JP2006289283A - Apparatus for treating waste water, apparatus and system for recovering waste water form rinser and method for treating waste water - Google Patents

Apparatus for treating waste water, apparatus and system for recovering waste water form rinser and method for treating waste water Download PDF

Info

Publication number
JP2006289283A
JP2006289283A JP2005114991A JP2005114991A JP2006289283A JP 2006289283 A JP2006289283 A JP 2006289283A JP 2005114991 A JP2005114991 A JP 2005114991A JP 2005114991 A JP2005114991 A JP 2005114991A JP 2006289283 A JP2006289283 A JP 2006289283A
Authority
JP
Japan
Prior art keywords
rinser
photocatalyst
peroxide
tank
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005114991A
Other languages
Japanese (ja)
Other versions
JP5000856B2 (en
Inventor
Hisanao Kano
久直 狩野
Yasuaki Hashimoto
泰明 橋本
Tetsushi Fujino
哲士 藤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Rensui Co
Original Assignee
Nippon Rensui Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Rensui Co filed Critical Nippon Rensui Co
Priority to JP2005114991A priority Critical patent/JP5000856B2/en
Publication of JP2006289283A publication Critical patent/JP2006289283A/en
Application granted granted Critical
Publication of JP5000856B2 publication Critical patent/JP5000856B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Physical Water Treatments (AREA)
  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Sorption (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for recycling waste water, which has the stability higher than that of the conventional apparatus when a peroxide is decomposed and the operation of which is managed easily. <P>SOLUTION: An apparatus 20 for recovering peroxide-containing waste water from a rinser is provided with: a pH adjustment unit 21 for adjusting the pH of the peroxide-containing waste water from the rinser; a photocatalyst tank 22 having a photocatalyst and an ultraviolet light source for decomposing the peroxide contained in the waste water from the rinser; a downflow type activated carbon column 24 for decomposing the peroxide remaining in the treated water from the photocatalyst tank 22; and an ion exchange unit 25 for removing an ionic substance contained in the treated water from the activated carbon column 24. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えば清涼飲料などの無菌充填設備に設置されたリンサーからの排水を回収するリンサー排水回収装置などに係り、より詳しくは、汚染物質濃度が比較的高い例えばリンサー排水のリサイクルに特に好適な装置などに関する。   The present invention relates to a rinser drainage recovery device that collects drainage from a rinser installed in an aseptic filling facility such as a soft drink, and more particularly, particularly suitable for recycling of a rinser drainage having a relatively high contaminant concentration, for example. Related devices.

清涼飲料などの無菌充填設備では、飲料を充填しようとする容器をリンサーと呼ばれる装置で殺菌・洗浄した後、別途熱殺菌された飲料を無菌状態で充填機により充填している。このリンサーでは、過酸化水素や過酢酸などの過酸化物を含む殺菌剤で容器を殺菌した後に、かかる容器を無菌水ですすぐ作業が行われる。リンサーで使用される水としては、清涼飲料の原料水と同等の安全で良質な水、即ち食品衛生法で定められた「飲用適の水」を無菌水製造装置において超高温殺菌後に洗浄に適する温度まで冷却した無菌水が用いられる。   In aseptic filling equipment such as soft drinks, a container to be filled with a beverage is sterilized and washed with an apparatus called a rinser, and then a separately heat-sterilized beverage is filled in a sterile state by a filling machine. In this rinser, a container is sterilized with a sterilizing agent containing a peroxide such as hydrogen peroxide or peracetic acid, and then the container is rinsed with sterile water. The water used in the rinser is safe and high quality water equivalent to the raw water of soft drinks, that is, “drinkable water” defined by the Food Sanitation Law, and is suitable for washing after ultra-high temperature sterilization in aseptic water production equipment Sterile water cooled to temperature is used.

ここで、一般に、飲料の無菌充填設備のリンサーでは、飲料の充填機と連動して、連続的に飲料容器の殺菌およびすすぎが行われる。そのために、リンサーからは、過酸化水素、過酢酸等の過酸化物を含む排水が連続的に排出される。リンサーからの排水(リンサー排水)中の汚染物質の種類と濃度は、リンサーでの殺菌およびすすぎの方法によって異なる。   Here, in general, in a rinser of a beverage aseptic filling facility, a beverage container is continuously sterilized and rinsed in conjunction with a beverage filling machine. For this reason, waste water containing peroxides such as hydrogen peroxide and peracetic acid is continuously discharged from the rinser. The kind and concentration of pollutants in the waste water from the rinser (rinser waste water) vary depending on the method of sterilization and rinsing with the rinser.

この過酸化物を含有するリンサー排水を処理する従来技術として、例えば特許文献1がある。この特許文献1に記載されている処理装置では、過酢酸含有排水を活性炭塔に通水して過酢酸を酢酸に還元後、活性炭塔流出水をカチオン交換塔に通水して共存カチオンを除去し、更にカチオン交換塔流出水をアニオン交換塔に通水して過酢酸の還元で生じた酢酸および原水由来の酢酸を除去して再利用可能な処理水が得られる。
また、他の特許文献記載の技術として、過酢酸の還元で生じた酢酸を逆浸透膜を用いて除去する処理装置が提案されている(例えば、特許文献2参照。)。
For example, Patent Document 1 discloses a conventional technique for treating the rinser drainage containing the peroxide. In the treatment apparatus described in Patent Document 1, the peracetic acid-containing wastewater is passed through an activated carbon tower to reduce peracetic acid to acetic acid, and then the activated carbon tower effluent is passed through a cation exchange tower to remove coexisting cations. Further, the effluent from the cation exchange tower is passed through the anion exchange tower to remove acetic acid produced by the reduction of peracetic acid and acetic acid derived from the raw water, thereby obtaining reusable treated water.
As another technique described in Patent Document, a processing apparatus for removing acetic acid generated by reduction of peracetic acid using a reverse osmosis membrane has been proposed (for example, see Patent Document 2).

特開2001−129564号公報(第2−3頁、図1)JP 2001-129564 A (page 2-3, FIG. 1) 特開2001−170657号公報(第3−5頁、図1)JP 2001-170657 A (page 3-5, FIG. 1)

上記の特許文献1に記載された技術によれば、共存カチオンをカチオン交換塔で、過酢酸の還元で生じた酢酸および原水に由来する酢酸をアニオン交換塔で、それぞれ除去しており、電気伝導率が低く良質の処理水が得られるとともに、排水量も少ないという利点がある。そして、活性炭塔における過酢酸の酢酸への還元では、酸素と少量の炭酸ガス気泡が発生することから、この気泡を速やかに除去するために活性炭塔としては上向流の多段式の流動床式活性炭塔が好適であるとされている(特許文献1の段落番号〔0019〕参照)。しかしながら、上向流の流動床式活性炭塔にて、活性炭塔内で気泡が発生する場合に、この気泡の影響によって活性炭充填層内で水の偏流が生じやすく、その結果として被処理水中の過酢酸および過酸化水素が活性炭塔処理水に漏洩し易いという欠点がある。即ち、上向流では、確かに気泡は抜けやすくなるが、この気泡の発生に伴って過酢酸および過酸化水素を含む水が一緒に活性炭塔処理水に漏洩してしまう問題がある。この気泡は連続的にスムーズに抜けず、ある程度、蓄積した後に一気に抜ける性質がある。そのために、大きな気泡とともに水の路が形成されてしまい、被処理水が抜けやすくなってしまう。   According to the technique described in Patent Document 1 above, coexisting cations are removed by a cation exchange column, and acetic acid derived from reduction of peracetic acid and acetic acid derived from raw water are removed by an anion exchange column. There is an advantage that high-quality treated water is obtained at a low rate and the amount of waste water is small. In the reduction of peracetic acid to acetic acid in the activated carbon tower, oxygen and a small amount of carbon dioxide gas bubbles are generated. Therefore, the activated carbon tower has an upward flow multi-stage fluidized bed type in order to quickly remove the bubbles. An activated carbon tower is said to be suitable (see paragraph [0019] of Patent Document 1). However, in the upward flow fluidized bed activated carbon tower, when bubbles are generated in the activated carbon tower, the influence of the bubbles tends to cause a drift of water in the packed bed of activated carbon, and as a result, excess water in the treated water There is a drawback that acetic acid and hydrogen peroxide easily leak into the treated water of the activated carbon tower. That is, in the upward flow, bubbles easily escape, but there is a problem that water containing peracetic acid and hydrogen peroxide leaks to the activated carbon tower treated water together with the generation of the bubbles. These bubbles do not escape continuously and smoothly, and have a property of being released at once after being accumulated to some extent. Therefore, a water path is formed with large bubbles, and the water to be treated is easily removed.

ここで、この活性炭塔処理水に過酢酸や過酸化水素が漏洩した場合には次のような不具合が生じるおそれがある。まず、活性炭塔処理水に漏出した過酢酸や過酸化水素によって、後続のカチオン交換塔に充填されたカチオン交換樹脂が酸化され、カチオン交換性能が低下しカチオンの除去率が低下する。また、酸化劣化したカチオン交換樹脂の溶出物がカチオン交換塔処理水中に漏出し、これがアニオン交換塔に充填されたアニオン交換樹脂を汚染してアニオン交換性能が低下し酢酸の除去率が低下する。このようにして処理水水質が悪化するおそれがある。また、得られる処理水の取得量が減少する不具合もある。   Here, if peracetic acid or hydrogen peroxide leaks into this activated carbon tower treated water, the following problems may occur. First, peracetic acid or hydrogen peroxide leaked into the treated water of the activated carbon tower oxidizes the cation exchange resin packed in the subsequent cation exchange tower, the cation exchange performance is lowered, and the cation removal rate is lowered. In addition, the oxidatively deteriorated cation exchange resin eluate leaks into the cation exchange tower treated water, which contaminates the anion exchange resin packed in the anion exchange tower, lowering the anion exchange performance and lowering the acetic acid removal rate. In this way, the quality of treated water may be deteriorated. There is also a problem that the amount of treated water obtained is reduced.

一方、特許文献2に記載された技術によれば、過酢酸還元用触媒(活性炭等)を充填した過酢酸分解槽で排水中の過酢酸を酢酸に還元分解するが、この過酢酸分解槽内での排水の流通方向は、過酢酸分解時に発生するガスを排除し易い上向流式が好ましいとされている(特許文献2の段落番号〔0026〕参照)。しかしながら、上向流式の過酢酸還元槽には、特許文献1に記載される技術と同様の欠点がある。即ち、このように過酢酸還元槽内で気泡が発生する場合には過酢酸還元触媒充填層内で水の偏流が生じやすく、その結果として被処理水中の過酢酸および過酸化水素が活性炭塔処理水に漏洩し易くなる。この特許文献2では過酢酸還元槽の処理水に残存する過酢酸を還元するために、適切な量の還元剤(亜硫酸水素ナトリウム等)を添加する装置が設けられているが、これでは設備が複雑になり、かつ運転管理が煩雑になる。過酢酸還元槽内の偏流により過酢酸還元槽処理水への過酢酸や過酸化水素の漏洩が増加し、還元剤注入量が不足した場合や過酢酸および過酸化水素の還元分解が完全に行われない場合には、逆浸透膜処理装置供給水に漏洩した過酢酸や過酸化水素によって逆浸透膜の酸化劣化が生じ酢酸イオンおよび共存カチオンの脱塩率が低下する。このようにして処理水水質が悪化するおそれがある。   On the other hand, according to the technique described in Patent Document 2, peracetic acid in the wastewater is reduced and decomposed into acetic acid in a peracetic acid decomposition tank filled with a peracetic acid reduction catalyst (activated carbon or the like). It is said that the flow direction of the waste water is preferably an upward flow type in which gas generated during peracetic acid decomposition can be easily removed (see paragraph [0026] of Patent Document 2). However, the upward flow peracetic acid reduction tank has the same drawbacks as the technique described in Patent Document 1. That is, when bubbles are generated in the peracetic acid reduction tank, water drift tends to occur in the peracetic acid reduction catalyst packed bed, and as a result, the peracetic acid and hydrogen peroxide in the treated water are treated with the activated carbon tower. Easy to leak into water. In Patent Document 2, an apparatus for adding an appropriate amount of a reducing agent (such as sodium hydrogen sulfite) is provided to reduce peracetic acid remaining in the treated water of the peracetic acid reduction tank. It becomes complicated and operation management becomes complicated. Due to the drift in the peracetic acid reduction tank, leakage of peracetic acid and hydrogen peroxide into the treated water of the peracetic acid reduction tank increases, and when the reducing agent injection amount is insufficient or the reductive decomposition of peracetic acid and hydrogen peroxide is completely performed. If not, the reverse osmosis membrane and the hydrogen peroxide leaked into the reverse osmosis membrane treatment apparatus supply water will cause oxidative degradation of the reverse osmosis membrane and the desalting rate of acetate ions and coexisting cations will decrease. In this way, the quality of treated water may be deteriorated.

このように、従来のイオン交換処理装置や逆浸透膜処理装置等の脱塩装置を有する過酢酸および過酸化水素含有リンサー排水のリサイクル装置では、これらの脱塩装置の上流側に設置された過酸化物分解装置の処理安定性が十分でなく、運転管理も煩雑であった。しかし、水資源の有効活用、排水量低減による水環境への負荷低減の見地から、例えば無菌充填設備のリンサー排水回収の必要性は一層高まっている。この排水回収の必要性は、リンサー排水処理以外の他の水処理でも同様に高まっている。   As described above, in a recycling apparatus for peracetic acid and hydrogen peroxide-containing rinser effluent having a desalting apparatus such as a conventional ion exchange processing apparatus or a reverse osmosis membrane processing apparatus, the excessively installed upstream of these desalting apparatuses. The treatment stability of the oxide decomposition apparatus was not sufficient, and operation management was complicated. However, from the viewpoint of reducing the load on the water environment by effectively utilizing water resources and reducing the amount of wastewater, for example, the necessity of collecting rinser wastewater from aseptic filling equipment is increasing. The need for this wastewater recovery is also increasing in water treatment other than the rinser wastewater treatment.

本発明は、以上のような技術的課題を解決するためになされたものであって、その目的とするところは、従来装置に比べて過酸化物の分解処理安定性を向上させ、かつ運転管理が容易な排水リサイクル装置を提供することにある。   The present invention has been made in order to solve the technical problems as described above, and the object of the present invention is to improve the stability of the decomposition treatment of peroxide as compared with the conventional apparatus and to manage the operation. Is to provide an easy-to-use wastewater recycling apparatus.

かかる目的のもと、本発明では、例えば汚染物質が比較的高濃度な排水について、まず光触媒槽を使って分解し、その後、下向流式の活性炭塔を用いて処理する。言い換えると、下向流式の活性炭塔を用いた際に気泡の発生が抑えられるレベルまで、光触媒槽を使って排水中の汚染物質を除去することで、下向流式の利点を生かすことが可能となり、従来技術における上向流式の活性炭塔にて生じていた欠点を解消している。
即ち、本発明は、過酸化物が含有される排水の処理装置であって、過酸化物が含有される排水のpHを調整するpH調整装置と、この排水に含まれる過酸化物を分解するための光触媒と紫外線光源とを有する光触媒槽と、この光触媒槽からの処理水に残存する過酸化物を分解する下向流式の活性炭塔とを含んでいる。これによって、光触媒槽と下向流式の活性炭塔との両者の利点を生かし、汚染物質が比較的高濃度の排水について、その回収処理を可能にしている。
For this purpose, in the present invention, for example, wastewater having a relatively high concentration of contaminants is first decomposed using a photocatalyst tank, and then treated using a downflow type activated carbon tower. In other words, by using the photocatalyst tank to remove pollutants in the wastewater to the level where the generation of bubbles is suppressed when using the downflow type activated carbon tower, it is possible to take advantage of the downflow type. This has been possible, eliminating the drawbacks of the up-flow type activated carbon tower in the prior art.
That is, the present invention is a wastewater treatment apparatus containing a peroxide, a pH adjusting apparatus for adjusting the pH of the wastewater containing the peroxide, and the peroxide contained in the wastewater is decomposed. A photocatalyst tank having a photocatalyst and an ultraviolet light source, and a downflow type activated carbon tower for decomposing peroxide remaining in the treated water from the photocatalyst tank. As a result, the advantages of both the photocatalyst tank and the downflow type activated carbon tower are utilized, and the wastewater having a relatively high concentration of pollutants can be recovered.

ここで、この活性炭塔からの処理水に含まれるイオン性物質を除去するイオン交換装置または逆浸透膜装置を更に含むことを特徴とすることができる。このイオン性物質としては、酢酸イオンや共存カチオンなどがある。このイオン交換装置では、逆浸透膜装置に比べて排水の回収率を高くすることができる点に特徴がある。一方、イオン交換装置に代えて逆浸透膜装置を用いれば、装置を連続運転できる点で好ましい。   Here, it can be characterized by further comprising an ion exchange device or a reverse osmosis membrane device for removing ionic substances contained in the treated water from the activated carbon tower. Examples of the ionic substance include acetate ions and coexisting cations. This ion exchange device is characterized in that the wastewater recovery rate can be increased as compared with the reverse osmosis membrane device. On the other hand, if a reverse osmosis membrane device is used instead of the ion exchange device, it is preferable in that the device can be operated continuously.

また、この光触媒槽に充填される光触媒は、二酸化チタンであることを特徴とすれば、二酸化チタンは食品添加物として許可されている物質であり、例えば無菌充填設備において飲料容器を殺菌洗浄するリンサーにて、ここで使用される水処理機材としての安全性の観点から好ましい。   Further, if the photocatalyst filled in the photocatalyst tank is titanium dioxide, titanium dioxide is a substance permitted as a food additive. For example, a rinser for sterilizing and washing a beverage container in an aseptic filling facility. In view of safety as the water treatment equipment used here, it is preferable.

更に、この過酸化物は過酢酸および/または過酸化水素であり、処理される過酸化物の濃度合計が50〜200mg/Lの排水であることを特徴とすることができる。ここで、濃度合計が50mg/Lよりも少ない低濃度の場合には、従来技術の例えば上向流式の活性炭塔によっても処理が可能となる。また、濃度合計が200mg/Lを超えた高濃度の場合には、充分な分解処理ができなくなる。そこで、本発明は、過酢酸や過酸化水素などの過酸化物の濃度合計が50〜200mg/Lの排水に特に好適である。   Furthermore, the peroxide can be characterized in that it is peracetic acid and / or hydrogen peroxide and is a wastewater with a total concentration of peroxide to be treated of 50 to 200 mg / L. Here, when the total concentration is lower than 50 mg / L, the treatment can be performed also by the conventional activated carbon tower such as an upward flow type. In addition, when the total concentration exceeds 200 mg / L, sufficient decomposition treatment cannot be performed. Therefore, the present invention is particularly suitable for wastewater having a total concentration of peroxides such as peracetic acid and hydrogen peroxide of 50 to 200 mg / L.

他の観点から捉えると、本発明は、無菌充填設備のリンサーに接続され、リンサーから排出される排水を処理してリンサーにて回収再利用するためのリンサー排水回収装置であって、排水のpHを調整するpH調整装置と、この排水に含まれる過酸化物を分解するための光触媒と紫外線光源とを有する光触媒槽と、この光触媒槽からの処理水に残存する過酸化物を分解する下向流式の活性炭塔とを含む。   From another point of view, the present invention is a rinser drainage recovery apparatus that is connected to a rinser of an aseptic filling facility, processes drainage discharged from the rinser, and collects and reuses the rinser. A pH adjusting device for adjusting the amount of the peroxide, a photocatalyst tank having a photocatalyst for decomposing peroxide contained in the waste water and an ultraviolet light source, and a downward direction for decomposing the peroxide remaining in the treated water from the photocatalyst tank And a flow activated carbon tower.

一方、本発明はリンサー設備を含むシステムとして捉えることができる。即ち、本発明が適用されるリンサー排水回収システムは、容器を殺菌・洗浄する無菌充填設備のリンサーと、このリンサーから排出されたリンサー排水を受け入れるリンサー排水受槽と、リンサー排水受槽のリンサー排水を下流側のリンサー排水回収装置に供給するリンサー排水ポンプと、リンサーから排出される排水を処理してリンサーに回収再利用するためのリンサー排水回収装置と、リンサー排水回収装置によって処理された処理水と供給される補給水とを合わせる中継槽と、中継槽から得られた水を殺菌処理する無菌水製造装置とを備え、このリンサー排水回収装置は、光触媒が充填された光触媒槽に排水を流入し、排水に含有される過酸化物を光触媒の表面に吸着させ、過酸化物が表面に吸着された光触媒を紫外線光源により励起させて過酸化物を分解した後、光触媒槽からの処理水に残存する過酸化物を下向流式の活性炭塔で分解することを特徴としている。   On the other hand, the present invention can be understood as a system including a rinser facility. That is, the rinser drainage recovery system to which the present invention is applied includes a rinser for aseptic filling equipment for sterilizing and washing containers, a rinser drainage receiving tank for receiving the rinser drainage discharged from the rinser, and the rinser drainage of the rinser drainage receiving tank downstream. Rincer drainage pump to supply to the side Rincer drainage recovery device, Rincer drainage recovery device to treat and reuse the wastewater discharged from the Rincer, and the treated water and supply processed by the Rincer drainage recovery device Comprising a relay tank to be combined with the replenished water, and a sterile water production device for sterilizing the water obtained from the relay tank, this rinser drainage recovery device flows wastewater into the photocatalyst tank filled with the photocatalyst, The peroxide contained in the waste water is adsorbed on the surface of the photocatalyst, and the photocatalyst with the peroxide adsorbed on the surface is excited by an ultraviolet light source. After decomposing the peroxide allowed, it is characterized by decomposing the peroxide remaining in the treated water from the photocatalyst reactor with activated carbon column for downward flow type.

更に、本発明は、比較的高濃度の過酸化物が含有される排水の処理方法であって、光触媒槽に流入される排水にpH調整を施すステップと、光触媒が充填された光触媒槽にpH調整が施された排水を流入し、排水に含有される過酸化物を光触媒の表面に吸着させ、過酸化物が表面に吸着された光触媒を紫外線光源により励起させて過酸化物を分解するステップと、光触媒槽からの処理水に残存する過酸化物を下向流式の活性炭塔により分解するステップと、活性炭塔からの処理水に含まれる酢酸イオンおよび/または共存カチオンを除去するステップとを含む。   Furthermore, the present invention is a method for treating wastewater containing a relatively high concentration of peroxide, the step of adjusting the pH of the wastewater flowing into the photocatalyst tank, and the pH of the photocatalyst tank filled with the photocatalyst. The step of flowing the adjusted wastewater, adsorbing the peroxide contained in the wastewater on the surface of the photocatalyst, and exciting the photocatalyst with the peroxide adsorbed on the surface with an ultraviolet light source to decompose the peroxide And a step of decomposing peroxide remaining in the treated water from the photocatalyst tank by a downflow type activated carbon tower and a step of removing acetate ions and / or coexisting cations contained in the treated water from the activated carbon tower. Including.

本発明によれば、従来装置に比べて過酸化物の分解処理安定性を大幅に向上させることができ、かつ運転管理が容易な排水リサイクル装置を提供することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, compared with the conventional apparatus, it becomes possible to provide the waste water recycling apparatus which can improve the decomposition processing stability of a peroxide significantly, and whose operation management is easy.

以下、添付図面を参照して、本発明の実施の形態について詳細に説明する。
〔実施の形態1〕
図1は、本実施の形態が適用されるリンサー排水回収システム100の全体構成を示した図である。図1に示すリンサー排水回収システム100は、例えば飲料が充填されるボトルやキャップ等の容器を殺菌・洗浄する無菌充填設備リンサー10と、リンサー排水を回収して再利用するためのリンサー排水回収装置20とを備えている。また、リンサー排水回収システム100は、無菌充填設備リンサー10から排出されたリンサー排水を受け入れるリンサー排水受槽11と、リンサー排水受槽11のリンサー排水をリンサー排水回収装置20に供給するリンサー排水ポンプ12とを備えている。更に、リンサー排水回収システム100は、リンサー排水回収装置20によって処理された処理水と、供給される補給水とを合わせる中継槽13を備えている。また更に、中継槽13から得られた水を殺菌処理する無菌水製造装置14を備えている。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.
[Embodiment 1]
FIG. 1 is a diagram showing an overall configuration of a rinser drainage recovery system 100 to which the present embodiment is applied. A rinser drainage recovery system 100 shown in FIG. 1 includes, for example, an aseptic filling facility rinser 10 for sterilizing and washing containers such as bottles and caps filled with beverages, and a rinser drainage recovery device for recovering and reusing the rinser drainage. 20. The rinser drainage recovery system 100 includes a rinser drainage receiving tank 11 that receives the rinser drainage discharged from the aseptic filling facility rinser 10, and a rinser drainage pump 12 that supplies the rinser drainage of the rinser drainage receiving tank 11 to the rinser drainage recovery device 20. I have. Further, the rinser drainage recovery system 100 includes a relay tank 13 that combines the treated water processed by the rinser drainage recovery apparatus 20 and the supplied makeup water. Furthermore, the aseptic water production apparatus 14 which sterilizes the water obtained from the relay tank 13 is provided.

図1に示すリンサー排水回収システム100にて、無菌充填設備リンサー10から排出されたリンサー排水は、リンサー排水受槽11に受け入れられ、リンサー排水ポンプ12でリンサー排水回収装置20に送られる。リンサー排水回収装置20に送られたリンサー排水は、リンサー排水回収装置20で処理された後に、中継槽13へ送られる。中継槽13では、リンサー排水回収装置20において活性炭塔の洗浄、およびイオン交換装置(後述)の再生または逆浸透膜装置(後述する実施の形態2)での膜分離で装置外に排出(排水)された水量を補うために、補給水が加えられる。リンサー排水回収装置20からの処理水と、補われる補給水とを合わせた水は、無菌水製造装置14で超高温殺菌処理がなされた後、洗浄に適した温度に冷却されて無菌充填設備リンサー10に送られ、過酸化物含有殺菌剤で殺菌された容器のすすぎに使用される。   In the rinser drainage recovery system 100 shown in FIG. 1, the rinser drainage discharged from the aseptic filling facility rinser 10 is received in the rinser drainage receiving tank 11 and sent to the rinser drainage recovery device 20 by the rinser drainage pump 12. The rinser drainage sent to the rinser drainage recovery device 20 is processed by the rinser drainage recovery device 20 and then sent to the relay tank 13. In the relay tank 13, the activated carbon tower is washed in the rinser drainage recovery apparatus 20, and the ion exchange apparatus (described later) is regenerated or discharged to the outside of the apparatus by membrane separation in a reverse osmosis membrane apparatus (second embodiment described later) (drainage). Make-up water is added to make up for the amount of water produced. The combined water of the treated water from the rinser drainage recovery device 20 and the supplemental makeup water to be supplemented is subjected to an ultra-high temperature sterilization process in the aseptic water production device 14, and then cooled to a temperature suitable for cleaning, and the aseptic filling equipment rinser 10 and used for rinsing containers sterilized with peroxide-containing disinfectant.

ここで、一つの飲料充填ラインから排出されるリンサー排水の流量は、例えば20〜30m/h、温度は、例えば40〜50℃である。リンサー排水中の汚染物質の種類と濃度は、無菌充填設備リンサー10での殺菌およびすすぎの方法によって異なる。例えば、比較的低濃度のリンサー排水では、過酢酸は検出されず、過酸化水素濃度5〜50mg/L、酢酸濃度0.1〜0.3mg/L程度であり、電気伝導率0.2〜0.4mS/m at 25℃、pH5.5〜7.5程度である。一方、比較的高濃度のリンサー排水では、過酢酸濃度20〜50mg/L、過酸化水素濃度50〜100mg/L、酢酸濃度50〜100mg/L程度であり、電気伝導率が5〜10mS/m at 25℃、pH3.5〜4.5程度である。本実施の形態は、前者の比較的低濃度のリンサー排水のリサイクルにも適用できるが、後者の比較的高濃度のリンサー排水のリサイクルに好適な装置である。 Here, the flow rate of the rinser drainage discharged from one beverage filling line is, for example, 20 to 30 m 3 / h, and the temperature is, for example, 40 to 50 ° C. The type and concentration of contaminants in the rinser drainage differ depending on the method of sterilization and rinsing in the aseptic filling facility rinser 10. For example, in a relatively low concentration rinser wastewater, peracetic acid is not detected, the hydrogen peroxide concentration is 5 to 50 mg / L, the acetic acid concentration is about 0.1 to 0.3 mg / L, and the electric conductivity is 0.2 to 0.2. It is 0.4 mS / m at 25 ° C. and a pH of about 5.5 to 7.5. On the other hand, a relatively high concentration rinser drainage has a peracetic acid concentration of 20-50 mg / L, a hydrogen peroxide concentration of 50-100 mg / L, an acetic acid concentration of 50-100 mg / L, and an electrical conductivity of 5-10 mS / m. at 25 ° C. and pH of about 3.5 to 4.5. Although the present embodiment can be applied to the recycling of the former relatively low concentration rinser wastewater, it is an apparatus suitable for the latter relatively high concentration rinser wastewater recycling.

中継槽13で加えられる補給水は、飲料適の水である。この飲料適の水としては、例えば、上水を活性炭処理して残留塩素を除いた水、地下水を飲料適となるように処理した水、またはこれらの水をイオン交換処理装置や逆浸透膜処理装置等で処理した脱塩水が用いられる。特に、TOC(有機体炭素)が上水よりも低い脱塩水として、例えば、電気伝導率が1mS/m at 25℃以下のイオン交換処理水が水の循環使用を行う上で好適である。   The makeup water added in the relay tank 13 is water suitable for drinking. Examples of the water suitable for beverages include water obtained by treating activated water with activated carbon to remove residual chlorine, water obtained by treating groundwater so as to be suitable for beverages, or treating these waters with an ion exchange treatment device or a reverse osmosis membrane treatment. Demineralized water treated with an apparatus or the like is used. In particular, as demineralized water having a TOC (organic carbon) lower than that of tap water, for example, ion-exchanged water having an electric conductivity of 1 mS / m at 25 ° C. or lower is suitable for circulating water.

図2は、リンサー排水回収装置20を詳述した構成図である。本実施の形態が適用されるリンサー排水回収装置20は、リンサー排水受槽11から排出されるリンサー排水のpHを調整するpH調整装置21、pH調整装置21によりpH調整された排水に含まれる過酢酸や過酸化水素など(過酸化物)を分解するための光触媒と紫外線光源とを有する光触媒槽22、光触媒槽22にて処理された光触媒槽処理水を貯留する一次処理水槽23、光触媒槽処理水に残存する過酢酸や過酸化水素を分解する下向流式の活性炭塔24、活性炭塔24により処理された活性炭塔処理水に含まれる酢酸イオンや共存カチオンなど(イオン性物質)を除去するイオン交換装置25を備えている。   FIG. 2 is a configuration diagram detailing the rinser drainage recovery apparatus 20. The rinser drainage recovery apparatus 20 to which the present embodiment is applied includes a pH adjuster 21 that adjusts the pH of the rinser drainage discharged from the rinser drainage tank 11, and peracetic acid contained in the drainage adjusted by the pH adjuster 21. Photocatalyst tank 22 having a photocatalyst for decomposing (peroxide) such as hydrogen peroxide and an ultraviolet light source, primary treatment water tank 23 for storing the photocatalyst tank treated water treated in the photocatalyst tank 22, and photocatalyst tank treated water Ions for removing acetic acid ions and coexisting cations (ionic substances) contained in the treated water of the activated carbon tower treated by the activated carbon tower 24, which decomposes peracetic acid and hydrogen peroxide remaining in the activated carbon tower 24 An exchange device 25 is provided.

pH調整装置21は、pHを制御するpH指示調節計(pHIC)31と、pH調整剤を貯留するpH調整剤槽32と、pH調整剤槽32に貯留されたpH調整剤を取り出すpH調整剤注入ポンプ33と、リンサー排水とpH調整剤とを混合する混合器34とを有する。このpH調整剤としては、通常、苛性ソーダ等のアルカリ水溶液が使用される。   The pH adjusting device 21 is a pH indicating controller (pHIC) 31 that controls pH, a pH adjusting agent tank 32 that stores a pH adjusting agent, and a pH adjusting agent that takes out the pH adjusting agent stored in the pH adjusting agent tank 32. It has an infusion pump 33 and a mixer 34 for mixing the rinser drainage and the pH adjuster. As the pH adjuster, an alkaline aqueous solution such as caustic soda is usually used.

また、リンサー排水回収装置20には、各種配管として、リンサー排水がpH調整装置21に導入されるリンサー排水導入配管41と、pH調整装置21と光触媒槽22とを接続するpH調整処理水配管42と、光触媒槽22と一次処理水槽23とを接続する光触媒処理水配管43と、一次処理水槽23と活性炭塔24とを接続する一次処理水配管44と、活性炭塔24とイオン交換装置25とを接続する活性炭塔処理水配管45と、イオン交換装置処理水が中継槽13へ導出されるイオン交換装置処理水配管46とを備えている。また、リンサー排水回収装置20は、一次処理水配管44に設けられる一次処理水ポンプ40を備えている。   In addition, the rinser drainage recovery apparatus 20 includes, as various pipes, a rinser drainage introduction pipe 41 through which the rinser drainage is introduced into the pH adjuster 21, and a pH adjustment treated water pipe 42 that connects the pH adjuster 21 and the photocatalyst tank 22. A photocatalyst treated water pipe 43 connecting the photocatalyst tank 22 and the primary treated water tank 23, a primary treated water pipe 44 connecting the primary treated water tank 23 and the activated carbon tower 24, the activated carbon tower 24 and the ion exchanger 25. An activated carbon tower treated water pipe 45 to be connected and an ion exchanger treated water pipe 46 through which the ion exchanger treated water is led out to the relay tank 13 are provided. The rinser drainage recovery apparatus 20 includes a primary treated water pump 40 provided in the primary treated water pipe 44.

図1に示すように、無菌充填設備リンサー10から排出され、リンサー排水受槽11を経由したリンサー排水は、図2に示すリンサー排水導入配管41を通してpH調整装置21へ送られる。pH調整装置21では、pH指示調節計31によって制御されたpH調整剤注入ポンプ33によって苛性ソーダ等のアルカリ水溶液がリンサー排水に添加され、リンサー排水のpHが9〜10程度に調整される。リンサー排水のpHは、高いほうが光触媒槽22および活性炭塔24での過酢酸および過酸化水素の分解をより効率的に行える。しかしながら、pHを高くするほどpH調整剤由来のカチオン(pH調整剤が苛性ソーダの場合はナトリウムイオン)の濃度が高くなり、これが後段のイオン交換装置25(または後述する実施の形態2の逆浸透膜装置)の大きな負荷となる。そこで、pH調整装置21で調整されるpHとしては、pH9〜10程度が好適である。pH調整装置21でpH調整されたリンサー排水(pH調整処理水)は、pH調整処理水配管42を通じて光触媒槽22へ送られる。   As shown in FIG. 1, the rinser drainage discharged from the aseptic filling facility rinser 10 and passing through the rinser drainage receiving tank 11 is sent to the pH adjusting device 21 through the rinser drainage introduction pipe 41 shown in FIG. In the pH adjuster 21, an alkaline aqueous solution such as caustic soda is added to the rinser drainage by the pH adjuster injection pump 33 controlled by the pH indicator controller 31, and the pH of the rinser drainage is adjusted to about 9-10. The higher the pH of the rinser wastewater, the more efficiently the decomposition of peracetic acid and hydrogen peroxide in the photocatalyst tank 22 and the activated carbon tower 24 can be performed. However, the higher the pH, the higher the concentration of the cation derived from the pH adjuster (sodium ion when the pH adjuster is caustic soda), which is the latter ion exchange device 25 (or the reverse osmosis membrane of Embodiment 2 described later). Equipment). Therefore, the pH adjusted by the pH adjusting device 21 is preferably about pH 9-10. The rinser wastewater (pH adjusted treated water) adjusted in pH by the pH adjusting device 21 is sent to the photocatalyst tank 22 through the pH adjusted treated water pipe 42.

光触媒槽22は、pH調整処理水に含まれる過酢酸および/または過酸化水素を分解するための光触媒と紫外線光源とを有している。この光触媒槽22では、光触媒が充填された光触媒充填層にpH調整処理水を上向きに通過させ、同時に光触媒充填層に紫外線を照射してpH調整処理水中の過酢酸および過酸化水素を分解除去する。光触媒槽22にて処理された光触媒槽処理水は、光触媒処理水配管43を通じて一次処理水槽23に送られて貯留される。光触媒槽22で過酢酸および/または過酸化水素を分解し、光触媒槽処理水の過酢酸と過酸化水素の濃度合計値を50mg/L以下にすることによって、後段の活性炭塔24では、残存するこれらの過酸化物を安定してほぼ完全に除去し、これらの過酸化物の濃度をイオン交換装置25または逆浸透膜装置(後述する実施の形態2を参照)に悪影響を及ぼさない濃度、すなわち過酢酸と過酸化水素の濃度合計値を0.1mg/L以下に保つことができる。   The photocatalyst tank 22 has a photocatalyst and an ultraviolet light source for decomposing peracetic acid and / or hydrogen peroxide contained in the pH-adjusted treated water. In this photocatalyst tank 22, the pH adjustment treated water is passed upward through the photocatalyst filled layer filled with the photocatalyst, and at the same time, the photocatalyst filled layer is irradiated with ultraviolet rays to decompose and remove peracetic acid and hydrogen peroxide in the pH adjusted treated water. . The photocatalyst tank treated water treated in the photocatalyst tank 22 is sent to the primary treated water tank 23 through the photocatalyst treated water pipe 43 and stored. By decomposing peracetic acid and / or hydrogen peroxide in the photocatalyst tank 22 and reducing the total concentration of peracetic acid and hydrogen peroxide in the photocatalyst tank treated water to 50 mg / L or less, the remaining activated carbon tower 24 remains. These peroxides are stably and almost completely removed, and the concentration of these peroxides does not adversely affect the ion exchange device 25 or the reverse osmosis membrane device (see Embodiment 2 described later), that is, The total concentration of peracetic acid and hydrogen peroxide can be kept below 0.1 mg / L.

この光触媒槽22の光触媒充填層に充填される光触媒は、その表面に過酢酸および過酸化水素を吸着し、かつ紫外線光源からの紫外線エネルギーを吸収して励起し、吸着したこれらの過酸化物を分解できるものであれば、種類を問わない。例えば、二酸化チタン(TiO)、セレン化硫化カドミウム(CdSe)、硫化カドミウム(CdS)、酸化ニオブ(Nb)、酸化亜鉛(ZnO)等がある。
この中で、二酸化チタンは、食品添加物として認可されている物質である。そこで、無菌充填設備において飲料容器を殺菌洗浄するリンサーで使用する水処理機材としての安全性の観点から、本用途には特に好適である。
また、これらの光触媒をセラミック、ガラス、ポリマー等に担持したものを用いることもできる。光触媒の形状は、粒状、不織布状等、過酢酸および過酸化水素をより多く吸着できるように、比表面積が大きく、かつ光の利用効率が高い形状が好適である。尚、粒状の光触媒については、粒径0.5〜3mm程度のものが上向流通水を行う上で好適である。
The photocatalyst filled in the photocatalyst filling layer of the photocatalyst tank 22 adsorbs peracetic acid and hydrogen peroxide on its surface and absorbs ultraviolet energy from an ultraviolet light source to excite and adsorb these peroxides. Any type can be used as long as it can be decomposed. For example, titanium dioxide (TiO 2 ), cadmium selenide sulfide (CdSe), cadmium sulfide (CdS), niobium oxide (Nb 2 O 5 ), zinc oxide (ZnO 2 ), and the like can be given.
Among these, titanium dioxide is a substance approved as a food additive. Therefore, it is particularly suitable for this application from the viewpoint of safety as a water treatment equipment used in a rinser for sterilizing and washing beverage containers in an aseptic filling facility.
Moreover, what carried these photocatalysts in the ceramic, glass, polymer, etc. can also be used. The shape of the photocatalyst is preferably a shape having a large specific surface area and high light utilization efficiency, such as granular or non-woven fabric, so that more peracetic acid and hydrogen peroxide can be adsorbed. In addition, about a granular photocatalyst, a thing with a particle size of about 0.5-3 mm is suitable when performing upward circulating water.

光触媒槽22に用いられる紫外線光源については、光触媒充填層に充填された光触媒を励起できるものであれば特に制限はない。例えば、低圧紫外線ランプ、中圧紫外線ランプ、高圧紫外線ランプ、ブラックライト、キセノンランプ等がある。この中で、低圧紫外線ランプは発光面積が比較的広いので光触媒に紫外線を照射し易く、本用途に好適である。   The ultraviolet light source used in the photocatalyst tank 22 is not particularly limited as long as it can excite the photocatalyst filled in the photocatalyst filling layer. For example, there are a low-pressure ultraviolet lamp, a medium-pressure ultraviolet lamp, a high-pressure ultraviolet lamp, a black light, a xenon lamp, and the like. Among them, the low-pressure ultraviolet lamp has a relatively wide light emitting area, and therefore is easy to irradiate the photocatalyst with ultraviolet rays, and is suitable for this application.

光触媒槽22にて、光触媒に吸着した過酢酸および/または過酸化水素は、光触媒が紫外線照射エネルギーを吸収して励起することによって、光触媒上で分解される。また、光触媒槽22の水中に存在する過酢酸および/または過酸化水素は、紫外線照射を受けて分解される。いずれの反応においても、過酢酸は酢酸と酸素に、過酸化水素は水と酸素にそれぞれ分解される。過酢酸濃度20〜50mg/L、過酸化水素濃度50〜150mg/L程度の比較的高濃度のリンサー排水の過酢酸と過酸化水素の濃度合計値を50mg/L以下にするには、例えば、次のような処理条件の光触媒槽22が用いられる。
・光触媒:二酸化チタン(シリカゲル粒子に二酸化チタンをコーティングしたもの)
・pH10
・通水空間速度10h-1
・紫外線照射量1kW/(m/h)
The peracetic acid and / or hydrogen peroxide adsorbed on the photocatalyst in the photocatalyst tank 22 is decomposed on the photocatalyst when the photocatalyst absorbs and excites ultraviolet irradiation energy. In addition, peracetic acid and / or hydrogen peroxide present in the water of the photocatalyst tank 22 is decomposed upon irradiation with ultraviolet rays. In any reaction, peracetic acid is decomposed into acetic acid and oxygen, and hydrogen peroxide is decomposed into water and oxygen. In order to reduce the total concentration of peracetic acid and hydrogen peroxide in a relatively high concentration rinser drainage having a peracetic acid concentration of 20 to 50 mg / L and a hydrogen peroxide concentration of about 50 to 150 mg / L to 50 mg / L or less, for example, A photocatalyst tank 22 having the following processing conditions is used.
・ Photocatalyst: Titanium dioxide (silica gel particles coated with titanium dioxide)
・ PH10
・ Water flow speed 10h -1
・ UV irradiation 1kW / (m 3 / h)

尚、光触媒槽22内で生成された酸素の一部が気泡となって光触媒への過酢酸および/または過酸化水素の吸着を妨げたり、光触媒への紫外線照射を阻害したりするおそれがあるが、ここでは、これらの過酸化物の60〜70%程度を除去できる。
また、後段の活性炭塔24を設置せずにより強い処理条件を有する光触媒槽22を用いることによって、光触媒槽22だけで過酢酸および/または過酸化水素をほぼ完全に除去することも考えられる。しかしながら、光触媒槽22内の光触媒上および水中において、紫外線照射によって酸素と水から過酸化水素が生成する逆反応が起きることから、光触媒槽22による単独処理は適切ではない。
There is a possibility that part of oxygen generated in the photocatalyst tank 22 becomes bubbles to prevent the adsorption of peracetic acid and / or hydrogen peroxide to the photocatalyst or to inhibit the ultraviolet irradiation to the photocatalyst. Here, about 60 to 70% of these peroxides can be removed.
It is also conceivable that peracetic acid and / or hydrogen peroxide can be almost completely removed by using only the photocatalyst tank 22 by using the photocatalyst tank 22 having stronger processing conditions without installing the activated carbon tower 24 in the subsequent stage. However, on the photocatalyst 22 in the photocatalyst tank 22 and in water, a reverse reaction occurs in which hydrogen peroxide is generated from oxygen and water by ultraviolet irradiation, so that the single treatment with the photocatalyst tank 22 is not appropriate.

一次処理水槽23に貯留された一次処理水は、一次処理水ポンプ40で加圧されて活性炭塔24に送られる。活性炭塔24は粒状活性炭充填層を有している。この活性炭塔24では、一次処理水を粒状活性炭充填層に下向きに通過させ、一次処理水に残存する過酢酸および/または過酸化水素(合計濃度50mg/L以下)を活性炭と接触させて分解除去し、過酢酸および/または過酸化水素の濃度合計値を0.1mg/L以下とする。   The primary treated water stored in the primary treated water tank 23 is pressurized by the primary treated water pump 40 and sent to the activated carbon tower 24. The activated carbon tower 24 has a granular activated carbon packed bed. In this activated carbon tower 24, the primary treated water is passed downward through the packed bed of granular activated carbon, and peracetic acid and / or hydrogen peroxide (total concentration 50 mg / L or less) remaining in the primary treated water is brought into contact with activated carbon for decomposition and removal. The total concentration of peracetic acid and / or hydrogen peroxide is 0.1 mg / L or less.

ここで、一般の活性炭塔における過酢酸の酢酸への還元では、酸素と少量の炭酸ガス気泡が発生することから、この気泡を抜けやすくするために、上向流の多段式の流動床式活性炭塔が広く用いられる。しかしながら、上向流の流動床式活性炭塔にて、活性炭塔内で気泡が発生する場合に、この気泡の影響によって活性炭充填層内で水の偏流が生じやすく、被処理水中の過酢酸や過酸化水素が活性炭塔処理水に漏洩し易くなってしまう。即ち、上向流式では、気泡の発生に伴って過酢酸や過酸化水素を含む水が一緒に活性炭塔処理水に漏洩し易くなる。この気泡は連続的にスムーズに抜けるものではなく、ある程度、蓄積した後に一気に抜ける性質がある。そのために、大きな気泡となり、この気泡とともに水の路が形成されてしまい、過酢酸や過酸化水素を含む水が流出してしまうのである。そこで、本実施の形態では、光触媒槽22による処理後の水を処理するに際し、図2に示す活性炭塔24にて下向流式を採用している。即ち、本実施の形態では、光触媒槽22によって過酢酸や過酸化水素が一次分解された後の排水を処理するものであることから、気泡を抜けやすくすることの重要性が低く、過酢酸や過酸化水素を含む水の流出を抑制することの方が重視される。そこで、本実施の形態では、2次分解を行う活性炭塔24では、上方から処理前の排水を供給し、下方から処理済みの水を取り出す下向流式を採用している。   Here, in the reduction of peracetic acid to acetic acid in a general activated carbon tower, oxygen and a small amount of carbon dioxide gas bubbles are generated. Therefore, in order to facilitate the escape of these bubbles, an upward flow multistage fluidized bed activated carbon Towers are widely used. However, in the upward flow fluidized bed type activated carbon tower, when bubbles are generated in the activated carbon tower, the influence of the bubbles tends to cause a drift of water in the packed bed of activated carbon. Hydrogen oxide tends to leak into the activated carbon tower treated water. That is, in the upward flow type, water containing peracetic acid and hydrogen peroxide easily leaks into the activated carbon tower treated water as bubbles are generated. These bubbles are not continuously and smoothly removed, but have a property of being released at once after being accumulated to some extent. Therefore, it becomes a big bubble, a water path is formed with this bubble, and water containing peracetic acid and hydrogen peroxide flows out. Therefore, in the present embodiment, when the water after the treatment in the photocatalyst tank 22 is treated, a downward flow type is adopted in the activated carbon tower 24 shown in FIG. That is, in the present embodiment, since the waste water after the primary decomposition of peracetic acid and hydrogen peroxide is treated by the photocatalyst tank 22, the importance of facilitating the removal of bubbles is low. It is more important to suppress the outflow of water containing hydrogen peroxide. Therefore, in the present embodiment, the activated carbon tower 24 that performs secondary decomposition adopts a downward flow type in which wastewater before treatment is supplied from above and treated water is taken out from below.

尚、活性炭塔24に充填される粒状活性炭は、過酢酸や過酸化水素に適したものであれば原料や形状に制限はない。通常、石炭系やヤシガラ系等の粒状活性炭が用いられる。粒状活性炭の充填層高は1〜2m程度、通水の空間速度は10〜20h-1程度である。また、活性炭塔24では、水による逆流洗浄を定期的に行って、粒状活性炭充填層に蓄積したリンサー排水由来の懸濁物質および活性炭の摩耗によって生じた活性炭微粉を、活性炭塔24外へ排出する。更に、活性炭塔24では塔内での細菌の繁殖を抑制するために、熱水殺菌(80〜90℃)が定期的に行なわれる。 In addition, the granular activated carbon with which the activated carbon tower 24 is packed will not have a restriction | limiting in a raw material and a shape, if it is suitable for peracetic acid and hydrogen peroxide. Normally, granular activated carbon such as coal-based or coconut-based is used. The height of the packed bed of granular activated carbon is about 1 to 2 m, and the space velocity of water flow is about 10 to 20 h −1 . Moreover, in the activated carbon tower 24, the backwashing with water is periodically performed, and the suspended substance derived from the rinser drainage accumulated in the granular activated carbon packed bed and the activated carbon fine powder generated by the abrasion of the activated carbon are discharged out of the activated carbon tower 24. . Further, in the activated carbon tower 24, hot water sterilization (80 to 90 ° C.) is periodically performed in order to suppress the growth of bacteria in the tower.

活性炭塔24にて処理された活性炭塔処理水は、活性炭塔処理水配管45を通じてイオン交換装置25に送られる。イオン交換装置25では、活性炭塔処理水に含まれる酢酸イオンや共存カチオンなどのイオン性物質が除去され、例えば、電気伝導率1mS/m at 25℃以下の処理水が得られる。イオン交換装置処理水は、イオン交換装置処理水配管46を通じて中継槽13へ導出される。   The activated carbon tower treated water treated in the activated carbon tower 24 is sent to the ion exchange device 25 through the activated carbon tower treated water piping 45. In the ion exchange device 25, ionic substances such as acetate ions and coexisting cations contained in the treated water of the activated carbon tower are removed, and, for example, treated water having an electrical conductivity of 1 mS / m at 25 ° C. or lower is obtained. The ion exchange device treated water is led to the relay tank 13 through the ion exchange device treated water piping 46.

イオン交換装置25については、活性炭塔処理水に含まれる酢酸イオンおよび酢酸の対イオンのカチオンを除去できる装置であれば、特に制限はない。通常、2床3塔式(カチオン交換塔、脱炭酸塔およびアニオン交換塔で構成)や、混床式(混床塔にカチオン交換樹脂とアニオン交換樹脂を充填し樹脂を混合した状態で通水)のイオン交換装置25が用いられる。カチオン交換樹脂としては、リンサー排水の水質に応じて、強酸性カチオン交換樹脂を単独で用いる場合と、弱酸性カチオン交換樹脂と強酸性カチオン交換樹脂とを併用する場合とがある。陰イオン交換樹脂については、リンサー排水の水質に応じて、強塩基性アニオン交換樹脂または弱塩基性アニオン交換樹脂を単独で用いる場合と、弱塩基性アニオン交換樹脂と強塩基性アニオン交換樹脂とを併用する場合とがある。イオン交換装置25は、通水量が設定値に達したらカチオン交換樹脂およびアニオン交換樹脂を酸およびアルカリでそれぞれ再生する。イオン交換装置25ではこの通水工程と再生工程を交互に繰り返して酢酸イオンおよび共存カチオンの除去を行う。また、イオン交換装置25では、装置内での細菌繁殖を抑制するために熱水殺菌(80〜90℃)が定期的に行なわれる。   The ion exchange device 25 is not particularly limited as long as it is a device that can remove cations of acetate ions and counter ions of acetic acid contained in the treated water of the activated carbon tower. Usually, two-bed three-column type (consisting of cation exchange tower, decarboxylation tower and anion exchange tower) or mixed bed type (mixed-bed tower is filled with cation exchange resin and anion exchange resin and water is passed in mixed state) ) Is used. As the cation exchange resin, there are a case where a strong acid cation exchange resin is used alone and a case where a weak acid cation exchange resin and a strong acid cation exchange resin are used in combination, depending on the quality of the rinser waste water. For anion exchange resins, depending on the quality of the rinser wastewater, a strong basic anion exchange resin or a weak basic anion exchange resin may be used alone, and a weak basic anion exchange resin and a strong basic anion exchange resin may be used. Sometimes used together. The ion exchange device 25 regenerates the cation exchange resin and the anion exchange resin with acid and alkali, respectively, when the water flow rate reaches the set value. In the ion exchanger 25, this water flow process and the regeneration process are alternately repeated to remove acetate ions and coexisting cations. Further, in the ion exchange device 25, hot water sterilization (80 to 90 ° C.) is periodically performed in order to suppress bacterial growth in the device.

尚、リンサー排水回収装置20からの排水としては、活性炭塔24の逆流洗浄排水および熱水殺菌排水、イオン交換装置25の再生排水および熱水殺菌排水が装置外に排出される。図1に示したリンサー排水回収システム100の中継槽13では、上述のようなリンサー排水回収装置20からの排水の排出量に見合う量の補給水が加えられる。   In addition, as waste water from the rinser waste water collection device 20, the backwash waste water and hot water sterilization waste water of the activated carbon tower 24, the regeneration waste water and hot water sterilization waste water of the ion exchange device 25 are discharged outside the device. In the relay tank 13 of the rinser drainage recovery system 100 shown in FIG. 1, an amount of makeup water corresponding to the amount of drainage discharged from the rinser drainage recovery device 20 as described above is added.

以上、詳述したように、実施の形態1によれば、pH調整装置21、光触媒槽22、活性炭塔24、およびイオン交換装置25によって、過酢酸や過酸化水素などの過酸化物を含有する無菌充填設備のリンサー排水をリサイクル可能な水に安定して処理し、無菌充填設備リンサー10に回収して再使用することができる。   As described above in detail, according to the first embodiment, the pH adjusting device 21, the photocatalyst tank 22, the activated carbon tower 24, and the ion exchange device 25 contain peroxides such as peracetic acid and hydrogen peroxide. The rinser drainage of the aseptic filling facility can be stably treated into recyclable water, collected in the aseptic filling facility rinser 10 and reused.

〔実施の形態2〕
実施の形態1では、図2に示す活性炭塔24にて処理された活性炭塔処理水は、活性炭塔処理水配管45を通じてイオン交換装置25に送られるように構成されている。実施の形態2では、このイオン交換装置25に代えて逆浸透膜装置(後述)が用いられ、活性炭塔処理水に含まれる酢酸イオンおよび共存カチオンなどのイオン性物質は、イオン交換装置25ではなく、逆浸透膜装置にて除去される点が異なっている。
尚、実施の形態1と同様の機能については同様の符号を用い、ここではその詳細な説明を省略する。
[Embodiment 2]
In the first embodiment, the activated carbon tower treated water treated in the activated carbon tower 24 shown in FIG. 2 is configured to be sent to the ion exchange device 25 through the activated carbon tower treated water piping 45. In the second embodiment, a reverse osmosis membrane device (described later) is used instead of the ion exchange device 25, and ionic substances such as acetate ions and coexisting cations contained in the treated water of the activated carbon tower are not the ion exchange device 25. The difference is that it is removed by the reverse osmosis membrane device.
In addition, the same code | symbol is used about the function similar to Embodiment 1, and the detailed description is abbreviate | omitted here.

図3は、実施の形態2におけるリンサー排水回収装置20を示した構成図である。この図3に示すリンサー排水回収装置20では、図2に示したイオン交換装置25に代えて逆浸透膜装置27が設けられている。また、逆浸透膜装置処理水が中継槽13へ導出される逆浸透膜装置処理水配管48を備えている。
この逆浸透膜装置27は、図示しない保安フィルタ、逆浸透膜装置供給ポンプ、逆浸透膜モジュールユニット、およびこれらの連絡配管から構成される。逆浸透膜モジュールユニットに充填される逆浸透膜モジュールは、活性炭塔処理水に含まれる酢酸イオンや共存カチオンなどのイオン性物質を除去できるものであれば、材質や形状に特に制限はない。例えば、ポリアミド系の複合膜逆浸透膜モジュールが使用される。逆浸透膜モジュールユニットでは、逆浸透膜装置27への供給水の水質によって異なるが、通常供給水の70〜90%程度を逆浸透膜装置処理水配管48から透過水(処理水)として取り出され、残りの10〜30%程度の濃縮水は装置外へ排出される。尚、耐熱性逆浸透膜モジュールを用いると、逆浸透膜装置27を熱水殺菌(80〜90℃)できるので、細菌の繁殖抑制に効果的である。
FIG. 3 is a configuration diagram showing the rinser drainage recovery apparatus 20 according to the second embodiment. In the rinser drainage recovery device 20 shown in FIG. 3, a reverse osmosis membrane device 27 is provided in place of the ion exchange device 25 shown in FIG. Further, a reverse osmosis membrane device treated water pipe 48 through which reverse osmosis membrane device treated water is led to the relay tank 13 is provided.
The reverse osmosis membrane device 27 includes a safety filter (not shown), a reverse osmosis membrane device supply pump, a reverse osmosis membrane module unit, and a connecting pipe thereof. The reverse osmosis membrane module packed in the reverse osmosis membrane module unit is not particularly limited in material and shape as long as it can remove ionic substances such as acetate ions and coexisting cations contained in the treated water of the activated carbon tower. For example, a polyamide-based composite membrane reverse osmosis membrane module is used. In the reverse osmosis membrane module unit, although depending on the quality of the water supplied to the reverse osmosis membrane device 27, about 70 to 90% of the normal supply water is taken out from the reverse osmosis membrane device treated water piping 48 as permeated water (treated water). The remaining 10 to 30% of the concentrated water is discharged out of the apparatus. If a heat resistant reverse osmosis membrane module is used, the reverse osmosis membrane device 27 can be sterilized with hot water (80 to 90 ° C.), which is effective in suppressing the growth of bacteria.

この実施の形態2におけるリンサー排水回収装置20からの排水としては、活性炭塔24の逆流洗浄排水および熱水殺菌排水、逆浸透膜装置27の濃縮水、および熱水殺菌を行う逆浸透膜装置27については熱水排水が装置外に排出される。図1に示したリンサー排水回収システム100の中継槽13では、上述のようなリンサー排水回収装置20からの排水の排出量に見合う量の補給水が加えられる。   As the waste water from the rinser waste water recovery device 20 in the second embodiment, the reverse washing waste water and hot water sterilization waste water of the activated carbon tower 24, the concentrated water of the reverse osmosis membrane device 27, and the reverse osmosis membrane device 27 that performs hot water sterilization. For hot water, hot water drainage is discharged outside the equipment. In the relay tank 13 of the rinser drainage recovery system 100 shown in FIG. 1, an amount of makeup water corresponding to the amount of drainage discharged from the rinser drainage recovery device 20 as described above is added.

このように、実施の形態2によれば、実施の形態1のイオン交換装置25に代えて逆浸透膜装置27を用いた。そして、実施の形態1と同様に過酢酸や過酸化水素などの過酸化物を含有する無菌充填設備のリンサー排水をリサイクル可能な水に安定して処理し、無菌充填設備リンサー10に回収して再使用することが可能となる。   Thus, according to the second embodiment, the reverse osmosis membrane device 27 is used in place of the ion exchange device 25 of the first embodiment. Then, as in the first embodiment, the rinser drainage of the aseptic filling facility containing peroxides such as peracetic acid and hydrogen peroxide is stably treated into recyclable water and collected in the aseptic filling facility rinser 10. It can be reused.

以上、詳述したように、本実施の形態(実施の形態1および実施の形態2)によれば、光触媒槽22および下向流式の活性炭塔24によって、無菌充填設備リンサー10などの所定の設備からの排水中に含まれる過酢酸や過酸化水素などの過酸化物を、従来装置に比べてより安定して分解処理でき、かつ運転管理が容易な排水回収装置を提供することができる。また、処理安定性が高く運転管理が容易な排水回収システムを提供することができる。これによって、用水量低減による水資源節約と排水量低減による水環境への負荷低減を図ることが可能となる。   As described above in detail, according to the present embodiment (Embodiment 1 and Embodiment 2), the photocatalyst tank 22 and the down-flow type activated carbon tower 24 are used to form a predetermined aseptic filling equipment rinser 10 or the like. It is possible to provide a wastewater recovery device that can decompose peroxides such as peracetic acid and hydrogen peroxide contained in the wastewater from the facility more stably than conventional devices and that can be easily managed. In addition, it is possible to provide a wastewater recovery system with high processing stability and easy operation management. This makes it possible to save water resources by reducing the amount of water used and to reduce the load on the water environment by reducing the amount of drainage.

本発明は、例えば、リンサー排水をリサイクルする無菌充填設備など各種設備の排水回収装置や、排水回収装置を含む排水回収システムなどに適用することができる。   The present invention can be applied to, for example, a wastewater collection device of various facilities such as an aseptic filling facility that recycles rinser wastewater, a wastewater collection system including a wastewater collection device, and the like.

本実施の形態が適用されるリンサー排水回収システムの全体構成を示した図である。It is the figure which showed the whole structure of the rinser waste_water | drain collection | recovery system with which this Embodiment is applied. リンサー排水回収装置を詳述した構成図である。It is the block diagram which detailed the rinser waste_water | drain collection | recovery apparatus. 実施の形態2におけるリンサー排水回収装置を示した構成図である。It is the block diagram which showed the rinser waste_water | drain collection | recovery apparatus in Embodiment 2. FIG.

符号の説明Explanation of symbols

10…無菌充填設備リンサー、11…リンサー排水受槽、12…リンサー排水ポンプ、13…中継槽、14…無菌水製造装置、20…リンサー排水回収装置、21…pH調整装置、22…光触媒槽、23…一次処理水槽、24…活性炭塔、25…イオン交換装置、27…逆浸透膜装置、100…リンサー排水回収システム DESCRIPTION OF SYMBOLS 10 ... Aseptic filling equipment rinser, 11 ... Rincer drainage tank, 12 ... Rincer drainage pump, 13 ... Relay tank, 14 ... Aseptic water production apparatus, 20 ... Rincer drainage collection apparatus, 21 ... pH adjuster, 22 ... Photocatalyst tank, 23 ... primary treatment water tank, 24 ... activated carbon tower, 25 ... ion exchange device, 27 ... reverse osmosis membrane device, 100 ... rinser drainage recovery system

Claims (10)

過酸化物が含有される排水の処理装置であって、
排水に含まれる過酸化物を分解するための光触媒と紫外線光源とを有する光触媒槽と、
前記光触媒槽からの処理水に残存する過酸化物を分解する下向流式の活性炭塔と
を含む排水の処理装置。
A wastewater treatment apparatus containing peroxide,
A photocatalyst tank having a photocatalyst for decomposing peroxide contained in waste water and an ultraviolet light source;
A wastewater treatment apparatus comprising a downflow type activated carbon tower for decomposing peroxide remaining in treated water from the photocatalyst tank.
前記活性炭塔からの処理水に含まれるイオン性物質を除去するイオン交換装置または逆浸透膜装置を更に含む請求項1記載の排水の処理装置。   The wastewater treatment apparatus according to claim 1, further comprising an ion exchange device or a reverse osmosis membrane device for removing ionic substances contained in the treated water from the activated carbon tower. 過酸化物が含有される排水のpHを調整するpH調整装置を更に備え、
前記光触媒槽は、前記pH調整装置によりpH調整された排水が通過することを特徴とする請求項1または2記載の排水の処理装置。
It further comprises a pH adjusting device for adjusting the pH of the wastewater containing the peroxide,
The wastewater treatment apparatus according to claim 1 or 2, wherein wastewater whose pH is adjusted by the pH adjustment device passes through the photocatalyst tank.
前記光触媒槽に充填される前記光触媒は、二酸化チタンであることを特徴とする請求項1乃至3何れか1項記載の排水の処理装置。   The wastewater treatment apparatus according to any one of claims 1 to 3, wherein the photocatalyst filled in the photocatalyst tank is titanium dioxide. 前記過酸化物は過酢酸および/または過酸化水素であり、処理される当該過酸化物の濃度合計が50〜200mg/Lの排水であることを特徴とする請求項1乃至4何れか1項記載の排水の処理装置。   5. The peroxide according to claim 1, wherein the peroxide is peracetic acid and / or hydrogen peroxide, and is a waste water having a total concentration of the peroxide to be treated of 50 to 200 mg / L. The waste water treatment apparatus as described. 無菌充填設備のリンサーに接続され、当該リンサーから排出される排水を処理して当該リンサーにて回収再利用するためのリンサー排水回収装置であって、
排水に含まれる過酸化物を分解するための光触媒と紫外線光源とを有する光触媒槽と、
前記光触媒槽からの処理水に残存する過酸化物を分解する下向流式の活性炭塔と
を含むリンサー排水回収装置。
A rinser drainage recovery device connected to a rinser of an aseptic filling facility, treating drainage discharged from the rinser, and collecting and reusing the rinser with the rinser,
A photocatalyst tank having a photocatalyst for decomposing peroxide contained in waste water and an ultraviolet light source;
A rinser drainage recovery apparatus comprising a downflow type activated carbon tower for decomposing peroxide remaining in treated water from the photocatalyst tank.
容器を殺菌・洗浄する無菌充填設備のリンサーと、
前記リンサーから排出される排水を処理して当該リンサーに回収再利用するためのリンサー排水回収装置とを備え、
前記リンサー排水回収装置は、光触媒が充填された光触媒槽に排水を流入し、排水に含有される過酸化物を当該光触媒の表面に吸着させ、過酸化物が表面に吸着された当該光触媒を紫外線光源により励起させて当該過酸化物を分解した後、当該光触媒槽からの処理水に残存する過酸化物を下向流式の活性炭塔で分解すること
を特徴とするリンサー排水回収システム。
A rinser with aseptic filling equipment to sterilize and clean containers;
A rinser drainage recovery device for treating and recycling the drainage discharged from the rinser to the rinser;
The rinser drainage recovery device flows wastewater into a photocatalyst tank filled with a photocatalyst, adsorbs the peroxide contained in the wastewater on the surface of the photocatalyst, and absorbs the photocatalyst on which the peroxide is adsorbed on the surface of the photocatalyst. A rinser drainage recovery system characterized in that, after being excited by a light source and decomposing the peroxide, the peroxide remaining in the treated water from the photocatalyst tank is decomposed by a downflow type activated carbon tower.
前記リンサーから排出されたリンサー排水を受け入れるリンサー排水受槽と、
前記リンサー排水受槽のリンサー排水を前記リンサー排水回収装置に供給するリンサー排水ポンプと、
前記リンサー排水回収装置によって処理された処理水と供給される補給水とを合わせる中継槽と、
前記中継槽から得られた水を殺菌処理する無菌水製造装置と
を更に備えたことを特徴とする請求項7記載のリンサー排水回収システム。
A rinser drainage tank for receiving the rinser drainage discharged from the rinser;
A rinser drainage pump for supplying the rinser drainage of the rinser drainage tank to the rinser drainage recovery device;
A relay tank that combines the treated water treated by the rinser drainage recovery device and the supplied makeup water;
The rinser drainage recovery system according to claim 7, further comprising an aseptic water production apparatus for sterilizing water obtained from the relay tank.
過酸化物が含有される排水の処理方法であって、
光触媒が充填された光触媒槽に排水を流入し、排水に含有される過酸化物を当該光触媒の表面に吸着させ、過酸化物が表面に吸着された当該光触媒を紫外線光源により励起させて当該過酸化物を分解するステップと、
前記光触媒槽からの処理水に残存する過酸化物を下向流式の活性炭塔により分解するステップと
を含む排水の処理方法。
A method for treating wastewater containing peroxide,
The wastewater flows into the photocatalyst tank filled with the photocatalyst, the peroxide contained in the wastewater is adsorbed on the surface of the photocatalyst, and the photocatalyst with the peroxide adsorbed on the surface is excited by an ultraviolet light source. Decomposing the oxide;
And a step of decomposing peroxide remaining in the treated water from the photocatalyst tank with a downflow type activated carbon tower.
前記光触媒槽に流入される排水にpH調整を施すステップと、
前記活性炭塔からの処理水に含まれる酢酸イオンおよび/または共存カチオンを除去するステップと
を更に含む請求項9記載の排水の処理方法。
Adjusting the pH of the wastewater flowing into the photocatalyst tank;
The method for treating waste water according to claim 9, further comprising a step of removing acetate ions and / or coexisting cations contained in the treated water from the activated carbon tower.
JP2005114991A 2005-04-12 2005-04-12 Rincer drainage recovery device and Rincer drainage recovery system Expired - Fee Related JP5000856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005114991A JP5000856B2 (en) 2005-04-12 2005-04-12 Rincer drainage recovery device and Rincer drainage recovery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005114991A JP5000856B2 (en) 2005-04-12 2005-04-12 Rincer drainage recovery device and Rincer drainage recovery system

Publications (2)

Publication Number Publication Date
JP2006289283A true JP2006289283A (en) 2006-10-26
JP5000856B2 JP5000856B2 (en) 2012-08-15

Family

ID=37410461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005114991A Expired - Fee Related JP5000856B2 (en) 2005-04-12 2005-04-12 Rincer drainage recovery device and Rincer drainage recovery system

Country Status (1)

Country Link
JP (1) JP5000856B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010043359A3 (en) * 2008-10-16 2010-07-15 Krones Ag Multi-stage method for water treatment
JP2010247009A (en) * 2009-04-10 2010-11-04 Nippon Rensui Co Ltd Method and apparatus for removing aldehyde, apparatus for recovering container sterilization wastewater, soft drink manufacturing apparatus and drinking water manufacturing apparatus
EP2385021A1 (en) * 2010-05-03 2011-11-09 Krones AG Method and device for recycling cleaning or rinsing water, in particular rinser water
WO2012018038A1 (en) * 2010-08-06 2012-02-09 栗田工業株式会社 Method and device for treating acetic acid-containing wastewater
CN102951722A (en) * 2011-08-31 2013-03-06 成都易生玄科技有限公司 Method for treating drinking water comprehensively by collecting sunlight and bamboo charcoals
JP2013521116A (en) * 2010-03-02 2013-06-10 イーコラブ ユーエスエー インコーポレイティド Method for treating peroxygen solution
JP2013169512A (en) * 2012-02-21 2013-09-02 Japan Organo Co Ltd Treatment apparatus of detergent drain and treatment method of detergent drain
JP2013184105A (en) * 2012-03-07 2013-09-19 Kurita Water Ind Ltd Purified water manufacturing apparatus and method for drug manufacturing
JP2014083497A (en) * 2012-10-24 2014-05-12 Nippon Rensui Co Ltd Treatment apparatus of water to be treated and treatment method of water to be treated
JP2014166607A (en) * 2013-02-28 2014-09-11 Japan Organo Co Ltd Apparatus and method for treatment of drain water
JP2014205109A (en) * 2013-04-12 2014-10-30 オルガノ株式会社 Apparatus and method for drainage treatment
JP2017018850A (en) * 2015-07-07 2017-01-26 三浦工業株式会社 Circulation water treatment facility
KR101932634B1 (en) * 2016-11-23 2019-03-15 (주)이앤켐솔루션 TCE removal system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201800009590A1 (en) * 2018-10-18 2020-04-18 Gea Procomac Spa PROCEDURE AND STERILIZATION SYSTEM FOR CONTAINERS IN THERMOPLASTIC MATERIAL

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06254549A (en) * 1993-03-08 1994-09-13 Japan Organo Co Ltd Processing device for ozone-containing water
JPH07241598A (en) * 1994-03-04 1995-09-19 Nomura Micro Sci Co Ltd Water treatment apparatus
JPH09192643A (en) * 1996-01-25 1997-07-29 Japan Organo Co Ltd Ultrapure water producing device
JPH10151451A (en) * 1996-11-21 1998-06-09 Akira Fujishima Method for removing hydrogen peroxide by photocatalyst and light irradiation
JP2000288536A (en) * 1999-04-08 2000-10-17 Nec Corp Method and apparatus for treating waste water containing hydrogen peroxide
JP2002011498A (en) * 2000-06-28 2002-01-15 Atlas:Kk Device for treating leachate
JP2002159980A (en) * 2000-11-24 2002-06-04 Sumitomo Heavy Ind Ltd Treatment method and treatment equipment for waste water
JP2002307081A (en) * 2001-04-16 2002-10-22 Mitsui Chemicals Engineering Co Ltd Method of recovering container sterilization wastewater

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06254549A (en) * 1993-03-08 1994-09-13 Japan Organo Co Ltd Processing device for ozone-containing water
JPH07241598A (en) * 1994-03-04 1995-09-19 Nomura Micro Sci Co Ltd Water treatment apparatus
JPH09192643A (en) * 1996-01-25 1997-07-29 Japan Organo Co Ltd Ultrapure water producing device
JPH10151451A (en) * 1996-11-21 1998-06-09 Akira Fujishima Method for removing hydrogen peroxide by photocatalyst and light irradiation
JP2000288536A (en) * 1999-04-08 2000-10-17 Nec Corp Method and apparatus for treating waste water containing hydrogen peroxide
JP2002011498A (en) * 2000-06-28 2002-01-15 Atlas:Kk Device for treating leachate
JP2002159980A (en) * 2000-11-24 2002-06-04 Sumitomo Heavy Ind Ltd Treatment method and treatment equipment for waste water
JP2002307081A (en) * 2001-04-16 2002-10-22 Mitsui Chemicals Engineering Co Ltd Method of recovering container sterilization wastewater

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102186785A (en) * 2008-10-16 2011-09-14 克朗斯股份公司 Method for water treatment
WO2010043359A3 (en) * 2008-10-16 2010-07-15 Krones Ag Multi-stage method for water treatment
JP2010247009A (en) * 2009-04-10 2010-11-04 Nippon Rensui Co Ltd Method and apparatus for removing aldehyde, apparatus for recovering container sterilization wastewater, soft drink manufacturing apparatus and drinking water manufacturing apparatus
JP2013521116A (en) * 2010-03-02 2013-06-10 イーコラブ ユーエスエー インコーポレイティド Method for treating peroxygen solution
US9254400B2 (en) 2010-03-02 2016-02-09 Ecolab Usa Inc. Method for processing peroxygen solutions
CN102233347A (en) * 2010-05-03 2011-11-09 克朗斯股份公司 Method and device for recycling cleaning or rinsing water, in particular rinser water
EP2385021A1 (en) * 2010-05-03 2011-11-09 Krones AG Method and device for recycling cleaning or rinsing water, in particular rinser water
JP2012035196A (en) * 2010-08-06 2012-02-23 Kurita Water Ind Ltd Treatment method for acetic-acid containing wastewater and apparatus
WO2012018038A1 (en) * 2010-08-06 2012-02-09 栗田工業株式会社 Method and device for treating acetic acid-containing wastewater
CN102951722A (en) * 2011-08-31 2013-03-06 成都易生玄科技有限公司 Method for treating drinking water comprehensively by collecting sunlight and bamboo charcoals
JP2013169512A (en) * 2012-02-21 2013-09-02 Japan Organo Co Ltd Treatment apparatus of detergent drain and treatment method of detergent drain
JP2013184105A (en) * 2012-03-07 2013-09-19 Kurita Water Ind Ltd Purified water manufacturing apparatus and method for drug manufacturing
JP2014083497A (en) * 2012-10-24 2014-05-12 Nippon Rensui Co Ltd Treatment apparatus of water to be treated and treatment method of water to be treated
JP2014166607A (en) * 2013-02-28 2014-09-11 Japan Organo Co Ltd Apparatus and method for treatment of drain water
JP2014205109A (en) * 2013-04-12 2014-10-30 オルガノ株式会社 Apparatus and method for drainage treatment
JP2017018850A (en) * 2015-07-07 2017-01-26 三浦工業株式会社 Circulation water treatment facility
KR101932634B1 (en) * 2016-11-23 2019-03-15 (주)이앤켐솔루션 TCE removal system

Also Published As

Publication number Publication date
JP5000856B2 (en) 2012-08-15

Similar Documents

Publication Publication Date Title
JP5000856B2 (en) Rincer drainage recovery device and Rincer drainage recovery system
US10407332B2 (en) Biological wastewater treatment system containing a salt-rejecting membrane filter and recycle conduit
US20070119779A1 (en) Method for treating raw water containing hardly decomposable substance
JP4754657B1 (en) Rincer waste water treatment device and sterilization method of Rincer waste water treatment device
JPH0647105B2 (en) Purification method and device for pure water or ultrapure water
JP7090376B2 (en) Washing water treatment equipment and washing water treatment method
JP4738942B2 (en) Rincer drainage collection system
JP5441714B2 (en) Pure water production method and apparatus, ozone water production method and apparatus, and cleaning method and apparatus
JP2006192354A (en) Non-regenerative type ion exchange vessel and ultrapure water production apparatus
JP4634776B2 (en) Rincer drainage recovery device, rinser drainage recovery system, and rinser drainage recovery method for aseptic filling equipment
JP5826667B2 (en) Washing wastewater treatment apparatus and washing wastewater treatment method
JP4534766B2 (en) Ultrapure water production apparatus and ultrapure water production method
JP4164743B2 (en) Cleaning wastewater treatment method and apparatus
JP5982165B2 (en) Washing wastewater treatment apparatus and washing wastewater treatment method
JP6924300B1 (en) Wastewater treatment method, ultrapure water production method and wastewater treatment equipment
JP2006239617A (en) Water treatment method and water treatment apparatus
KR20210027709A (en) Desalination system with water circulation
CN212269740U (en) Ultrapure water manufacturing system
JP6066769B2 (en) Waste water treatment apparatus and waste water treatment method
TWI284117B (en) Method and system for treating wastewater containing hydrogen peroxide
JP6138558B2 (en) Waste water treatment apparatus and waste water treatment method
CN117623530A (en) Ultra-pure water preparation process system and method for deeply degrading TOC
JP2001252652A (en) Water purifying device
JP2005013803A (en) Method and its apparatus for filtering and sterilizing water
JPH10109084A (en) Water purification device using active coal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120517

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5000856

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees