JP2007178137A - Device and method for measuring displacement amount of surface shape - Google Patents

Device and method for measuring displacement amount of surface shape Download PDF

Info

Publication number
JP2007178137A
JP2007178137A JP2005373747A JP2005373747A JP2007178137A JP 2007178137 A JP2007178137 A JP 2007178137A JP 2005373747 A JP2005373747 A JP 2005373747A JP 2005373747 A JP2005373747 A JP 2005373747A JP 2007178137 A JP2007178137 A JP 2007178137A
Authority
JP
Japan
Prior art keywords
sample
displacement
measurement
stage
event
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005373747A
Other languages
Japanese (ja)
Other versions
JP5051567B2 (en
Inventor
Hiroshi Yagisawa
博 八木澤
Takashi Arai
貴 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Agency filed Critical Japan Atomic Energy Agency
Priority to JP2005373747A priority Critical patent/JP5051567B2/en
Publication of JP2007178137A publication Critical patent/JP2007178137A/en
Application granted granted Critical
Publication of JP5051567B2 publication Critical patent/JP5051567B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve problems wherein displacement before an event is easily compared with that after the event when putting the whole surface of a sample in an exposed state generates uniform displacement but the displacement comparison becomes difficult when it generates nonuniform displacement in the case where the dimension or the like of the sample is accurately obtained before the event, and the reference becomes unclear when a sample having clear measuring reference is manufactured and no protection is performed in the exposed state. <P>SOLUTION: In the event physically or chemically accompanied by the displacement on the surface of a solid body, protection is performed during the event so that the measuring reference level does not displace, two or more grooves are formed in the solid sample of a three-dimensional shape as a measured object to be parallel with or rectangularly crossing two side surfaces of it, the solid sample is mounted on a sample table, displacement gauge tips are set on the upper surface and the side surface of the solid sample, the sample table is moved or turned to perform scan, and the groove surfaces and the upper surface whose coordinates are managed are simultaneously measured, thereby acquiring three-dimensional data before and after the event on the same coordinates of the groove surfaces and the upper surface of the sample. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は表面に均一、不均一を問わず変位が発生する可能性のある事象に対し、立方体形状の固体試料(被測定対象物)を用い、事象前の状態の一部を完全に保護することにより、その保護部から事象前後の変位の比較を容易にし、更に表面形状変位量を簡易な専用の三次元測定器を用い表面形状測定を行い、その結果から同一箇所での変位量を演算し、変位量を得るための表面形状変位量の測定方法とその測定装置に関する。   The present invention uses a cube-shaped solid sample (object to be measured) against an event that may cause displacement regardless of whether the surface is uniform or non-uniform, and completely protects a part of the state before the event. This makes it easy to compare the displacement before and after the event from the protective part, and also measures the surface shape displacement using a simple dedicated three-dimensional measuring instrument, and calculates the displacement at the same location from the result. In addition, the present invention relates to a surface shape displacement amount measuring method and a measuring apparatus for obtaining the displacement amount.

本発明は接触式変位計と試料測定部分による水平調整が不完全な接地状態にて被測定対象物の測定を行う場合、走査方向の測定距離が長くなると接触式変位計の測定範囲を逸脱し、測定対象とする部分に測定範囲外の部位が生じる問題に対し、被測定対象物表面の任意に製作した基準となる直進度に優れた溝のラインを測定開始前に連続走査測定することより、測定装置と被測定対象物との間隔を一定に調整する係数を演算し、この係数により接触式変位計と被測定対象物表面に製作した基準の溝のラインが同一間隔となるように高さ方向を調整し、水平調整不良による測定範囲の逸脱防止を目的とした表面形状変位量の測定方法とその測定装置に関する。   In the present invention, when the object to be measured is measured in a grounded state where the horizontal adjustment by the contact displacement meter and the sample measurement part is incomplete, the measurement range of the contact displacement meter deviates when the measurement distance in the scanning direction becomes long. In response to the problem that a part outside the measurement range is generated in the measurement target part, by continuously scanning and measuring the groove line with excellent straightness that is the standard of the surface of the object to be measured, which is arbitrarily manufactured, before the start of measurement Calculate a coefficient that adjusts the distance between the measuring device and the object to be measured to be constant, and this coefficient increases the distance between the contact displacement meter and the reference groove line produced on the surface of the object to be measured at the same distance. The present invention relates to a measuring method of a surface shape displacement amount and a measuring apparatus for the purpose of adjusting a vertical direction and preventing deviation of a measuring range due to poor horizontal adjustment.

本発明は接触式変位計と試料台を同一筺体上に組み込み、相互の相対変位量のずれを緩和するための構造と高精度変位測定を行う際に有害要因となる振動を低減化すること目的とした表面形状変位量の測定方法とその測定装置に関する。   An object of the present invention is to incorporate a contact displacement meter and a sample table on the same housing, reduce the relative displacement, and reduce vibrations that are harmful factors when performing high-precision displacement measurement. The present invention relates to a surface shape displacement measuring method and a measuring apparatus.

変位量の測定方法は事象前後の変位の比較が一般的であり、手法としては寸法等を正確に加工した試料を用いることや変化しない部分を基準として事象前後の変位量を算出している。   As a method for measuring the amount of displacement, a comparison of displacement before and after the event is common, and as a method, the amount of displacement before and after the event is calculated using a sample whose dimensions are accurately processed or using a part that does not change.

また、従来の表面形状測定方法には変位計に接触式や非接触式を採用した三次元測定器を用いた表面形状を測定する方法がある。(たとえば特許文献1参照。)
これらの三次元測定器を用いることにより被測定対象物の表面形状の測定を正確に測定することが可能である。
As a conventional surface shape measuring method, there is a method of measuring a surface shape using a three-dimensional measuring instrument employing a contact type or a non-contact type as a displacement meter. (For example, see Patent Document 1.)
By using these three-dimensional measuring instruments, it is possible to accurately measure the surface shape of the object to be measured.

変位計にはその測定機種に応じて測定範囲があり、被測定対象物の変位に準じた選定を行う必要がある。また測定装置において連続走査測定を行う場合、測定器(センサ)と被測定対象物の距離は高精度な間隔維持及び移動時の平行度が要求される。   The displacement meter has a measurement range according to the measurement model, and it is necessary to select according to the displacement of the object to be measured. Further, when continuous scanning measurement is performed in the measuring apparatus, the distance between the measuring instrument (sensor) and the object to be measured needs to maintain a highly accurate interval and parallelism during movement.

高機能の三次元測定器は定盤上に被測定対象物を積載し、センサヘッドが座標管理されたポイントの測定を駆動しながら測定する方法などがある。またその際定盤の下部には自動水平調整機能を有した除振装置を組み込んだものがある。
特開平6-347227号公報
A highly functional three-dimensional measuring device includes a method in which an object to be measured is loaded on a surface plate, and a sensor head performs measurement while driving measurement of a coordinate-controlled point. In some cases, a vibration isolator having an automatic leveling function is incorporated at the bottom of the surface plate.
JP-A-6-347227

事象前に試料の寸法等を正確に把握している場合、試料の表面全域を暴露状態でさらすと均一に変位が発生するときは事象前後で変位の比較はしやすいが、不均一に変位が発生すると変位比較が困難となる。   If the dimensions of the sample are accurately grasped before the event and the entire surface of the sample is exposed, it will be easy to compare the displacement before and after the event. When this occurs, displacement comparison becomes difficult.

また、測定基準を明確にした試料を製作した場合、暴露状態において何らかの保護を行わないと基準が不明確となりやすいという課題がある。   In addition, when a sample with a clear measurement standard is manufactured, there is a problem that the standard tends to be unclear unless some kind of protection is performed in an exposed state.

接触式変位計を用いた測定において、可動部分の接触子の測定範囲を考えると走査方向に対し被測定対象物と接触式変位計(本体)の間隔が常に一定であることが望ましい。(接触式変位計の接触子部分は除く)しかし、現実的には間隔を一定に調整することは難しく、走査距離が長くなるに従い接触式変位計の測定子が測定範囲を超え、測定できない部位が発生する場合がある。   In the measurement using the contact displacement meter, it is desirable that the distance between the object to be measured and the contact displacement meter (main body) is always constant with respect to the scanning direction, considering the measurement range of the contact of the movable part. (Excluding the contact part of the contact displacement meter) However, in reality, it is difficult to adjust the interval to be constant, and as the scanning distance becomes longer, the contact displacement gauge probe exceeds the measurement range and cannot be measured. May occur.

変位計と試料台を固定している個々の要素において、組み込み場所が基準を持たない個々の物体に固定されている場合、相対位置を毎回把握する必要がある。また外部からの振動等による測定不良要因により測定中に微小に変位が発生し、測定値に影響を与える。   In the individual elements fixing the displacement meter and the sample stage, when the installation location is fixed to an individual object having no reference, it is necessary to grasp the relative position every time. In addition, a slight displacement occurs during measurement due to measurement failure factors due to external vibration or the like, which affects the measured value.

物理的または化学的に固体表面に均一、不均一を問わず変位を伴う事象において、被測定対象物である立方体形状の固体試料(おおよそのサイズの最大はW約200mm×D約200mm×H約20mm)に対し、図1に示すように個体試料の直角に交わる側面3,4を精度良く加工し、図6,7に示すようにその角部を平面座標の原点5とする。図4に示すように、この固体試料を積載する測定器の試料台12には、固体試料の直角5に交わる2側面3,4に密着可能な直角部を持つガイド26,27を取付けることにより、測定装置側で図6,7に示す平面座標29の管理を行う。変位測定の対象である固体試料の上面1には、図1に示すように、平面座標29の基準となる側面3,4の2面に平行または垂直に交差する2本以上の溝2(幅約3〜5mm、深さ約2〜3mm程度、溝面は高直進度(製作精度5μm以内))を任意の位置に精度良く加工する。   Cubic solid sample (approximate size is about 200mm × D about 200mm × H 20 mm), the side surfaces 3 and 4 intersecting at right angles of the individual sample are processed with high precision as shown in FIG. 1, and the corners are set as the origin 5 of the plane coordinates as shown in FIGS. As shown in FIG. 4, guides 26 and 27 having right-angle portions that can be in close contact with two side surfaces 3 and 4 intersecting the right angle 5 of the solid sample are attached to the sample stage 12 of the measuring instrument on which the solid sample is loaded. The plane coordinate 29 shown in FIGS. 6 and 7 is managed on the measuring device side. As shown in FIG. 1, two or more grooves 2 (widths) that intersect parallel or perpendicular to the two side surfaces 3 and 4 serving as the reference of the plane coordinate 29 are formed on the upper surface 1 of the solid sample to be measured for displacement. About 3 to 5 mm, depth of about 2 to 3 mm, and the groove surface is processed with high degree of straightness (manufacturing accuracy within 5 μm) to any position with high accuracy.

図4に示すように、この試料を用いて専用の三次元測定器の試料台12にガイド26,27と試料の基準となる側面を密着させてセットを行い、専用の冶具(ハンドル付押し板)でこの試料を固定する。図4,5に示すように、水平方向に対し2台の変位計先端21,22の幅25を約10〜30mmに調整し固定する。高さ方向を溝の製作深さ23(精度10μm以内)にオフセットした並列に並べた2台の接触式変位計11,19,20のうち、下側の変位計先端部を溝2の面の中心となるように平面座標29を奥行調整用ステージ15で調整する。この際、変位計の高さ方向は、測定範囲の中間位置に補助用高さ調整ステージ17で調整する。図6,7に示すように、この状態で溝2の面と試料上面1を同時に2点以上の測定30、または図4に示す測定走査用ステージ14による連続(直線)測定32を行い、この試料の溝面2と上面1の事象前における三次元データを取得する。また、走査方向が異なる垂直位置の溝及びその周囲の測定においては、図6、7に示すように、試料台に付けた回転ステージ13を1/4回転31することにより個体試料のセット位置変更の取外し作業を不要とする。   As shown in FIG. 4, using this sample, the guides 26 and 27 and the reference side of the sample are brought into close contact with the sample table 12 of the dedicated three-dimensional measuring instrument, and a dedicated jig (push plate with handle) is set. ) To fix the sample. As shown in FIGS. 4 and 5, the width 25 of the two displacement gauge tips 21 and 22 is adjusted to about 10 to 30 mm and fixed in the horizontal direction. Of the two contact-type displacement gauges 11, 19, and 20 that are arranged in parallel with the height direction offset to the groove manufacturing depth 23 (accuracy within 10 μm), the lower displacement gauge tip is positioned on the groove 2 surface. The plane coordinates 29 are adjusted by the depth adjustment stage 15 so as to be centered. At this time, the height direction of the displacement meter is adjusted by the auxiliary height adjustment stage 17 to an intermediate position in the measurement range. As shown in FIGS. 6 and 7, in this state, the surface 30 of the groove 2 and the upper surface 1 of the sample are simultaneously measured at two or more points 30 or the continuous (straight) measurement 32 by the measurement scanning stage 14 shown in FIG. Three-dimensional data before the event of the groove surface 2 and the upper surface 1 of the sample are acquired. Further, in the measurement of the groove at the vertical position where the scanning direction is different and the periphery thereof, as shown in FIGS. 6 and 7, the set position of the individual sample is changed by rotating the rotary stage 13 attached to the sample stage 1/4 turn 31. Removal work is not required.

次に固体試料に付けた交差状の溝2の面及び平面座標29の基準となる面3,4に対し、図2に示すように、後で取外しができる溝カバーやコーティングテープ、充填剤等の保護材6,7を取付け面の暴露を防止する。ここで保護材の材質、形状は当該事象の特性により選択を行う。   Next, as shown in FIG. 2, a groove cover, a coating tape, a filler, etc., which can be removed later, with respect to the surface of the intersecting groove 2 attached to the solid sample and the surfaces 3, 4 serving as the reference of the plane coordinate 29, are shown. The protective members 6 and 7 prevent the mounting surface from being exposed. Here, the material and shape of the protective material are selected according to the characteristics of the event.

事象完了後、保護材6,7を取外し、事象前に実施した測定方法及び測定装置で再度同一箇所の測定を行う。事象前後の同一箇所8,9のデータを演算(図8)し、変位量を求める。   After the event is completed, the protective materials 6 and 7 are removed, and the measurement at the same location is performed again with the measurement method and the measurement apparatus performed before the event. Calculate the amount of displacement by calculating the data at the same points 8 and 9 before and after the event (Fig. 8).

被測定対象の表面に直進度のある基準となる溝を施した立方体形状の固体試料を測定する場合、図12に示すように、最初に測定開始位置から測定完了位置まで連続走査測定を仮測定として行う。ここで得られた測定データを元に傾き係数及び走査時の動作特性を演算で算出する。   When measuring a cube-shaped solid sample with a reference groove having a straightness on the surface of the object to be measured, as shown in FIG. 12, first, continuous scanning measurement is temporarily performed from the measurement start position to the measurement completion position. Do as. Based on the measurement data obtained here, the inclination coefficient and the operation characteristics at the time of scanning are calculated.

この係数を試料台の下部に設置した高さ方向を調整するための図11に示される高さ補正用自動ステージ28の動作プログラムに距離と変位の係数を組み込むことにより常時接触式変位計と固体試料の溝面を同一間隔に保持し、測定範囲内に収める。   By incorporating the coefficient of distance and displacement into the operation program of the height correction automatic stage 28 shown in FIG. 11 for adjusting the height direction installed in the lower part of the sample stage, the constant contact displacement meter and the solid Keep the groove surface of the sample at the same interval and keep it within the measurement range.

図4に示すように、高分解能を有する接触式変位計と試料台を剛構造の同一筺体内に組み込み且つ、同一のフレーム18に設置することでこれらの相対位置を常時担保する。さらに、図13に示すように、外部からの振動37に対し、この構造で且つこのフレーム下部に除振装置36を用いることにより測定不良の要因となる振動を低減する。さらに走査方向に自動測定を行う場合、測定走査用ステージ14の動作による振動の影響を低減するために動作距離単位(1mm単位)で動作させ、振動が収まるまで3秒間停止後、測定データの取込みを行う制御プログラムを用いる。   As shown in FIG. 4, a contact displacement meter having a high resolution and a sample table are incorporated in the same rigid housing and are installed in the same frame 18 so that their relative positions are always secured. Further, as shown in FIG. 13, the vibration that causes measurement failure is reduced by using the vibration isolator 36 in this structure and in the lower part of the frame against the vibration 37 from the outside. Furthermore, when performing automatic measurement in the scanning direction, in order to reduce the influence of vibration due to the operation of the measurement scanning stage 14, it is operated in units of operating distance (in 1 mm increments), and after 3 seconds until the vibration has subsided, the measurement data is captured. A control program is used.

本発明においては、次の本発明に特有の顕著な効果を有する。   The present invention has the following remarkable effects peculiar to the present invention.

暴露による事象の変化を受けない測定基準部位を持つ被表面測定対象物と2つの表面形状を同時に測定する変位計を用いることにより、事象前後の表面形状を簡易で正確な測定を行うことができ且つ、同一箇所を比較することにより変位量を容易に測定可能である。   By using a surface measurement object that has a measurement reference site that is not affected by exposure and a displacement meter that measures two surface shapes at the same time, the surface shape before and after the event can be measured easily and accurately. In addition, the displacement can be easily measured by comparing the same locations.

完全な水平調整が行えない試料台且つ、接触式変位計本体と試料台が走査方向に対して平行調整が行えない場合、走査距離に対する変位量の係数を自動ステージの動作プログラムに組み入れることにより、接触式変位計の測定範囲の逸脱を防止できる。   If the sample table cannot be completely leveled and the contact displacement meter body and sample table cannot be adjusted in parallel with the scanning direction, the coefficient of displacement with respect to the scanning distance is incorporated into the operation program of the automatic stage. Deviation of the measurement range of the contact displacement meter can be prevented.

高分解能の接触式変位計を用いた測定で振動等の有害要素を低減でき、且つ精度の高い測定が行える。   By using a high-resolution contact displacement meter, harmful elements such as vibration can be reduced, and highly accurate measurement can be performed.

本発明は、物理的又は化学的に固体表面に均一、不均一を問わず変位を伴う事象において、被測定対象物である立方体形状の固体試料の表面形状変位量を三次元的に測定する方法において、1)上面からみて固体試料の直角に交わる側面と平行又は直角方向に形成された2本以上の交差した溝が形成された固体試料、2)装置フレームから吊下され、個体試料の溝面及び上面の変位を測定する間隔及び高さに調整可能な溝面用変位計及び上面用変位計、3)固体試料が固定される試料台、4)試料台を測定走査用ステージ及び奥行調整用ステージに沿って移動させ、且つ試料台の高さ方向の調整及び回転が可能な調整機構から構成される装置を使用して、その試料台を測定走査用ステージ及び奥行調整用ステージに沿って移動させ、又は試料台を回転させ、事象前又は事象後の固体試料の溝面及び上面を複数の溝面用変位計及び上面用変位計で測定し、その変位量に基づいて固体試料の表面形状を三次元的に測定する方法である。   The present invention is a method for three-dimensionally measuring the amount of displacement of a surface shape of a cubic solid sample, which is an object to be measured, in an event involving displacement, regardless of whether the surface of the solid is physically or chemically uniform. 1) a solid sample in which two or more intersecting grooves formed in a direction parallel to or perpendicular to a side surface of the solid sample that intersects at right angles when viewed from the top surface, and 2) a groove of an individual sample suspended from the apparatus frame. A groove surface displacement meter and a top surface displacement meter that can be adjusted to the distance and height for measuring the displacement of the surface and the upper surface, 3) a sample table on which the solid sample is fixed, 4) a measurement stage and depth adjustment for the sample table The sample stage is moved along the measurement scanning stage and the depth adjustment stage using an apparatus composed of an adjustment mechanism that can be moved along the stage and adjusted and rotated in the height direction of the sample stage. Move or sample stage , And measure the groove surface and upper surface of the solid sample before or after the event with a plurality of groove surface displacement meters and upper surface displacement meters, and the surface shape of the solid sample is measured three-dimensionally based on the displacement amount. It is a method of measuring.

又、この方法に使用される装置について図面により以下具体的に説明する。   The apparatus used in this method will be specifically described below with reference to the drawings.

図1は、事象前の立方体である個体試料の上面1に溝を施した状態を示す図である。図2は、事象前の溝面2及び側面3,4に溝面保護材6及び側面保護材7を施した状態を示す図である。図3は、個体試料が事象後に表面変位を受けた後の上面9及び基準となる溝面8と側面3,4の保護材6,7を取外した状態を示す図である。   FIG. 1 is a diagram showing a state in which a groove is formed on the upper surface 1 of an individual sample that is a cube before an event. FIG. 2 is a diagram showing a state in which the groove surface protective material 6 and the side surface protective material 7 are applied to the groove surface 2 and the side surfaces 3 and 4 before the event. FIG. 3 is a diagram showing a state in which the upper surface 9 and the reference groove surface 8 and the protective members 6 and 7 on the side surfaces 3 and 4 are removed after the solid sample is subjected to the surface displacement after the event.

図4は、固体試料の溝面と上面を同時に測定する2台の接触式変位計11を装置フレームに固定した三次元測定器を示す図であり、その変位計が補助用高さ調整ステージ17により上下動調整が可能であり、又試料台12が高さ補正用自動ステージ28により上下動調整が可能であるとともに回転ステージ13により回転が可能に設計されている。そこで、試料台は、測定走査用ステージ14及び奥行調整ステージ15に沿って移動できる構造になっている。   FIG. 4 is a diagram showing a three-dimensional measuring instrument in which two contact displacement meters 11 that simultaneously measure the groove surface and the upper surface of a solid sample are fixed to the apparatus frame. The displacement meter is an auxiliary height adjustment stage 17. Thus, it is possible to adjust the vertical movement, and the specimen stage 12 can be adjusted by the automatic stage 28 for height correction and can be rotated by the rotary stage 13. Therefore, the sample stage is structured to be movable along the measurement scanning stage 14 and the depth adjustment stage 15.

図5は、固体試料の溝面と上面の測定状態を示す図であり、溝面用変位計19及び上面用変位計20が水平間隔25離れて配置され、且つ上下方向に変位計をオフセット間隔24離し配置されており、それらの接触子21,22が溝面2(または8)及び上面1(または10)に接するように設定されている。   FIG. 5 is a diagram showing a measurement state of the groove surface and the upper surface of the solid sample, in which the groove surface displacement meter 19 and the upper surface displacement meter 20 are arranged at a horizontal interval of 25, and the displacement meter is offset in the vertical direction. The contactors 21 and 22 are set so as to be in contact with the groove surface 2 (or 8) and the upper surface 1 (or 10).

図6は、平面座標基準指定によるポイント測定した場合を示す図である。固体試料が、試料台12に設けられた試料側面ガイド26及び27に沿い、且つ固体試料の平面座標基準5を両ガイドの交点に合わせて配置されることにより、個体試料に関する平面座標29が示される。試料台を試料走査用ステージに沿って左右に移動させ、溝面用変位計接触子を用いて試料溝面及び表面上のポイント測定30を2箇所行う。又、180°回転させ、溝面を中心にした未測定部分の試料上面のポイント測定30又はライン走査測定32を行う。更に又、試料台を回転ステージにて90度回転させ、試料台を奥行調整ステージに沿って移動させ、溝面用変位計接触子及び上面用変位計接触子を用いて試料溝面及び上面のポイント測定行い、この部分に対してもライン走査測定を行う。   FIG. 6 is a diagram showing a case where points are measured by designating a plane coordinate reference. By arranging the solid sample along the sample side guides 26 and 27 provided on the sample stage 12 and aligning the plane coordinate reference 5 of the solid sample with the intersection of both guides, the plane coordinate 29 for the individual sample is shown. It is. The sample stage is moved left and right along the sample scanning stage, and two point measurements 30 on the sample groove surface and the surface are performed using the groove surface displacement gauge contact. Further, the point measurement 30 or the line scanning measurement 32 is performed on the upper surface of the sample at an unmeasured portion around the groove surface by rotating 180 °. Further, the sample stage is rotated 90 degrees on the rotary stage, the sample stage is moved along the depth adjustment stage, and the sample groove surface and the upper surface are moved using the groove surface displacement meter contact and the upper surface displacement meter contact. Point measurement is performed, and line scanning measurement is also performed on this part.

図7は、自動ステージによる連続測定した場合を示す図である。本測定は図6に示す方法よりも簡易測定向きであるが、測定の誤差も大きくなる。そのため連続測定は、通常測定範囲の逸脱を防止するための事前測定であり、直接測定には関与しないことを前提とする。固体試料が平面座標基準5に基づいて試料台の平面座標29上に固定された後、試料台を試料走査用ステージに沿って連続的に移動させ、溝面用及び上面用変位計接触子を用いて固体試料の溝面及び上面のライン走査測定32を行う。又試料台を回転ステージにて90度回転させ、試料台を奥行調整ステージに沿って連続的に移動させ、溝面用変位計接触子及び上面用変位計接触子を用いて試料溝面及び上面のライン走査測定を行う。   FIG. 7 is a diagram illustrating a case where continuous measurement is performed using an automatic stage. This measurement is more suitable for simple measurement than the method shown in FIG. 6, but the measurement error also becomes larger. Therefore, the continuous measurement is a pre-measurement for preventing a deviation from the normal measurement range, and it is assumed that the measurement is not directly related to the measurement. After the solid sample is fixed on the plane coordinate 29 of the sample table based on the plane coordinate reference 5, the sample table is continuously moved along the sample scanning stage, and the displacement gauge contacts for the groove surface and the upper surface are moved. The line scanning measurement 32 of the groove surface and the upper surface of the solid sample is performed. Also, the sample stage is rotated 90 degrees on the rotary stage, the sample stage is continuously moved along the depth adjustment stage, and the sample groove surface and upper surface are moved using the groove surface displacement meter contact and the upper surface displacement meter contact. The line scan measurement is performed.

図8は、事象前後の変位量を演算するためのフロー図であり、そのフローに沿って下記の確認、測定及び算出を行う。   FIG. 8 is a flowchart for calculating the amount of displacement before and after the event, and the following confirmation, measurement, and calculation are performed along the flow.

1) 測定前確認として、溝面用変位計と上面用変位計との間の変位計水平間隔、及び溝面用変位計と上面用変位計との変位計オフセット間隔の測定からなる、センサ幅方向及びセンサ高さ方向の間隔測定を行う。   1) As a pre-measurement check, the sensor width consists of measuring the displacement gauge horizontal distance between the groove surface displacement meter and the upper surface displacement meter, and the displacement meter offset distance between the groove surface displacement meter and the upper surface displacement meter. Measure the distance in the direction and sensor height.

2) 事象前測定として、1)で間隔測定が行われた溝面用変位計及び上面用変位計を使用して、固体試料の溝面について、平面座標29に基づいて、溝面の座標点(X1,Y1)等及びその点の粗さデータZ1を測定する。又、固体試料の上面(表面)に関しても上面用変位計を使用して平面座標29に基づいて上面の特定座標点について測定を行う。   2) As the pre-event measurement, using the groove surface displacement meter and the upper surface displacement meter in which the interval measurement was performed in 1), the groove surface coordinate point of the solid sample groove surface based on the plane coordinate 29 (X1, Y1) etc. and the roughness data Z1 at that point are measured. In addition, the upper surface (surface) of the solid sample is also measured at a specific coordinate point on the upper surface based on the plane coordinates 29 using the upper surface displacement meter.

3) 事象後測定として、上記2)の測定点について、両変位計を使用して同一位置(X1,Y1)の測定を行う。   3) As a post-event measurement, measure the same position (X1, Y1) using the two displacement meters at the measurement point in 2) above.

4) 測定後のセンサ初期状態のずれの確認として、溝面用変位計と上面用変位計との間の変位計水平間隔、及び溝面用変位計と上面用変位計との変位計オフセット間隔の測定からなる、センサ幅方向及びセンサ高さ方向の間隔測定を行う。   4) As confirmation of the deviation of the initial state of the sensor after measurement, the horizontal distance between the displacement gauges between the groove surface displacement meter and the upper surface displacement meter, and the displacement meter offset distance between the groove surface displacement meter and the upper surface displacement meter. The distance measurement in the sensor width direction and the sensor height direction is performed.

5) 事象前後の測定値に基づいて変位量の算出を行うことにより測定点ごとの変位量を算出する。   5) Calculate the displacement for each measurement point by calculating the displacement based on the measured values before and after the event.

図9は、変位計接触子21または22と被測定対象物の理想的なセッティング状態を示す図であり、2箇所の平行時の間隔34が一定であり、変位計接触子21の先端が事象前後の溝面2,8における測定範囲33内にある測定であることを示している。   FIG. 9 is a diagram showing an ideal setting state of the displacement meter contact 21 or 22 and the measurement object. The distance 34 between the two parallel portions is constant, and the tip of the displacement meter contact 21 is the event. It shows that the measurement is within the measurement range 33 on the front and rear groove surfaces 2 and 8.

図10は、変位計接触子と被測定対象物の現実的なセッティング状態を示しており、平行時間隔34に対してずれによる間隔35が生ずるが、接触子を補助用高さ調整用ステージ17の上下動により接触子先端を測定範囲内にある測定に調整できることを示している。   FIG. 10 shows a realistic setting state of the displacement meter contact and the object to be measured, and an interval 35 due to a shift occurs with respect to the parallel time interval 34, but the contact is placed on the auxiliary height adjustment stage 17. It is shown that the contact tip can be adjusted to the measurement within the measurement range by the vertical movement of.

図11は、接触子及び事象前後の溝面を高さ方向を自動調整する場合を示す図であり、平行時の間隔34を維持するために、接触子を上下動させるだけでなく、高さ補正用自動宇ステージ28も上下動させて高さ方向を自動調節することにより、測定範囲内の測定に調整できることを示している。   FIG. 11 is a diagram showing a case where the height direction of the contactor and the groove surface before and after the event is automatically adjusted. In order to maintain the parallel spacing 34, not only the contactor is moved up and down, but also the height is adjusted. This also shows that the correction automatic stage 28 can be adjusted to the measurement within the measurement range by moving the correction automatic stage 28 up and down and automatically adjusting the height direction.

図12は、走査方向のずれによる高さ方向補正用係数を演算するフロー図である。ステージ用制御及び計測ソフトを使用して、測定の基準となる溝面に対して(上面は成り行き)測定開始位置から測定完了位置まで連続走査測定を行い、測定機器の特性データを取得する。測定結果は表計算ソフトに出力する。そのソフトにより、傾きによる単純補正係数及び走査時機械特性によるゆがみ等の解析/演算を行う。この解析/演算結果に基づいて、ステージ用制御ソフトの測定走査用ステージ制御プログラムを修正する。この修正されたステージ用制御及び計測ソフトを使用して実測測定を開始する。   FIG. 12 is a flowchart for calculating the height direction correction coefficient due to the deviation in the scanning direction. Using the stage control and measurement software, continuous scanning measurement is performed from the measurement start position to the measurement completion position on the groove surface serving as a measurement reference (the upper surface is in progress), and the characteristic data of the measuring instrument is acquired. The measurement results are output to spreadsheet software. The software analyzes / calculates a simple correction coefficient due to tilt and distortion due to mechanical characteristics during scanning. Based on the analysis / calculation result, the stage control program for measurement scanning of the stage control software is corrected. Actual measurement is started using the modified stage control and measurement software.

図13に示すように、溝面用接触子21及び上面用接触子22を備えた接触式変位計11が、上下動可能な補助用高さ調整ステージ17を介して装置フレーム18に固定されている。試料台12が高さ補正用自動ステージ28上に設けられ、上下動の調整が可能であるとともに、このステージが測定用走査ステージ14及び奥行調整ステージ15により左右方向及び奥行方向に移動でき構造になっている。又、上記ステージ28が回転ステージ31により水平回転できるので、接触式変位計の接触子を縦方向の試料の溝及び上面の測定にも使用できる構造になっている。   As shown in FIG. 13, a contact displacement meter 11 having a groove surface contact 21 and an upper surface contact 22 is fixed to an apparatus frame 18 via an auxiliary height adjustment stage 17 that can move up and down. Yes. The sample stage 12 is provided on an automatic stage 28 for height correction, and can be adjusted up and down, and the stage can be moved in the left-right direction and the depth direction by the measurement scanning stage 14 and the depth adjustment stage 15. It has become. Further, since the stage 28 can be horizontally rotated by the rotary stage 31, the contact of the contact displacement meter can be used for measuring the groove and the upper surface of the sample in the vertical direction.

図14は、振動を低減するための制御用プログラムを示す図である。測定開始から初期の測定箇所へ走査ステージを1mm動作させ、その後3秒程度振動の減衰、除振を行うために停止する。その後その位置で測定を開始し、測定時間内にデータの取得を任意数で行う。その後次の座標へ1mm移動し、同様の動作を行う。   FIG. 14 is a diagram illustrating a control program for reducing vibration. Move the scanning stage 1mm from the start of measurement to the initial measurement location, and then stop for about 3 seconds to attenuate and dampen the vibration. Thereafter, measurement is started at that position, and an arbitrary number of data is acquired within the measurement time. Then move 1mm to the next coordinate and do the same.

本発明にて測定を実施した結果を下記の図15に示す。本図は溝面と表面を同時に測定したものであり、事象実施前と事象実施後の変位について示すものである。   FIG. 15 below shows the results of measurement performed according to the present invention. This figure shows the measurement of the groove surface and the surface at the same time, and shows the displacement before and after the event.

横軸に走査距離を縦軸に変位量を示し、あらかじめ溝面と上面の高さ方向の変位計オフセット間隔値は除外しており、且つ、測定時の傾斜及び装置特性は考慮済みとしており溝面に対する表面の変位を目視化したものである。   The horizontal axis indicates the scanning distance, and the vertical axis indicates the amount of displacement, the displacement gauge offset interval value in the height direction between the groove surface and the upper surface is excluded in advance, and the inclination and device characteristics at the time of measurement have been taken into account. The displacement of the surface relative to the surface is visualized.

このデータによると、固体試料の事象前上面形状は、測定方向に50mmまで下降気味であり、50〜65及び75〜85mmの範囲がこのラインと直角に交わる溝(2箇所)であり、65〜75及び85〜110mmの範囲において固体試料の上面形状が示されている。   According to this data, the pre-event top surface shape of the solid sample appears to descend to 50 mm in the measurement direction, and the ranges of 50 to 65 and 75 to 85 mm are grooves (two places) perpendicular to this line. The top shape of the solid sample is shown in the range of 75 and 85-110 mm.

事象後上面形状は、事象前上面形状に比べ5〜7μmほど全体的に上面が損耗状態であることが示されている。   It is shown that the upper surface shape after the event is generally worn out by about 5 to 7 μm compared to the upper surface shape before the event.

事象後溝面形状は、ほぼ同等なラインをしめしており、事象前後でほとんど変位がないことを示している。若干の変位量は接触式変位計の分解能によるものと推定されるため、誤差の範囲内であり、高分解能の変位計を採用することで限りなく同一となることが予想される。   The post-event groove surface shape shows almost the same line, indicating that there is almost no displacement before and after the event. Since the slight displacement is estimated to be due to the resolution of the contact displacement meter, it is within the error range, and it is expected that the displacement will be the same by adopting a high resolution displacement meter.

今回、事象前のデータと事象後のデータで事象後のラインに凹凸が多く発生している要因は測定間隔のピッチが異なることに起因しており、事象前は5mm、事象後は1mmで測定しているために発生したものである。(本来であれば事象前を1mmとすべきであったが、この1mmデータがなかったため5mm間隔で測定したものを1mmデータとして補正して示した。)   This time, the reason why there are many irregularities in the line after the event in the data before the event and the data after the event is due to the difference in the pitch of the measurement interval, measured at 5 mm before the event and 1 mm after the event This is because it is. (Originally, it should have been 1 mm before the event, but since this 1 mm data was not available, data measured at 5 mm intervals were corrected and shown as 1 mm data.)

本発明は、化学薬品等の化学変化による試験片の表面変位量測定やブラスト等の物理変化による試験片の表面変位量測定に使用することが可能である。   The present invention can be used for measuring the surface displacement of a test piece due to chemical changes such as chemicals, and for measuring the surface displacement of a test piece due to physical changes such as blasting.

立方体である固体試料の2側面及び上面に溝を施した立体図である。FIG. 3 is a three-dimensional view in which grooves are formed on two side surfaces and an upper surface of a solid sample that is a cube. 溝面及び側面に保護材を施した状態の概念図である。It is a conceptual diagram of the state which gave the protective material to the groove surface and the side surface. 固体試料が事象後に表面変位を受けたあとの概念図である。It is a conceptual diagram after a solid sample receives the surface displacement after an event. 試料の溝面と上面を同時に測定する2台の接触式変位計を備える三次元測定器の概念図である。FIG. 3 is a conceptual diagram of a three-dimensional measuring instrument including two contact displacement meters that simultaneously measure a groove surface and an upper surface of a sample. 試料の溝面と上面の測定状態を示す側面図である。It is a side view which shows the measurement state of the groove surface and upper surface of a sample. 座標指定によるポイント測定した場合の概念図である。It is a conceptual diagram at the time of measuring a point by coordinate designation. 自動ステージによる連続測定をした場合の概念図である。It is a conceptual diagram at the time of performing the continuous measurement by an automatic stage. 事象前後の変位量を演算するためのフロー図である。It is a flowchart for calculating the amount of displacement before and after an event. 接触式変位計と被測定対象物の理想なセッティング状態図である。It is an ideal setting state figure of a contact type displacement meter and a measurement object. 接触式変位計と被測定対象物の現実的なセッティング状態図である。It is a realistic setting state figure of a contact type displacement meter and a measurement object. 高さ方向を自動調整する際の概念図である。It is a conceptual diagram at the time of automatically adjusting the height direction. 走査方向のずれによる高さ方向補正用係数を演算するためのフロー図であ る。FIG. 6 is a flowchart for calculating a height direction correction coefficient due to a deviation in a scanning direction. 振動低減用のシステム配置図である。It is a system layout diagram for vibration reduction. 振動を低減するための制御用のプログラムの概念図である。It is a conceptual diagram of the program for control for reducing a vibration. 事象前後の上面形状及び溝面形状を示す図である。It is a figure which shows the upper surface shape and groove surface shape before and behind an event.

符号の説明Explanation of symbols

1 事象前試料上面 29 平面座標
2 事象前試料溝面 30 ポイント測定(例)
3 事象前試料側面A 31 回転ステージ(90°,180°回転用)
4 事象前試料側面B 32 ライン走査測定
5 平面座標基準 33 測定範囲(±A)
6 溝面保護材 34 平行時間隔(X)
7 側面保護材 35 ずれによる間隔
8 事象後溝面 36 除振装置
9 事象後上面 37 外部振動
10 事象前上面
11 接触式変位計:2台
12 試料台
13 回転ステージ
14 測定走査用ステージ
15 奥行調整ステージ
16 走査方向
17 補助用高さ調整ステージ
18 装置フレーム
19 溝面用変位計
20 上面用変位計
21 溝面用変位計接触子
22 上面用変位計接触子
23 溝部高さ
24 変位計オフセット間隔
25 変位計水平間隔
26 試料側面A用ガイド
27 試料側面B用ガイド
28 高さ補正用自動ステージ
















1 Pre-event sample top 29 Plane coordinates
2 Pre-event sample groove surface 30 point measurement (example)
3 Pre-event sample side A 31 Rotating stage (for 90 ° and 180 ° rotation)
4 Pre-event sample side B 32 line scan measurement
5 Planar coordinate reference 33 Measurement range (± A)
6 Groove surface protective material 34 Parallel time interval (X)
7 Side face protection 35 Spacing gap
8 Post-event groove surface 36 Vibration isolator
9 Upper surface after event 37 External vibration
10 Top surface before event
11 Contact displacement meter: 2 units
12 Sample stage
13 Rotating stage
14 Measurement scanning stage
15 Depth adjustment stage
16 Scan direction
17 Auxiliary height adjustment stage
18 Equipment frame
19 Groove displacement meter
20 Displacement meter for upper surface
21 Displacement contact for groove surface
22 Displacement contact for upper surface
23 Groove height
24 Displacement meter offset interval
25 Displacement gauge horizontal interval
26 Guide for specimen side A
27 Guide for specimen side B
28 Automatic stage for height correction
















Claims (4)

物理的または化学的に固体表面に均一、不均一を問わず変位を伴う事象において、被測定対象物である立方体形状の固体試料に対し、変位測定の対象を固体試料の上面とする場合、固体試料の上面からみて直角に交わる側面に対しその側面に平行または垂直である2本以上の交差した溝を上面に精度良く加工し、その溝面を基準として個体試料表面上における平面座標において事象前後の試料上面の形状(変位量)を測定し、その際、固体試料に加工した2本以上の交差した溝の面及び表面座標の基準となる側面に対し、事象後、取外し可能である材質及び形状による溝カバーやコーティングテープ及び充填剤等の保護材を取付け、事象による溝面と表面座標の基準となる側面の変位を防止し、固体試料に付けた2本以上の交差した溝の面と上面とを同時に変位測定でき、かつ固体試料の上面において溝からの平行距離を任意の位置で測定できるよう間隔調整機構付きの並列に並べられ、且つ溝深さ方向に高さをオフセットした2台の接触式変位計を用いて測定が行われ、更に試料台に付けた回転ステージによる1/2及び1/4回転動作機能により試料の反転動作及び試料に加工した交差した溝位置による個体試料のセット位置変更を簡易としたことを特徴とする三次元測定により個体試料の表面形状変位量を測定する方法。   When the object of displacement measurement is the top surface of a solid sample for a cube-shaped solid sample that is subject to measurement in an event involving displacement, whether physically or chemically, uniform or non-uniform on the solid surface Two or more intersecting grooves that are parallel or perpendicular to the side surface that intersects at right angles when viewed from the top surface of the sample are accurately machined on the top surface, and before and after the event in the plane coordinates on the surface of the individual sample with reference to the groove surface Measure the shape (displacement) of the top surface of the sample, and the material that can be removed after the event on the surface of the two or more intersecting grooves processed into a solid sample and the side surface serving as the reference for the surface coordinates, and Attach protective materials such as groove cover, coating tape, and filler according to the shape to prevent displacement of the groove surface due to the event and the side surface that is the basis of the surface coordinates, and two or more intersecting groove surfaces attached to the solid sample Top and Two contact types that can measure displacement simultaneously and are arranged in parallel with an interval adjustment mechanism so that the parallel distance from the groove can be measured at any position on the upper surface of the solid sample, and the height is offset in the groove depth direction. Measurement is performed using a displacement meter, and the sample is inverted by the 1/2 and 1/4 rotation functions by the rotating stage attached to the sample table, and the set position of the individual sample is changed by the position of the intersecting grooves processed into the sample. A method of measuring the amount of surface shape displacement of an individual sample by three-dimensional measurement, characterized by being simplified. 接触式変位計本体と被測定対象物の表面に付けた基準となる溝面の高さが走査方向に対し、初期値がXであり、接触式変位計の測定範囲が±Aである場合、被測定対象物の測定走査距離が長くなるにつれ、Xの高さがX−A未満またはX+Aを超える可能性がある測定において、接触式変位計の測定範囲を逸脱しないよう接触式変位計本体と溝面の距離を演算により係数を導き、この係数により常時接触式変位計本体と溝面の距離を同一間隔(平行)に補正する機構を備えたことを特徴とする請求項1に記載の方法。   When the height of the reference groove surface attached to the surface of the contact displacement meter main body and the object to be measured is X with respect to the scanning direction, and the measurement range of the contact displacement meter is ± A, As the measurement scanning distance of the object to be measured becomes longer, the contact displacement meter body and the contact displacement meter main body should not be deviated from the measurement range of the contact displacement meter in the measurement in which the height of X may be less than X-A or exceed X + A. 2. The method according to claim 1, further comprising a mechanism for deriving a coefficient by calculating the distance of the groove surface, and correcting the distance between the contact-type displacement meter main body and the groove surface to the same interval (parallel) by this coefficient. . 立方体の辺に該当する部分に高剛性の鋼材を用い六面体の測定装置フレームを構成し、そのフレームの適所にサポート材を取付け、各フレームの接合部を溶接した剛構造の筺体において、フレーム下部に設置した三次元方向に駆動可能な装置、その装置の上部に積載した試料台、及びフレーム上部に固定した接触式変位計本体により、測定時の相対間隔を一定に保持し、フレーム下部に設置した三次元方向に駆動可能な装置で、走査動作による連続動作測定で発生する測定走査用ステージの動作振動を制御プログラムと筺体下部に組み込んだ除振装置により低減させることを特徴とする請求項1又は請求項2に記載の方法。   A hexagonal measuring device frame is constructed using high-rigidity steel material in the part corresponding to the side of the cube, a support material is attached to the appropriate position of the frame, and the joint of each frame is welded. Installed in the lower part of the frame, keeping the relative distance at the time of measurement constant by the installed three-dimensional driving device, the sample stage mounted on the upper part of the device, and the contact displacement meter body fixed on the upper part of the frame The apparatus capable of driving in a three-dimensional direction, wherein the operation vibration of the measurement scanning stage generated by the continuous movement measurement by the scanning operation is reduced by the control program and the vibration isolator incorporated in the lower part of the housing. The method of claim 2. 装置頂部のフレームに補助用高さ調整ステージを懸下して設け、このステージ下に固体試料の溝面用変位計及び上面用変位計を設け、固体試料用試料台を高さ補正用自動ステージ上に設け、この自動ステージを装置底部に設けられた測定走査用ステージ及び奥行調整用ステージに沿って移動可能に設け、更に試料台を回転させることができる回転ステージを設け、物理的または化学的に固体表面に均一、不均一を問わず変位を伴う事象において、被測定対象物である立方体形状の固体試料に対し、変位測定の対象を固体試料の上面とし、固体試料の上面からみて直角に交わる側面に対しその側面に平行または垂直である2本以上の交差した溝を上面に精度良く加工し、その溝面を基準として個体試料表面上における平面座標において事象前後の試料上面の形状(変位量)を測定し、固体試料に加工した2本以上の交差した溝の面と上面とを同時に変位測定でき、かつ固体試料の上面において溝からの平行距離を任意の位置で測定できるよう間隔調整機構付きの並列に並べられ、且つ溝深さ方向に高さをオフセットした2台の接触式変位計を用いて測定が行われ、更に試料台に付けた回転ステージによる1/2及び1/4回転動作機能により試料の反転及び試料に加工した交差した溝位置による個体試料のセット位置変更を簡易としたことを特徴とする三次元測定により個体試料の表面形状変位量を測定する装置。   An auxiliary height adjustment stage is suspended from the frame at the top of the device, and a solid sample groove surface displacement meter and an upper surface displacement meter are provided under this stage, and the solid sample sample stage is an automatic stage for height correction. This automatic stage is provided so as to be movable along the measurement scanning stage and the depth adjustment stage provided at the bottom of the apparatus, and further provided with a rotating stage that can rotate the sample stage. In an event involving displacement regardless of whether the surface of the solid is uniform or non-uniform, the object to be measured is the top surface of the solid sample and is perpendicular to the top surface of the solid sample. Two or more intersecting grooves that are parallel or perpendicular to the intersecting side surface are processed with high accuracy on the upper surface, and the plane coordinates on the specimen surface before and after the event are processed with reference to the groove surface. The shape (displacement) of the top surface of the sample can be measured, the displacement of two or more intersecting grooves processed into a solid sample can be measured simultaneously, and the parallel distance from the groove on the top surface of the solid sample can be measured at any position. Measurements are made using two contact displacement meters that are arranged in parallel with a distance adjustment mechanism and offset in the groove depth direction so that they can be measured with a rotating stage attached to the sample stage. The surface shape displacement amount of the individual sample can be obtained by three-dimensional measurement, which is characterized by simplifying the inversion of the sample and changing the set position of the individual sample by the intersecting groove position processed into the sample by the / 2 and 1/4 rotation function Device to measure.
JP2005373747A 2005-12-27 2005-12-27 Surface shape displacement measuring device and measuring method Expired - Fee Related JP5051567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005373747A JP5051567B2 (en) 2005-12-27 2005-12-27 Surface shape displacement measuring device and measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005373747A JP5051567B2 (en) 2005-12-27 2005-12-27 Surface shape displacement measuring device and measuring method

Publications (2)

Publication Number Publication Date
JP2007178137A true JP2007178137A (en) 2007-07-12
JP5051567B2 JP5051567B2 (en) 2012-10-17

Family

ID=38303493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005373747A Expired - Fee Related JP5051567B2 (en) 2005-12-27 2005-12-27 Surface shape displacement measuring device and measuring method

Country Status (1)

Country Link
JP (1) JP5051567B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009029912A1 (en) * 2007-08-30 2009-03-05 Microstrain, Inc. Optical linear and rotation displacement sensor
KR20140132407A (en) * 2012-05-29 2014-11-17 제이에프이 스틸 가부시키가이샤 Method for measuring surface shape and device for measuring surface shape

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0663957A (en) * 1992-08-25 1994-03-08 Sekisui Chem Co Ltd Measuring method for position of mold
JPH08136224A (en) * 1994-11-09 1996-05-31 Tokai Rika Co Ltd Dimension measuring instrument
JPH10318716A (en) * 1997-05-20 1998-12-04 Yaskawa Electric Corp Method and apparatus for position detection of object

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0663957A (en) * 1992-08-25 1994-03-08 Sekisui Chem Co Ltd Measuring method for position of mold
JPH08136224A (en) * 1994-11-09 1996-05-31 Tokai Rika Co Ltd Dimension measuring instrument
JPH10318716A (en) * 1997-05-20 1998-12-04 Yaskawa Electric Corp Method and apparatus for position detection of object

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009029912A1 (en) * 2007-08-30 2009-03-05 Microstrain, Inc. Optical linear and rotation displacement sensor
US7952721B2 (en) 2007-08-30 2011-05-31 Microstrain, Inc. Optical linear and rotation displacement sensor
KR20140132407A (en) * 2012-05-29 2014-11-17 제이에프이 스틸 가부시키가이샤 Method for measuring surface shape and device for measuring surface shape
KR101659675B1 (en) 2012-05-29 2016-09-26 제이에프이 스틸 가부시키가이샤 Method for measuring surface shape and device for measuring surface shape

Also Published As

Publication number Publication date
JP5051567B2 (en) 2012-10-17

Similar Documents

Publication Publication Date Title
JP2809948B2 (en) Matching device for computer numerical control machine
US10145682B2 (en) Reduction of errors of a rotating device used during the determination of coordinates of a workpiece or during the machining of a workpiece
US4663852A (en) Active error compensation in a coordinated measuring machine
JP2006281439A (en) Method and device for measuring and adjusting electrode for taper machining on electrical discharge working machine
JP2006243983A (en) Calibration method for parallel mechanism, verification method for calibration, verification program for calibration, data sampling method and correction data sampling method in space position correction
CN110220483A (en) Three axial plane degree detection systems of one kind and its detection method
JP4705792B2 (en) Inter-axis angle correction method
US7869970B2 (en) Probe straightness measuring method
JP6419380B1 (en) Inspection master
JP5051567B2 (en) Surface shape displacement measuring device and measuring method
JP4931867B2 (en) Variable terminal
JP7296334B2 (en) Straightness measurement system, displacement sensor calibration method, and straightness measurement method
JP5642213B2 (en) Machine tool level adjustment method and apparatus
JP2008096114A (en) Measuring apparatus
JP2933187B2 (en) Three-dimensional measuring devices
KR102040979B1 (en) Automation apparatus for calibraion of 3d measuring apparatus
JP2010185804A (en) Shape measuring apparatus, shape measuring method, and program
KR102418946B1 (en) Apparatus for measuring flatness of plate workpiece
TWI777205B (en) Calibration method of shape measuring device, reference device and detector
JP2006506619A (en) Method and system for screw tolerance inspection
JP3189557B2 (en) Three-dimensional shape measurement method and device
CN109062138A (en) A kind of five shaft platform system calibrating schemes based on stereo calibration block
JP2020027087A (en) Calibration gauge and calibration method
JP2009226440A (en) Press machine inspection device
KR101851471B1 (en) Apparatus to align rotation surface and Method to align rotation surface thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110829

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120713

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees