JP2007176978A - Liquid epoxy resin composition for flip-chip semiconductor device and flip-chip semiconductor device using the same - Google Patents

Liquid epoxy resin composition for flip-chip semiconductor device and flip-chip semiconductor device using the same Download PDF

Info

Publication number
JP2007176978A
JP2007176978A JP2005373919A JP2005373919A JP2007176978A JP 2007176978 A JP2007176978 A JP 2007176978A JP 2005373919 A JP2005373919 A JP 2005373919A JP 2005373919 A JP2005373919 A JP 2005373919A JP 2007176978 A JP2007176978 A JP 2007176978A
Authority
JP
Japan
Prior art keywords
epoxy resin
liquid epoxy
group
semiconductor device
flip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005373919A
Other languages
Japanese (ja)
Inventor
Hiroyuki Takenaka
博之 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2005373919A priority Critical patent/JP2007176978A/en
Publication of JP2007176978A publication Critical patent/JP2007176978A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83909Post-treatment of the layer connector or bonding area
    • H01L2224/83951Forming additional members, e.g. for reinforcing, fillet sealant

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid epoxy resin composition which has low viscosity and can give a cured product being very good in workability and adhesion to the surface of a silicon chip and high humidity resistance, and can serve as an excellent sealant against high-temperature thermal shock and to provide a flip-chip semiconductor device sealed with a cured product of the composition. <P>SOLUTION: The composition comprises a liquid epoxy resin, an aromatic amine-based curing agent, a silicone-modified epoxy resin of formula (1), and 50 to 400 pts.mass, per 100 pts.mass total of the above components, inorganic filler having an average particle diameter of about 1/10 or smaller and a maximum particle diameter of 1/2 or smaller in respect to the flip-chip gap width of a semiconductor device. In formula (1), R<SP>1</SP>is a hydrogen atom or a 1 to 4C alkyl group; R is an aliphatic-unsaturation-free unsubstituted or substituted monovalent hydrocarbon group; X is a bivalent organic group; k and m are positive numbers satisfying 0≤k≤100, 0<m≤100, and 0<k+m≤200; and n is an integer of 0 to 400. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、フリップチップ型半導体装置の封止用として使用されて、粘度が低く、作業性及びシリコンチップの素子表面(特に感光性ポリイミド、窒化膜、酸化膜)との密着性が非常に良好であり、耐湿性の高い硬化物を与え、特にリフロー温度260℃以上の高温熱衝撃に対して優れた封止材となり得るフリップチップ型半導体装置用液状エポキシ樹脂組成物、及びこの組成物の硬化物にて封止されたフリップチップ型半導体装置に関する。   The present invention is used for sealing a flip chip type semiconductor device, has a low viscosity, and has very good workability and adhesion to the surface of a silicon chip element (especially photosensitive polyimide, nitride film, oxide film). And a liquid epoxy resin composition for flip chip type semiconductor devices which can give a cured product with high moisture resistance and can be an excellent sealing material against a high-temperature thermal shock having a reflow temperature of 260 ° C. or more, and curing of this composition The present invention relates to a flip chip type semiconductor device sealed with an object.

電気機器の小型化、軽量化、高機能化に伴い、実装方法もピン挿入タイプから表面実装が主流になっている。また、半導体素子の高集積化に伴い、ダイサイズの一辺が10mmを超えるものもあり、ダイサイズの大型化が進んできている。このような大型ダイを用いた半導体装置では、半田リフロー時にダイと封止材にかかる応力が増大し、封止材とダイ及び基板の界面で剥離が生じたり、基板実装時にパッケージにクラックが入るといった問題がクローズアップされてきている。   As electrical devices become smaller, lighter, and more functional, mounting methods from pin insertion type to surface mounting have become mainstream. In addition, along with the high integration of semiconductor elements, there are cases in which one side of the die size exceeds 10 mm, and the die size is increasing. In a semiconductor device using such a large die, the stress applied to the die and the sealing material increases during solder reflow, and peeling occurs at the interface between the sealing material and the die and the substrate, or the package cracks when mounted on the substrate. These issues have been highlighted.

更に、近い将来に鉛含有半田が使用できなくなることから、鉛代替半田が多数開発されている。この種の半田は、溶融温度が鉛含有の半田より高くなることから、リフローの温度も260〜270℃で検討されており、従来の液状エポキシ樹脂組成物の封止材では、より一層の不良が予想される。このようにリフローの温度が高くなると、従来においては何ら問題のなかったフリップチップ型のパッケージもリフロー時にクラックが発生したり、チップ界面、基板界面との剥離が発生したり、その後の冷熱サイクルが数百回以上経過すると樹脂又は基板、チップ、バンプ部にクラックが発生するという重大な問題が起こるようになった。   Furthermore, since lead-containing solder cannot be used in the near future, a number of lead substitute solders have been developed. Since this type of solder has a melting temperature higher than that of lead-containing solder, the reflow temperature is also examined at 260 to 270 ° C., and the conventional liquid epoxy resin composition sealing material is even more defective. Is expected. Thus, when the reflow temperature becomes high, the flip chip type package, which has not had any problems in the prior art, also generates cracks during reflow, separation from the chip interface and the substrate interface, and subsequent cooling cycles. When several hundred times or more have passed, a serious problem that a crack occurs in a resin, a substrate, a chip, or a bump portion has come to occur.

なお、本発明に関連する公知文献としては、下記のものがある。
特開昭56−129246号公報 特開平2−170819号公報 特開平4−41520号公報 特開平2−151621号公報 特開2005−146104号公報
In addition, as a well-known document relevant to this invention, there exist the following.
JP-A-56-129246 Japanese Patent Laid-Open No. 2-170819 JP-A-4-41520 Japanese Patent Laid-Open No. 2-151621 JP-A-2005-146104

本発明は、上記事情に鑑みなされたもので、シリコンチップの表面、特に感光性ポリイミド樹脂や窒化膜との密着性に優れ、かつ強靭性に優れた硬化物を与え、リフローの温度が従来温度240℃付近から260〜270℃に上昇しても不良が発生せず、更にPCT(121℃/2.1atm)などの高温多湿の条件下でも劣化せず、−65℃/150℃の温度サイクルにおいて数百サイクルを超えても剥離、クラックが発生しない半導体装置の封止材となり得るフリップチップ型半導体装置用液状エポキシ樹脂組成物、及びこの組成物の硬化物で封止されたフリップチップ型半導体装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides a cured product having excellent adhesion to the surface of a silicon chip, particularly a photosensitive polyimide resin or a nitride film, and excellent toughness, and the reflow temperature is the conventional temperature. Even if the temperature rises from around 240 ° C to 260-270 ° C, no defects occur, and it does not deteriorate even under high temperature and high humidity conditions such as PCT (121 ° C / 2.1 atm), and the temperature cycle is -65 ° C / 150 ° C. Liquid epoxy resin composition for flip chip type semiconductor device that can be used as a sealing material for a semiconductor device in which peeling and cracking do not occur even if it exceeds several hundred cycles, and flip chip type semiconductor sealed with a cured product of this composition An object is to provide an apparatus.

本発明者は、上記目的を達成するために鋭意検討を重ねた結果、(A)液状エポキシ樹脂、(B)芳香族アミン系硬化剤、(C)下記平均組成式(1)で示されるシリコーン変性エポキシ樹脂、及び(D)半導体装置のフリップチップギャップ幅に対して平均粒径が約1/10以下、最大粒径が1/2以下である無機質充填剤を必須成分とする液状エポキシ樹脂組成物が、成形性に優れるとともに、耐熱衝撃性、耐湿信頼性に優れる硬化物となり得、また該エポキシ樹脂組成物の硬化物で封止されたフリップチップ型半導体装置が、耐熱衝撃性、特には耐熱衝撃クラック性、耐湿信頼性に優れるものであることを見出した。   As a result of intensive studies to achieve the above object, the present inventor has (A) a liquid epoxy resin, (B) an aromatic amine-based curing agent, (C) a silicone represented by the following average composition formula (1). Liquid epoxy resin composition comprising, as essential components, a modified epoxy resin and (D) an inorganic filler having an average particle size of about 1/10 or less and a maximum particle size of 1/2 or less with respect to the flip chip gap width of the semiconductor device The flip chip type semiconductor device sealed with a cured product of the epoxy resin composition has excellent thermal moldability, and can be a cured product with excellent thermal shock resistance and moisture resistance reliability. It has been found that it has excellent thermal shock crack resistance and moisture resistance reliability.

Figure 2007176978
(式中、R1は水素原子又は炭素数1〜4のアルキル基であり、Rは脂肪族不飽和基を含有しない非置換又は置換の一価炭化水素基であり、Xは二価の有機基である。k、mは0≦k≦100、0<m≦100、0<k+m≦200を満たす正数であり、nは0〜400を満たす整数である。)
Figure 2007176978
Wherein R 1 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, R is an unsubstituted or substituted monovalent hydrocarbon group containing no aliphatic unsaturated group, and X is a divalent organic group. (K and m are positive numbers that satisfy 0 ≦ k ≦ 100, 0 <m ≦ 100, and 0 <k + m ≦ 200, and n is an integer that satisfies 0 to 400.)

即ち、(D)無機質充填剤として、平均粒径がフリップチップギャップ幅(基板と半導体チップとの隙間)に対して約1/10以下、最大粒径がフリップチップギャップ幅に対して1/2以下である特定の無機質充填剤を用いることにより、本発明の液状エポキシ樹脂組成物は、注入性に優れており、注入時及び硬化時にボイドが発生することがないために作業性が向上することを見出した。   That is, as the inorganic filler (D), the average particle size is about 1/10 or less with respect to the flip chip gap width (gap between the substrate and the semiconductor chip), and the maximum particle size is 1/2 with respect to the flip chip gap width. By using the following specific inorganic filler, the liquid epoxy resin composition of the present invention is excellent in injectability, and the workability is improved because no void is generated at the time of injection and curing. I found.

この場合、特に、(A)液状エポキシ樹脂のエポキシ当量と(B)芳香族アミン系硬化剤のアミン当量との当量比〔(A)/(B)〕を0.7以上1.2以下とすることにより、シリコンチップの表面、特に感光性ポリイミド樹脂や窒化膜との密着性に優れ、PCT(120℃/2.1atm)などの高温多湿の条件下でも劣化せず、熱衝撃に対して優れたものになることを知見し、本発明をなすに至ったものである。   In this case, in particular, the equivalent ratio [(A) / (B)] of (A) the epoxy equivalent of the liquid epoxy resin and (B) the amine equivalent of the aromatic amine curing agent is 0.7 or more and 1.2 or less. By doing so, it has excellent adhesion to the surface of the silicon chip, particularly photosensitive polyimide resin and nitride film, and does not deteriorate even under high temperature and high humidity conditions such as PCT (120 ° C / 2.1 atm), and is resistant to thermal shock. The inventors have found out that they are excellent and have come to make the present invention.

なお、本出願人は、先に
(A)液状エポキシ樹脂、
(B)芳香族アミン系硬化剤、
(C)上記平均組成式(1)で示されるシリコーン変性エポキシ樹脂、
更に必要により、
(D)平均粒径が半導体装置のリード間隔サイズの1/2以下であり、かつその最大粒径がリード間隔サイズの2/3以下の無機質充填剤
を含有する液状エポキシ樹脂組成物を提案した(特開2005−146104号公報:特許文献5)が、この組成物の対象とする好適な半導体装置は、リード線の間隔サイズが30〜120μm程度のキャビティ型半導体装置又はCOB型半導体装置である。本発明者は、上記式(1)のシリコーン変性エポキシ樹脂をフリップチップ型半導体装置のアンダーフィル材に配合することにより、信頼性の高いフリップチップ型半導体装置が得られることを知見したものである。
In addition, this applicant previously (A) liquid epoxy resin,
(B) an aromatic amine curing agent,
(C) a silicone-modified epoxy resin represented by the above average composition formula (1),
If necessary,
(D) A liquid epoxy resin composition containing an inorganic filler having an average particle size of ½ or less of the lead interval size of the semiconductor device and a maximum particle size of 2/3 or less of the lead interval size was proposed. (Japanese Patent Laid-Open No. 2005-146104: Patent Document 5), a suitable semiconductor device targeted by this composition is a cavity type semiconductor device or a COB type semiconductor device having a lead wire interval size of about 30 to 120 μm. . The present inventor has found that a highly reliable flip chip type semiconductor device can be obtained by blending the silicone-modified epoxy resin of the above formula (1) into the underfill material of the flip chip type semiconductor device. .

従って、本発明は、下記に示すフリップチップ型半導体装置用液状エポキシ樹脂組成物及びフリップチップ型半導体装置を提供する。
〔1〕 (A)液状エポキシ樹脂、
(B)芳香族アミン系硬化剤、
(C)下記平均組成式(1)で示されるシリコーン変性エポキシ樹脂、

Figure 2007176978
(式中、R1は水素原子又は炭素数1〜4のアルキル基であり、Rは脂肪族不飽和基を含有しない非置換又は置換の一価炭化水素基であり、Xは二価の有機基である。k、mは0≦k≦100、0<m≦100、0<k+m≦200を満たす正数であり、nは0〜400を満たす整数である。)
(D)半導体装置のフリップチップギャップ幅(基板と半導体チップとの隙間)に対して平均粒径が約1/10以下、最大粒径が1/2以下である無機質充填剤:上記(A),(B),(C)成分の総量100質量部に対して50〜400質量部
を必須成分とすることを特徴とするフリップチップ型半導体装置用液状エポキシ樹脂組成物。
〔2〕 (A)液状エポキシ樹脂と(B)芳香族アミン系硬化剤との当量比〔(A)液状エポキシ樹脂のエポキシ当量/(B)芳香族アミン系硬化剤のアミン当量〕が、0.7以上1.2以下である〔1〕の液状エポキシ樹脂組成物。
〔3〕 (C)シリコーン変性エポキシ樹脂の添加量が、(A)液状エポキシ樹脂と(B)芳香族アミン系硬化剤との総量100質量部に対し、0.1〜50質量部であることを特徴とする〔1〕又は〔2〕の液状エポキシ樹脂組成物。
〔4〕 〔1〕〜〔3〕のいずれかに記載の液状エポキシ樹脂組成物の硬化物で封止したフリップチップ型半導体装置。 Accordingly, the present invention provides the following liquid epoxy resin composition for flip chip type semiconductor devices and flip chip type semiconductor devices.
[1] (A) Liquid epoxy resin,
(B) an aromatic amine curing agent,
(C) a silicone-modified epoxy resin represented by the following average composition formula (1):
Figure 2007176978
Wherein R 1 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, R is an unsubstituted or substituted monovalent hydrocarbon group containing no aliphatic unsaturated group, and X is a divalent organic group. (K and m are positive numbers that satisfy 0 ≦ k ≦ 100, 0 <m ≦ 100, and 0 <k + m ≦ 200, and n is an integer that satisfies 0 to 400.)
(D) An inorganic filler having an average particle size of about 1/10 or less and a maximum particle size of 1/2 or less with respect to the flip chip gap width (gap between the substrate and the semiconductor chip) of the semiconductor device: (A) A liquid epoxy resin composition for flip-chip type semiconductor devices, comprising 50 to 400 parts by mass as essential components with respect to 100 parts by mass of the total of components (B) and (C).
[2] Equivalent ratio of (A) liquid epoxy resin to (B) aromatic amine curing agent [(A) epoxy equivalent of liquid epoxy resin / (B) amine equivalent of aromatic amine curing agent] is 0 The liquid epoxy resin composition according to [1], which is 7 or more and 1.2 or less.
[3] The addition amount of (C) silicone-modified epoxy resin is 0.1 to 50 parts by mass with respect to 100 parts by mass of the total amount of (A) liquid epoxy resin and (B) aromatic amine curing agent. The liquid epoxy resin composition according to [1] or [2].
[4] A flip chip type semiconductor device sealed with a cured product of the liquid epoxy resin composition according to any one of [1] to [3].

本発明のフリップチップ型半導体装置用液状エポキシ樹脂組成物は、作業性に優れており、シリコンチップの表面、特に感光性ポリイミド樹脂や窒化膜との密着性に優れた硬化物を与え、吸湿後のリフローの温度が従来温度240℃付近から260〜270℃に上昇しても不良が発生せず、更にPCT(120℃/2.1atm)などの高温多湿の条件下でも劣化せず、−65℃/150℃の温度サイクルにおいて数百サイクルを超えても剥離、クラックが起こらないフリップチップ型半導体装置を提供することができる。   The liquid epoxy resin composition for flip-chip type semiconductor devices of the present invention is excellent in workability, gives a cured product with excellent adhesion to the surface of a silicon chip, particularly a photosensitive polyimide resin or nitride film, and after moisture absorption Even if the reflow temperature of the conventional material rises from about 240 ° C. to about 260 to 270 ° C., no defect occurs, and it does not deteriorate even under high temperature and high humidity conditions such as PCT (120 ° C./2.1 atm). It is possible to provide a flip chip type semiconductor device in which peeling and cracking do not occur even when the temperature cycle of ℃ / 150 ℃ exceeds several hundred cycles.

本発明のフリップチップ型半導体装置用液状エポキシ樹脂組成物において、液状エポキシ樹脂(A)は、好ましくは1分子内に3官能基以下のエポキシ基を含有する常温で液状のエポキシ樹脂であればいかなるものでも使用可能であるが、25℃における粘度が800Pa・s以下、特に500Pa・s以下のものが好ましく、具体的には、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等のビスフェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェニルグリシジルエーテルなどが挙げられ、これらの中でも室温で液状のエポキシ樹脂を使用することが好ましい。また、本発明の液状エポキシ樹脂は、1種を単独で又は2種以上を併用することができる。なお、本発明において、粘度は回転粘度計により25℃における値を測定したものである。   In the liquid epoxy resin composition for flip-chip type semiconductor devices of the present invention, the liquid epoxy resin (A) is preferably any epoxy resin that is liquid at room temperature and contains no more than three functional groups in one molecule. Can be used, but those having a viscosity at 25 ° C. of 800 Pa · s or less, particularly 500 Pa · s or less are preferable. Specifically, bisphenol type epoxy resins such as bisphenol A type epoxy resin and bisphenol F type epoxy resin are preferable. , Naphthalene type epoxy resin, phenyl glycidyl ether, and the like. Among these, it is preferable to use an epoxy resin that is liquid at room temperature. Moreover, the liquid epoxy resin of this invention can be used individually by 1 type or in combination of 2 or more types. In the present invention, the viscosity is a value measured at 25 ° C. by a rotational viscometer.

また、本発明のエポキシ樹脂は、下記構造式(2),(3)で示されるエポキシ樹脂を侵入性に影響を及ぼさない範囲で含有していてもよい。

Figure 2007176978
Moreover, the epoxy resin of this invention may contain the epoxy resin shown by following Structural formula (2), (3) in the range which does not affect intrusion property.
Figure 2007176978

ここで、R2は水素原子、又は炭素数1〜20、好ましくは1〜10、更に好ましくは1〜3の一価炭化水素基であり、一価炭化水素基としては、メチル基、エチル基、プロピル基等のアルキル基、ビニル基、アリル基等のアルケニル基等が挙げられる。また、xは1〜4の整数、特に1又は2である。 Here, R 2 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 20, preferably 1 to 10, and more preferably 1 to 3 carbon atoms, and examples of the monovalent hydrocarbon group include a methyl group and an ethyl group. And alkyl groups such as propyl group, alkenyl groups such as vinyl group and allyl group. X is an integer of 1 to 4, particularly 1 or 2.

なお、上記式(3)で示されるエポキシ樹脂を配合する場合、その配合量は、全エポキシ樹脂中25質量%以上、より好ましくは50質量%以上、更に好ましくは75質量%以上であることが推奨される。25質量%未満であると組成物の粘度が上昇したり、硬化物の耐熱性が低下したりするおそれがある。なお、その上限は100質量%でもよい。
上記一般式(3)で示されるエポキシ樹脂の例としては、日本化薬社製RE600NM等が挙げられる。
In addition, when mix | blending the epoxy resin shown by said Formula (3), the compounding quantity is 25 mass% or more in all the epoxy resins, More preferably, it is 50 mass% or more, More preferably, it is 75 mass% or more. Recommended. If it is less than 25% by mass, the viscosity of the composition may increase or the heat resistance of the cured product may decrease. The upper limit may be 100% by mass.
Examples of the epoxy resin represented by the general formula (3) include RE600NM manufactured by Nippon Kayaku Co., Ltd.

上記液状エポキシ樹脂中の全塩素含有量は、1,500ppm以下、望ましくは1,000ppm以下であることが好ましい。また、100℃で50%エポキシ樹脂濃度における20時間での抽出水塩素が10ppm以下であることが好ましい。全塩素含有量が1,500ppmを超え、又は抽出水塩素が10ppmを超えると半導体素子の信頼性、特に耐湿性に悪影響を与えるおそれがある。   The total chlorine content in the liquid epoxy resin is preferably 1,500 ppm or less, more preferably 1,000 ppm or less. Moreover, it is preferable that the extraction water chlorine in 20 hours in the 50% epoxy resin density | concentration at 100 degreeC is 10 ppm or less. If the total chlorine content exceeds 1,500 ppm or the extracted water chlorine exceeds 10 ppm, the reliability of the semiconductor element, particularly the moisture resistance, may be adversely affected.

次に、本発明に使用する芳香族アミン系硬化剤(B)としては、芳香族ジアミノジフェニルメタン化合物、例えば、3,3’−ジエチル−4,4’−ジアミノフェニルメタン、3,3’,5,5’−テトラメチル−4,4’−ジアミノフェニルメタン、3,3’,5,5’−テトラエチル−4,4’−ジアミノフェニルメタン、2,4−ジアミノトルエン、1,4−ジアミノベンゼン、1,3−ジアミノベンゼン等の芳香族アミンであることが好ましい。これらは1種を単独で又は2種以上を混合して用いても差し支えない。   Next, as the aromatic amine curing agent (B) used in the present invention, an aromatic diaminodiphenylmethane compound such as 3,3′-diethyl-4,4′-diaminophenylmethane, 3,3 ′, 5 is used. , 5'-tetramethyl-4,4'-diaminophenylmethane, 3,3 ', 5,5'-tetraethyl-4,4'-diaminophenylmethane, 2,4-diaminotoluene, 1,4-diaminobenzene An aromatic amine such as 1,3-diaminobenzene is preferable. These may be used alone or in combination of two or more.

上記芳香族アミン系硬化剤の中で、常温で液体のものはそのまま配合しても問題ないが、固体のものはそのまま配合すると樹脂粘度が上昇し、作業性が著しく悪くなるため、予めエポキシ樹脂と溶融混合することが好ましく、後述する指定の配合割合で、70〜150℃の温度範囲で1〜2時間溶融混合することが望ましい。混合温度が70℃未満であるとアミン系硬化剤が十分に相溶しないおそれがあり、150℃を超える温度であるとエポキシ樹脂と反応して粘度上昇するおそれがある。また、混合時間が1時間未満であるとアミン系硬化剤が十分に相溶せず、粘度上昇を招くおそれがあり、2時間を超えるとエポキシ樹脂と反応し、粘度上昇するおそれがある。   Of the above aromatic amine curing agents, those that are liquid at room temperature can be blended as they are, but if they are blended as they are, the viscosity of the resin will increase and workability will be significantly reduced. It is preferable to melt and mix in a temperature range of 70 to 150 ° C. for 1 to 2 hours at a specified blending ratio described later. If the mixing temperature is less than 70 ° C, the amine curing agent may not be sufficiently compatible, and if the mixing temperature is higher than 150 ° C, it may react with the epoxy resin and increase the viscosity. Further, if the mixing time is less than 1 hour, the amine curing agent is not sufficiently compatible and may increase the viscosity, and if it exceeds 2 hours, it may react with the epoxy resin and increase the viscosity.

なお、本発明に用いられるアミン系硬化剤の総配合量は、液状エポキシ樹脂とアミン系硬化剤との当量比〔(A)液状エポキシ樹脂のエポキシ当量/(B)芳香族アミン系硬化剤のアミン当量〕が、0.7以上1.2以下、好ましくは0.7以上1.1以下、更に好ましくは0.85以上1.05以下の範囲であることが推奨される。配合モル比が0.7未満では未反応のアミノ基が残存し、ガラス転移温度が低下、あるいは密着性が低下するおそれがある。逆に1.2を超えると硬化物が硬く脆くなり、リフロー時又は温度サイクル時にクラックが発生するおそれがある。   The total amount of the amine curing agent used in the present invention is the equivalent ratio of the liquid epoxy resin and the amine curing agent [(A) epoxy equivalent of the liquid epoxy resin / (B) aromatic amine curing agent. It is recommended that the amine equivalent] be in the range of 0.7 to 1.2, preferably 0.7 to 1.1, and more preferably 0.85 to 1.05. If the blending molar ratio is less than 0.7, unreacted amino groups remain, and the glass transition temperature may be lowered or the adhesion may be lowered. On the other hand, if it exceeds 1.2, the cured product becomes hard and brittle, and cracks may occur during reflow or temperature cycling.

本発明の液状エポキシ樹脂組成物は、低応力剤として(C)下記平均組成式(1)で示されるシリコーン変性エポキシ樹脂を使用するものである。

Figure 2007176978
(式中、R1は水素原子又は炭素数1〜4のアルキル基であり、Rは脂肪族不飽和基を含有しない非置換又は置換の一価炭化水素基であり、Xは二価の有機基である。k、mは0≦k≦100、0<m≦100、0<k+m≦200を満たす正数であり、nは0〜400を満たす整数である。) The liquid epoxy resin composition of the present invention uses (C) a silicone-modified epoxy resin represented by the following average composition formula (1) as a low stress agent.
Figure 2007176978
Wherein R 1 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, R is an unsubstituted or substituted monovalent hydrocarbon group containing no aliphatic unsaturated group, and X is a divalent organic group. (K and m are positive numbers that satisfy 0 ≦ k ≦ 100, 0 <m ≦ 100, and 0 <k + m ≦ 200, and n is an integer that satisfies 0 to 400.)

ここで、上記式中のR1は水素原子、又はメチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基等の炭素数1〜4のアルキル基であり、また、Rは脂肪族不飽和基を含有しない非置換又は置換の一価炭化水素基であり、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、ヘキシル基、シクロヘキシル基、オクチル基、デシル基等のアルキル基、フェニル基、キシリル基、トリル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基等のアラルキル基などや、これら炭化水素基の水素原子の一部又は全部を塩素、フッ素、臭素等のハロゲン原子で置換したクロロメチル基、ブロモエチル基、トリフルオロプロピル基等のハロゲン置換一価炭化水素基などの炭素数1〜15、特に1〜10の一価炭化水素基が例示される。 Here, R 1 in the above formula is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms such as a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, or a tert-butyl group. R is an unsubstituted or substituted monovalent hydrocarbon group that does not contain an aliphatic unsaturated group. Specifically, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group Alkyl groups such as tert-butyl group, hexyl group, cyclohexyl group, octyl group and decyl group, aryl groups such as phenyl group, xylyl group and tolyl group, aralkyl groups such as benzyl group, phenylethyl group and phenylpropyl group Or a chloromethyl group, a bromoethyl group, a trifluoro group in which some or all of the hydrogen atoms of these hydrocarbon groups are substituted with a halogen atom such as chlorine, fluorine, or bromine. 1 to 15 carbon atoms, such as a halogen-substituted monovalent hydrocarbon groups such as propyl group, are exemplified in particular 1-10 monovalent hydrocarbon group.

Xは二価の有機基であり、酸素原子が介在してもよいアルキレン基、アリーレン基、酸素原子が介在してもよいアルキレン基とアリーレン基とが結合した基、これらの基の水素原子の一部又は全部がハロゲン原子、水酸基等で置換された基などが挙げられ、炭素数1〜15、特に2〜10のものが好ましい。例えば、下記に示す基を挙げることができる。

Figure 2007176978
X is a divalent organic group, an alkylene group in which an oxygen atom may intervene, an arylene group, a group in which an alkylene group in which an oxygen atom may intervene and an arylene group are bonded, or a hydrogen atom of these groups Examples include a group partially or entirely substituted with a halogen atom, a hydroxyl group or the like, and those having 1 to 15 carbon atoms, particularly 2 to 10 carbon atoms are preferred. For example, the group shown below can be mentioned.
Figure 2007176978

また、k、mは0≦k≦100、0<m≦100、0<k+m≦200を満たす正数であるが、低応力化、耐熱衝撃性の面からより好ましい範囲は0≦k≦10、0<m≦10、0<k+m≦20を満たす正数である。nは0〜400を満たす整数であるが、より好ましい範囲は8〜100の整数である。   K and m are positive numbers satisfying 0 ≦ k ≦ 100, 0 <m ≦ 100, and 0 <k + m ≦ 200, but more preferable ranges are 0 ≦ k ≦ 10 from the viewpoint of low stress and thermal shock resistance. , 0 <m ≦ 10 and 0 <k + m ≦ 20. n is an integer satisfying 0 to 400, but a more preferable range is an integer of 8 to 100.

このようなシリコーン変性エポキシ樹脂として具体的には、下記に示すものが挙げられる。

Figure 2007176978
Specific examples of such silicone-modified epoxy resins include those shown below.
Figure 2007176978

該シリコーン変性エポキシ樹脂の製造方法は、下記平均組成式(4)

Figure 2007176978
(式中、R1は水素原子又は炭素数1〜4のアルキル基であり、Yは末端に二重結合を有する有機基である。k、mは0≦k≦100、0<m≦100、0<k+m≦200を満たす正数である。)
で表されるエポキシ樹脂のYの末端二重結合と、下記一般式(5)
Figure 2007176978
(式中、Rは脂肪族不飽和基を含有しない非置換又は置換の一価炭化水素基、nは0≦n≦400の整数である。)
で示されるオルガノポリシロキサンのSiH基とを付加反応させることにより得ることができる。 The production method of the silicone-modified epoxy resin is the following average composition formula (4)
Figure 2007176978
(In the formula, R 1 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and Y is an organic group having a double bond at the terminal. K and m are 0 ≦ k ≦ 100, 0 <m ≦ 100. , 0 <k + m ≦ 200 is a positive number.)
Y-terminal double bond of the epoxy resin represented by the following general formula (5)
Figure 2007176978
(In the formula, R is an unsubstituted or substituted monovalent hydrocarbon group not containing an aliphatic unsaturated group, and n is an integer of 0 ≦ n ≦ 400.)
It can obtain by carrying out addition reaction with SiH group of organopolysiloxane shown by these.

上記平均組成式(4)で表されるエポキシ樹脂において、R1は水素原子又は炭素数1〜4のアルキル基であり、上述したR1と同様のものを例示することができる。また、Yは末端に二重結合を有する有機基であり、末端に二重結合を有するものであれば特に限定されるものではない。該末端に二重結合を有する有機基としては、末端にビニル基、アリル基等のアルケニル基、アリルオキシ基等のアルケニルオキシ基を含むものが例示され、上記Xの二価の有機基において、その末端が二重結合とされたものが挙げられ、例えば、下記に示す基を挙げることができる。

Figure 2007176978
これらの中でも、特にアリル基が好ましい。 In the epoxy resin represented by the average composition formula (4), R 1 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and examples thereof are the same as those described above for R 1 . Y is an organic group having a double bond at the end, and is not particularly limited as long as it has a double bond at the end. Examples of the organic group having a double bond at the terminal include those containing an alkenyl group such as a vinyl group and an allyl group at the terminal, and an alkenyloxy group such as an allyloxy group. Examples thereof include those having a double bond at the end, and examples thereof include the following groups.
Figure 2007176978
Among these, an allyl group is particularly preferable.

また、k、mは0≦k≦100、0<m≦100、0<k+m≦200を満たす正数であるが、より好ましい範囲は0≦k≦10、0<m≦10、0<k+m≦20を満たす正数である。   K and m are positive numbers satisfying 0 ≦ k ≦ 100, 0 <m ≦ 100, and 0 <k + m ≦ 200, but more preferable ranges are 0 ≦ k ≦ 10, 0 <m ≦ 10, 0 <k + m. It is a positive number satisfying ≦ 20.

このような式(4)で表されるエポキシ樹脂の具体的な構造としては、下記式(4−i)〜(4−iii)で示されるものを挙げることができる。

Figure 2007176978
(式中、R1,k,mは上記と同様である。) Specific examples of the epoxy resin represented by the formula (4) include those represented by the following formulas (4-i) to (4-iii).
Figure 2007176978
(In the formula, R 1 , k and m are the same as above.)

上記式(4)で表されるエポキシ樹脂中のエポキシ基とYの末端に二重結合を有する有機基との比率(モル比)は、エポキシ基:Y=1:2〜100:1、特に1:1〜20:1であることが好ましい。   The ratio (molar ratio) between the epoxy group in the epoxy resin represented by the above formula (4) and the organic group having a double bond at the end of Y is epoxy group: Y = 1: 2 to 100: 1, particularly It is preferably 1: 1 to 20: 1.

上記一般式(5)で示されるオルガノポリシロキサンにおいて、Rは脂肪族不飽和基を含有しない非置換又は置換の一価炭化水素基であり、上述したRと同様のものが例示でき、nは0≦n≦400、特に8≦n≦100の整数である。   In the organopolysiloxane represented by the general formula (5), R is an unsubstituted or substituted monovalent hydrocarbon group that does not contain an aliphatic unsaturated group. It is an integer of 0 ≦ n ≦ 400, particularly 8 ≦ n ≦ 100.

このようなオルガノポリシロキサンとして、具体的には、下記式で示されるものが挙げられる。

Figure 2007176978
(式中、Meはメチル基、Phはフェニル基である。) Specific examples of such organopolysiloxanes include those represented by the following formula.
Figure 2007176978
(In the formula, Me is a methyl group and Ph is a phenyl group.)

ここで、上記エポキシ樹脂と有機珪素化合物を付加反応させる場合、該エポキシ樹脂及び有機珪素化合物は、それぞれ1種を単独で用いても2種以上を併用してもよい。   Here, when the epoxy resin and the organosilicon compound are subjected to an addition reaction, each of the epoxy resin and the organosilicon compound may be used alone or in combination of two or more.

本付加反応において、上記エポキシ樹脂と有機珪素化合物の配合割合としては、上記エポキシ樹脂中のYの末端二重結合に対する有機珪素化合物中の珪素原子に結合した水素原子(SiH基)のモル比が、0.2〜1.0モル/モル、特に0.4〜0.95モル/モルとなる量で配合することが好ましい。   In this addition reaction, the mixing ratio of the epoxy resin and the organosilicon compound is such that the molar ratio of the hydrogen atom (SiH group) bonded to the silicon atom in the organosilicon compound with respect to the Y terminal double bond in the epoxy resin is as follows. 0.2 to 1.0 mol / mol, particularly 0.4 to 0.95 mol / mol.

また、付加反応の方法としては、従来公知の付加反応法に準じて行うことができる。即ち、付加反応に際しては、従来公知の付加反応触媒、例えば白金黒、塩化第2白金、塩化白金酸、塩化白金酸と1価アルコールとの反応物、塩化白金酸とオレフィン類との錯体、白金ビスアセトアセテートなどの白金系触媒、テトラキス(トリフェニルホスフィン)パラジウム、ジクロロビス(トリフェニルホスフィン)パラジウム等のパラジウム系触媒、クロロトリス(トリフェニルホスフィン)ロジウム、テトラキス(トリフェニルホスフィン)ロジウム等のロジウム系触媒などの白金族金属触媒を使用することが好ましい。なお、付加反応触媒の添加量としては触媒量とすることができ、通常溶液濃度は20〜60質量%、触媒濃度は反応物に対して白金族金属質量換算で10〜100ppmである。   Moreover, as a method of addition reaction, it can carry out according to a conventionally well-known addition reaction method. That is, in the addition reaction, conventionally known addition reaction catalysts such as platinum black, chloroplatinum chloride, chloroplatinic acid, a reaction product of chloroplatinic acid and a monohydric alcohol, a complex of chloroplatinic acid and an olefin, platinum Platinum catalysts such as bisacetoacetate, palladium catalysts such as tetrakis (triphenylphosphine) palladium and dichlorobis (triphenylphosphine) palladium, rhodium catalysts such as chlorotris (triphenylphosphine) rhodium and tetrakis (triphenylphosphine) rhodium It is preferable to use a platinum group metal catalyst such as The addition amount of the addition reaction catalyst can be a catalyst amount, and the solution concentration is usually 20 to 60% by mass, and the catalyst concentration is 10 to 100 ppm in terms of platinum group metal mass with respect to the reaction product.

また、上記付加反応は、有機溶媒中で行うことが望ましく、有機溶媒としては、ベンゼン、トルエン、メチルイソブチルケトン等の不活性溶媒を用いることが好ましい。   The addition reaction is desirably performed in an organic solvent, and it is preferable to use an inert solvent such as benzene, toluene, or methyl isobutyl ketone as the organic solvent.

付加反応条件は特に制限されないが、通常60〜120℃で30分〜10時間反応させることが好ましい。   Although the addition reaction conditions are not particularly limited, it is usually preferable to react at 60 to 120 ° C. for 30 minutes to 10 hours.

(C)成分であるシリコーン変性エポキシ樹脂の添加量は、(A)液状エポキシ樹脂と(B)芳香族アミン系硬化剤との総量100質量部に対し、0.1〜50質量部、特に5〜30質量部が好ましい。添加量が0.1質量部未満では耐熱衝撃性及び耐クラック性の向上が得られない場合があり、また50質量部を超えると、粘度が高くなり、作業性に支障をきたすおそれがある。   The addition amount of the silicone-modified epoxy resin as component (C) is 0.1 to 50 parts by weight, particularly 5 for 100 parts by weight of the total amount of (A) liquid epoxy resin and (B) aromatic amine curing agent. -30 mass parts is preferable. If the addition amount is less than 0.1 parts by mass, improvement in thermal shock resistance and crack resistance may not be obtained. If the addition amount exceeds 50 parts by mass, the viscosity becomes high and workability may be hindered.

本発明のエポキシ樹脂組成物中に配合される(D)無機質充填剤としては、通常エポキシ樹脂組成物に配合されるものを使用することができる。例えば、溶融シリカ、結晶性シリカ等のシリカ類、アルミナ、窒化珪素、窒化アルミニウム、ボロンナイトライド、酸化チタン、ガラス繊維等が挙げられる。   As the inorganic filler (D) blended in the epoxy resin composition of the present invention, those usually blended in the epoxy resin composition can be used. Examples thereof include silicas such as fused silica and crystalline silica, alumina, silicon nitride, aluminum nitride, boron nitride, titanium oxide, glass fiber, and the like.

本発明においては、半導体装置のフリップチップギャップ幅(基板と半導体チップとの隙間)に対して平均粒径が約1/10以下、特に1/20以下、最大粒径が1/2以下、特に1/3以下である無機質充填剤を使用する。平均粒径がフリップチップギャップ幅の1/10より大きい、また最大粒径がフリップチップギャップ幅の1/2より大きいと、侵入性の低下を引き起こし、ボイドが発生するおそれがある。   In the present invention, the average particle size is about 1/10 or less, particularly 1/20 or less, and the maximum particle size is 1/2 or less, particularly with respect to the flip chip gap width (gap between the substrate and the semiconductor chip) of the semiconductor device. Use inorganic filler that is 1/3 or less. If the average particle size is larger than 1/10 of the flip chip gap width and the maximum particle size is larger than 1/2 of the flip chip gap width, the penetration may be reduced and voids may be generated.

ここで、本発明において、平均粒径は、例えばレーザー光回折法等による重量平均値(又はメディアン径)等として求めることができ、最大粒径も同様にレーザー光回折法等により求めることができる。また、リード間隔サイズの1/2を超える粒径のものがないことを確認する方法としては、例えば、無機質充填剤と純水を1:9の割合で混合し、超音波処理により凝集物を十分に崩し、これをリード間隔サイズの1/2の目開きフィルターで篩い、無機質充填剤がフィルター上に残らないことを確認する方法が採用される。   Here, in the present invention, the average particle diameter can be determined as, for example, a weight average value (or median diameter) by a laser light diffraction method or the like, and the maximum particle diameter can be similarly determined by a laser light diffraction method or the like. . Further, as a method for confirming that there is no particle having a particle size exceeding 1/2 of the lead interval size, for example, an inorganic filler and pure water are mixed at a ratio of 1: 9, and the aggregate is formed by ultrasonic treatment. A method is adopted in which the material is sufficiently broken and sieved with an opening filter having a half of the lead interval size to confirm that the inorganic filler does not remain on the filter.

無機質充填剤(D)の配合量としては、(A)液状エポキシ樹脂と(B)芳香族アミン系硬化剤と(C)シリコーン変性エポキシ樹脂の総量100質量部に対して50〜400質量部とすることが好ましく、より好ましくは150〜300質量部の範囲である。50質量部未満では、膨張係数が大きく、冷熱試験においてクラックの発生を誘発させるおそれがある。また400質量部を超えると、粘度が高くなり、薄膜侵入性の低下をもたらす問題がある。   As a compounding quantity of an inorganic filler (D), 50-400 mass parts with respect to 100 mass parts of total amounts of (A) liquid epoxy resin, (B) aromatic amine type hardening | curing agent, and (C) silicone modified epoxy resin, More preferably, it is the range of 150-300 mass parts. If it is less than 50 parts by mass, the expansion coefficient is large, and there is a risk of inducing cracks in the cold test. Moreover, when it exceeds 400 mass parts, a viscosity will become high and there exists a problem which brings about the fall of thin film penetration | invasion property.

無機質充填剤は、樹脂と無機質充填剤との結合強度を強くするため、シランカップリング剤、チタネートカップリング剤などのカップリング剤で予め表面処理したものを配合することが好ましい。このようなカップリング剤としては、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシシラン、N−β(アミノエチル)−γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン等のアミノシラン、γ−メルカプトシラン等のメルカプトシランなどのシランカップリング剤を用いることが好ましい。ここで表面処理に用いるカップリング剤の配合量及び表面処理方法については、特に制限されるものではない。   In order to increase the bond strength between the resin and the inorganic filler, the inorganic filler is preferably blended in advance with a surface treatment with a coupling agent such as a silane coupling agent or a titanate coupling agent. As such a coupling agent, epoxy silane such as γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, N Silane cups such as aminosilanes such as -β (aminoethyl) -γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, and mercaptosilanes such as γ-mercaptosilane It is preferable to use a ring agent. Here, the blending amount of the coupling agent used for the surface treatment and the surface treatment method are not particularly limited.

本発明の液状エポキシ樹脂組成物には、更に必要に応じて各種の添加剤を配合することができる。例えば、熱可塑性樹脂、熱可塑性エラストマー、有機合成ゴム、シリコーン系等の低応力剤、カルナバワックス、高級脂肪酸、合成ワックス等のワックス類、カーボンブラック等の着色剤、ハロゲントラップ剤等の添加剤を添加配合することができる。   Various additives can be further blended in the liquid epoxy resin composition of the present invention as necessary. For example, low stress agents such as thermoplastic resins, thermoplastic elastomers, organic synthetic rubbers, silicones, waxes such as carnauba wax, higher fatty acids, synthetic waxes, colorants such as carbon black, additives such as halogen trapping agents, etc. It can be added and blended.

本発明の液状エポキシ樹脂組成物は、例えば、液状エポキシ樹脂、芳香族アミン系硬化剤、あるいは液状エポキシ樹脂と芳香族アミン系硬化剤との溶融混合物、シリコーン変性エポキシ樹脂、それに無機質充填剤、必要に応じてその他の添加剤等を同時に又は別々に、必要により加熱処理を加えながら、撹拌、溶解、混合、分散させることにより得ることができる。これらの混合、撹拌、分散等の装置としては、特に限定されるものではないが、撹拌、加熱装置を備えたライカイ機、3本ロール、ボールミル、プラネタリーミキサー、ビーズミル等を用いることができる。またこれら装置を適宜組み合わせて使用してもよい。   The liquid epoxy resin composition of the present invention includes, for example, a liquid epoxy resin, an aromatic amine curing agent, or a molten mixture of a liquid epoxy resin and an aromatic amine curing agent, a silicone-modified epoxy resin, and an inorganic filler, Depending on the conditions, other additives and the like can be obtained by stirring, dissolving, mixing, and dispersing at the same time or separately, if necessary, with heat treatment. The apparatus for mixing, stirring, dispersing and the like is not particularly limited, and a lykai machine, a three roll, a ball mill, a planetary mixer, a bead mill and the like equipped with a stirring and heating device can be used. Moreover, you may use combining these apparatuses suitably.

なお、本発明において、封止材として用いる液状エポキシ樹脂組成物の粘度は、25℃において1,000Pa・s以下、特に10〜800Pa・sのものが好ましい。また、この組成物の成形方法、成形条件は、常法とすることができるが、好ましくは、先に100〜120℃、0.5時間以上、特に0.5〜2時間、その後130〜250℃、0.5時間以上、特に0.5〜5時間の条件で熱オーブンキュアを行う。100〜120℃での加熱が0.5時間未満では、硬化後にボイドが発生する場合がある。また130〜250℃での加熱が0.5時間未満では、十分な硬化物特性が得られない場合がある。   In the present invention, the viscosity of the liquid epoxy resin composition used as the sealing material is preferably 1,000 Pa · s or less, particularly 10 to 800 Pa · s at 25 ° C. The molding method and molding conditions for this composition may be conventional methods, but preferably 100 to 120 ° C. for 0.5 hour or longer, particularly 0.5 to 2 hours, and then 130 to 250. Thermal oven curing is performed at a temperature of 0.5 ° C. for 0.5 hours or more, particularly 0.5 to 5 hours. When heating at 100 to 120 ° C. is less than 0.5 hour, voids may occur after curing. Further, if the heating at 130 to 250 ° C. is less than 0.5 hour, sufficient cured product characteristics may not be obtained.

ここで、本発明に用いるフリップチップ型半導体装置としては、例えば図1に示したように、通常、有機基板1の配線パターン面に複数個のバンプ2を介して半導体チップ3が搭載されているものであり、上記有機基板1と半導体チップ3との隙間(バンプ2間の隙間)にアンダーフィル材4が充填され、その側部がフィレット材5で封止されたものとすることができるが、本発明の封止材は、特にこのようなアンダーフィル材として使用する場合に有効である。   Here, as a flip chip type semiconductor device used in the present invention, for example, as shown in FIG. 1, for example, a semiconductor chip 3 is usually mounted on a wiring pattern surface of an organic substrate 1 via a plurality of bumps 2. The gap between the organic substrate 1 and the semiconductor chip 3 (the gap between the bumps 2) is filled with the underfill material 4 and the side portion thereof is sealed with the fillet material 5. The sealing material of the present invention is particularly effective when used as such an underfill material.

以下に、合成例及び実施例と比較例を示し、本発明を更に具体的に説明するが、本発明は下記の実施例に制限されるものではない。なお、下記例において、Meはメチル基を示す。   Synthesis Examples, Examples and Comparative Examples are shown below to describe the present invention more specifically. However, the present invention is not limited to the following examples. In the following examples, Me represents a methyl group.

[合成例1] 化合物Aの合成
リフラックスコンデンサー、温度計、攪拌機、及び滴下ロートを具備した2L四つ口フラスコ中にトルエン400g、下記式(6)で表されるアリル基含有エポキシ樹脂(エポキシ当量310)10gを入れ、窒素雰囲気下で2時間共沸脱水を行った。その後、系内を80℃まで冷却し、塩化白金触媒1.00gを加え、下記式(7)で表される有機珪素化合物48.5gをトルエン194.1gに溶解した溶液を2時間かけて滴下した。系内を90〜100℃に保ちながら6時間攪拌し、熟成した後、室温まで冷却した。その後、減圧下にて溶媒留去することにより、目的とするシリコーン変性エポキシ樹脂(化合物A)が56.2g得られた。
[Synthesis Example 1] Synthesis of Compound A 400 g of toluene in an 2 L four-necked flask equipped with a reflux condenser, a thermometer, a stirrer, and a dropping funnel, an allyl group-containing epoxy resin represented by the following formula (6) (epoxy Equivalent 310) 10 g was added, and azeotropic dehydration was performed for 2 hours in a nitrogen atmosphere. Thereafter, the system was cooled to 80 ° C., 1.00 g of platinum chloride catalyst was added, and a solution obtained by dissolving 48.5 g of an organosilicon compound represented by the following formula (7) in 194.1 g of toluene was dropped over 2 hours. did. The system was stirred for 6 hours while maintaining the system at 90 to 100 ° C., aged, and then cooled to room temperature. Thereafter, the solvent was distilled off under reduced pressure to obtain 56.2 g of the target silicone-modified epoxy resin (Compound A).

Figure 2007176978
アリル基含有エポキシ樹脂組成
s=0、t=1 …55モル%
s=1、t=1 …35モル%
s=2、t=1 …10モル%
Figure 2007176978
Allyl group-containing epoxy resin composition s = 0, t = 1... 55 mol%
s = 1, t = 1 ... 35 mol%
s = 2, t = 1 ... 10 mol%

Figure 2007176978
Figure 2007176978

得られた反応生成物の1H−NMR、IRを測定した結果、1H−NMRは−0.5−0.5,3.6−3.9,6.6−7.2,8.0−8.2ppmにピークを示し、IRは1255cm-1付近にSi−Me由来のピークを示した。また、29Si−NMRにおいても9.5ppm付近にピークを示した。これにより、下記平均組成式(8)で示される化合物Aが得られたことがわかった。 As a result of measuring 1 H-NMR and IR of the obtained reaction product, 1 H-NMR was -0.5-0.5, 3.6-3.9, 6.6-7.2, 8. A peak was shown at 0-8.2 ppm, and IR showed a peak derived from Si-Me in the vicinity of 1255 cm −1 . 29 Si-NMR also showed a peak in the vicinity of 9.5 ppm. Thereby, it turned out that the compound A shown by the following average composition formula (8) was obtained.

(化合物A)

Figure 2007176978
(Compound A)
Figure 2007176978

[実施例1〜4、比較例1〜3]
表1に示す成分を3本ロールで均一に混練することにより、樹脂組成物を得た。これらの樹脂組成物を用いて、以下に示す試験を行った。その結果を表2に示す。
[Examples 1-4, Comparative Examples 1-3]
A resin composition was obtained by uniformly kneading the components shown in Table 1 with three rolls. The test shown below was done using these resin compositions. The results are shown in Table 2.

[粘度]
BH型回転粘度計を用いて4rpmの回転数で25℃における粘度を測定した。
[viscosity]
The viscosity at 25 ° C. was measured at a rotation speed of 4 rpm using a BH type rotational viscometer.

[Tg(ガラス転移温度)、CTE1(膨張係数)、CTE2(膨張係数)]
5mm×5mm×15mmの硬化物試験片を用いて、TMA(熱機械分析装置)により毎分5℃の速さで昇温した時のTgを測定した。また、以下の温度範囲の膨張係数を測定した。CTE1の温度範囲は50〜80℃、CTE2の温度範囲は200〜230℃である。
[Tg (glass transition temperature), CTE1 (expansion coefficient), CTE2 (expansion coefficient)]
Using a cured product test piece of 5 mm × 5 mm × 15 mm, Tg was measured when the temperature was raised at a rate of 5 ° C. per minute by TMA (thermomechanical analyzer). Moreover, the expansion coefficient in the following temperature range was measured. The temperature range of CTE1 is 50 to 80 ° C, and the temperature range of CTE2 is 200 to 230 ° C.

[接着力テスト]
感光性ポリイミドをコートしたシリコンチップ上に、上面の直径2mm、下面の直径5mm、高さ3mmの円錐台形状の樹脂組成物試験片を載せ、120℃で0.5時間、次いで165℃で3時間硬化させた。硬化後、得られた試験片の剪断接着力を測定し、初期値とした。更に、硬化させた試験片をPCT(121℃/2.1atm)で336時間吸湿させた後、接着力を測定した。いずれの場合も試験片の個数は5個で行い、その平均値を接着力として表記した。
[Adhesion test]
On a silicon chip coated with photosensitive polyimide, a frustoconical resin composition test piece having an upper surface diameter of 2 mm, a lower surface diameter of 5 mm, and a height of 3 mm is placed, and 120 ° C. for 0.5 hour, and then 165 ° C. for 3 hours Cured for hours. After curing, the shear strength of the obtained specimen was measured and used as the initial value. Further, the cured test piece was absorbed with PCT (121 ° C./2.1 atm) for 336 hours, and then the adhesive strength was measured. In any case, the number of test pieces was five, and the average value was expressed as adhesive strength.

[PCT剥離テスト]
ポリイミドコートした10mm×10mmのシリコンチップを30mm×30mmのFR−4基板に約100μmのスペーサを用いて設置し、生じた隙間に樹脂組成物を侵入させて120℃/0.5時間+165℃/3時間の条件で硬化させ、30℃/65%RH/192時間後に最高温度265℃に設定したIRリフローにて5回処理した後の剥離、更にPCT(121℃/2.1atm)の環境下に置き、336時間後の剥離をC−SAM(SONIX社製)で確認した。
[PCT peel test]
A polyimide-coated 10 mm × 10 mm silicon chip was placed on a 30 mm × 30 mm FR-4 substrate using a spacer of about 100 μm, and the resin composition was intruded into the resulting gap, resulting in 120 ° C./0.5 hours + 165 ° C. / Curing for 3 hours, 30 ° C / 65% RH / 192 hours later, IR reflow set to maximum temperature of 265 ° C, stripping after 5 treatments, and PCT (121 ° C / 2.1 atm) environment The peeling after 336 hours was confirmed by C-SAM (manufactured by SONIX).

[熱衝撃テスト]
ポリイミドコートした10mm×10mmのシリコンチップを30mm×30mmのFR−4基板に約100μmのスペーサを用いて設置し、生じた隙間に樹脂組成物を侵入させて120℃/0.5時間+165℃/3時間の条件で硬化させ、30℃/65%RH/192時間後に最高温度265℃に設定したIRリフローにて5回処理した後、−65℃/30分、150℃/30分を1サイクルとし、250,500,750,1000サイクル後の剥離、クラックを確認した。
[Thermal shock test]
A polyimide-coated 10 mm × 10 mm silicon chip was placed on a 30 mm × 30 mm FR-4 substrate using a spacer of about 100 μm, and the resin composition was intruded into the resulting gap, resulting in 120 ° C./0.5 hours + 165 ° C. / Curing for 3 hours, 30 cycles of IR reflow set to maximum temperature of 265 ° C after 30 ° C / 65% RH / 192 hours, then -65 ° C / 30 minutes, 150 ° C / 30 minutes for one cycle And peeling and cracking after 250,500,750,1000 cycles were confirmed.

[侵入性試験]
30mm×70mmの硝子板2枚を用い、約60μmのスペーサを用いてギャップを設置し、120℃において生じた隙間への樹脂組成物侵入性を確認した。50mm以上侵入したものを○、侵入しないものを×とした。
[Invasion test]
Two glass plates of 30 mm × 70 mm were used, a gap was installed using a spacer of about 60 μm, and the resin composition penetration into the gap generated at 120 ° C. was confirmed. Those that penetrated 50 mm or more were marked with ◯, and those that did not penetrate were marked with ×.

Figure 2007176978
Figure 2007176978

RE303S−L:ビスフェノールF型エポキシ樹脂(日本化薬(株)製)
エピコート630H:下記式で示される3官能型エポキシ樹脂(ジャパンエポキシレジン
(株)製)

Figure 2007176978
芳香族アミン系硬化剤a:4,4’−ジアミノ−3,3’−ジエチルジフェニルメタン(
日本化薬(株)製)
C−300S:テトラエチルジアミノフェニルメタン(日本化薬(株)製)
無機質充填剤a:最大粒径24μm、平均粒径6μmの球状シリカ((株)龍森製)
無機質充填剤b:最大粒径53μm、平均粒径10μmの球状シリカ((株)龍森製)
シランカップリング剤:KBM403、γ−グリシドキシプロピルトリメトキシシラン(
信越化学工業(株)製)
カーボンブラック:デンカブラック(電気化学工業(株)製) RE303S-L: Bisphenol F type epoxy resin (manufactured by Nippon Kayaku Co., Ltd.)
Epicoat 630H: Trifunctional epoxy resin represented by the following formula (Japan Epoxy Resin
(Made by Co., Ltd.)
Figure 2007176978
Aromatic amine curing agent a: 4,4′-diamino-3,3′-diethyldiphenylmethane (
Nippon Kayaku Co., Ltd.)
C-300S: Tetraethyldiaminophenylmethane (manufactured by Nippon Kayaku Co., Ltd.)
Inorganic filler a: spherical silica having a maximum particle size of 24 μm and an average particle size of 6 μm (manufactured by Tatsumori)
Inorganic filler b: spherical silica having a maximum particle size of 53 μm and an average particle size of 10 μm (manufactured by Tatsumori)
Silane coupling agent: KBM403, γ-glycidoxypropyltrimethoxysilane (
(Shin-Etsu Chemical Co., Ltd.)
Carbon black: Denka Black (manufactured by Denki Kagaku Kogyo Co., Ltd.)

Figure 2007176978
Figure 2007176978

本発明の封止材を用いたフリップチップ型半導体装置の一例を示す断面図である。It is sectional drawing which shows an example of the flip chip type semiconductor device using the sealing material of this invention.

符号の説明Explanation of symbols

1 有機基板
2 バンプ
3 半導体チップ
4 アンダーフィル材
5 フィレット材
DESCRIPTION OF SYMBOLS 1 Organic substrate 2 Bump 3 Semiconductor chip 4 Underfill material 5 Fillet material

Claims (4)

(A)液状エポキシ樹脂、
(B)芳香族アミン系硬化剤、
(C)下記平均組成式(1)で示されるシリコーン変性エポキシ樹脂、
Figure 2007176978
(式中、R1は水素原子又は炭素数1〜4のアルキル基であり、Rは脂肪族不飽和基を含有しない非置換又は置換の一価炭化水素基であり、Xは二価の有機基である。k、mは0≦k≦100、0<m≦100、0<k+m≦200を満たす正数であり、nは0〜400を満たす整数である。)
(D)半導体装置のフリップチップギャップ幅(基板と半導体チップとの隙間)に対して平均粒径が約1/10以下、最大粒径が1/2以下である無機質充填剤:上記(A),(B),(C)成分の総量100質量部に対して50〜400質量部
を必須成分とすることを特徴とするフリップチップ型半導体装置用液状エポキシ樹脂組成物。
(A) Liquid epoxy resin,
(B) an aromatic amine curing agent,
(C) a silicone-modified epoxy resin represented by the following average composition formula (1):
Figure 2007176978
Wherein R 1 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, R is an unsubstituted or substituted monovalent hydrocarbon group containing no aliphatic unsaturated group, and X is a divalent organic group. (K and m are positive numbers that satisfy 0 ≦ k ≦ 100, 0 <m ≦ 100, and 0 <k + m ≦ 200, and n is an integer that satisfies 0 to 400.)
(D) An inorganic filler having an average particle size of about 1/10 or less and a maximum particle size of 1/2 or less with respect to the flip chip gap width (gap between the substrate and the semiconductor chip) of the semiconductor device: (A) A liquid epoxy resin composition for flip-chip type semiconductor devices, comprising 50 to 400 parts by mass as essential components with respect to 100 parts by mass of the total of components (B) and (C).
(A)液状エポキシ樹脂と(B)芳香族アミン系硬化剤との当量比〔(A)液状エポキシ樹脂のエポキシ当量/(B)芳香族アミン系硬化剤のアミン当量〕が、0.7以上1.2以下である請求項1記載の液状エポキシ樹脂組成物。   Equivalent ratio of (A) liquid epoxy resin and (B) aromatic amine curing agent [(A) epoxy equivalent of liquid epoxy resin / (B) amine equivalent of aromatic amine curing agent] is 0.7 or more The liquid epoxy resin composition according to claim 1, which is 1.2 or less. (C)シリコーン変性エポキシ樹脂の添加量が、(A)液状エポキシ樹脂と(B)芳香族アミン系硬化剤との総量100質量部に対し、0.1〜50質量部であることを特徴とする請求項1又は2記載の液状エポキシ樹脂組成物。   (C) The addition amount of the silicone-modified epoxy resin is 0.1 to 50 parts by mass with respect to 100 parts by mass of the total amount of (A) liquid epoxy resin and (B) aromatic amine curing agent. The liquid epoxy resin composition according to claim 1 or 2. 請求項1〜3のいずれか1項記載の液状エポキシ樹脂組成物の硬化物で封止したフリップチップ型半導体装置。
A flip chip type semiconductor device sealed with a cured product of the liquid epoxy resin composition according to claim 1.
JP2005373919A 2005-12-27 2005-12-27 Liquid epoxy resin composition for flip-chip semiconductor device and flip-chip semiconductor device using the same Pending JP2007176978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005373919A JP2007176978A (en) 2005-12-27 2005-12-27 Liquid epoxy resin composition for flip-chip semiconductor device and flip-chip semiconductor device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005373919A JP2007176978A (en) 2005-12-27 2005-12-27 Liquid epoxy resin composition for flip-chip semiconductor device and flip-chip semiconductor device using the same

Publications (1)

Publication Number Publication Date
JP2007176978A true JP2007176978A (en) 2007-07-12

Family

ID=38302479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005373919A Pending JP2007176978A (en) 2005-12-27 2005-12-27 Liquid epoxy resin composition for flip-chip semiconductor device and flip-chip semiconductor device using the same

Country Status (1)

Country Link
JP (1) JP2007176978A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009065034A (en) * 2007-09-07 2009-03-26 Renesas Technology Corp Manufacturing method of semiconductor device
US20100244279A1 (en) * 2009-03-31 2010-09-30 Namics Corporation Liquid resin composition for underfill, flip-chip mounted body and method for manufacturing the same
JP2011079904A (en) * 2009-10-05 2011-04-21 Hitachi Chem Co Ltd Epoxy resin composition, resin composition for seal-filling semiconductor, and semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009065034A (en) * 2007-09-07 2009-03-26 Renesas Technology Corp Manufacturing method of semiconductor device
US20100244279A1 (en) * 2009-03-31 2010-09-30 Namics Corporation Liquid resin composition for underfill, flip-chip mounted body and method for manufacturing the same
JP2011079904A (en) * 2009-10-05 2011-04-21 Hitachi Chem Co Ltd Epoxy resin composition, resin composition for seal-filling semiconductor, and semiconductor device

Similar Documents

Publication Publication Date Title
JP5502268B2 (en) Resin composition set for system-in-package semiconductor devices
JP5116152B2 (en) Resin composition for manufacturing semiconductor devices
JP4905668B2 (en) Liquid epoxy resin composition for semiconductor encapsulation and semiconductor device
JP4066174B2 (en) Liquid epoxy resin composition, flip chip type semiconductor device and sealing method thereof
JP2007302771A (en) Epoxy resin composition for sealing
JP3912515B2 (en) Liquid epoxy resin composition and semiconductor device
JP3997422B2 (en) Liquid epoxy resin composition and semiconductor device
JP3773022B2 (en) Flip chip type semiconductor device
JP2009173744A (en) Underfill agent composition
JP2010077234A (en) Liquid epoxy resin composition and semiconductor device
JP2007176978A (en) Liquid epoxy resin composition for flip-chip semiconductor device and flip-chip semiconductor device using the same
JP2010111747A (en) Underfill agent composition
JP4697476B2 (en) Liquid epoxy resin composition and flip chip type semiconductor device
JP2005146104A (en) Liquid epoxy resin composition and semiconductor device
JP3674675B2 (en) Underfill material for flip chip type semiconductor devices
JP4221585B2 (en) Liquid epoxy resin composition and semiconductor device
JP5099850B2 (en) Semiconductor element sealing composition
JP5354721B2 (en) Underfill agent composition
JP2005194502A (en) Liquid epoxy resin composition and semiconductor device
JP3867784B2 (en) Liquid epoxy resin composition and semiconductor device
JP4009853B2 (en) Liquid epoxy resin composition and flip chip type semiconductor device
JP4737364B2 (en) Liquid epoxy resin composition and semiconductor device
JP2006143775A (en) Liquid epoxy resin composition and semiconductor device having low- dielectric constant interlaminar electrical insulation film
JP2011132337A (en) Epoxy resin composition and semiconductor device
JP2006316250A (en) Liquid epoxy resin composition and semiconductor device