-temperature and high-pressure water are used to calculate a crack tip distortion speed and an n value in the theoretical model expression of the crack progress. Further, the calculated n value is used to determine a parameter constant in the analysis expression of the n value is determined by the multivariate analysis, and an SCC crack progress prediction expression in corrosion environment is created. The expression is a theoretical prediction expression based on a physical model consisting of an atomic theory mechanism due to stress at the crack tip part and an electrochemical mechanism due to environment and can be applied under wide conditions by appropriately selecting parameters and constants.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、腐食環境に曝され
る材料の応力腐食割れ(SCC)亀裂の進展を予測する
SCC亀裂進展予測式の作成方法に係わり、特に、高温
高圧水中でSCCを発生する材料の亀裂進展を予測する
好適な腐食環境SCC亀裂進展予測式の作成方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for preparing an SCC crack growth prediction formula for predicting the stress corrosion cracking (SCC) crack growth of a material exposed to a corrosive environment. The present invention relates to a method for preparing a suitable corrosion environment SCC crack growth prediction formula for predicting crack growth of a generated material.

【0002】[0002]

【従来の技術】原子力発電プラント等の各種プラントが
大型・複雑化するにつれて、構造材の使用環境がますま
す過酷になり、それに伴って腐食環境に起因するとみら
れる材料損傷が顕現化している。構造材料として広く使
用されているステンレス鋼等の合金材料は、高温水中の
環境でSCCを起こす場合がある。SCCが発生してS
CC亀裂が進展すると、SCC亀裂によって材料強度が
低下し、これが設計強度を下回ると構造材の破壊が起こ
るため、腐食環境でのSCC亀裂の進展を精度良く予測
できる亀裂進展予測式の作成が望まれている。
2. Description of the Related Art As various types of plants, such as nuclear power plants, become larger and more complicated, the use environment of structural materials becomes more severe, and accordingly, material damage which is considered to be caused by a corrosive environment has become apparent. Alloy materials such as stainless steel, which are widely used as structural materials, may cause SCC in a high-temperature water environment. SCC occurs and S
When a CC crack grows, the material strength is reduced by the SCC crack, and if the strength is lower than the design strength, the structural material is broken. Therefore, it is desired to create a crack growth prediction formula that can accurately predict the SCC crack growth in a corrosive environment. It is rare.

【0003】SCCは、応力,環境,材質の3つの要因
が重畳した条件下で生じるとされるが、SCC亀裂進展
過程においては、応力のもとで生じる亀裂先端でのすべ
りが本質的な役割をなすと考えられる。特に、亀裂先端
でのすべりステップの生成と亀裂先端の環境による腐食
の相互作用を考慮したSCC亀裂進展予測式を作成する
必要がある。ステンレス鋼のSCCの場合は、アノード
反応に基づく活性経路腐食型SCCといわれ、亀裂先端
ですべりステップが生成されると、皮膜破壊が起きて新
生すべり面が露出して、腐食環境によって新生すべり面
のアノード溶解が生じる一方、亀裂先端での再不働態化
(皮膜の修復)が進行する。
[0003] SCC is considered to occur under a condition in which three factors of stress, environment, and material are superimposed. In the SCC crack growth process, slip at a crack tip generated under stress is an essential role. It is considered to make. In particular, it is necessary to create an SCC crack growth prediction equation that takes into account the interaction between the generation of a slip step at the crack tip and the corrosion due to the environment of the crack tip. In the case of stainless steel SCC, it is called an active path corrosion type SCC based on the anodic reaction, and when a slip step is generated at the crack tip, the film breaks down and the new slip surface is exposed, and the new slip surface is exposed by the corrosive environment. Anodic dissolution occurs, while repassivation (repair of the film) at the crack tip proceeds.

【0004】従来の技術として、例えば、“Corrosion
−Assisted Cracking of Stainlessand Low−Alloy Ste
els in LWR Environments”,EPRI NP−5064M(1987)に
記載されているSCC亀裂進展予測式は、応力による亀
裂先端でのすべりステップの生成を考慮せずに、単に亀
裂先端での皮膜破壊歪みを導入することによって、高温
高圧下でのステンレス鋼のSCC亀裂進展を予測する式
として作成されたものである。
As a conventional technique, for example, “Corrosion
−Assisted Cracking of Stainlessand Low−Alloy Ste
els in LWR Environments ”, EPRI NP-5064M (1987), the SCC crack growth prediction formula does not consider the generation of a slip step at the crack tip due to stress, but simply calculates the film fracture strain at the crack tip. It was created as an equation for predicting the SCC crack growth of stainless steel under high temperature and high pressure.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、SC
C亀裂進展における亀裂先端でのすべり変形が、応力の
作用によって2つのすべり系が同時に働いて連続的にす
べりステップを形成するため、亀裂先端歪み速度が亀裂
先端におけるすべり面での転位の運動速度に支配される
という原子論的機構と新生すべり面において活性溶解を
伴って進行する亀裂先端での再不働態化という電気化学
的機構を考慮する。そして、原子論的機構と電気化学的
機構からなるすべりステップ/活性溶解のメカノケミカ
ル機構に基づいたSCC亀裂進展の理論的モデル式を構
築することにある。
SUMMARY OF THE INVENTION The object of the present invention is to provide an SC
Since the slip deformation at the crack tip in the C crack propagation causes the two slip systems to work simultaneously by the action of stress to form a continuous slip step, the strain rate at the crack tip is the motion speed of the dislocation on the slip surface at the crack tip. Mechanism and the electrochemical mechanism of repassivation at the crack tip, which proceeds with active dissolution on the new slip surface. The object of the present invention is to construct a theoretical model formula for SCC crack propagation based on a mechanochemical mechanism of sliding step / active dissolution composed of an atomistic mechanism and an electrochemical mechanism.

【0006】さらに、電気化学的機構を支配する活性溶
解特性定数の解析方式におけるパラメータ定数を、環境
・応力・材質因子で整理されたSCC亀裂進展速度のデ
ータベースを用いて決定することで、幅広い環境条件下
において適用可能で、かつ精度が高く信頼性のあるSC
C亀裂進展予測式を作成する方法を提供することにあ
る。
Further, parameter constants in an analysis method of an active dissolution characteristic constant governing an electrochemical mechanism are determined by using a database of SCC crack growth rates arranged by environment, stress, and material factors, so that a wide range of environment can be determined. SC that is applicable under conditions and has high accuracy and reliability
An object of the present invention is to provide a method for creating a C crack growth prediction equation.

【0007】[0007]

【課題を解決するための手段】本発明は、高温高圧水中
でのSCC亀裂進展の理論的モデル式と環境・応力・材
質因子で整理されたSCC亀裂進展速度のデータベース
を用いて、亀裂進展の理論的モデル式における亀裂先端
歪み速度(dεct/dt)と活性溶解特性定数(n値)
を算出し、さらに、算出した活性溶解特性定数を用い
て、活性溶解特性定数の解析式におけるパラメータ定数
を多変量解析により決定するところの手順(図1)で示
した腐食環境SCC亀裂進展予測式の作成方法に関す
る。
SUMMARY OF THE INVENTION The present invention uses a theoretical model formula for SCC crack growth in high-temperature and high-pressure water and a database of SCC crack growth rates organized by environment, stress and material factors. Crack tip strain rate (dε ct / dt) and active dissolution characteristic constant (n value) in the theoretical model formula
The corrosion environment SCC crack growth prediction equation shown in the procedure (FIG. 1) in which the parameter constant in the analytical equation of the active dissolution characteristic constant is determined by multivariate analysis using the calculated active dissolution characteristic constant On how to create

【0008】本発明を、メカノケミカル機構による理論
的モデル式における(a)SCC亀裂進展基本式,
(b)亀裂先端歪み速度式,(c)活性溶解特性定数
(n値)の解析式およびSCC亀裂進展予測式の作成に
分けて、以下に述べる。
[0008] The present invention relates to (a) SCC crack growth basic formula in a theoretical model formula by a mechanochemical mechanism,
(B) Crack tip strain rate equation, (c) Active dissolution characteristic constant (n value) analytical equation and SCC crack growth prediction equation will be described separately.

【0009】(1)理論的モデル式 (a)SCC亀裂進展基本式 SCC亀裂進展は、図2に示すように、引張応力軸に垂
直な面内で起こるため、亀裂先端で2つの同じすべり系
が同時に働いて、連続的にすべりステップが生成される
と、亀裂は亀裂面の先端に向かって進展することにな
る。そのときの亀裂先端歪み速度dεct/dtは、
(1) Theoretical model formula (a) Basic formula of SCC crack growth As shown in FIG. 2, SCC crack growth occurs in a plane perpendicular to the tensile stress axis. Work simultaneously to generate successive slip steps, the crack will propagate toward the tip of the crack surface. The crack tip strain rate dε ct / dt at that time is:

【0010】[0010]

【数1】 dεct/dt=2ρd・b・cosθ・(dX/dt) …(1) ここで、 ρd :転位密度、b:転位のバーガースベク
トル θ:すべり方向と応力軸とのなす角 dX/dt:転位の平均運動速度 で与えられる。
ct / dt = 2ρ d · b · cos θ · (dX / dt) (1) where, ρ d : dislocation density, b: Burgers vector of dislocation θ: between slip direction and stress axis The angle dX / dt is given by the average velocity of the dislocation.

【0011】亀裂先端ですべりステップが生成されて皮
膜破壊が起き、新生すべり面が露出すると、腐食環境中
でのアノード反応による新生すべり面の溶解が始まる。
そのときのアノード電流は時間とともに指数関数的に減
少していって皮膜の修復による再不働態化が起きてく
る。
When a slip step is generated at the crack tip to cause film destruction and the new slip surface is exposed, dissolution of the new slip surface by an anodic reaction in a corrosive environment starts.
At that time, the anode current decreases exponentially with time, and re-passivation occurs due to restoration of the film.

【0012】時間:tを経た後のアノード電流密度:i
は、図3に示すように、一般に次式で与えられる。
Anode current density after time: t: i
Is generally given by the following equation, as shown in FIG.

【0013】[0013]

【数2】 (Equation 2)

【0014】ここで、i0 :表面溶解電流密度、t0
任意の時間定数 n:活性溶解特性定数 すべり面での溶解および再不働態化が繰り返し起こる際
の平均アノード電流密度:ia は、転位がすべり面に沿
って平均運動速度で移動して新生すべり面が出現するす
べり形成時間をtslipとすると、
Here, i 0 : surface melting current density, t 0 :
Any time constant n: active dissolution characteristic constant slip surface at an average anode current density when occurring dissolution and repassivation repetition of: i a is newborn sliding surface moves at an average speed of movement dislocations along the sliding surface When but a slip formation time and t slip that appears,

【0015】[0015]

【数3】 (Equation 3)

【0016】で示される。## EQU1 ##

【0017】すべり形成時間:tslipは、活動したすべ
り帯の数:Ns と、1つのすべり帯の形成に寄与した転
位の数:nd と、次の関係が成り立つ。
[0017] The slip forming time: t slip, the number of slip bands that worked: and N s, the number of dislocations that contributed to the formation of one of slip bands: and n d, is established the following relationship.

【0018】[0018]

【数4】 tslip・(dX/dt)=Ns・nd・b …(4) ここで、Ns :活動したすべり帯の数 nd :1つのすべり帯の形成に寄与した転位の数 従って、平均アノード電流密度はT slip · (dX / dt) = N s · n d · b (4) where N s is the number of active slip bands nd : the number of dislocations that contributed to the formation of one slip band Therefore, the average anode current density is

【0019】[0019]

【数5】 (Equation 5)

【0020】で表される。## EQU1 ##

【0021】亀裂先端でのすべり溶解がアノード反応に
よる電流密度に支配されるため、亀裂進展量は、溶解す
る物質量と電気量と比例関係にあるという電解に関する
ファラデー法則によって次式で与えられる。
Since the dissolution at the crack tip is governed by the current density due to the anodic reaction, the amount of crack propagation is given by the following equation according to Faraday's law regarding electrolysis, which is proportional to the amount of dissolved substance and the amount of electricity.

【0022】[0022]

【数6】 (Equation 6)

【0023】 ここで、da/dt:亀裂進展速度、M:金属の原子量 z:溶解に伴う電子数、ρm :金属の密度、F:ファラ
デー定数 平均アノード電流密度:ia に前記(5)式を代入する
と、
[0023] Here, da / dt: crack growth rate, M: metal atomic weight z: number of electrons involved in dissolution, [rho m: density of the metal, F: Faraday constant average anode current density: the on i a (5) Substituting the expression gives

【0024】[0024]

【数7】 (Equation 7)

【0025】さらに、転位の平均運動速度に前記(1)
式の関係式を代入すると、理論的亀裂進展基本式は次式
で表現することができる。
Further, the average movement speed of the dislocation is expressed by (1)
By substituting the relational expressions of the equations, the theoretical crack growth basic equation can be expressed by the following equation.

【0026】[0026]

【数8】 (Equation 8)

【0027】この理論的亀裂進展基本式を、以下のよう
に亀裂進展速度係数:A0 、材料因子定数:Cm および
亀裂先端歪み速度:dεct/dtで簡便化して表示でき
る。
This theoretical crack growth basic formula can be simplified and represented by a crack growth rate coefficient: A 0 , a material factor constant: C m and a crack tip strain rate: dε ct / dt as follows.

【0028】[0028]

【数9】 (Equation 9)

【0029】 ここで、A0=M/z・F・ρm・i0・t0 n/(1−n) Cm=2・ρd・cosθ・Ns・nd・b2 (b)亀裂先端歪み速度式 すべり面に沿って転位が移動するときの転位の平均運動
速度は、キンク対形成理論によると次式で表される。
[0029] Here, A 0 = M / z · F · ρ m · i 0 · t 0 n / (1-n) C m = 2 · ρ d · cosθ · N s · n d · b 2 (b ) Crack tip strain rate equation According to the kink pair formation theory, the average motion velocity of a dislocation when a dislocation moves along a slip surface is expressed by the following equation.

【0030】[0030]

【数10】 (Equation 10)

【0031】ここで、 d:パイエルス・ポテンシャルの周期、b:転位のバー
ガースベクトル lc:キンク対の臨界間隔距離、l:キンク対の運動距
離 νD:デバイ振動数、Edk f:キンク対の形成エネルギー kB:ボルツマン定数、T:温度 キンク対の形成エネルギー:Edk f は、応力のない状態
で転位がポテンシャルの山を乗り越えるときのキンクの
エネルギーをEk 0とすると、次のように表される。
Here, d: period of Peierls potential, b: Burgers vector of dislocation, l c : critical distance of kink pair, l: movement distance of kink pair, ν D : Debye frequency, and E dk f : kink pair. Formation energy k B : Boltzmann's constant, T: temperature Kink pair formation energy: E dk f is as follows, assuming that the energy of a kink when a dislocation passes over a potential peak in a stress-free state is E k 0. Is represented by

【0032】[0032]

【数11】 Edk f=2Ek 0−b・l0・d0・σeff=2Ek 0−b・l0・d0・(σa−σL) …(11) ここで、l0 :転位障害物の間隔、d0 :転位障害の抵
抗幅 σeff:有効応力、σa :外部応力、σL :抵抗応力 従って、転位の平均運動速度は、次式で表現される。
E dk f = 2E k 0 −b · l 0 · d 0 · σ eff = 2E k 0 −b · l 0 · d 0 · (σ a −σ L ) (11) where l 0 : distance between dislocation obstacles, d 0 : resistance width of dislocation obstacle σ eff : effective stress, σ a : external stress, σ L : resistance stress Accordingly, the average movement speed of dislocation is expressed by the following equation.

【0033】[0033]

【数12】 (Equation 12)

【0034】外部応力が加わって亀裂先端で転位の運動
によってすべりが生じた場合、すべりステップの先端に
おける応力拡大係数は、亀裂先端での応力:σと次式の
関係式が成り立つ。
In the case where slip occurs due to the movement of dislocations at the crack tip due to the application of external stress, the stress intensity factor at the tip of the slip step is expressed by the following equation: stress at the crack tip: σ.

【0035】[0035]

【数13】 (Equation 13)

【0036】ここで、σ0 :流動応力、K:応力拡大係
数、r:亀裂先端からの距離 α:無次元定数、n′:Ramberg−Osgood 型の歪み硬化
指数 また、有効応力拡大係数:KeffをKeff≡KI−KISCC
とすると、有効応力:σeff と有効応力拡大係数:K
eff との間には、以下の関係式が成り立つ。
Here, σ 0 : flow stress, K: stress intensity factor, r: distance from crack tip α: dimensionless constant, n ′: Ramberg-Osgood type strain hardening index, and effective stress intensity factor: K Let eff be K eff ≡K I -K ISCC
Then, effective stress: σ eff and effective stress intensity factor: K
The following relational expression is established with eff .

【0037】[0037]

【数14】 [Equation 14]

【0038】 ここで、KISCC:SCC下限界応力拡大係数、β:定数 従って、転位の平均運動速度は、Here, K ISCC : SCC lower limit stress intensity factor, β: constant.

【0039】[0039]

【数15】 (Equation 15)

【0040】で与えられる。Is given by

【0041】従って、亀裂先端歪み速度式は、前記
(1)式から以下のように表現される。
Therefore, the crack tip strain rate equation is expressed as follows from equation (1).

【0042】[0042]

【数16】 (Equation 16)

【0043】(c)活性溶解特性定数の解析式 亀裂先端で新生すべり面が出現した場合、新生すべり面
の溶解によるアノード電流密度:iは時間とともに指数
関数的に減少して−n乗則に従うので、活性溶解特性定
数なるnを用いた前記の(2)式で与えられる。
(C) Analytical expression of active dissolution characteristic constant When a new slip surface appears at the crack tip, the anode current density due to dissolution of the new slip surface: i decreases exponentially with time and follows the -n power law. Therefore, it is given by the above equation (2) using n which is the active dissolution characteristic constant.

【0044】[0044]

【数17】 [Equation 17]

【0045】従って、活性溶解特性定数なるnは、次の
ように表される。
Accordingly, the active dissolution characteristic constant n is expressed as follows.

【0046】[0046]

【数18】 (Equation 18)

【0047】一方、亀裂先端のアノード溶解電流密度:
iは、部分アノード電流密度:iaと部分カソード電流
密度:ic の差になり、次のButler−Volmerの式として
知られる関係式で与えられる。
On the other hand, the anode dissolution current density at the crack tip:
i, the partial anodic current density: i a and the partial cathode current density becomes the difference of i c, is given by the relation known as the formula for a Butler-Volmer.

【0048】[0048]

【数19】 [Equation 19]

【0049】ここで、i(0):交換電流密度、α:移動
係数、ηt:遷移過電圧 Z:原子価、F:Faraday定数、R:気体定数 アノード溶解電流密度:iに対して、環境因子の独立変
数である鋭敏化度,導電率,腐食電位の影響についてモ
デル化するが、環境因子はそれぞれ独立で、互いに影響
を及ぼさないと考える。
Where, i (0) : exchange current density, α: transfer coefficient, η t : transition overvoltage, Z: valence, F: Faraday constant, R: gas constant. The effects of sensitization, conductivity, and corrosion potential, which are independent variables of the factors, are modeled, but the environmental factors are considered to be independent and do not affect each other.

【0050】(i)鋭敏化度の影響 熱鋭敏化された粒界では、Cr欠乏領域が形成されるの
で、粒界における母相とCr欠乏相の面積比を、それぞ
れfmatおよびfsenとすれば、fmat+fsen=1で、ア
ノード電流密度:iは次のようになる。
(I) Influence of the degree of sensitization Since a Cr-deficient region is formed at the grain boundary that has been sensitized, the area ratio between the parent phase and the Cr-depleted phase at the grain boundary is defined as f mat and f sen , respectively. Then, with f mat + f sen = 1, the anode current density: i is as follows.

【0051】[0051]

【数20】 iA=fmat・imat+fsen・isen …(20) ここで、imat:母相電流密度、isen:Cr欠乏相電流
密度 Cr欠乏相電流密度:isenは、母相電流密度:imat
りλ倍大きくなるとして、次式で与え、
I A = f mat · i mat + f sen · i sen (20) where i mat : mother phase current density, isen : Cr-deficient phase current density Cr-deficient phase current density: isen Assuming that the matrix current density is λ times larger than i mat , given by the following equation,

【0052】[0052]

【数21】 isen=λ・imat …(21) Cr欠乏相の面積比:fsenは、母相の面積比:fmat
比例定数なるζを乗じた、次式で与えると、
I sen = λ · i mat (21) The area ratio of the Cr-deficient phase: f sen is given by the following equation obtained by multiplying the area ratio of the mother phase: f mat by a proportional constant ζ.

【0053】[0053]

【数22】 fsen=ζ・fmat …(22) アノード電流密度:iは、次のように表される。F sen = ζ · f mat (22) Anode current density: i is expressed as follows.

【0054】[0054]

【数23】 (Equation 23)

【0055】上式の係数項を鋭敏化度影響因子:FEPR
と定義し、鋭敏化度:EPRに対して、次のように線形
近似で表されるとする。
The coefficient term in the above equation is converted to a sensitivity-influencing factor: F EPR
And sensitization degree: EPR is represented by a linear approximation as follows.

【0056】[0056]

【数24】 (Equation 24)

【0057】ここで、C1 :パラメータ定数 従って、アノード電流密度:iは、EPRを独位変数と
した次式で与えられる。
Here, C 1 : parameter constant Accordingly, the anode current density: i is given by the following equation using EPR as an independent variable.

【0058】[0058]

【数25】 i=(1+C1・EPR)・imat …(25) (ii)導電率の影響 環境での導電率が変わると、溶解金属の陽イオン濃度が
変化するため、Helmholtz2重層を通る交換電流密度:i
(0)が変化すると考えられる。
(25) i = (1 + C 1 · EPR) · i mat (25) (ii) Influence of conductivity When the conductivity in the environment changes, the cation concentration of the dissolved metal changes, so that it passes through the Helmholtz double layer. Exchange current density: i
It is considered that (0) changes.

【0059】溶解金属イオン濃度がCsからC′sに変わ
った場合、濃度過電圧:ηc は次式で与えられる。
When the dissolved metal ion concentration changes from C s to C ′ s , the concentration overpotential: η c is given by the following equation.

【0060】[0060]

【数26】 (Equation 26)

【0061】一方、過電圧:ηと電流密度:log(i)と
の間に、Tafelの直線関係式が成り立ち、
On the other hand, a Tafel linear relationship holds between the overvoltage: η and the current density: log (i),

【0062】[0062]

【数27】 [Equation 27]

【0063】従って、以下の関係式が成立する。Therefore, the following relational expression is established.

【0064】[0064]

【数28】 [Equation 28]

【0065】上式の右辺を導電率影響因子:Fκと定義
し、導電率:κに対して、次のように線形近似で表され
るとする。
The right side of the above equation is defined as a conductivity affecting factor: F κ, and the conductivity: κ is represented by a linear approximation as follows.

【0066】[0066]

【数29】 (Equation 29)

【0067】 ここで、C2 :パラメータ定数、C3 :パラメータ定数 従って、交換電流密度:i(0) は、導電率:κを独立変
数とした次式で与えられる。
Here, C 2 : parameter constant, C 3 : parameter constant Accordingly, the exchange current density: i (0) is given by the following equation using the conductivity: κ as an independent variable.

【0068】[0068]

【数30】 i′(0)=(C2・κ+C3)・i(0) …(30) (3)腐食電位の影響 導電率が変化する環境における鋭敏化材のアノード電流
密度:iは、Butler−Volmerの式と鋭敏化度影響因子:
EPR および導電率影響因子:Fκを用いると、
I ′ (0) = (C 2 · κ + C 3 ) · i (0) (30) (3) Influence of Corrosion Potential Anode current density of sensitized material in an environment where conductivity changes: i , Butler-Volmer equation and sensitization influencing factors:
Using F EPR and conductivity influencing factors: F κ ,

【0069】[0069]

【数31】 (Equation 31)

【0070】遷移過電圧:ηt は、アノード反応電位:
Δφと平衡電位:Δφ0 の差
The transition overvoltage: η t is the anode reaction potential:
Δφ and equilibrium potential: difference between Δφ 0

【0071】[0071]

【数32】 ηt =Δφ−Δφ0 …(32) で与えられるので、バルクの腐食電位:φc を用いて、Η t = Δφ−Δφ 0 (32) Therefore, by using the corrosion potential of the bulk: φ c ,

【0072】[0072]

【数33】 [Equation 33]

【0073】と線形近似で表されるとする。Is represented by a linear approximation

【0074】従って、アノード電流密度:iは、腐食電
位:φc に対して次式で与えられる。
[0074] Thus, the anode current density: i is the corrosion potential: given by the following equation with respect to phi c.

【0075】[0075]

【数34】 i=FEPR・Fκ・i(0)・(C4・φc+C5)・exp{α・(C4・φc+C5)} …(34) アノード溶解特性定数:nの解析式は、上式を前記の
(18)式に代入し、鋭敏化度影響因子:FEPR て導電
率影響因子:Fκをあてはめると、最終的に、次のよう
に表現される。
I = F EPR · F κ · i (0) · (C 4 · φ c + C 5 ) · exp {α · (C 4 · φ c + C 5 )} (34) Anode dissolution characteristic constant: analytical expression of n substitutes the above equation to the equation (18), sensitization degree influence factor: F EPR Te conductivity influencing factors: applying F kappa, and finally be expressed as follows .

【0076】[0076]

【数35】 (Equation 35)

【0077】 ここで、EPR:鋭敏化度、κ:導電率、φc:腐食電
位 C1〜C7:パラメータ定数 (d)SCC亀裂進展予測式の作成 以上のことから、メカノケミカル機構に基づいた高温高
圧水中でのSCC亀裂進展の理論的モデル式は、次のよ
うな一般的な形で表すことができる。
Here, EPR: degree of sensitization, κ: electric conductivity, φ c : corrosion potential C 1 to C 7 : parameter constant (d) Creation of SCC crack growth prediction formula From the above, based on the mechanochemical mechanism, The theoretical model formula of SCC crack growth in hot, high-pressure water can be expressed in the following general form.

【0078】[0078]

【数36】 [Equation 36]

【0079】[0079]

【数37】 (37)

【0080】[0080]

【数38】 材料因子定数:Cm=2・ρd・cosθ・Ns・nd・b2 …(38) Equation 38] Materials factors Constants: C m = 2 · ρ d · cosθ · N s · n d · b 2 ... (38)

【0081】[0081]

【数39】 [Equation 39]

【0082】[0082]

【数40】 (Equation 40)

【0083】但し、K:応力拡大係数、κ:導電率、E
CP:腐食電位、EPR:鋭敏化度高温高圧水中でステ
ンレス鋼のSCC亀裂進展における、亀裂進展速度係
数,材料因子定数,亀裂先端歪み速度は、上記の各式に
それぞれ材料定数等を代入することで、以下のように示
される。
Where K: stress intensity factor, κ: conductivity, E
CP: Corrosion potential, EPR: Sensitization For the SCC crack growth of stainless steel in high-temperature and high-pressure water, the crack growth rate coefficient, material factor constant, and crack tip strain rate are obtained by substituting the material constants and the like into the above equations. And is shown as follows.

【0084】[0084]

【数41】 亀裂進展速度係数:A0=1.1×10-7 …(41)
[Formula 41] Crack growth rate coefficient: A 0 = 1.1 × 10 −7 (41)

【0085】[0085]

【数42】 材料因子定数:C=4.4×10-4 …(42)
(42) Material factor constant: C m = 4.4 × 10 −4 (42)

【0086】[0086]

【数43】 [Equation 43]

【0087】しかし、活性溶解特性定数(n値)に関し
ては、独立変数ごとに実験的に測定することが困難であ
ることから、環境・応力・材質因子で整理された、つま
り、EPR,導電率,ECP,応力拡大係数などの各試
験条件でのSCC亀裂進展速度のデータベースを用いて
算出する必要がある。以下にその手順を示す。
However, since the active dissolution characteristic constant (n value) is difficult to measure experimentally for each independent variable, it is arranged by environment, stress and material factors, that is, EPR, conductivity. It is necessary to calculate using a database of the SCC crack growth rate under each test condition such as ECP, ECP and stress intensity factor. The procedure is described below.

【0088】まず、各データの試験条件である応力拡大
係数:Kを、上記のステンレス鋼の亀裂先端歪み速度
式:(43)式に代入して、各データの亀裂先端歪み速
度:dεct/dtを求める。この算出した亀裂先端歪み
速度:dεct/dtを、先の(36)式、(41)式,
(42)式で与えられるメカノケミカル機構によるステ
ンレス鋼の亀裂進展速度式:(44)式の右辺の項に代
入し、(44)式の左辺にデータベースの各亀裂進展速
度のデータ値:(da/dt)data を代入することで、
各試験条件(EPR,導電率,ECP)における活性溶
解特性定数:nを、以下の(45)式で算出することが
できる。
First, the stress intensity factor: K, which is a test condition of each data, is substituted into the above-described strain rate equation of crack tip of stainless steel: Equation (43), and the strain rate of crack tip of each data: dε ct / Find dt. The calculated crack tip strain rate: dε ct / dt is calculated by the above equation (36), equation (41),
Crack growth rate of stainless steel by the mechanochemical mechanism given by equation (42): Substituted into the term on the right side of equation (44), and the data value of each crack growth rate in the database on the left side of equation (44): (da / Dt) By substituting data ,
The active dissolution characteristic constant: n under each test condition (EPR, conductivity, ECP) can be calculated by the following equation (45).

【0089】[0089]

【数44】 [Equation 44]

【0090】[0090]

【数45】 [Equation 45]

【0091】高温高圧水における活性溶解特性定数:n
のデータが、EPR,導電率,ECPを独立変数として与
えられるので、活性溶解特性定数:nの解析式:(4
0)式におけるパラメータ定数:C1〜C7を、多変量解
析によって決定すると、高温高圧水中におけるステンレ
ス鋼の活性溶解特性定数:nは、EPR,導電率,ECP
を独立変数とした次の表示式で表される。
Active dissolution characteristic constant in high-temperature high-pressure water: n
Is given as independent variables of EPR, conductivity, and ECP. Therefore, the analytical formula of the active dissolution characteristic constant: n: (4
When the parameter constants in the equation (0): C 1 to C 7 are determined by multivariate analysis, the active dissolution characteristic constants of stainless steel in high-temperature, high-pressure water: n are EPR, conductivity, ECP
Is represented by the following expression, where is an independent variable.

【0092】[0092]

【数46】 [Equation 46]

【0093】図1に、SCC亀裂進展予測式を作成する
手順を示す。
FIG. 1 shows a procedure for creating an SCC crack growth prediction equation.

【0094】このようにして作成された高温高圧水での
ステンレス鋼のSCC亀裂進展予測式は、次のように表
される。
The equation for predicting the SCC crack growth of stainless steel in high-temperature, high-pressure water prepared as described above is expressed as follows.

【0095】[0095]

【数47】 [Equation 47]

【0096】[0096]

【数48】 ここで、亀裂進展速度係数:A0=1.1×10-7 …(48) Here, the crack growth rate coefficient: A 0 = 1.1 × 10 −7 (48)

【0097】[0097]

【数49】 材料因子定数:Cm=4.4×10-4 …(49) (49) Material factor constant: C m = 4.4 × 10 −4 (49)

【0098】[0098]

【数50】 [Equation 50]

【0099】[0099]

【数51】 (Equation 51)

【0100】[0100]

【発明の実施の形態】本発明を実施例に基づいて説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described based on embodiments.

【0101】図4に、本発明の方法による活性溶解特性
定数:nの表示式を用いて得られる活性溶解特性定数:
nのEPR,導電率,腐食電位に対する依存曲面を示
す。
FIG. 4 shows an active dissolution characteristic constant obtained by the method of the present invention by using the expression of n:
3 shows a surface dependent on EPR, conductivity, and corrosion potential of n.

【0102】本発明の方法による活性溶解特性定数:n
の値は、腐食電位が高くなって貴方向にいくにつれて1
より小さくなり、導電率が高くなるにつれて活性溶解特
性定数:nが小さくなる傾向が示される。また、鋭敏化
度:EPRが大きくなると、活性溶解特性定数:nも小
さくなって、亀裂先端でのアノード溶解が時間とともに
進行してSCC亀裂が進展することになることがわか
る。このような活性溶解特性定数:nのEPR,導電
率,腐食電位に対する依存性は、ステンレス鋼の亀裂進
展挙動と一致する。
Active dissolution characteristic constant according to the method of the present invention: n
Is 1 as the corrosion potential increases and goes in the noble direction.
As the conductivity becomes higher, the active dissolution characteristic constant: n tends to become smaller. Also, when the degree of sensitization: EPR increases, the active dissolution characteristic constant: n also decreases, indicating that the anode dissolution at the crack tip progresses with time and the SCC crack progresses. The dependence of such an active dissolution characteristic constant, n, on EPR, conductivity, and corrosion potential is consistent with the crack growth behavior of stainless steel.

【0103】次に、本発明によって作成したステンレス
鋼のSCC亀裂進展予測式を用いて、高温高圧水(28
8℃)でのステンレス鋼の亀裂進展挙動を解析した結果
について説明する。
Next, using the SCC crack growth prediction formula for stainless steel prepared according to the present invention, high-temperature and high-pressure water (28
The results of analyzing the crack growth behavior of stainless steel at 8 ° C.) will be described.

【0104】図5に、本実施例の亀裂進展予測式と従来
式による、温度288℃でのステンレス鋼における亀裂
進展速度:da/dtと応力拡大係数:Kとの関係をプ
ロットする。
FIG. 5 plots the relationship between the crack growth rate: da / dt and the stress intensity factor: K in stainless steel at a temperature of 288 ° C. according to the crack growth prediction formula of this embodiment and the conventional formula.

【0105】本実施例の場合、亀裂進展速度は、SCC
下限界応力拡大係数KISCC=9MPa√mから急激な立ち
上がりを示し、その後、応力拡大係数の増加とともに亀
裂進展速度が遅くなり、応力拡大係数が約12MPa√
m以上になると亀裂先端歪み速度は応力拡大係数:Kの
2.7 乗に比例する。従って、SCC亀裂進展が始まる
応力拡大係数の閾値であるSCC下限界応力拡大係数:
ISCCの存在が再現されていることがわかる。
In the case of this embodiment, the crack growth rate
From the lower limit stress intensity factor K ISCC = 9 MPa√m, a sharp rise is shown, and thereafter, the crack growth rate becomes slower as the stress intensity factor increases, and the stress intensity factor becomes about 12 MPa√.
m or more, the crack tip strain rate is proportional to the stress intensity factor: K to the power of 2.7. Therefore, the SCC lower limit stress intensity factor which is the threshold value of the stress intensity factor at which SCC crack growth starts:
It can be seen that the existence of K ISCC is reproduced.

【0106】一方、従来式では、亀裂進展速度が応力拡
大係数:Kの4乗に単純に比例する形で与えられるの
で、応力拡大係数:Kが非常に小さいときでも亀裂の進
展が起きることになり、また、応力拡大係数:Kが大き
いときは亀裂進展速度が早くなって、ステンレス鋼の亀
裂進展を過大に予測する結果になる。従って、本実施例
による作成されたSCC亀裂進展予測式は、SCC亀裂
の進展を現実的に予測し、従来のものよりも信頼性の高
い予測をすることができる。
On the other hand, in the conventional formula, the crack growth rate is given in a form simply proportional to the fourth power of the stress intensity factor: K. Therefore, even when the stress intensity factor: K is very small, crack growth occurs. Also, when the stress intensity factor: K is large, the crack growth rate is increased, which results in overestimating the crack growth of stainless steel. Therefore, the SCC crack growth prediction formula created according to the present embodiment can realistically predict the growth of the SCC crack, and can make a more reliable prediction than the conventional one.

【0107】[0107]

【発明の効果】以上述べたように、本発明に係る作成方
法による腐食環境SCC亀裂進展予測式は、亀裂先端部
での応力による原子論的機構と環境による電気化学的機
構からなる物理モデルに基づいた理論的予測式であるの
で、パラメータの変数や定数を適切に用いることで幅広
い環境条件下で適用可能なSCC亀裂進展の予測を提供
することができる。また、SCC亀裂の進展予測につい
ては、従来以上のより現実的な予測が可能となるととも
に、より信頼性の高い予測をすることができる。
As described above, the corrosion environment SCC crack growth prediction formula by the preparation method according to the present invention is a physical model composed of an atomistic mechanism by stress at the crack tip and an electrochemical mechanism by environment. Since it is a theoretical prediction formula based on SCC, it is possible to provide a prediction of SCC crack growth applicable under a wide range of environmental conditions by appropriately using parameter variables and constants. Further, as for the prediction of SCC crack growth, a more realistic prediction than before can be made, and a more reliable prediction can be made.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る腐食環境SCC亀裂進展予測式の
作成を説明するフロー図。
FIG. 1 is a flowchart for explaining creation of a corrosion environment SCC crack growth prediction formula according to the present invention.

【図2】亀裂先端における亀裂進展の原子論的機構を模
式的に示す説明図。
FIG. 2 is an explanatory view schematically showing an atomistic mechanism of crack propagation at a crack tip.

【図3】亀裂先端における亀裂進展の電気化学的機構を
模式的に示す説明図。
FIG. 3 is an explanatory view schematically showing an electrochemical mechanism of crack propagation at a crack tip.

【図4】実施例での活性溶解特性定数と独立変数の関係
を示す特性図。
FIG. 4 is a characteristic diagram showing a relationship between an active dissolution characteristic constant and an independent variable in Examples.

【図5】実施例でのSCC亀裂進展速度と応力拡大係数
の関係の予測結果を示すグラフ図。
FIG. 5 is a graph showing prediction results of a relationship between an SCC crack growth rate and a stress intensity factor in Examples.

【符号の説明】[Explanation of symbols]

n…活性溶解特性定数、EPR…鋭敏化度。 n: active dissolution characteristic constant; EPR: degree of sensitization.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】高温高圧水中でのSCC亀裂進展の理論的
モデル式と環境・応力・材質因子で整理されたSCC亀
裂進展速度のデータベースを用いて、SCC亀裂進展の
理論的モデル式における亀裂先端歪み速度(dεct/d
t)と活性溶解特性定数(n値)を算出し、さらに、活
性溶解特性定数を環境・材質因子の独立変数で整理し
て、活性溶解特性定数の解析式におけるパラメータ定数
を多変量解析によって決定することで、SCC亀裂進展
速度のデータベースに基づいた、幅広い環境条件下で適
用可能なSCC亀裂進展予測式を作成することを特徴と
する腐食環境SCC亀裂進展予測式の作成方法。
1. Using a theoretical model formula of SCC crack growth in high-temperature and high-pressure water and a database of SCC crack growth rates organized by environment, stress and material factors, a crack tip in the theoretical model formula of SCC crack growth Strain rate (dε ct / d
t) and the active dissolution characteristic constant (n value) are calculated. Further, the active dissolution characteristic constant is arranged by independent variables of environment and material factors, and the parameter constant in the analytical expression of the active dissolution characteristic constant is determined by multivariate analysis. A method for creating a SCC crack growth prediction equation for a corrosive environment, comprising creating an SCC crack growth prediction equation applicable to a wide range of environmental conditions based on a database of SCC crack growth rates.
【請求項2】高温高圧水中でSCC亀裂進展モデル式に
おいて、応力と環境の重畳作用を考慮して、亀裂先端部
での応力による原子論的機構と環境による電気化学的機
構からなるすべりステップ/活性溶解のメカノケミカル
機構に基づいた理論的モデル式を用いることを特徴とす
る腐食環境SCC亀裂進展予測式の作成方法。
2. A sliding step consisting of an atomistic mechanism by stress at a crack tip and an electrochemical mechanism by environment in a model model of SCC crack growth in high-temperature and high-pressure water in consideration of superposition of stress and environment. A method for preparing a corrosion environment SCC crack growth prediction formula, characterized by using a theoretical model formula based on a mechanochemical mechanism of active dissolution.
【請求項3】高温高圧水中でのSCC亀裂進展の理論的
モデル式において、亀裂進展速度係数が環境条件下に依
存せずに一定値をとり、亀裂先端歪み速度式がSCC下
限界応力拡大係数(KISCC)による進展開始で与えら
れ、活性溶解特性定数が独立変数:鋭敏化度,腐食電
位,導電率の関数で表されることを特徴とする腐食環境
SCC亀裂進展予測式の作成方法。
3. A theoretical model formula for SCC crack growth in high-temperature and high-pressure water, wherein a crack growth rate coefficient takes a constant value independent of environmental conditions, and a crack tip strain rate equation is a SCC lower limit stress intensity factor. (K ISCC ) A method for preparing a corrosion environment SCC crack growth prediction equation, characterized in that the active dissolution characteristic constant is given by a function of independent variables: sensitization, corrosion potential, and conductivity.
JP11059723A 1999-03-08 1999-03-08 Method for creating corrosion environment scc crack progress prediction system Pending JP2000258336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11059723A JP2000258336A (en) 1999-03-08 1999-03-08 Method for creating corrosion environment scc crack progress prediction system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11059723A JP2000258336A (en) 1999-03-08 1999-03-08 Method for creating corrosion environment scc crack progress prediction system

Publications (1)

Publication Number Publication Date
JP2000258336A true JP2000258336A (en) 2000-09-22

Family

ID=13121420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11059723A Pending JP2000258336A (en) 1999-03-08 1999-03-08 Method for creating corrosion environment scc crack progress prediction system

Country Status (1)

Country Link
JP (1) JP2000258336A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007218826A (en) * 2006-02-20 2007-08-30 Toshiba Corp Method and system for evaluating stress corrosion cracking
JP2009036558A (en) * 2007-07-31 2009-02-19 Hitachi-Ge Nuclear Energy Ltd Method of monitoring stress corrosion crack, and management method of plant
CN101598659A (en) * 2008-06-05 2009-12-09 中国市政工程华北设计研究院 The Forecasting Methodology of organic material performance change in the dimethyl ether medium
CN103592220A (en) * 2013-11-14 2014-02-19 西安交通大学 In-situ crack detection method for blower wheel
CN110261294A (en) * 2019-06-04 2019-09-20 中国船舶重工集团公司第七二五研究所 Metal erosion electrochemical test experiment device in cracked zone under a kind of simulated deep-sea environment

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007218826A (en) * 2006-02-20 2007-08-30 Toshiba Corp Method and system for evaluating stress corrosion cracking
JP4568236B2 (en) * 2006-02-20 2010-10-27 株式会社東芝 Stress corrosion cracking evaluation method and stress corrosion cracking evaluation system
JP2009036558A (en) * 2007-07-31 2009-02-19 Hitachi-Ge Nuclear Energy Ltd Method of monitoring stress corrosion crack, and management method of plant
CN101598659A (en) * 2008-06-05 2009-12-09 中国市政工程华北设计研究院 The Forecasting Methodology of organic material performance change in the dimethyl ether medium
CN103592220A (en) * 2013-11-14 2014-02-19 西安交通大学 In-situ crack detection method for blower wheel
CN103592220B (en) * 2013-11-14 2015-05-20 西安交通大学 In-situ crack detection method for blower wheel
CN110261294A (en) * 2019-06-04 2019-09-20 中国船舶重工集团公司第七二五研究所 Metal erosion electrochemical test experiment device in cracked zone under a kind of simulated deep-sea environment
CN110261294B (en) * 2019-06-04 2022-04-19 中国船舶重工集团公司第七二五研究所 Electrochemical test device for simulating metal corrosion of crack area under deep sea environment

Similar Documents

Publication Publication Date Title
Sridhar et al. Applicability of repassivation potential for long-term prediction of localized corrosion of alloy 825 and type 316L stainless steel
Wells et al. The use of percolation theory to predict the probability of failure of sensitized, austenitic stainless steels by intergranular stress corrosion cracking
Odette et al. Relationship between irradiation hardening and embrittlement of pressure vessel steels
CN108256139A (en) A kind of different metal materials composite structure accelerated environment spectrum preparation method
Gutman An inconsistency in “film rupture model” of stress corrosion cracking
Shi et al. Galvanostatic anodic polarization curves and galvanic corrosion of AZ31B in 0.01 M Na2SO4 saturated with Mg (OH) 2
JP2938758B2 (en) Method for evaluating corrosion resistance of metal material, method for designing highly corrosion-resistant alloy, method for diagnosing corrosion state of metal material, and method for operating plant
Shi et al. Customization of the coupled environment fracture model for predicting stress corrosion cracking in Alloy 600 in PWR environment
Okita et al. Validation of ultrasonic velocity measurements for detecting void swelling in first-wall structural materials
JP2000258336A (en) Method for creating corrosion environment scc crack progress prediction system
McRae et al. Diffusivity of hydrogen isotopes in the alpha phase of zirconium alloys interpreted with the Einstein flux equation
Arteaga et al. Estimation of useful life in turbines blades with cracks in corrosive environment
Beck et al. An Electrochemical Mass Transport‐Kinetic Model for Stress Corrosion Cracking of Titanium
Huang et al. Localized corrosion resistance of Fe-Cr-Mo-WBC bulk metallic glasses containing Mn+ Si or Y in neutral and acidified chloride solutions
JPH1123565A (en) Corrosion environment scc crack developing prediction method
Sandström et al. Error estimates in extrapolation of creep rupture data: applied to an austenitic stainless steel
Gießgen et al. Enhanced predictive corrosion modeling via randomly distributed boundary conditions
Lee et al. On the shape of stress corrosion cracks in sensitized Type 304 SS in Boiling Water Reactor primary coolant piping at 288° C
Su et al. Stress corrosion cracking growth rate prediction model for nuclear power turbine rotor steel in a simulated environment
Maristany et al. Crevice corrosion of nickel alloys for steam generator tubing of pressurized water reactors
Lillard et al. Assessment of Corrosion-based failure in stainless steel containers used for the long-term storage of plutonium-based Salts
KR19980039686A (en) Method for predicting metal corrosion life in seawater atmosphere
Ogawa et al. SCC growth prediction for surface crack in welded joint using advanced FEA
RU2293308C2 (en) Method for evaluating practical conditions for using orderly alloy in radiation environments (variants)
JP2020176855A (en) Non-destructive evaluation method and non-destructive evaluation system