JP2007175688A - Artificial mineral water production method and its system - Google Patents

Artificial mineral water production method and its system Download PDF

Info

Publication number
JP2007175688A
JP2007175688A JP2005381369A JP2005381369A JP2007175688A JP 2007175688 A JP2007175688 A JP 2007175688A JP 2005381369 A JP2005381369 A JP 2005381369A JP 2005381369 A JP2005381369 A JP 2005381369A JP 2007175688 A JP2007175688 A JP 2007175688A
Authority
JP
Japan
Prior art keywords
water
artificial
mineral
line
spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005381369A
Other languages
Japanese (ja)
Inventor
Kazushi Kondo
和史 近藤
Takeo Murui
建夫 無類井
Shoichi Fukuda
章一 福田
Norio Nomura
教雄 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Aqua Solutions Co Ltd
Original Assignee
Wellthy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wellthy Corp filed Critical Wellthy Corp
Priority to JP2005381369A priority Critical patent/JP2007175688A/en
Publication of JP2007175688A publication Critical patent/JP2007175688A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Filtration Of Liquid (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an artificial mineral water production method and its system which produce artificial mineral water by extracting and collecting commercial mineral material from various waste materials generated in various water treatment processes. <P>SOLUTION: When filtration processes in various water treatment apparatuses are regenerated, the amount of water consumption is greatly suppressed by selectively adopting a proper washing method, and substances useful for forming specific mineral components are extracted and collected. A reducing agent is mixed into the artificial mineral water, which protects the useful substances from an unnecessary precipitation, and enables cyclic use as artificial mineral components. Selection of sodium thiosulfate as the reducing agent enables supply of hydrogen sulfide, which is a mineral component, at the same time. Use of sodium ascorbate as the reducing agent, and addition of copper ions enable sterilization of the artificial mineral water at the same time. A commercial mineral material, which contains no easily oxidizable or reducible mineral material, in the various waste materials generated in the various water treatment processes is used as the artificial mineral component after forming hydrogencarbonates. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

水処理工程などに於いて派生する除去成分より、有価鉱泉成分として抽出し構成成分の少なくとも一部として活用する人工鉱泉水の製造方法及びそのシステムに関する。  The present invention relates to a method and a system for manufacturing artificial spa water extracted as a valuable spa component from a removal component derived in a water treatment process and the like and utilized as at least a part of constituent components.

従来、地下水などを処理して浄化水を得る場合に発生する鉄、マンガンその他ミネラル分及び土などの排出物は、多くの場合下水道法または水質汚濁防止法による排水基準の範囲内であれば有効利用されずに廃水として処理されて来た。  Conventionally, waste such as iron, manganese and other minerals and soil generated when treating groundwater to obtain purified water is often effective if it is within the drainage standards of the Sewerage Law or Water Pollution Control Law. It has been treated as wastewater without being used.

温泉或いは鉱泉として天然の泉源が知られているが、とりわけ人工鉱泉の分野では入浴用水に泉質を入浴剤として注加する方式をはじめ、主として外部成分を有効鉱泉成分として溶解する注入方式(例えば特許文献1参照)等が知られている。
その他の例としては、イオン交換樹脂により除去された水中の硬度成分を活用する方式(例えば特許文献2参照)、岩石等から鉱泉有価物を薬品等で抽出してミネラル分を活用する方式(例えば特許文献3参照)、入浴水中に二酸化炭素ガス注入する方式(例えば特許文献4)等がある。
Natural spring sources are known as hot springs or mineral springs, but in particular in the field of artificial mineral springs, injection methods that mainly dissolve external components as effective mineral spring components, including the method of adding spring quality as a bathing agent to bathing water (for example, Patent Document 1) is known.
Other examples include a method of utilizing hardness components in water removed by an ion exchange resin (see, for example, Patent Document 2), a method of utilizing mineral content by extracting mineral resources from rocks and the like with chemicals (for example, And a method of injecting carbon dioxide gas into bathing water (for example, Patent Document 4).

これらの方法は、いずれも鉱泉の泉質を外部から添加することで人工鉱泉としている。ところが、鉱泉の中では泉質が外部からの酸化を受けないイオン状物質の場合、循環再利用を行っても泉質に変化は無いが、ガスを注入する人工鉱泉や容易に酸化され易い鉱泉成分を含有する人工鉱泉では、溶存ガスの欠落や酸化され易い傾向から泉質を定常的に補充添加し続ける必要が生じる。
容易に酸化される鉱泉泉質としては、例えば2価の鉄イオンが挙げられる。元来、地中の水中では2価の鉄イオンとして安定に存在するが、一旦状態が変化し例えば酸素や殺菌浄化剤として用いられる次亜塩素酸ソーダ等の溶存下では容易に酸化され3価の鉄イオンに変化する。
All of these methods make artificial springs by adding the spring quality from the outside. However, in the case of mineral springs, if the spring quality is an ionic substance that is not subject to external oxidation, the spring quality will not change even if it is recycled, but the artificial spring that injects gas or the mineral spring that is easily oxidized In an artificial spring containing components, it is necessary to constantly replenish and add spring quality because of the lack of dissolved gas and the tendency to be oxidized.
Examples of the mineral spring that can be easily oxidized include divalent iron ions. Originally, it is stably present as divalent iron ions in underground water, but once the state changes, it is easily oxidized in the presence of oxygen or sodium hypochlorite used as a sterilizing and purifying agent, and is trivalent. Changes to iron ions.

また、3価の鉄イオンはpHが4以上の領域では茶褐色の水酸化鉄或いは酸化鉄として析出することが知られている。これらの状態下にある鉄化合物を再度溶解するには、pHを2以下(好ましくはpH1程度)の如く強酸性にて加熱等の手段を用いても部分的にしか溶解しない程度に難溶解物質となる。
一方、除外物質の排出例として、各種の水処理工程では上記の鉱泉成分として有効に活用可能な有価濃縮物質を多量に含有する廃材が存在する。例えば、地下水を処理する場合の砂濾過工程における逆洗閉鎖材、或いは高度処理に於ける膜濾過工程で排出される逆洗閉鎖材として鉄化合物があげられる。地下水中では、鉄分は通常2価の鉄イオン状態で存在するがポンプで揚水すると酸化域に移行し、また処理剤である次亜塩素酸ソーダなどを注入すると容易に酸化され3価の鉄イオンに変化する。
Further, it is known that trivalent iron ions are precipitated as brown iron hydroxide or iron oxide in a pH range of 4 or higher. In order to re-dissolve the iron compound under these conditions, it is a hardly soluble substance to such an extent that it is only partially dissolved even by using means such as heating at a strongly acidic pH of 2 or less (preferably about pH 1). It becomes.
On the other hand, as examples of discharge of excluded substances, there are waste materials containing a large amount of valuable concentrated substances that can be effectively used as the above-mentioned mineral spring components in various water treatment processes. For example, an iron compound can be used as a backwash closure material in a sand filtration process when treating groundwater or a backwash closure material discharged in a membrane filtration process in advanced treatment. In groundwater, iron is normally present in the form of divalent iron ions, but when pumped, it moves to the oxidation zone, and when it is injected with sodium hypochlorite as a treatment agent, it is easily oxidized and trivalent iron ions. To change.

通常、高深度の地下水のpHは5.8〜8.6でこの領域下の鉄分は、一般的には既に酸化されていて上述の通り茶褐色の水酸化鉄または酸化鉄として存在し、処理工程の砂濾過或いは高度水処理の膜濾過工程等で濾過除去可能である。
地下水等を処理し浄化水を得る際に発生する濃縮廃棄物中には、人工鉱泉の泉質として活用可能な有用な物質が存在し(例えば非特許文献1参照)、これらの成分を泉質として溶解状態で供給出来れば複数の泉質を含む人工鉱泉の提供が可能となる。
Usually, the pH of deep groundwater is 5.8 to 8.6, and the iron in this region is generally already oxidized and exists as brown iron hydroxide or iron oxide as described above. It can be removed by sand filtration or membrane filtration process of advanced water treatment.
There are useful substances that can be used as the spring quality of artificial springs in the concentrated waste that is generated when groundwater is treated to obtain purified water (for example, see Non-Patent Document 1). If it can be supplied in a dissolved state, it becomes possible to provide an artificial spring containing a plurality of spring qualities.

特開2003−102802号公報JP 2003-102802 A 特開2003−53340号公報JP 2003-53340 A 特開2005−124898号公報JP 2005-124898 A 特開平7−313856号公報JP-A-7-313856 鉱泉分析法指針(改訂)P.1−P.2 平成14年3月 環境省自然環境局Mineral Spring Analysis Method Guidelines (Revised) 1-P. 2 March 2002 Ministry of the Environment, Natural Environment Bureau

地下水等を濾過処理して浄化水を得る場合、砂濾過層の濾過残渣等による閉塞に対し逆洗を行い濾過機能の回復を計る。逆洗の目的は、濾過供給水中に含有される固形物量を一定の想定状態に低減維持する為で、濾過層には相当量の閉鎖材が発生する。このような機能を有する他の工程、例えば高度処理を行う膜濾過工程においても然りである。特に、留意しなければこれらの閉鎖材は通常単なる廃棄物として処理される。
容易に酸化されてしまう鉱泉成分を溶解している人工鉱泉は、泉質を定常的に供給または添加し続ける必要があり、特に鉄化合物ではpH2以下の溶液でなければ析出し泉質を
定常的に供給不可で、浴用水として循環再利用されていない。
単なる廃棄物として処理される鉄化合物を溶解し、pH4.0〜5.0の人工鉱泉としての提供が可能となれば、有価物質の有効利用として活用できる。
When groundwater is filtered to obtain purified water, backwashing is performed against clogging of the sand filtration layer due to filtration residue, etc., and the filtration function is restored. The purpose of backwashing is to reduce and maintain the amount of solids contained in the filtered feed water to a certain assumed state, and a considerable amount of closure material is generated in the filtration layer. This also applies to other processes having such a function, for example, a membrane filtration process for performing advanced treatment. In particular, unless otherwise noted, these closures are usually treated as mere waste.
Artificial springs that dissolve easily oxidized mineral spring components need to constantly supply or add spring quality, especially with iron compounds, if they are not solutions with a pH of 2 or less, they will precipitate and the quality of the spring will be constant. The water is not recyclable and reused as bath water.
If an iron compound to be treated as mere waste is dissolved and can be provided as an artificial spring having a pH of 4.0 to 5.0, it can be used for effective utilization of valuable materials.

一方、地下水の種類の中には硬度の高いものが多く存在し、これらを浴用水として使用すると洗剤の泡立ちが悪い傾向になる。この原因は、洗剤と硬度成分が反応し金属石鹸を形成するもので、この金属石鹸が皮膚に残留し毛穴を塞ぎ皮膚の新陳代謝を阻害し皮膚の乾燥やがさつきを起こす可能性がある。
硬水の対策として、地下水の軟水化処理手段が用いられ、この処理水を浴用水として活用する方法が多く報告されている。ところが、この軟水化処理工程において排出される再生処理中にも有価物が含まれているが、単なる廃棄物とし処理されている。
On the other hand, there are many types of groundwater with high hardness, and when these are used as bath water, the foaming of detergent tends to be poor. This is because the detergent and the hardness component react to form a metal soap, which may remain on the skin, block pores, inhibit skin metabolism, and cause dryness and roughness of the skin.
As countermeasures for hard water, means for softening groundwater is used, and many methods for utilizing this treated water as bath water have been reported. However, although valuables are included in the regeneration process discharged in this water softening process, it is treated as a simple waste.

これらの再生排水中には、カルシウム・マグネシウム等の水硬度成分が存在し、それらは単独では鉱泉泉質に定義されていないものの、炭酸水素塩とすることで鉱泉に定義されるカルシウムまたはマグネシウム炭酸水素塩泉となり得る。
軟水化処理水は、あがり用水或いはあがり用湯等として活用され、一方浴槽水としてカルシウムまたはマグネシウム炭酸水素塩で構成する鉱泉水が提供可能となれば、従来活用されず廃棄物とされたものが有価物質として有効利用できる。
In these reclaimed wastewater, there are water hardness components such as calcium and magnesium, and these are not defined alone in the quality of the spring, but they are calcium carbonate or magnesium carbonate that is defined in the mineral spring as a bicarbonate. It can be a hydrogen salt spring.
Soft water can be used as rising water or hot water for hot water, etc. On the other hand, if it is possible to provide mineral water composed of calcium or magnesium hydrogen carbonate as bath water, it will not be used in the past and will become waste. It can be used effectively as a valuable material.

このような観点に基づき、本発明の主目的は例えば地下水等を処理して浄化水を得る際に発生する逆洗閉鎖材等の不要物質より有価物質を抽出して複数の泉質を含む人工鉱泉水の製造方法及びそのシステムを提供することにある。
このためには、用水を処理し被処理水を製造する工程において、一方では発生する鉱泉成分を豊富に含んだ濃縮物より有価物質を取り出して人工鉱泉に活用し、他方では装置の再生に必要とされる被処理水量を少量とし低コスト化の達成、並びに逆浸透膜の濃縮水や軟水装置の再生液等に含まれるカルシウム・マグネシウム等の水硬度成分を利用し炭酸水素塩を含む人工鉱泉として活用を図る事が出来る。
Based on such a viewpoint, the main object of the present invention is to extract a valuable substance from an unnecessary substance such as a backwash closure material generated when, for example, groundwater is processed to obtain purified water, and to include artificial springs containing a plurality of spring qualities. It is in providing the manufacturing method and its system of a mineral spring water.
To this end, in the process of treating water and producing treated water, on the one hand, valuable materials are taken out from the concentrate containing abundant minerals and used as artificial springs, and on the other hand, it is necessary to regenerate the equipment. Achieving low cost by reducing the amount of water to be treated and artificial mineral springs containing hydrogen carbonate using water hardness components such as calcium and magnesium contained in concentrated water of reverse osmosis membranes and regenerated liquids of soft water devices Can be used as.

本発明の他の目的として、人工鉱泉製造装置に還元剤注入装置および電位差滴定装置を備え人工鉱泉中の還元物質濃度を一定に管理し、人工鉱泉中のpHおよび水温を一定に管理することにより、自動的に酸化され易い鉱泉有価物質を安定状態に管理し、浴用水として供給することにある。併せて、全有機炭素及び全窒素を監視する如くすれば、浴槽水の汚染状態をコントロールして一定の衛生水準を保ち、泉質を自由にコントロールする浴槽水総合循環監視システムとして活用可能とした点にある。  As another object of the present invention, the artificial spa production device is equipped with a reducing agent injection device and a potentiometric titration device, and the reducing substance concentration in the artificial spa is controlled to be constant, and the pH and water temperature in the artificial spa are controlled to be constant. In addition, it is to manage the spa valuable material which is easily oxidized automatically in a stable state and supply it as bath water. At the same time, by monitoring total organic carbon and total nitrogen, it can be used as a comprehensive bath water circulation monitoring system that controls the contamination of bath water, maintains a certain level of hygiene, and freely controls spring quality. In the point.

本発明者等は、このような観点から上記目的を達成するため鋭意研究し、従来廃棄物としてのみ対象とされた各種処理工程での副生物質を有効に活用し得る人工鉱泉製造システムを構築し得ることを確認し本発明に到達した。ここに言う副生物質とは、例えば公衆浴場用水、浄水などを製造する過程に発生する砂濾過、膜濾過、逆浸透膜濾過、電気透析膜、イオン交換などより発生する鉱泉成分を豊富に含んだ濃縮水を溶解または抽出を行う事により得られる有価物質を指す。
本発明の要旨とするところは、第一の発明として鉱泉成分を用いる人工鉱泉の水質構成に際し、各種水処理工程にて派生する廃雑物より鉱泉有価物質を抽出採取して浴水の調整に優先的に活用し、且つ廃棄物負荷の軽減を図ることを特徴とする人工鉱泉水の製造方法及びそのシステムにある。
The present inventors have conducted intensive research in order to achieve the above-mentioned object from such a viewpoint, and constructed an artificial spa manufacturing system that can effectively use by-products in various processing steps that have been targeted only as waste in the past. It has been confirmed that the present invention can be achieved. By-product substances mentioned here include, for example, abundant mineral components generated by sand filtration, membrane filtration, reverse osmosis membrane filtration, electrodialysis membrane, ion exchange, etc., which are generated in the process of producing public bath water, purified water, etc. It refers to valuable substances obtained by dissolving or extracting concentrated water.
The gist of the present invention is to adjust the bath water by extracting and collecting mineral valuable materials from waste materials derived in various water treatment processes when the composition of the artificial mineral water using the mineral spring components as the first invention. The present invention provides a method and system for manufacturing artificial mineral water characterized by preferential use and reduction of waste load.

本発明で言う鉱泉有価物質としては、遊離二酸化炭素、リチウムイオン、ストロンチウムイオン、バリウムイオン、銅イオンおよび化合物、鉄イオンおよび鉄化合物、マンガンイオンおよびマンガン化合物、アルミニウムイオンおよびアルミニウム化合物、水素イオン、臭化物イオン、ヨウ化物イオン、フッ化物イオン、炭酸水素ナトリウムイオン、カルシウム、マグネシウム等の硬度成分、硫酸イオン、塩素イオン等である。  Mineral spring materials referred to in the present invention include free carbon dioxide, lithium ions, strontium ions, barium ions, copper ions and compounds, iron ions and iron compounds, manganese ions and manganese compounds, aluminum ions and aluminum compounds, hydrogen ions, bromides Hardness components such as ions, iodide ions, fluoride ions, sodium hydrogen carbonate ions, calcium and magnesium, sulfate ions, chlorine ions and the like.

第二の発明は、第一の発明に於ける水処理工程が地下水を浄化して飲料水を製造するに際し、砂濾過工程及び/又は膜濾過工程に於ける濾過閉鎖材より鉱泉有価物質を抽出採取して浴水の調整を行う人工鉱泉水の製造方法及びそのシステムにある。
ここに言う濾過閉鎖材とは、濾過工程で濾過材の機能回復に逆洗が行われるが、この際に排出される目詰まり固形物を指し、濾過供給用水中に含有されるSS分を一定の想定状態に低減維持する為に行われるもので、濾過層では相当量の閉鎖材が発生する。このような機能を有する他の工程、例えば高度処理を行う膜濾過工程においても然りである。
In the second invention, when the water treatment process in the first invention purifies the groundwater to produce drinking water, the mineral valuable material is extracted from the filter closure material in the sand filtration process and / or the membrane filtration process. It is in the manufacturing method and system of the artificial mineral water which collects and adjusts bath water.
The filter closure material referred to here refers to clogged solid matter discharged at this time in order to recover the function of the filtration material in the filtration process, and the SS content contained in the filtration supply water is constant. In order to reduce and maintain the estimated state, a considerable amount of closure material is generated in the filtration layer. This also applies to other processes having such a function, for example, a membrane filtration process for performing advanced treatment.

第三の発明は、上記濾過閉鎖材の処理手段として、水による逆洗以外に薬洗手段を設営した濾過工程を組み込む事を特徴とする人工鉱泉水の製造方法及びそのシステムにある。
用水処理に於いて、逆洗工程を採用する場合には処理水を大量に消費する。場合により処理水を浪費することに繋がるが、これを薬剤処理にて代替し優先して有価物質を抽出回収するのが好ましい。
即ち、例えば砂濾過工程に処理水を用いて逆洗する場合、逆洗水を糸巻きフィルターなどにより濾過し原水槽へ返送し、糸巻きフィルターを直接酸またはアルカリにより処理性能を回復させる。酸と還元剤を同時に注入すれば、非常に溶解しにくい水酸化鉄または酸化鉄などの鉄イオンを還元し溶解抽出することが好ましい。
According to a third aspect of the present invention, there is provided a method and system for producing artificial mineral water characterized by incorporating a filtration step in which chemical washing means is provided in addition to backwashing with water as the treatment means for the filter closure material.
In the water treatment, a large amount of treated water is consumed when a backwash process is employed. In some cases, it leads to waste of treated water, but it is preferable to extract and recover valuable substances by substituting this with chemical treatment.
That is, for example, in the case of backwashing using treated water in the sand filtration step, the backwash water is filtered through a thread-wound filter or the like and returned to the raw water tank, and the performance of the thread-wound filter is recovered directly by acid or alkali. If an acid and a reducing agent are injected at the same time, it is preferable to reduce and dissolve and extract iron ions such as iron hydroxide or iron oxide which are very difficult to dissolve.

また、砂濾過工程に処理水を用いて逆洗しない場合、直接酸またはアルカリにより処理性能を回復させるか、酸と還元剤を同時に注入することで非常に溶解しにくい水酸化鉄或いは酸化鉄を2価の鉄に還元し溶解抽出すること出来る。
ここに言う酸とは、硫酸、塩酸、クエン酸、炭酸等の酸を指し、アルカリは、水酸化ナトリウムを指し、糸巻きフィルターとは、例えばポリプロピレン製、ポリスチレン製などの糸巻きフィルターを指す。
還元剤としてはチオ硫酸ナトリウム、亜硫酸ナトリウム、アスコルビン酸ナトリウム、シュウ酸ナトリウム等の還元剤を指す。閉塞材が鉄化合物を含む場合には、酸性溶液を用い再生を行うことが好ましく還元剤としてチオ硫酸ナトリウムを併用する。
特に、高度処理に於ける膜濾過工程を再生する場合には、逆洗を行わず上述の酸、アルカリ、還元剤いずれかまたは組合せて薬剤処理し有価物質を回収するのが好ましい。
In addition, if the sand filtration process is not back-washed with treated water, the treatment performance can be recovered directly by acid or alkali, or iron hydroxide or iron oxide that is very difficult to dissolve by injecting acid and reducing agent at the same time. It can be reduced to divalent iron and dissolved and extracted.
The acid referred to here refers to an acid such as sulfuric acid, hydrochloric acid, citric acid, and carbonic acid, the alkali refers to sodium hydroxide, and the bobbin filter refers to a bobbin filter made of, for example, polypropylene or polystyrene.
Examples of the reducing agent include reducing agents such as sodium thiosulfate, sodium sulfite, sodium ascorbate, and sodium oxalate. When the occlusive material contains an iron compound, regeneration is preferably performed using an acidic solution, and sodium thiosulfate is used in combination as a reducing agent.
In particular, when the membrane filtration step in the advanced treatment is regenerated, it is preferable to recover the valuable substance by performing chemical treatment with any one or combination of the above acid, alkali and reducing agent without performing backwashing.

第四の発明は、鉱泉有価物質の採取を地下水のイオン交換樹脂による軟水化処理工程に於ける再生水より発生する硬度成分を活用し、更に浴水のpHを7.0以下に保持しながら二酸化炭素を溶解し炭酸水素塩を含む浴槽用水として提供する人工鉱泉水の製造方法及びそのシステムにある。
用水をイオン交換樹脂などにより軟水化処理する場合、軟水をあがり用水に使用し、軟水装置の再生に際しては発生する硬度成分を含む水のpHを7.0以下に保持しながら二酸化炭素を溶解し炭酸水素塩を多く含む浴槽用水として提供することが出来る。
また、逆浸透膜または電気透析膜により処理する場合濃縮水のpHを7.0以下に保持しながら二酸化炭素を溶解し炭酸水素塩を多く含む浴槽用水として提供することが出来る。
The fourth invention utilizes mineral components generated from reclaimed water in the softening process of groundwater ion-exchange resin to collect valuable mineral materials, and further maintains the pH of the bath water at 7.0 or less. It exists in the manufacturing method and system of the artificial mineral water which melt | dissolves carbon and provides as water for bathtubs containing hydrogencarbonate.
When water is softened with ion exchange resin or the like, soft water is used as the water for raising water, and carbon dioxide is dissolved while maintaining the pH of water containing the hardness component generated at the time of regeneration of the water softener. It can be provided as water for bathtubs containing a large amount of bicarbonate.
Moreover, when processing by a reverse osmosis membrane or an electrodialysis membrane, it can provide as water for bathtubs which melt | dissolve a carbon dioxide and hold | maintain much hydrogencarbonate, maintaining the pH of concentrated water at 7.0 or less.

第五の発明は、人工鉱泉製造システムとして浴槽と調整槽、浴槽内の水と調整槽の水を循環する流路、これらの用水を強制的に循環させる循環手段、物理的に濁質物質の除去を行う濾過手段並びに酸化または還元剤注入装置および電位差滴定装置より構成され、且つ人工鉱泉中の酸化または還元剤濃度を一定に管理する手段、酸またはアルカリ注入装置およびpH装置を備え人工鉱泉中のpHおよび水温を一定に管理する手段と、循環水全体の全有機炭素および全窒素を分析する機能を備える事を特徴とする人工鉱泉水の製造方法及びそのシステムにある。  The fifth invention is an artificial spa manufacturing system in which a bathtub and an adjustment tank, a flow path for circulating water in the bathtub and the water in the adjustment tank, a circulation means for forcibly circulating these waters, An artificial spa comprising a filtering means for performing removal, an oxidizing or reducing agent injection device and a potentiometric titration device, and having means for controlling the concentration of oxidizing or reducing agent in the artificial spring constant, an acid or alkali injection device and a pH device There is provided a method and a system for producing artificial mineral water characterized by having a means for uniformly controlling the pH and water temperature of the water and a function of analyzing the total organic carbon and total nitrogen of the entire circulating water.

例えば泉質に容易に酸化される物質が含まれる場合、還元剤注入装置および電位差滴定装置を備え人工鉱泉中の還元物質濃度を一定に管理し循環利用を可能とし、膜濾過器により細菌を除去し循環利用することができる。
また泉質に容易に酸化される物質が含まれない場合、アルカリを添加しながらpHを調整し浴用水に散気することで炭酸水素塩を形成させ、酸化剤を注入することで循環浴揚水中に含まれる人間由来の有機物の分解および除菌を行い浴槽に供給する前に活性炭により酸化剤を除去しその後膜濾過することで除菌した人工鉱泉を浴槽に供給することができる。
For example, when substances that easily oxidize are contained in the spring quality, a reducing agent injection device and potentiometric titration device are provided to maintain a constant concentration of the reducing material in the artificial spring, enabling circulation, and removing bacteria with a membrane filter Can be recycled.
In addition, if the spring quality does not contain substances that easily oxidize, adjust the pH while adding alkali to form a bicarbonate by aeration in the bath water and inject the oxidant into the circulating bath pumping The artificial mineral spring sterilized by decomposing and sterilizing human-derived organic substances contained therein and removing the oxidizing agent with activated carbon before supplying to the bathtub and then performing membrane filtration can be supplied to the bathtub.

第六の発明は、人工鉱泉製造システムとして還元剤であるチオ硫酸ナトリウムを用い人工鉱泉のpHを酸性に管理することで硫化水素を発生させることを特徴とする人工鉱泉水の製造方法及びそのシステムにある。  The sixth invention is a method and system for producing artificial spa water characterized in that hydrogen sulfide is generated by using sodium thiosulfate as a reducing agent as an artificial spa manufacturing system to control the pH of the artificial spa acidic. It is in.

第七の発明は、第五の発明に於いて還元剤を採用するに際し、更に銅化合物を介在せしめることを特徴とする人工鉱泉水のシステムにある。
ここに言う銅化合物とは、銅、硫酸銅、塩化銅などの物質を指し、1〜20mg/Lの銅化合物の濃度範囲にすることが好ましい。また、還元剤としてはアスコルビン酸ナトリウム、シュウ酸ナトリウムなどの採用が好ましい。
本発明では、各種処理工程として例えば公衆浴場用水、飲料用の浄水、雑用水、工業用水、純水、超純水等の水処理工程を指し、具体的には砂濾過、膜濾過、逆浸透膜濾過、電気透析膜、イオン交換等での閉鎖材を対象とする。
The seventh invention is an artificial mineral water system characterized by further interposing a copper compound when the reducing agent is employed in the fifth invention.
The copper compound mentioned here refers to a substance such as copper, copper sulfate, copper chloride, etc., and is preferably in the concentration range of 1 to 20 mg / L of the copper compound. As the reducing agent, it is preferable to use sodium ascorbate, sodium oxalate, or the like.
In the present invention, various treatment processes include water treatment processes such as water for public baths, purified water for drinks, miscellaneous water, industrial water, pure water, ultrapure water, specifically sand filtration, membrane filtration, reverse osmosis. Targeting closure materials for membrane filtration, electrodialysis membrane, ion exchange, etc.

本発明は、従来着目されていない水処理工程において発生する鉱泉成分を豊富に含んだ濃縮水を有効利用した人工鉱泉の提供を可能とする。
水処理工程に於いては、被処理水の処理工程内に於ける使用量を大幅に削減出来る点で水処理コストを改善し、各種水処理工程にて派生する廃雑物より鉱泉有価物質を抽出採取して人口鉱泉浴水の調整に優先的に活用し、且つ廃棄物負荷の軽減を図り、鉱泉成分を劣化させることなく安定的に循環供給することが出来る。
温泉等に於いても天然資源の枯渇問題や有害細菌の発生等、この対応に循環再利用或いは希釈供給が行なわれる等、温泉や鉱泉の本来有する効能の保全を図る幾多の努力がなされている。このような傾向は、今後益々激しくなる傾向が予想され自然由来に近い人工鉱泉志向が求められている。
このような要望に直接応える本発明は、常時安全に且つ泉質濃度を一定に保持できる人工鉱泉の提供であり、本発明の効果は工業的に著大であるものと確信する。
The present invention makes it possible to provide an artificial spa that effectively uses concentrated water containing abundant mineral components generated in a water treatment process that has not been focused on in the past.
In the water treatment process, the amount of water used in the treatment process of treated water can be greatly reduced, improving water treatment costs, and using mineral resources from mineral waste derived from various water treatment processes. Extracted and collected and used preferentially for the adjustment of artificial mineral bath water, and the waste load can be reduced, so that the mineral components can be stably circulated without deterioration.
In hot springs, many efforts are being made to preserve the original effects of hot springs and mineral springs, such as the problem of depletion of natural resources and the generation of harmful bacteria. . Such a trend is expected to become more and more intense in the future, and there is a demand for artificial spa orientation that is close to natural origin.
The present invention that directly meets such a demand is to provide an artificial mineral spring that can always keep the spring concentration at a constant level, and it is believed that the effects of the present invention are industrially significant.

以下、本発明の実施の形態を図1〜図4に基づいて説明する。
図1は、通常の井戸水より飲料水へ浄化する標準工程に基づき作成した代表例をフローシートに示す。更に、図1では水処理工程などに於いて派生する除去成分より、有価鉱泉成分として抽出し鉱泉々質の一部として活用する人工鉱泉水の製造方法及びそのシステムのフローシートを示すものである。
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
FIG. 1 is a flow sheet showing a typical example created based on a standard process for purifying normal well water to drinking water. Further, FIG. 1 shows a method for producing artificial spa water that is extracted as a valuable spa component from a removed component derived in a water treatment process and utilized as part of the quality of the spa, and a flow sheet of the system. .

即ち、井戸(W)の地下水を井戸ポンプ(P−1.1)により原水供給ライン1(L−1.1)を通じ揚水し、次亜塩素酸ソーダ12%溶液を充填した酸化剤タンク1(T−1.1)より酸化剤注入ライン(L−1.2)を通じ地下水にインラインにて注入し、原水槽(T−1.2)に供給した。原水ポンプ1(P−1.2)により原水供給ライン2(L−1.3)を通じ砂濾過塔(SF)上部に原水を供給し、下部から処理水を得る。
次いで濾過水供給ライン(L−1.4)を通じ膜モジュール(MM)に供給し、膜濾過水は膜濾過水供給ライン(L−1.5)を通じ処理水槽(T−1.3)に貯留した。貯留した処理水は、貯水槽(T−1.4)の水位が低下すると処理水供給ポンプ(P−1.3)により処理水供給ライン1(L−1.6)を通じ供給し飲料水として使用するものである。
That is, the groundwater in the well (W) is pumped through the raw water supply line 1 (L-1.1) by the well pump (P-1.1), and the oxidant tank 1 (12% sodium hypochlorite solution is filled) From T-1.1), it was injected in-line into groundwater through an oxidant injection line (L-1.2) and supplied to the raw water tank (T-1.2). Raw water is supplied to the upper part of the sand filtration tower (SF) through the raw water supply line 2 (L-1.3) by the raw water pump 1 (P-1.2), and treated water is obtained from the lower part.
Next, it is supplied to the membrane module (MM) through the filtered water supply line (L-1.4), and the membrane filtered water is stored in the treated water tank (T-1.3) through the membrane filtered water supply line (L-1.5). did. The stored treated water is supplied as drinking water through the treated water supply line 1 (L-1.6) by the treated water supply pump (P-1.3) when the water level of the water storage tank (T-1.4) decreases. It is what you use.

以下、図1の例を活用して実施例1を詳説する。
原水を6,000L通水後、原水ポンプ1(P−1.2)を停止し、返送回路のみのバルブを開き、処理水槽(T−1.3)より洗浄水供給ポンプ(P−1.4)を介し、洗浄水供給ライン(L−1.7)を経て砂濾過塔(SF)下部に処理水を10L/分で通水し再生を開始した。
鉱泉有価物を高濃度に含んだ洗浄水は、砂濾過塔(SF)上部より洗浄水返送ライン1(L−1.8)、糸巻きフィルター(F−1.1)、洗浄水返送ライン2(L−1.9)、洗浄水返送ライン3(L−1.10)、洗浄水返送ライン4(L−1.11)を通じ原水槽(T−1.2)に移送した。
Hereinafter, the first embodiment will be described in detail using the example of FIG.
After passing 6,000 L of raw water, the raw water pump 1 (P-1.2) is stopped, the valve of the return circuit only is opened, and the washing water supply pump (P-1. Through 4), through the washing water supply line (L-1.7), treated water was passed through the lower part of the sand filtration tower (SF) at 10 L / min to start regeneration.
Washing water containing mineral minerals at a high concentration is supplied from the top of the sand filtration tower (SF) to the washing water return line 1 (L-1.8), the spool filter (F-1.1), and the washing water return line 2 ( L-1.9), the washing water return line 3 (L-1.10), and the washing water return line 4 (L-1.11) were transferred to the raw water tank (T-1.2).

洗浄水を100L通水後、洗浄水供給ポンプ(P−1.4)を停止し、循環ポンプ1(P−1.5)を稼動し原水槽(T−1.2)より原水を洗浄水返送ライン4(L−1.11)、抽出ライン1(L−1.12)、洗浄水返送ライン1(L−1.8)、洗浄水返送ライン2(L−1.9)、抽出ライン2(L−1.13)を通じ循環タンク1(T−1.5)をクッションタンクとして原水を10L貯留し循環ポンプ1(P−1.5)を停止した。  After 100 L of washing water has passed, stop the washing water supply pump (P-1.4), operate the circulation pump 1 (P-1.5), and wash the raw water from the raw water tank (T-1.2). Return line 4 (L-1.11), Extraction line 1 (L-1.12), Wash water return line 1 (L-1.8), Wash water return line 2 (L-1.9), Extraction line Through 2 (L-1.13), 10 L of raw water was stored using the circulation tank 1 (T-1.5) as a cushion tank, and the circulation pump 1 (P-1.5) was stopped.

循環ポンプ1(P−1.5)を再度稼動し、洗浄水返送ライン1(L−1.8)、洗浄水返送ライン2(L−1.9)、洗浄水返送ライン3(L−1.10)、抽出ライン1(L−1.12)の管路で原水を循環させながら抽出薬液の注入を行った。
即ち、チオ硫酸ナトリウム1%溶液を充填した還元剤タンク1(T−1.6)より還元剤注入ポンプ1(P−1.6)を介し還元剤注入ライン1(L−1.14)を通じ還元剤をインラインにて注入した。また、98%硫酸を充填した硫酸タンク1(T−1.7)より、硫酸注入ポンプ1(P−1.7)を介し硫酸注入ライン1(L−1.15)を経て硫酸を注入した。得られた鉱泉有価物抽出液は、還元剤濃度48mg/L、pH3.0を示した。
Circulation pump 1 (P-1.5) is operated again, washing water return line 1 (L-1.8), washing water return line 2 (L-1.9), washing water return line 3 (L-1 10), the extraction chemical solution was injected while the raw water was circulated through the pipeline of the extraction line 1 (L-1.12).
That is, from the reducing agent tank 1 (T-1.6) filled with a 1% sodium thiosulfate solution, the reducing agent injection line 1 (L-1.14) is passed through the reducing agent injection pump 1 (P-1.6). The reducing agent was injected in-line. Also, sulfuric acid was injected from a sulfuric acid tank 1 (T-1.7) filled with 98% sulfuric acid via a sulfuric acid injection pump 1 (P-1.7) via a sulfuric acid injection line 1 (L-1.15). . The obtained mineral spring extract showed a reducing agent concentration of 48 mg / L and pH 3.0.

上記管路で鉱泉有価物抽出液を5分間循環抽出し、循環ポンプ1(P−1.5)を介し循環系内並びにクッションとした循環タンク1(T−1.5)内に貯留する鉱泉有価物抽出液を、抽出ライン2(L−1.13)、洗浄水返送ライン3(L−1.10)、抽出ライン1(L1.12)、洗浄水返送ライン1(L−1.8)、人工鉱泉源泉供給ライン1(L−1.16)を経て人工鉱泉源泉タンク(T−1.8)に15L供給し循環ポンプ1(P−1.5)を停止した。  The mineral spring extract is circulated and extracted from the above pipeline for 5 minutes and stored in the circulation tank 1 (T-1.5) in the circulation system and as a cushion via the circulation pump 1 (P-1.5). Extract the valuable extract from the extraction line 2 (L-1.13), the washing water return line 3 (L-1.10), the extraction line 1 (L1.12), and the washing water return line 1 (L-1.8). ), 15 L was supplied to the artificial spring source tank (T-1.8) via the artificial spring source supply line 1 (L-1.16), and the circulation pump 1 (P-1.5) was stopped.

次いで再度循環ポンプ1(P−1.5)を介し原水を原水槽(T−1.2)から洗浄水返送ライン4(L−1.11)、抽出ライン1(L−1.12)、洗浄水返送ライン1(L−1.8)、洗浄水返送ライン2(L−1.9)、抽出ライン2(L−1.13)を通じ循環タンク1(T−1.5)に原水を10L貯留し循環ポンプ1(P−1.5)を停止した。抽出工程同様に抽出経路を1分間循環洗浄した後、洗浄液を鉱泉有価物抽出液と同様に人工鉱泉源泉タンク(T−1.8)に15L供給し循環ポンプ1(P−1.5)を停止した。本人工鉱泉源泉は、pH4.1.鉄濃度0.9g/L、マンガン濃度30mg/Lであった。  Next, the raw water is again returned from the raw water tank (T-1.2) through the circulation pump 1 (P-1.5) to the washing water return line 4 (L-1.11), the extraction line 1 (L-1.12), Raw water is supplied to the circulation tank 1 (T-1.5) through the washing water return line 1 (L-1.8), the washing water return line 2 (L-1.9), and the extraction line 2 (L-1.13). 10 L was stored, and circulation pump 1 (P-1.5) was stopped. After the circulation of the extraction route for 1 minute as in the extraction process, 15 L of the cleaning liquid is supplied to the artificial spring source tank (T-1.8) in the same manner as the mineral valuables extract, and the circulation pump 1 (P-1.5) is supplied. Stopped. This artificial mineral source has a pH of 4.1. The iron concentration was 0.9 g / L and the manganese concentration was 30 mg / L.

人工鉱泉源泉供給ポンプ1(P−1.8)を介し源泉を人工鉱泉源泉供給ライン2(L−1.17)を経て濾過器(F−1.2)に通液濾過し、人工鉱泉20Lを調整槽1(T−1.9)に貯留した。併せて砂濾過処理水供給ライン2(L−1.18)より480Lを調整槽1(T−1.9)に供給し人工鉱泉源泉と混合した。  Through the artificial spring source supply pump 1 (P-1.8), the source is filtered through the artificial spring source supply line 2 (L-1.17) to the filter (F-1.2), and the artificial spring 20L. Was stored in the adjustment tank 1 (T-1.9). In addition, 480 L was supplied to the adjustment tank 1 (T-1.9) from the sand filtration treated water supply line 2 (L-1.18) and mixed with the artificial mineral spring source.

pH計1(M−1.1)および電位差滴定装置(M−1.2)、およびTOC・TN計(M−1.3)によりpH、水温、還元剤濃度、TOC、TNを計測しコントローラー(C)により還元剤濃度1mg/L以上、pH4.5.水温40℃に管理した。各条件の調整は、以下の通り行った。
▲1▼ 還元剤:1%チオ硫酸ナトリウム溶液を充填した還元剤タンク2(T−1.10)より還元剤注入ライン2(L−1.19)を経て調整槽1(T−1.9)へ添加した。
▲2▼ pH:10%水酸化ナトリウム溶液を充填した水酸化ナトリウムタンク1(T−1.11)より水酸化ナトリウム供給ライン(L−1.20)を経て調整槽1(T−1.9)へ添加した。
▲3▼ 水温:人工鉱泉循環ポンプ1(P−1.9)を介し人工鉱泉循環ライン1(L−1.21)、人工鉱泉循環ライン2(L−1.22)を経て三方バルブ(V)に供給し水温が低い場合人工鉱泉加温ライン1(L−1.23)を経由しボイラー(H)に供給し、高い場合人工鉱泉循環ライン3(L−1.24)に供給し水温を調整した。
▲4▼ ▲4▼TOC:新規に調整した人工鉱泉のTOCを測定し、使用1日毎のTOCと比較し200mg/L増加したら交換することとした。▲5▼TN:新規に調整した人工鉱泉のTNを測定し、使用1日毎のTNと比較し50mg/L増加したら交換した。
Controller that measures pH, water temperature, reducing agent concentration, TOC, TN with pH meter 1 (M-1.1), potentiometric titrator (M-1.2), and TOC / TN meter (M-1.3) According to (C), the reducing agent concentration is 1 mg / L or more, pH 4.5. The water temperature was controlled at 40 ° C. Adjustment of each condition was performed as follows.
(1) Reducing agent: From the reducing agent tank 2 (T-1.10) filled with 1% sodium thiosulfate solution, through the reducing agent injection line 2 (L-1.19), the adjustment tank 1 (T-1.9). ).
(2) pH: Adjusting tank 1 (T-1.9) from a sodium hydroxide tank 1 (T-1.11) filled with a 10% sodium hydroxide solution through a sodium hydroxide supply line (L-1.20). ).
(3) Water temperature: Three-way valve (V) via artificial spring circulation line 1 (L-1.21) and artificial spring circulation line 2 (L-1.22) via artificial spring circulation pump 1 (P-1.9) When the water temperature is low, it is supplied to the boiler (H) via the artificial spa heating line 1 (L-1.23), and when it is high, the water temperature is supplied to the artificial spa circulation line 3 (L-1.24). Adjusted.
(4) (4) TOC: The TOC of a newly prepared artificial spring was measured, and it was decided to replace the TOC when it was increased by 200 mg / L compared to the TOC for each day of use. (5) TN: The TN of a newly prepared artificial spring was measured, and the TN was replaced when it was increased by 50 mg / L compared with the TN for each day of use.

調整した人工鉱泉を人工鉱泉供給ポンプ1(P−1.10)を介し人工鉱泉供給ライン(L−1.25)を経て膜濾過器(F−1.3)に通液濾過し浴槽(BT)に供給した。人工鉱泉は人工鉱泉循環ポンプ1(P−1.9)を介し人工鉱泉返送ライン(L−1.26)を経てヘアキャッチャー(HC)で毛髪を除去し水温を調整した後、調整槽1(T−1.9)へ返送した。
本人工鉱泉は、pH4.6、鉄濃度38mg/L、総硫黄1.2mg/L、蒸発残留物1143mg/Lであった。
これらは、地下水などを処理して浄化水を得る際に発生する逆洗閉鎖材等の不要物質より得られる有価物質を活用し、複数の泉質を含む人工鉱泉水の製造方法及びそのシステムを提供するもので、この結果により本件発明の効果を確認する事が出来る。
The adjusted artificial spring is filtered through the artificial spring supply line (L-1.25) via the artificial spring supply pump 1 (P-1.10) and passed through the membrane filter (F-1.3), and the bath (BT ). After the artificial spring removed the hair with the hair catcher (HC) through the artificial spring return line (L-1.26) via the artificial spring circulation pump 1 (P-1.9) and adjusted the water temperature, the adjustment bath 1 ( Returned to T-1.9).
This artificial spa had a pH of 4.6, an iron concentration of 38 mg / L, a total sulfur of 1.2 mg / L, and an evaporation residue of 1143 mg / L.
These use valuable materials obtained from unnecessary materials such as backwash closure materials generated when treating groundwater to obtain purified water, and provide a method and system for producing artificial mineral spring water containing multiple spring qualities. The effect of the present invention can be confirmed by this result.

図2は、地下水処理システムにおける鉱泉有価物質の抽出装置である。図1に於いて示した飲料水処理工程の原水槽(T−1.2)から濾過水供給ライン(L−1.4)までの処理を代替工程に置き換えた。得られた人工鉱泉源泉は、人工鉱泉源泉供給ライン1(L−1.16)より人工鉱泉源泉タンク(T−1.8)に移送した。  FIG. 2 is an apparatus for extracting mineral resources in a groundwater treatment system. The treatment from the raw water tank (T-1.2) to the filtered water supply line (L-1.4) in the drinking water treatment process shown in FIG. 1 was replaced with an alternative process. The obtained artificial mineral spring source was transferred from the artificial mineral spring source supply line 1 (L-1.16) to the artificial mineral spring source tank (T-1.8).

実施例1と同様に処理した地下水を原水供給ライン1(L−1.1)を通じ原水槽(T−1.2)に貯留した。原水ポンプ2(P−2.1)を介し原水1,000Lを原水供給ライン3(L−2.1)、原水供給ライン4(L−2.2)、を経て糸巻きフィルター1(F−2.1)に送液した。
得られた処理水は、処理水供給ライン2(L−2.3)、濾過水供給ライン(L−1.4)を経て次の高度処理工程へ移送した。また、原水1,000Lを供給後、原水の供給を原水供給ライン4(L−2.2)より原水供給ライン5(L−2.4)に変更して糸巻きフィルター(F−2.2)、処理水供給ライン4(L−2.5)を経て処理水を得た。
Groundwater treated in the same manner as in Example 1 was stored in the raw water tank (T-1.2) through the raw water supply line 1 (L-1.1). Through the raw water pump 2 (P-2.1), 1,000 L of raw water is passed through the raw water supply line 3 (L-2.1) and the raw water supply line 4 (L-2.2), and the spool filter 1 (F-2). To 1).
The obtained treated water was transferred to the next advanced treatment process via the treated water supply line 2 (L-2.3) and the filtered water supply line (L-1.4). In addition, after supplying 1,000 L of raw water, the raw water supply is changed from the raw water supply line 4 (L-2.2) to the raw water supply line 5 (L-2.4), and the spool filter (F-2.2) The treated water was obtained through the treated water supply line 4 (L-2.5).

次いで循環ポンプ2(P−2.2)を介し、原水を原水槽(T−1.2)より原水供給ライン6(L−2.6)、抽出ライン3(L−2.7)、抽出ライン4(L−2.8)、糸巻きフィルター1(F−2.1)、抽出ライン5(L−2.9)、抽出ライン6(L−2.10)、抽出ライン7(L−2.11)、抽出ライン8(L−2.12)を経て循環タンク2(T−2.1)をクッションタンクとして原水10Lを貯留した後、循環ポンプ2(P−2.2)を停止した。  Next, the raw water is extracted from the raw water tank (T-1.2) through the circulation pump 2 (P-2.2), the raw water supply line 6 (L-2.6), the extraction line 3 (L-2.7), and the extraction. Line 4 (L-2.8), pincushion filter 1 (F-2.1), extraction line 5 (L-2.9), extraction line 6 (L-2.10), extraction line 7 (L-2) .11), 10 L of raw water was stored using the circulation tank 2 (T-2.1) as a cushion tank via the extraction line 8 (L-2.12), and then the circulation pump 2 (P-2.2) was stopped. .

再度循環ポンプ2(P−2.2)を稼動し、抽出ライン3(L−2.7)、抽出ライン4(L−2.8)、糸巻きフィルター1(F−2.1)、抽出ライン5(L−2.9)、抽出ライン6(L−2.10)、抽出ライン7(L−2.11)の管路で原水を循環させながら抽出薬液の注入を行った。
即ち、チオ硫酸ナトリウム1%溶液を充填した還元剤タンク3(T−2.2)より還元剤注入ポンプ2(P−2.3)を介し還元剤注入ライン3(L−2.13)を経てインラインにて薬液を注入し、98%硫酸を充填した硫酸タンク2(T−2.3)より硫酸注入ポンプ2(P−2、4)を介し硫酸注入ライン2(L−2.14)を経て同様に薬液を注入した。本抽出溶液は、還元剤濃度46mg/L、pH4.0であった。
The circulation pump 2 (P-2.2) is operated again, and the extraction line 3 (L-2.7), the extraction line 4 (L-2.8), the bobbin filter 1 (F-2.1), and the extraction line 5 (L-2.9), extraction line 6 (L-2.10), extraction line 7 (L-2.11), the extraction chemical | medical solution was inject | poured, circulating raw | natural water.
That is, the reducing agent injection line 3 (L-2.13) is supplied from the reducing agent tank 3 (T-2.2) filled with 1% sodium thiosulfate solution through the reducing agent injection pump 2 (P-2.3). Then, the chemical solution was injected in-line, and sulfuric acid injection line 2 (L-2.14) from sulfuric acid tank 2 (T-2.3) filled with 98% sulfuric acid via sulfuric acid injection pump 2 (P-2, 4). After that, the drug solution was similarly injected. This extraction solution had a reducing agent concentration of 46 mg / L and pH 4.0.

抽出管路内を5分間循環したのち、ポンプ2(P−2.2)を介し循環系内並びにクッションとして循環タンク2(T−2.1)に貯留する鉱泉有価物抽出液を、抽出ライン8(L−2.12)、抽出ライン3(L−2.7)、抽出ライン4(L−2.8)、糸巻きフィルター1(F−2.1)、抽出ライン5(L−2.9)、抽出ライン6(L−2.10)、人工鉱泉源泉供給ライン(L−1.16)を経て人工鉱泉源泉タンク(T−1.8)に20Lを貯留した。
次いで再度、原水槽(T−1.2)より原水供給ライン6(L−2.6)、抽出ライン3(L−2.7)、抽出ライン4(L−2.8)、糸巻きフィルター1(F−2.1)、抽出ライン5(L−2.9)、抽出ライン6(L−2.10)、抽出ライン7(L−2.11)、抽出ライン8(L−2.12)を経て循環タンク2(T−2.1)に原水を10L貯留し、抽出管路内を循環洗浄し、洗浄液として人工鉱泉源泉タンク(T−1.8)に20Lを供給した。
本源泉を分析したところ、pH4.7、鉄濃度142mg/L、マンガン濃度13mg/Lの人工鉱泉源泉が得られ本発明の効果を確認した。
After circulating for 5 minutes in the extraction pipeline, extract the mineral valuables extract stored in the circulation tank 2 (T-2.1) as a cushion and as a cushion via the pump 2 (P-2.2) 8 (L-2.12), extraction line 3 (L-2.7), extraction line 4 (L-2.8), spool filter 1 (F-2.1), extraction line 5 (L-2. 9) 20L was stored in the artificial spring source tank (T-1.8) through the extraction line 6 (L-2.10) and the artificial spring source supply line (L-1.16).
Then, again, from the raw water tank (T-1.2), the raw water supply line 6 (L-2.6), the extraction line 3 (L-2.7), the extraction line 4 (L-2.8), and the bobbin filter 1 (F-2.1), extraction line 5 (L-2.9), extraction line 6 (L-2.10), extraction line 7 (L-2.11), extraction line 8 (L-2.12) ), 10 L of raw water was stored in the circulation tank 2 (T-2.1), the inside of the extraction pipe was circulated and washed, and 20 L was supplied as a washing liquid to the artificial mineral source tank (T-1.8).
When this source was analyzed, an artificial mineral source having a pH of 4.7, an iron concentration of 142 mg / L, and a manganese concentration of 13 mg / L was obtained, confirming the effects of the present invention.

図3は、地下水処理システムにおける膜濾過の洗浄および鉱泉有価物質の抽出である。図1に於いて示した飲料水処理工程の原水槽(T−1.2)より膜濾過水供給ライン(L−1.5)までの工程を置き換えた。得られた人工鉱泉源泉は、人工鉱泉源泉供給ライン1(L−1.16)より人工鉱泉源泉タンク(T−1.8)に供給した。  FIG. 3 shows membrane filtration cleaning and extraction of spa valuable materials in a groundwater treatment system. The process from the raw water tank (T-1.2) to the membrane filtrate supply line (L-1.5) in the drinking water treatment process shown in FIG. 1 was replaced. The obtained artificial spa source was supplied to the artificial spa source tank (T-1.8) from the artificial spa source supply line 1 (L-1.16).

実施例1と同様に処理した地下水を原水供給ライン1(L−1.1)を経て原水槽(T−1.2)に貯留した。原水ポンプ3(P−3.1)を介し原水供給ライン7(L−3.1)、原水供給ライン8(L−3.2)を経て膜モジュール(MM)下部に原水を供給し、上部より処理水供給ライン5(L−3.3)、膜濾過水供給ライン(L−1.5)を経て処理水を得た。この処理水は、実施例1と同様にして処理水槽に貯留し飲料水として供給した。  Groundwater treated in the same manner as in Example 1 was stored in the raw water tank (T-1.2) via the raw water supply line 1 (L-1.1). The raw water is supplied to the lower part of the membrane module (MM) through the raw water supply line 7 (L-3.1) and the raw water supply line 8 (L-3.2) via the raw water pump 3 (P-3.1), and the upper part The treated water was obtained through the treated water supply line 5 (L-3.3) and the membrane filtrate water supply line (L-1.5). This treated water was stored in a treated water tank in the same manner as in Example 1 and supplied as drinking water.

処理水1,000L通水後供給を停止し、原水を循環ポンプ3(P−3.2)を介し原水供給ライン7(L−3.1)、原水供給ライン8(L−3.2)、膜モジュール(MM)1次側、抽出ライン9(L−3.4)、抽出ライン10(L−3.5)を経て循環タンク3(T−3.1)をクッションタンクとして10L貯留し、原水ポンプ3(P−3.1)を停止した。
次いで循環ポンプ3(P−3.2)を介し抽出ライン11(L−3.6)、原水供給ライン8(L−3.2)、膜モジュール(MM)、抽出ライン9(L−3.4)、抽出ライン12(L−3.7)の経路で原水を循環しインラインにて抽出薬液を注入した。
即ち、チオ硫酸ナトリウム1%溶液を充填した還元剤タンク4(T−3.2)より還元剤注入ポンプ3(P−3.3)を介し還元剤注入ライン4(L−3.8)を経て注入し、98%硫酸を充填した硫酸タンク3(T−3.3)より硫酸注入ポンプ3(P−3.4)を介し硫酸注入ライン3(L−3.9)を経て注入した。本抽出液は、還元剤濃度35mg/L、pH4.7であった。
After passing 1,000 L of treated water, the supply is stopped, and the raw water is supplied to the raw water supply line 7 (L-3.1) and the raw water supply line 8 (L-3.2) through the circulation pump 3 (P-3.2). 10 L of the circulation tank 3 (T-3.1) is stored as a cushion tank through the primary side of the membrane module (MM), the extraction line 9 (L-3.4), and the extraction line 10 (L-3.5). The raw water pump 3 (P-3.1) was stopped.
Next, the extraction line 11 (L-3.6), the raw water supply line 8 (L-3.2), the membrane module (MM), and the extraction line 9 (L-3.L) are passed through the circulation pump 3 (P-3.2). 4) Raw water was circulated through the route of the extraction line 12 (L-3.7), and the extracted chemical solution was injected in-line.
That is, the reducing agent injection line 4 (L-3.8) is supplied from the reducing agent tank 4 (T-3.2) filled with 1% sodium thiosulfate solution through the reducing agent injection pump 3 (P-3.3). Then, the mixture was injected from a sulfuric acid tank 3 (T-3.3) filled with 98% sulfuric acid through a sulfuric acid injection pump 3 (P-3.4) and a sulfuric acid injection line 3 (L-3.9). This extract had a reducing agent concentration of 35 mg / L and pH 4.7.

抽出経路を5分間循環した後、大気開放ライン(L−3.10)を開き、循環ポンプ3(P−3.2)を介し循環系内並びにクッションとして循環タンク3(T−3.1)に貯留する鉱泉有価物抽出液、抽出ライン11(L−3.6)、抽出ライン9(L−3.4)、膜モジュール(MM)、原水供給ライン8(L−3.2)、抽出ライン11(L−3.6)、人工鉱泉源泉供給ライン1(L−1.16)を経て人工鉱泉源泉タンク(T−1.8)に人工鉱泉源泉を30L貯留し循環ポンプ3(P−3.2)を停止した。  After circulating the extraction path for 5 minutes, the atmosphere open line (L-3.10) is opened, and the circulation tank 3 (T-3.1) is used as a cushion in the circulation system and as a cushion via the circulation pump 3 (P-3.2). Mineral spring extract, extraction line 11 (L-3.6), extraction line 9 (L-3.4), membrane module (MM), raw water supply line 8 (L-3.2), extraction 30 L of artificial mineral springs are stored in the artificial mineral spring tank (T-1.8) via the line 11 (L-3.6) and artificial mineral spring supply line 1 (L-1.16), and the circulation pump 3 (P- 3.2) was stopped.

次いで原水ポンプ3(P−3.1)を再度稼動し抽出工程と同様に膜モジュール(MM)1次側および循環タンク3(T−3.1)に原水を供給した。洗浄液を供給したところで原水ポンプ3(P−3.1)を停止し、循環ポンプ3(P−3.2)を稼動し抽出経路内を1分間循環洗浄した。
洗浄液は抽出液と同様に人工鉱泉源泉供給ライン1(L−1.16)を経て人工鉱泉源泉タンク(T−1.8)に人工鉱泉源泉を30L供給した。
本人工鉱泉源泉を分析したところpH4.0、鉄濃度0.5g/L、マンガン濃度30mg/Lの人工鉱泉源泉が得られ本発明の効果を確認した。
Next, the raw water pump 3 (P-3.1) was operated again, and raw water was supplied to the membrane module (MM) primary side and the circulation tank 3 (T-3.1) in the same manner as the extraction step. When the cleaning liquid was supplied, the raw water pump 3 (P-3.1) was stopped, and the circulation pump 3 (P-3.2) was operated to circulate and wash the inside of the extraction path for 1 minute.
As for the washing liquid, 30 L of the artificial mineral spring source was supplied to the artificial mineral spring source tank (T-1.8) through the artificial mineral spring source supply line 1 (L-1.16) in the same manner as the extract.
When this artificial mineral spring was analyzed, an artificial mineral spring having a pH of 4.0, an iron concentration of 0.5 g / L and a manganese concentration of 30 mg / L was obtained, and the effect of the present invention was confirmed.

図4は、軟水器ならびに鉱泉有価物質の抽出調整を行う装置の構成模式図である。図1に於いて示した濾過水供給ライン(L−1.4)までの工程を実施し供給原水とした。濾過水供給ライン(L−1.4)、原水供給ライン9(L−4.1)、原水供給ライン10(L−4.2)、を経て原水を軟水器(WS)上部に供給し、下部から処理水供給ライン7(L−4.3)、処理水供給ライン8(L−4.4)、を経て1,000Lの処理水(軟水)を得た。
本処理水は、そのまま浴用水として使用するか、更に高度処理し飲料水として使用する事が可能である。
FIG. 4 is a schematic diagram of the configuration of a water softener and a device that performs extraction adjustment of mineral valuable materials. The process up to the filtered water supply line (L-1.4) shown in FIG. The raw water is supplied to the upper portion of the water softener (WS) through the filtered water supply line (L-1.4), the raw water supply line 9 (L-4.1), and the raw water supply line 10 (L-4.2). From the bottom, 1,000 L of treated water (soft water) was obtained through the treated water supply line 7 (L-4.3) and the treated water supply line 8 (L-4.4).
The treated water can be used as bath water as it is, or it can be further treated and used as drinking water.

原水1,000Lを通水後、濾過水供給ライン(L−1.4)、原水供給ライン9(L−4.1)、循環ライン1(L−4.5)を経て原水を循環タンク4(T−4.1)10L貯留し原水供給を停止した。
次いで再生剤タンク(T−4.2)からスネークポンプ(SP)を介し再生剤供給ライン(L−4.6)を経て軟水器(WS)上部へ塩化ナトリウム500gを添加した。次いで、再生液循環ポンプ(P−4.1)を稼動し原水供給ライン10(L−4.2)、原水供給ライン9(L−4.1)、循環ライン2(L−4.7)の経路で10分間循環再生した。
After passing 1,000 L of raw water, the raw water is circulated through the filtered water supply line (L-1.4), the raw water supply line 9 (L-4.1), and the circulation line 1 (L-4.5). (T-4.1) 10 L was stored and the raw water supply was stopped.
Next, 500 g of sodium chloride was added to the upper part of the water softener (WS) from the regenerant tank (T-4.2) via the snake pump (SP) through the regenerant supply line (L-4.6). Next, the regenerative liquid circulation pump (P-4.1) is operated, and the raw water supply line 10 (L-4.2), the raw water supply line 9 (L-4.1), and the circulation line 2 (L-4.7). And recirculating for 10 minutes.

再生終了後、再生液循環ポンプ(P−4.1)を停止し砂濾過水を濾過水供給ライン(L−1.4)、原水供給ライン9(L−4.1)、原水供給ライン10(L−4.2)、軟水器(WS)、処理水供給ライン7(L−4.3)、濃縮水供給ライン(L−4.8)、を経て供給した。得られた濃縮水は、濾過器(F−4.1)を介し処理水を調整槽2(T−4.3)へ200L移送した。次いで槽内のブロアー(B)を稼動し空気供給ライン(L−4.15)を経て散気管(AE)に空気を供給し人工鉱泉に二酸化炭素を溶解した。  After completion of the regeneration, the regenerative liquid circulation pump (P-4.1) is stopped, and the sand filtrate is supplied to the filtered water supply line (L-1.4), the raw water supply line 9 (L-4.1), and the raw water supply line 10. (L-4.2), water softener (WS), treated water supply line 7 (L-4.3), and concentrated water supply line (L-4.8) were supplied. The obtained concentrated water transferred 200 L of treated water to the adjustment tank 2 (T-4.3) through the filter (F-4.1). Next, the blower (B) in the tank was operated, air was supplied to the air diffuser (AE) through the air supply line (L-4.15), and carbon dioxide was dissolved in the artificial mineral spring.

pH計2(M−4.1)および残留塩素計(M−4.2)により、pH、水温、残留塩素濃度を計測し、コントローラー(C)によりpH7.0以下、残留塩素濃度0.1mg/L以上、水温40℃に管理した。各条件の調整は、以下の通り行った。
▲1▼ 塩素濃度:12%次亜塩素酸ナトリウム溶液を充填した酸化剤タンク2(T−4.4)より酸化剤供給ライン(L−4.9)を経て添加した。
▲2▼ pH:10%水酸化ナトリウム溶液を充填した水酸化ナトリウムタンク2(T−4.5)より水酸化ナトリウム供給ライン(L−4.10)を経て添加した。
▲3▼ 水温:人工鉱泉循環ポンプ2(P−4.2)を稼動し人工鉱泉循環ライン4(L−4.11)、人工鉱泉循環ライン5(L−4.12)を経て三方バルブ(V)に供給し、水温が低い場合人工鉱泉加温ライン2(L−4.13)を経由しボイラー(H)に供給し、高い場合人工鉱泉循環ライン6(L−4.14)に供給し水温を調整した。
The pH, water temperature and residual chlorine concentration are measured with a pH meter 2 (M-4.1) and a residual chlorine meter (M-4.2). The controller (C) has a pH of 7.0 or less and a residual chlorine concentration of 0.1 mg. / L or more, and the water temperature was controlled at 40 ° C. Adjustment of each condition was performed as follows.
(1) Chlorine concentration: Added from an oxidant tank 2 (T-4.4) filled with a 12% sodium hypochlorite solution via an oxidant supply line (L-4.9).
(2) pH: Added from a sodium hydroxide tank 2 (T-4.5) filled with a 10% sodium hydroxide solution via a sodium hydroxide supply line (L-4.10).
(3) Water temperature: Artificial spring circulation pump 2 (P-4.2) is operated, and the artificial spring circulation line 4 (L-4.11) and artificial mineral circulation line 5 (L-4.12) are passed through a three-way valve ( V), if the water temperature is low, supply it to the boiler (H) via the artificial spring heating line 2 (L-4.13), if it is high, supply it to the artificial spring circulation line 6 (L-4.14) The water temperature was adjusted.

1時間調整した後、人工鉱泉を人工鉱泉供給ポンプ2(P−4.3)を介し人工鉱泉供給ライン2(L−4.16)を経て活性炭(AC)、膜濾過器(F−4.2)に人工鉱泉を通液し、処理水を浴槽(BT)に供給した。
人工鉱泉は人工鉱泉循環ポンプ2(P−4.2)を介し人工鉱泉返送ライン2(L−4.17)を経てヘアキャッチャー(HC)で毛髪を除去し水温を調整した後、調整槽2(T−4.3)へ返送した。本人工鉱泉は、pH6.9、全硬度520mg/L、Mアルカリ度360mg/L、蒸発残留物1310mg/Lの人工鉱泉が得られ本発明を確認した。
After adjusting for 1 hour, the artificial spring is passed through the artificial spring supply line 2 (L-4.16) via the artificial spring supply pump 2 (P-4.3), activated carbon (AC), membrane filter (F-4. Artificial spring was passed through 2), and treated water was supplied to the bathtub (BT).
The artificial spa is adjusted to the tank 2 after the hair is removed by the hair catcher (HC) through the artificial spring return line 2 (L-4.17) via the artificial spring circulation pump 2 (P-4.2) and the water temperature is adjusted. Returned to (T-4.3). This artificial spa was obtained as an artificial spa having a pH of 6.9, a total hardness of 520 mg / L, an M alkalinity of 360 mg / L, and an evaporation residue of 1310 mg / L.

還元剤として、アスコルビン酸ナトリウムに変更し実施例1と同様に人工鉱泉源泉を調整し15Lを得た。次いで処理水200Lと混合し、更に20g/Lの硫酸銅を手動で60mL添加し、実施例1と同様に人工鉱泉を循環調整したところpH4.5、鉄濃度41mg/L、銅4.7mg/Lの人工鉱泉が得られ本発明の効果を確認した。  As a reducing agent, it changed to sodium ascorbate and adjusted the artificial spring source similarly to Example 1, and obtained 15L. Next, it was mixed with 200 L of treated water, and further 60 mL of 20 g / L copper sulfate was added manually, and the artificial mineral spring was circulated and adjusted in the same manner as in Example 1 to find pH 4.5, iron concentration 41 mg / L, copper 4.7 mg / L An artificial spring of L was obtained and the effect of the present invention was confirmed.

本発明の実施例で、水処理装置及び人工鉱泉浄化システムの配水及び人工鉱泉泉質管理の全体を一例として模式的に表した図である。In the Example of this invention, it is the figure which represented typically the whole of the water distribution of a water treatment apparatus and an artificial spa purification system, and the artificial mineral spring quality management as an example. 地下水処理システムにおける鉱泉有価物質の抽出装置を一例として模式的に表した図である。It is the figure which represented typically the extraction apparatus of the mineral valuable material in a groundwater treatment system as an example. 本発明の実施例で使用する、膜濾過の洗浄および鉱泉有価物質の抽出を行う装置の構成模式図である。It is a structure schematic diagram of the apparatus used in the Example of this invention which performs the washing | cleaning of membrane filtration, and extraction of a mineral valuable material. 本発明の実施例で使用する、軟水器ならびに鉱泉有価物質の抽出調整を行う装置の構成模式図である。It is a structure schematic diagram of the apparatus which performs extraction adjustment of a water softener and mineral valuable material used in the Example of this invention.

符号の説明Explanation of symbols

BT 浴槽
C コントローラー
H ボイラー
HC ヘアキャッチャー
MM 膜モジュール
SF 砂濾過塔
V 三方バルブ
W 井戸
F−1.1 糸巻きフィルター
F−1.2 濾過機
F−1.3 膜濾過器
L−1.1 原水供給ライン1
L−1.2 酸化剤注入ライン
L−1.3 原水供給ライン2
L−1.4 濾過水供給ライン
L−1.5 膜濾過水供給ライン
L−1.6 処理水供給ライン1
L−1.7 洗浄水供給ライン
L−1.8 洗浄水返送ライン1
L−1.9 洗浄水返送ライン2
L−1.10 洗浄水返送ライン3
L−1.11 洗浄水返送ライン4
L−1.12 抽出ライン1
L−1.13 抽出ライン2
L−1.14 還元剤注入ライン1
L−1.15 硫酸注入ライン1
L−1.16 人工鉱泉源泉供給ライン1
L−1.17 人工鉱泉源泉供給ライン2
L−1.18 砂濾過処理水供給ライン2
L−1.19 還元剤注入ライン2
L−1.20 水酸化ナトリウム注入ライン
L−1.21 人工鉱泉循環ライン1
L−1.22 人工鉱泉循環ライン2
L−1.23 人工鉱泉加温ライン1
L−1.24 人工鉱泉循環ライン3
L−1.25 人工鉱泉供給ライン
L−1.26 人工鉱泉返送ライン
M−1.1 pH計1
M−1.2 電位差滴定装置
M−1.3 TOC・TN計
P−1.1 井戸ポンプ
P−1.2 原水ポンプ1
P−1.3 処理水供給ポンプ
P−1.4 洗浄水供給ポンプ
P−1.5 循環ポンプ1
P−1.6 還元剤注入ポンプ1
P−1.7 硫酸注入ンプ1
P−1.8 人工鉱泉源泉供給ポンプ1
P−1.9 人工鉱泉循環ポンプ1
P−1.10 人工鉱泉供給ポンプ1
T−1.1 酸化剤タンク1
T−1.2 原水槽
T−1.3 処理水槽
T−1.4 貯水槽
T−1.5 循環タンク1
T−1.6 還元剤タンク1
T−1.7 硫酸タンク1
T−1.8 人工鉱泉源泉タンク
T−1.9 調整槽1
T−1.10 還元剤タンク2
T−1.11 水酸化ナトリウムタンク1
F−2.1 糸巻きフィルター1
F−2.2 糸巻きフィルター2
L−2.1 原水供給ライン3
L−2.2 原水供給ライン4
L−2.3 処理水供給ライン2
L−2.4 原水供給ライン5
L−2.5 処理水供給ライン4
L−2.6 原水供給ライン6
L−2.7 抽出ライン3
L−2.8 抽出ライン4
L−2.9 抽出ライン5
L−2.10 抽出ライン6
L−2.11 抽出ライン7
L−2.12 抽出ライン8
L−2.13 還元剤注入ライン3
L−2.14 硫酸注入ライン2
P−2.1 原水ポンプ2
P−2.2 循環ポンプ2
P−2.3 還元剤注入ポンプ2
P−2.4 硫酸注入ポンプ2
T−2.1 循環タンク2
T−2.2 還元剤タンク3
T−2.3 硫酸タンク2
L−3.1 原水供給ライン7
L−3.2 原水供給ライン8
L−3.3 処理水供給ライン5
L−3.4 抽出ライン9
L−3.5 抽出ライン10
L−3.6 抽出ライン11
L−3.7 抽出ライン12
L−3.8 還元剤注入ライン4
L−3.9 硫酸注入ライン3
L−3.10 大気開放ライン
P−3.1 原水ポンプ3
P−3.2 循環ポンプ3
P−3.3 還元剤注入ポンプ3
P−3.4 硫酸注入ポンプ3
T−3.1 循環タンク3
T−3.2 還元剤タンク4
T−3.3 硫酸タンク3
AE 散気管
AC 活性炭
B ブロアー
SP スネークポンプ
WS 軟水器
F−4.1 濾過器
F−4.2 膜濾過器
L−4.1 原水供給ライン9
L−4.2 原水供給ライン10
L−4.3 処理水供給ライン7
L−4.4 処理水供給ライン8
L−4.5 循環ライン1
L−4.6 再生剤供給ライン
L−4.7 循環ライン2
L−4.8 濃縮水供給ライン
L−4.9 酸化剤供給ライン
L−4.10 水酸化ナトリウム供給ライン
L−4.11 人工鉱泉循環ライン4
L−4.12 人工鉱泉循環ライン5
L−4.13 人工鉱泉加温ライン2
L−4.14 人工鉱泉循環ライン6
L−4.15 空気供給ライン
L−4.16 人工鉱泉供給ライン2
L−4.17 人工鉱泉返送ライン2
M−4.1 pH計2
M−4.2 残留塩素計
P−4.1 再生液循環ポンプ
P−4.2 人工鉱泉循環ポンプ2
P−4.3 人工鉱泉供給ポンプ2
T−4.1 循環タンク4
T−4.2 再生剤タンク
T−4.3 調整槽2
T−4.4 酸化剤タンク2
T−4.5 水酸化ナトリウムタンク2
BT Bathtub C Controller H Boiler HC Hair catcher MM Membrane module SF Sand filtration tower V Three-way valve W Well F-1.1 Bobbin filter F-1.2 Filter F-1.3 Membrane filter L-1.1 Raw water supply Line 1
L-1.2 Oxidant injection line L-1.3 Raw water supply line 2
L-1.4 Filtrated water supply line L-1.5 Membrane filtered water supply line L-1.6 Treated water supply line 1
L-1.7 Wash water supply line L-1.8 Wash water return line 1
L-1.9 Wash water return line 2
L-1.10 Washing water return line 3
L-1.11 Wash water return line 4
L-1.12 Extraction line 1
L-1.13 Extraction line 2
L-1.14 Reducing agent injection line 1
L-1.15 Sulfuric acid injection line 1
L-1.16 Artificial spring source supply line 1
L-1.17 Artificial spring source supply line 2
L-1.18 Sand filtration treated water supply line 2
L-1.19 Reducing agent injection line 2
L-1.20 Sodium hydroxide injection line L-1.21 Artificial spring circulation line 1
L-1.22 Artificial spring circulation line 2
L-1.23 Artificial spring heating line 1
L-1.24 Artificial spa circulation line 3
L-1.25 Artificial spring supply line L-1.26 Artificial spring return line M-1.1 pH meter 1
M-1.2 Potentiometric titrator M-1.3 TOC / TN meter P-1.1 Well pump P-1.2 Raw water pump 1
P-1.3 Treated water supply pump P-1.4 Wash water supply pump P-1.5 Circulation pump 1
P-1.6 Reducing agent injection pump 1
P-1.7 Sulfuric acid injection pump 1
P-1.8 Artificial spring source supply pump 1
P-1.9 Artificial Spa Circulation Pump 1
P-1.10 Artificial spring supply pump 1
T-1.1 Oxidant tank 1
T-1.2 Raw water tank T-1.3 Treated water tank T-1.4 Water tank T-1.5 Circulation tank 1
T-1.6 Reductant tank 1
T-1.7 Sulfuric acid tank 1
T-1.8 Artificial mineral spring source tank T-1.9 Adjustment tank 1
T-1.10 Reducing agent tank 2
T-1.11 Sodium hydroxide tank 1
F-2.1 Spool filter 1
F-2.2 Bobbin filter 2
L-2.1 Raw water supply line 3
L-2.2 Raw water supply line 4
L-2.3 Treated water supply line 2
L-2.4 Raw water supply line 5
L-2.5 treated water supply line 4
L-2.6 Raw water supply line 6
L-2.7 Extraction line 3
L-2.8 Extraction line 4
L-2.9 Extraction line 5
L-2.10 Extraction line 6
L-2.11 Extraction line 7
L-2.12 Extraction line 8
L-2.13 Reducing agent injection line 3
L-2.14 Sulfuric acid injection line 2
P-2.1 Raw water pump 2
P-2.2 Circulation pump 2
P-2.3 Reducing agent injection pump 2
P-2.4 Sulfuric acid infusion pump 2
T-2.1 Circulation tank 2
T-2.2 Reductant tank 3
T-2.3 Sulfuric acid tank 2
L-3.1 Raw water supply line 7
L-3.2 Raw water supply line 8
L-3.3 Treated water supply line 5
L-3.4 Extraction line 9
L-3.5 Extraction line 10
L-3.6 Extraction line 11
L-3.7 Extraction line 12
L-3.8 Reducing agent injection line 4
L-3.9 Sulfuric acid injection line 3
L-3.10 Open air line P-3.1 Raw water pump 3
P-3.2 Circulation pump 3
P-3.3 Reducing agent injection pump 3
P-3.4 Sulfuric acid injection pump 3
T-3.1 Circulation tank 3
T-3.2 Reducing agent tank 4
T-3.3 Sulfuric acid tank 3
AE Air Diffuser AC Activated Carbon B Blower SP Snake Pump WS Water Softener F-4.1 Filter F-4.2 Membrane Filter L-4.1 Raw Water Supply Line 9
L-4.2 Raw water supply line 10
L-4.3 Treated water supply line 7
L-4.4 Treated water supply line 8
L-4.5 Circulation line 1
L-4.6 Regenerant supply line L-4.7 Circulation line 2
L-4.8 Concentrated water supply line L-4.9 Oxidant supply line L-4.10 Sodium hydroxide supply line L-4.11 Artificial spring circulation line 4
L-4.12 Artificial spring circulation line 5
L-4.13 Artificial mineral warming line 2
L-4.14 Artificial spa circulation line 6
L-4.15 Air supply line L-4.16 Artificial spring supply line 2
L-4.17 Artificial spring return line 2
M-4.1 pH meter 2
M-4.2 Residual chlorine meter P-4.1 Regenerative liquid circulation pump P-4.2 Artificial spring circulation pump 2
P-4.3 Artificial spring supply pump 2
T-4.1 Circulation tank 4
T-4.2 Regenerant tank T-4.3 Adjustment tank 2
T-4.4 Oxidant tank 2
T-4.5 Sodium hydroxide tank 2

Claims (7)

鉱泉成分を用いる人工鉱泉の水質構成に際し、各種水処理工程にて派生する廃雑物より鉱泉有価物質を抽出採取して浴水の調整に優先的に活用し、且つ廃棄物負荷の軽減を図ることを特徴とする人工鉱泉水の製造方法及びそのシステム。When constructing the water quality of artificial springs using mineral spring components, extract and collect valuable mineral materials from waste materials derived from various water treatment processes and use them preferentially for the adjustment of bath water, and reduce the waste load. A method and system for producing artificial mineral water characterized by the above. 該水処理工程として、地下水を浄化して飲料水を製造するに際し、砂濾過工程及び/又は膜濾過工程に於ける濾過閉鎖材より鉱泉有価物質を抽出採取して浴水の調整を行う事を特徴とする請求項1記載の人工鉱泉水の製造方法及びそのシステム。As the water treatment process, when purifying groundwater and producing drinking water, it is necessary to extract and extract mineral minerals from the filter closure material in the sand filtration process and / or the membrane filtration process and adjust the bath water. 2. The method and system for producing artificial mineral spring water according to claim 1 characterized by the above. 該濾過閉鎖材の処理手段として、水による逆洗以外に薬洗手段を設営した濾過工程を組み込む事を特徴とする請求項2に記載の人工鉱泉水の製造方法及びそのシステム。The method and system for producing artificial mineral water according to claim 2, wherein a filtration step in which chemical washing means is provided in addition to backwashing with water is incorporated as the treatment means for the filter closure material. 該鉱泉有価物質として、地下水のイオン交換樹脂による軟水化処理工程に於ける再生水より発生する硬度成分を活用し、更に浴水のpHを7.0以下に保持しながら二酸化炭素を溶解し炭酸水素塩を含む浴槽用水として提供する事を特徴とする請求項1ないし3に記載の人工鉱泉水の製造方法及びそのシステム。Utilizing the hardness component generated from the reclaimed water in the water softening process using the ion exchange resin of groundwater as the mineral spring valuable material, and further dissolving the carbon dioxide while maintaining the pH of the bath water at 7.0 or lower, the hydrogen carbonate 4. The method and system for producing artificial mineral water according to claim 1, wherein the water is provided as water for a bath containing salt. 人工鉱泉製造システムとして、浴槽と調整槽を備え且つ浴槽内の水と調整槽の水を循環する流路を有し、これらの用水を強制的に循環させる循環手段、物理的に濁質物質の除去を行う濾過手段並びに酸化剤または還元剤注入装置および電位差滴定装置を備え人工鉱泉中の酸化剤または還元剤濃度を一定に管理する手段、酸またはアルカリ注入装置およびpH装置を備え人工鉱泉中のpHおよび水温を一定に管理する手段に加え、循環水全体の全有機炭素および全窒素を分析する機能を設営する事を特徴とする請求項1ないし4に記載の人工鉱泉水の製造方法及びそのシステム。As an artificial spa manufacturing system, it has a tub and an adjustment tank, and has a flow path for circulating the water in the tub and the water in the adjustment tank. Means for controlling the oxidant or reducing agent concentration in the artificial spa with a filtration means for performing removal and an oxidizing or reducing agent injection device and a potentiometric titration device, an acid or alkali injection device and a pH device in the artificial spa The method for producing artificial mineral water according to claims 1 to 4, wherein a function of analyzing total organic carbon and total nitrogen in the entire circulating water is set in addition to means for controlling pH and water temperature uniformly system. 該還元剤としてチオ硫酸ナトリウムを用い、人工鉱泉のpHを酸性に管理することで硫化水素を発生させることを特徴とする請求項5に記載の人工鉱泉水の製造方法及びそのシステム。The method and system for producing artificial mineral water according to claim 5, wherein sodium thiosulfate is used as the reducing agent, and hydrogen sulfide is generated by controlling the pH of the artificial mineral acid. 該還元剤を採用する場合に於いて、更に銅化合物を介在せしめることを特徴とする請求項5ないし6に記載の人工鉱泉水の製造方法及びそのシステム。7. The method and system for producing artificial mineral water according to claim 5, wherein a copper compound is further interposed when the reducing agent is used.
JP2005381369A 2005-12-28 2005-12-28 Artificial mineral water production method and its system Withdrawn JP2007175688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005381369A JP2007175688A (en) 2005-12-28 2005-12-28 Artificial mineral water production method and its system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005381369A JP2007175688A (en) 2005-12-28 2005-12-28 Artificial mineral water production method and its system

Publications (1)

Publication Number Publication Date
JP2007175688A true JP2007175688A (en) 2007-07-12

Family

ID=38301399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005381369A Withdrawn JP2007175688A (en) 2005-12-28 2005-12-28 Artificial mineral water production method and its system

Country Status (1)

Country Link
JP (1) JP2007175688A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103288274A (en) * 2013-06-04 2013-09-11 吴江市利达上光制品有限公司 Household water treatment device
CN106352915A (en) * 2016-08-09 2017-01-25 浙江大学 Mineral water production quality safety management system
JP2017029913A (en) * 2015-07-31 2017-02-09 前澤工業株式会社 Method for regenerating ion-exchange resin
KR20180044047A (en) * 2016-10-21 2018-05-02 (주)택영산업 The method of preparing a warm bath water treatedly manufacture process

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103288274A (en) * 2013-06-04 2013-09-11 吴江市利达上光制品有限公司 Household water treatment device
JP2017029913A (en) * 2015-07-31 2017-02-09 前澤工業株式会社 Method for regenerating ion-exchange resin
CN106352915A (en) * 2016-08-09 2017-01-25 浙江大学 Mineral water production quality safety management system
KR20180044047A (en) * 2016-10-21 2018-05-02 (주)택영산업 The method of preparing a warm bath water treatedly manufacture process
KR101881654B1 (en) 2016-10-21 2018-08-30 농업회사법인 상동주식회사 The method of preparing a warm bath water treatedly manufacture process

Similar Documents

Publication Publication Date Title
CN102459096B (en) Method for recovering water and metals from plating wastewater resulting from washing
US8562828B2 (en) Wastewater treatment apparatus
KR101530571B1 (en) A desalination of cooling tower make-up water and effluent recycling system
US20120055871A1 (en) Electrolysis Method, and method and Plant for the Pretreatment of Raw Water
JP6251095B2 (en) Membrane filtration system, membrane filtration method, and apparatus for producing water for breeding aquatic organisms
KR20070112818A (en) A device and a method for purifying a liquid with ozone and recirculation
CN103787525B (en) A kind of method of municipal effluent secondary biochemical effluent advanced treatment
JP2007175688A (en) Artificial mineral water production method and its system
JP5849444B2 (en) Groundwater purification equipment
JP3731555B2 (en) Cooling water treatment method and treatment apparatus
TW201313626A (en) Process and apparatus for treating perchlorate in drinking water supplies
JPWO2009082008A1 (en) Hydrogen peroxide removal method and apparatus, ozone water production method and apparatus, and cleaning method and apparatus
TWI812844B (en) Method and device for treating water containing organic matter and calcium
KR20140044548A (en) A water treatment apparatus using nano membrane for softening water and method using the same
JP2004209478A (en) Method and apparatus for backwashing membrane module for removing turbidness
CN214422434U (en) Hospital&#39;s central dual water supply system
JP6467911B2 (en) Water treatment system
JP7188942B2 (en) MEMBRANE FILTRATION SYSTEM AND MEMBRANE FILTRATION METHOD
KR100922866B1 (en) Electrolysis method for water treatment
JP2010209370A (en) Production apparatus of ozone water and production method of ozone water
US20210363037A1 (en) Method of treating water containing arsenic and manganese
KR20140009088A (en) Water treatment apparatus capable of sterilizing of water tank and control method thereof
US20220315463A1 (en) Method of treating water containing arsenic and manganese
JP2012106190A (en) Gas dissolution mechanism
CN214422436U (en) Hospital emergency water saving system

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090303