JP2013169512A - Treatment apparatus of detergent drain and treatment method of detergent drain - Google Patents

Treatment apparatus of detergent drain and treatment method of detergent drain Download PDF

Info

Publication number
JP2013169512A
JP2013169512A JP2012035027A JP2012035027A JP2013169512A JP 2013169512 A JP2013169512 A JP 2013169512A JP 2012035027 A JP2012035027 A JP 2012035027A JP 2012035027 A JP2012035027 A JP 2012035027A JP 2013169512 A JP2013169512 A JP 2013169512A
Authority
JP
Japan
Prior art keywords
water
organic matter
treated
cleaning
ion component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012035027A
Other languages
Japanese (ja)
Other versions
JP5826667B2 (en
Inventor
Keiichiro Fukumizu
圭一郎 福水
Tomoaki Miyanoshita
友明 宮ノ下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2012035027A priority Critical patent/JP5826667B2/en
Publication of JP2013169512A publication Critical patent/JP2013169512A/en
Application granted granted Critical
Publication of JP5826667B2 publication Critical patent/JP5826667B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a treatment apparatus of detergent drain, which can carry out an efficient recovery of the detergent drain reducing an amount of organic matter in the detergent drain by a simple method.SOLUTION: A treatment apparatus 1 of detergent drain comprises a reduction device 10 which carries out a reduction treatment of the detergent drain containing an organic acid and organic matter discharged from a cleaning apparatus 26, an ion component-removing apparatus 12 removing an ion component contained in water reduction-treated by the reduction device 10, an organic matter oxidation apparatus 14 carrying out an oxidation treatment of the organic matter contained in ion component-removed treated water treated by the ion component-removing apparatus 12, and a cleaning water pipe 28 supplying at least a part of the oxidation-treated water treated by the organic matter oxidation apparatus 14 to the cleaning apparatus 26.

Description

本発明は、洗浄排水の処理装置および処理方法、特に飲料製品等の充填前のペットボトル等の容器等を洗浄、殺菌した際に発生する洗浄排水の処理装置および処理方法に関する。   The present invention relates to a treatment apparatus and a treatment method for washing wastewater, and more particularly, to a treatment apparatus and treatment method for washing wastewater generated when a container such as a PET bottle before filling a beverage product or the like is washed and sterilized.

例えば、飲料産業では、飲料製品の充填前のペットボトル等の容器を洗浄、殺菌するため、オキソニア(酢酸、過酢酸および過酸化水素が混合された洗浄液)に代表される有機酸を殺菌剤に用いる場合がある。ペットボトルにオキソニア等を噴射して洗浄、殺菌を行うが、この際、ペットボトルに残留したオキソニア等を水道水または純水で流しており、オキソニアを含む洗浄排水が発生する。なお、一般に、ペットボトル等を洗浄する水はリンサー水、洗浄後の水はリンサー排水と呼ばれる。   For example, in the beverage industry, in order to clean and sterilize containers such as PET bottles before filling beverage products, organic acids such as oxonia (cleaning liquid in which acetic acid, peracetic acid and hydrogen peroxide are mixed) are used as a sterilizing agent. May be used. Oxonia or the like is jetted into a PET bottle for cleaning and sterilization. At this time, oxonia or the like remaining in the PET bottle is poured with tap water or pure water, and cleaning wastewater containing oxonia is generated. In general, water for washing PET bottles or the like is called rinser water, and water after washing is called rinser drainage.

有機酸系殺菌剤を含んだ洗浄排水を処理する方法として、特許文献1には、過酢酸含有水を活性炭と接触させた後、アニオン交換樹脂と接触させる方法が開示されている。また、特許文献2には、有機酸を殺菌剤として含む洗浄排水を還元中和濾材槽に供給した後、逆浸透膜分離装置、イオン交換樹脂に供給して、洗浄水として回収する方法が開示されている。   As a method for treating washing wastewater containing an organic acid disinfectant, Patent Document 1 discloses a method in which peracetic acid-containing water is contacted with activated carbon and then contacted with an anion exchange resin. Patent Document 2 discloses a method of supplying cleaning wastewater containing an organic acid as a bactericide to a reduction neutralization filter medium tank, and then supplying the wastewater to a reverse osmosis membrane separation device and an ion exchange resin to recover as cleaning water. Has been.

ところで、このリンサー排水に微量ながらアルデヒド等の有機物が含まれる場合がある。しかし、特許文献1や特許文献2で開示された処理方法では、アルデヒド等の有機物を低減、除去することは困難である。   By the way, the rinser waste water may contain a small amount of organic substances such as aldehyde. However, with the processing methods disclosed in Patent Document 1 and Patent Document 2, it is difficult to reduce and remove organic substances such as aldehydes.

また、特許文献3には、リンサー排水に混入した有機物等による菌の繁殖を防止するため、熱水殺菌機能を備えたリンサー排水回収システムが開示されている。しかし、特許文献3による方法は、有機物等の発生を前提に有機物等による菌の繁殖を防止することを目的としたものであり、有機物等を除去するものではない。また、熱水を製造供給するための設備が必要であると共に、リンサー排水の連続処理が困難である。   Patent Document 3 discloses a rinser drainage recovery system having a hot water sterilization function in order to prevent the growth of bacteria due to organic substances mixed in the rinser drainage. However, the method according to Patent Document 3 is intended to prevent the growth of bacteria due to the organic matter, etc. on the premise of the generation of the organic matter, and does not remove the organic matter. Moreover, equipment for manufacturing and supplying hot water is necessary, and continuous treatment of the rinser drainage is difficult.

特許文献4には、リンサー排水等の殺菌洗浄装置から排出された洗浄排液に過酸化水素を添加して、活性炭と接触させて洗浄排液中のアルデヒドを除去する方法が開示されている。しかし、特許文献4による方法でも、アルデヒドを完全に分解するには至らず、リンサー排水を回収して再利用するとアルデヒド等の有機物が系内で濃縮されてしまう。   Patent Document 4 discloses a method in which hydrogen peroxide is added to a cleaning effluent discharged from a sterilization cleaning device such as a rinser drainage and contacted with activated carbon to remove aldehyde in the cleaning effluent. However, even the method according to Patent Document 4 does not completely decompose the aldehyde, and when the rinser waste water is recovered and reused, organic substances such as aldehyde are concentrated in the system.

特開2001−129564号公報JP 2001-129564 A 特開2004−202313号公報JP 2004-202313 A 特開2007−054784号公報JP 2007-054784 A 特開2010−247009号公報JP 2010-247909 A

本発明の目的は、洗浄排水中の有機物の量を簡易な方法で低減して、効率よく洗浄排水の回収を行うことができる洗浄排水の処理装置および洗浄排水の処理方法を提供することにある。   An object of the present invention is to provide a cleaning wastewater treatment apparatus and a cleaning wastewater treatment method capable of efficiently reducing the amount of organic matter in the cleaning wastewater and recovering the cleaning wastewater efficiently. .

本発明は、洗浄装置から排出された有機酸および有機物を含有する洗浄排水中の前記有機酸を還元処理する還元手段と、前記還元手段で処理された還元処理水に含まれるイオン成分を除去するイオン成分除去手段と、前記イオン成分除去手段で処理されたイオン成分除去処理水に含まれる有機物を酸化処理する有機物酸化手段と、前記有機物酸化手段で処理された酸化処理水の少なくとも一部を前記洗浄装置に供給する供給手段と、を備える洗浄排水の処理装置である。   The present invention removes the ionic components contained in the reduction treatment water treated by the reduction means and the reduction means for reducing the organic acid in the washing waste water containing the organic acid and organic matter discharged from the washing apparatus. An ionic component removing means, an organic substance oxidizing means for oxidizing organic substances contained in the ionic component removing treated water treated by the ionic component removing means, and at least a part of the oxidized water treated by the organic matter oxidizing means And a supply unit for supplying to the cleaning device.

また、前記洗浄排水の処理装置において、前記有機物酸化手段は、前記イオン成分除去処理水に少なくとも185nmの波長の紫外線を照射するものであることが好ましい。   In the cleaning wastewater treatment apparatus, it is preferable that the organic matter oxidizing means irradiates the ion component removal treated water with ultraviolet rays having a wavelength of at least 185 nm.

また、前記洗浄排水の処理装置において、前記酸化処理水の少なくとも一部を前記イオン成分除去手段の前段に送る循環手段をさらに備えることが好ましい。   Moreover, it is preferable that the washing wastewater treatment apparatus further includes a circulation unit that sends at least a part of the oxidation-treated water to a preceding stage of the ion component removal unit.

また、前記洗浄排水の処理装置において、前記イオン成分除去手段は、前記還元手段の後段に複数、並列に設けられ、前記還元処理水が、前記複数のイオン成分除去手段の少なくとも1つに通水され、前記酸化処理水の少なくとも一部が、前記還元処理水が通水されたイオン成分除去手段以外のイオン成分除去手段の少なくとも1つに通水されることが好ましい。   In the cleaning wastewater treatment apparatus, a plurality of the ionic component removal means are provided in parallel at a subsequent stage of the reduction means, and the reduced treated water is passed through at least one of the plurality of ionic component removal means. It is preferable that at least a part of the oxidation-treated water is passed through at least one of the ionic component removal means other than the ionic component removal means through which the reduction-treated water is passed.

また、前記洗浄排水の処理装置において、前記還元手段は、活性炭を充填したものであることが好ましい。   In the cleaning wastewater treatment apparatus, the reducing means is preferably filled with activated carbon.

また、前記洗浄排水の処理装置において、前記イオン成分除去手段は、アニオン交換樹脂およびカチオン交換樹脂の少なくとも一方が充填されたものであることが好ましい。   In the washing wastewater treatment apparatus, the ion component removing means is preferably filled with at least one of an anion exchange resin and a cation exchange resin.

また、本発明は、洗浄装置から排出された有機酸および有機物を含有する洗浄排水中の前記有機酸を還元処理する還元工程と、前記還元工程で処理された還元処理水に含まれるイオン成分を除去するイオン成分除去工程と、前記イオン成分除去工程で処理されたイオン成分除去処理水に含まれる有機物を酸化処理する有機物酸化工程と、前記有機物酸化工程で処理された酸化処理水の少なくとも一部を前記洗浄装置に供給する供給工程と、を含む洗浄排水の処理方法である。   In addition, the present invention provides a reduction process for reducing the organic acid in the cleaning wastewater containing the organic acid and organic matter discharged from the cleaning device, and an ionic component contained in the reduction-treated water processed in the reduction process. At least a part of the ionic component removal process to be removed, an organic substance oxidation process to oxidize an organic substance contained in the ionic component removal treated water treated in the ionic component removal process, and at least a part of the oxidized water treated in the organic matter oxidation process And a supply step of supplying the cleaning device with the cleaning device.

また、前記洗浄排水の処理方法における前記有機物酸化工程において、前記イオン成分除去処理水に少なくとも185nmの波長の紫外線を照射することが好ましい。   In the organic matter oxidation step in the cleaning wastewater treatment method, it is preferable that the ion component removal treated water is irradiated with ultraviolet rays having a wavelength of at least 185 nm.

また、前記洗浄排水の処理方法において、前記酸化処理水の少なくとも一部を前記イオン成分除去手段の前段に送る循環工程をさらに含むことを特徴とする洗浄排水の処理方法。   The cleaning wastewater treatment method further includes a circulation step of sending at least a part of the oxidation treated water to a preceding stage of the ion component removing means.

また、前記洗浄排水の処理方法において、前記還元処理水が、前記還元工程の後段に複数、並列に設けられたイオン成分除去手段の少なくとも1つに通水され、前記酸化処理水の少なくとも一部が、前記還元処理水が通水されたイオン成分除去手段以外のイオン成分除去手段の少なくとも1つに通水されることが好ましい。   Further, in the cleaning wastewater treatment method, the reduced treated water is passed through at least one of a plurality of ion component removing means provided in parallel after the reducing step, and at least a part of the oxidized treated water. However, it is preferable that the reduced treated water is passed through at least one of the ionic component removing means other than the ionic component removing means through which the reduced water has been passed.

また、前記洗浄排水の処理方法における前記還元工程において、活性炭を用いて還元処理することが好ましい。   Moreover, it is preferable to perform a reduction process using activated carbon in the reduction step in the treatment method of the cleaning waste water.

また、前記洗浄排水の処理方法における前記イオン成分除去工程において、アニオン交換樹脂およびカチオン交換樹脂の少なくとも一方を用いてイオン成分を除去することが好ましい。   Moreover, it is preferable to remove an ionic component using at least one of an anion exchange resin and a cation exchange resin in the ionic component removal step in the method for treating washing waste water.

本発明の洗浄排水の処理装置および洗浄排水の処理方法では、イオン成分除去処理水に含まれる有機物を酸化処理することにより、洗浄排水中の有機物の量を簡易な方法で低減して、効率よく洗浄排水の回収を行うことができる。   In the cleaning wastewater treatment apparatus and the cleaning wastewater treatment method of the present invention, the amount of organic matter in the cleaning wastewater can be reduced efficiently by oxidizing the organic matter contained in the ionic component removal treated water. Washing wastewater can be collected.

本発明の実施形態に係る洗浄排水処理装置の一例を示す概略構成図である。It is a schematic structure figure showing an example of the washing drainage processing device concerning the embodiment of the present invention. 本発明の実施形態に係る洗浄排水処理装置の他の例を示す概略構成図である。It is a schematic block diagram which shows the other example of the washing | cleaning waste water treatment apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る洗浄排水処理装置の他の例を示す概略構成図である。It is a schematic block diagram which shows the other example of the washing | cleaning waste water treatment apparatus which concerns on embodiment of this invention. 実施例1で用いた洗浄排水処理装置を示す概略構成図である。It is a schematic block diagram which shows the washing | cleaning waste water treatment apparatus used in Example 1. FIG. 実施例2で用いた洗浄排水処理装置を示す概略構成図である。It is a schematic block diagram which shows the washing | cleaning waste water treatment apparatus used in Example 2. FIG. 比較例1で用いた洗浄排水処理装置を示す概略構成図である。It is a schematic block diagram which shows the washing | cleaning waste water treatment apparatus used in the comparative example 1. 実施例1,2、比較例1における通水時間と処理水のTOC濃度との関係を示す図である。It is a figure which shows the relationship between the water flow time in Example 1, 2, and the comparative example 1, and the TOC density | concentration of a treated water. 実施例3で用いたUV酸化装置を示す概略構成図である。5 is a schematic configuration diagram showing a UV oxidation apparatus used in Example 3. FIG. 実施例3におけるUV照射電力と処理水のTOC濃度との関係を示す図である。It is a figure which shows the relationship between the UV irradiation electric power in Example 3, and the TOC density | concentration of a treated water.

本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。   Embodiments of the present invention will be described below. This embodiment is an example for carrying out the present invention, and the present invention is not limited to this embodiment.

本発明の実施形態に係る洗浄排水処理装置の一例の概略を図1に示し、その構成について説明する。洗浄排水処理装置1は、還元手段として還元装置10と、イオン成分除去手段としてイオン成分除去装置12と、有機物酸化手段として有機物酸化装置14とを備える。洗浄排水処理装置1は、有機物酸化装置14の後段に洗浄水貯槽24を備えてもよい。   An outline of an example of a cleaning wastewater treatment apparatus according to an embodiment of the present invention is shown in FIG. The cleaning waste water treatment apparatus 1 includes a reduction device 10 as a reduction means, an ion component removal device 12 as an ion component removal means, and an organic matter oxidation device 14 as an organic matter oxidation means. The cleaning wastewater treatment apparatus 1 may include a cleaning water storage tank 24 in the subsequent stage of the organic matter oxidation apparatus 14.

図1の洗浄排水処理装置1において、洗浄装置26からの洗浄排水配管16が還元装置10の入口に接続され、還元装置10の出口とイオン成分除去装置12の入口とが還元処理水配管18により接続され、イオン成分除去装置12の出口と有機物酸化装置14の入口とがイオン成分除去処理水配管20により接続され、有機物酸化装置14の出口と洗浄水貯槽24の入口とが酸化処理水配管22により接続されている。洗浄水貯槽24の出口は、洗浄装置26へ酸化処理水の少なくとも一部を洗浄水として供給する供給手段としての洗浄水配管28により洗浄装置26と接続されている。   In the cleaning wastewater treatment apparatus 1 of FIG. 1, the cleaning drainage pipe 16 from the cleaning apparatus 26 is connected to the inlet of the reduction apparatus 10, and the outlet of the reduction apparatus 10 and the inlet of the ion component removal apparatus 12 are connected by the reduction treatment water pipe 18. Connected, the outlet of the ion component removing device 12 and the inlet of the organic matter oxidizing device 14 are connected by an ion component removing treated water pipe 20, and the outlet of the organic matter oxidizing device 14 and the inlet of the washing water storage tank 24 are oxidized treated water piping 22. Connected by. The outlet of the cleaning water storage tank 24 is connected to the cleaning device 26 by a cleaning water pipe 28 as a supply means for supplying at least a part of the oxidation treated water to the cleaning device 26 as cleaning water.

本実施形態に係る洗浄排水の処理方法および洗浄排水処理装置1の動作について説明する。   The cleaning wastewater treatment method and the operation of the cleaning wastewater treatment apparatus 1 according to the present embodiment will be described.

洗浄、殺菌用の有機酸が洗浄水に添加された有機酸含有洗浄水が洗浄水配管28を通して洗浄装置26へ供給され、洗浄装置26において、例えば、飲料製品の充填前のペットボトル等の容器が洗浄、殺菌される。洗浄装置26において、ペットボトル等の容器に有機酸を含む有機酸含有洗浄水が噴射されて洗浄、殺菌が行われ、その後、容器に残留した有機酸等が洗浄水で流される。洗浄装置26において発生した有機酸等を含む洗浄排水(リンサー排水)の少なくとも一部は、洗浄排水配管16を通して還元装置10へ送液され、還元装置10において還元処理される(還元工程)。還元装置10で処理された還元処理水は、還元処理水配管18を通してイオン成分除去装置12へ送液され、含まれるイオン成分が除去される(イオン成分除去工程)。イオン成分除去装置12で処理されたイオン成分除去処理水は、イオン成分除去処理水配管20を通して有機物酸化装置14へ送液され、含まれる有機物が酸化処理される(有機物酸化工程)。有機物酸化装置14で処理された酸化処理水は、回収洗浄水として酸化処理水配管22を通して洗浄水貯槽24へ送液されて貯留される。回収洗浄水は、洗浄水貯槽24において必要に応じて補充洗浄水が補充され、洗浄水として洗浄水配管28を通して洗浄装置26に供給され(供給工程)、再利用される。   An organic acid-containing cleaning water in which an organic acid for cleaning and sterilization is added to the cleaning water is supplied to the cleaning device 26 through the cleaning water pipe 28. In the cleaning device 26, for example, a container such as a PET bottle before filling with a beverage product Is cleaned and sterilized. In the cleaning device 26, an organic acid-containing cleaning water containing an organic acid is jetted into a container such as a PET bottle to perform cleaning and sterilization, and then the organic acid remaining in the container is flushed with the cleaning water. At least part of the cleaning wastewater (rinser wastewater) containing the organic acid and the like generated in the cleaning device 26 is sent to the reduction device 10 through the cleaning drainage pipe 16 and is reduced in the reduction device 10 (reduction process). The reduced treated water treated by the reducing device 10 is sent to the ionic component removing device 12 through the reduced treated water pipe 18 and the contained ionic components are removed (ionic component removing step). The ionic component removal treated water treated by the ionic component removal device 12 is sent to the organic matter oxidation device 14 through the ionic component removal treatment water pipe 20 and the contained organic matter is oxidized (organic matter oxidation step). Oxidized water treated by the organic matter oxidizer 14 is sent to and stored in the wash water storage tank 24 through the oxidized water pipe 22 as recovered wash water. The recovered washing water is supplemented with supplementary washing water as needed in the washing water storage tank 24, supplied as washing water to the washing device 26 through the washing water pipe 28 (supply process), and reused.

イオン成分除去処理水に含まれる有機物が有機物酸化装置14において酸化処理されることにより、洗浄排水中の有機物の量が簡易な方法で低減され、効率よく洗浄排水の回収が行われる。   The organic matter contained in the ionic component removal treated water is oxidized in the organic matter oxidizer 14, whereby the amount of organic matter in the washing wastewater is reduced by a simple method, and the washing wastewater is efficiently collected.

還元装置10としては、少なくとも有機酸を還元処理するものであればよく、特に限定されない。還元装置10としては、例えば、活性炭を充填した装置、触媒を充填した装置等が挙げられ、費用対効果等の点から、活性炭を充填した装置が好ましい。   The reducing device 10 is not particularly limited as long as it can reduce at least an organic acid. Examples of the reducing device 10 include a device filled with activated carbon, a device filled with a catalyst, and the like. From the viewpoint of cost effectiveness, a device filled with activated carbon is preferable.

イオン成分除去装置12としては、過酢酸等が還元装置で分解されて発生した酢酸イオン等のイオン成分を少なくとも除去するものであればよく、特に限定されない。イオン成分除去装置12としては、例えば、イオン交換樹脂を充填したイオン交換装置、RO膜を備えたろ過装置等が挙げられ、水回収率等の点から、イオン交換樹脂を充填したイオン交換装置が好ましい。イオン交換樹脂としては、カチオン交換樹脂、アニオン交換樹脂、カチオン交換樹脂およびアニオン交換樹脂の混床等が用いられる。   The ion component removing device 12 is not particularly limited as long as it removes at least ion components such as acetate ions generated by decomposition of peracetic acid or the like by a reducing device. Examples of the ion component removal device 12 include an ion exchange device filled with an ion exchange resin, a filtration device equipped with an RO membrane, and the ion exchange device filled with an ion exchange resin in terms of water recovery rate. preferable. As the ion exchange resin, a cation exchange resin, an anion exchange resin, a mixed bed of a cation exchange resin and an anion exchange resin, or the like is used.

有機物酸化装置14としては、少なくとも有機物を酸化するものであればよく、特に限定されない。有機物酸化装置14としては、例えば、UV酸化装置、オゾン処理装置、光触媒装置等が挙げられる。   The organic oxidizer 14 is not particularly limited as long as it oxidizes at least organic substances. Examples of the organic oxidation device 14 include a UV oxidation device, an ozone treatment device, and a photocatalytic device.

UV酸化装置は、少なくとも185nmの波長の紫外線を照射するものであることが好ましい。紫外線を照射する装置には、185〜254nmの紫外線を発光するものや、185nmがカットされて発光するもの等があるが、有機物は一般的に185nmの波長で酸化されやすいため、有機物酸化装置14としては、少なくとも185nmの波長の紫外線を照射して有機物を酸化することが可能なUV酸化装置が好ましい。例えば、185nmの紫外線のみを発光するUVランプや、185〜254nmの紫外線を発光するUVランプを備えるUV酸化装置を使用すればよい。   It is preferable that the UV oxidation apparatus irradiates ultraviolet rays having a wavelength of at least 185 nm. There are devices that emit ultraviolet light of 185 to 254 nm, and devices that emit light with 185 nm being cut off. However, since organic substances are generally easily oxidized at a wavelength of 185 nm, the organic matter oxidizing apparatus 14 For example, a UV oxidizer capable of oxidizing an organic substance by irradiating with ultraviolet rays having a wavelength of at least 185 nm is preferable. For example, a UV oxidation apparatus including a UV lamp that emits only 185 nm ultraviolet light or a UV lamp that emits 185 to 254 nm ultraviolet light may be used.

185nmの光は254nmに比べて到達範囲が狭い(有効照射距離が短い)ため、イオン成分除去処理水中の有機物を酸化分解するためには、イオン成分除去処理水を確実に185nmの光と接触させることが望ましい。そのためには、例えば、有機物を含む被処理水がUVランプの近傍を通過するような構造の装置形状もしくはUVランプの配置方法を用いる、または、UV酸化装置を多段に設置し、被処理水がUVランプ近傍を通過する確率を高める等の構成であることが好ましい。同じUV照射電力でも、UV酸化装置を多段に設置することで有機物を効率的に酸化分解することができ、UVランプが消費する電力を低減することができる。また、同じUV照射電力でもUV酸化装置を多段に設置することで、イオン成分除去処理水に185nmの紫外線をより効果的に照射することができるため、有機物を効率的に酸化分解することができる。   Since the reach of 185 nm light is narrower than that of 254 nm (the effective irradiation distance is short), in order to oxidatively decompose organic substances in the ionic component removal treated water, the ionic component removal treated water is surely brought into contact with the 185 nm light. It is desirable. For that purpose, for example, an apparatus shape having a structure in which water to be treated containing organic matter passes in the vicinity of the UV lamp or a UV lamp arrangement method is used, or UV oxidation apparatuses are installed in multiple stages, and the water to be treated is A configuration that increases the probability of passing near the UV lamp is preferable. Even with the same UV irradiation power, it is possible to efficiently oxidize and decompose organic substances by installing UV oxidation devices in multiple stages, and to reduce the power consumed by the UV lamp. In addition, by installing UV oxidizers in multiple stages with the same UV irradiation power, it is possible to more effectively irradiate the ionic component removal treated water with 185 nm ultraviolet rays, so that organic substances can be efficiently oxidized and decomposed. .

従来技術として、洗浄排水処理装置において紫外線殺菌装置を設けてUV処理を行っているシステムは存在するが、これはあくまで254nmの紫外線による「殺菌」を主目的としたものであり、185〜254nmの紫外線を発光するものであっても185nmの光の出力が弱いか、185nmの光がカットされていた。このような従来の紫外線殺菌装置では、たとえ185nmの波長の光が出力されていたとしても、上記の通り185nmの光は254nmに比べて到達範囲が狭いために被処理水中の有機物は実質的に酸化されず、有機物酸化という観点、すなわち、排水を185nmの光と確実に接触させるという観点で設けられていない。すなわち、このような従来の紫外線殺菌装置では、本実施形態のように有機物を酸化するという思想はなく、実質的に有機物は酸化されない。   As a conventional technique, there is a system in which an ultraviolet sterilization apparatus is provided in a cleaning wastewater treatment apparatus to perform UV treatment, but this is mainly for “sterilization” by ultraviolet light of 254 nm, Even if it emits ultraviolet light, the output of 185 nm light is weak or the light of 185 nm is cut. In such a conventional ultraviolet sterilizer, even if light having a wavelength of 185 nm is output, the reach of 185 nm light is narrower than that of 254 nm as described above. It is not oxidized, and is not provided from the viewpoint of organic matter oxidation, that is, from the viewpoint of ensuring that the waste water is brought into contact with 185 nm light. That is, in such a conventional ultraviolet sterilizer, there is no idea of oxidizing the organic matter as in the present embodiment, and the organic matter is not substantially oxidized.

また、例えば、超純水中の有機物をUV酸化処理する際は、UV酸化の後にイオン交換処理を行うことが一般的であるが、本実施形態に係る洗浄排水処理装置では、イオン交換処理(イオン成分除去)の後にUV酸化を行う。UV酸化の後にイオン交換処理を行う場合、酢酸イオン等のイオン成分と有機物が含まれた水をUV酸化することになるため、UVが酢酸イオン等の分解に消費されてしまい、有機物は酸化されにくい。そのため、本実施形態に係る洗浄排水処理装置のように、まず、イオン交換処理(イオン成分除去)で酢酸イオン等のイオン成分を除去してからUVで有機物を分解する方が、UV照射量が低減される。   For example, when an organic substance in ultrapure water is subjected to UV oxidation treatment, it is common to perform ion exchange treatment after UV oxidation. However, in the cleaning wastewater treatment apparatus according to the present embodiment, ion exchange treatment ( After the ion component removal), UV oxidation is performed. When ion exchange treatment is performed after UV oxidation, water containing ionic components such as acetate ions and organic matter is UV-oxidized, so UV is consumed for decomposition of acetate ions and the like, and the organic matter is oxidized. Hateful. Therefore, as in the cleaning waste water treatment apparatus according to the present embodiment, first, the ion irradiation process (ion component removal) removes ion components such as acetate ions, and then decomposes organic substances with UV. Reduced.

さらに、UV酸化装置が装置の最後段にあっても有機物を完全に分解して二酸化炭素にまでしなくてもよく、有機酸にまで酸化分解すればよい。酸化処理水は回収されて再び洗浄水として使用することにより、再度、洗浄排水として回収される際に有機酸はイオン成分除去装置で処理され、有機酸の量が低減される。   Furthermore, even if the UV oxidation apparatus is in the last stage of the apparatus, the organic matter does not have to be completely decomposed to carbon dioxide, but may be oxidized and decomposed to an organic acid. By collecting the oxidation-treated water and using it again as washing water, the organic acid is treated by the ion component removing device when it is collected again as washing waste water, and the amount of organic acid is reduced.

185〜254nmの紫外線を発光するUV酸化装置を使用した場合は、185nmによる有機物酸化と254nmによる殺菌との双方を行うことができる。この場合、有機物酸化装置14(有機物酸化手段)は、イオン成分除去処理水を殺菌する殺菌装置(殺菌手段)を一つの装置で兼ねることができる。有機物酸化装置14としてオゾン処理装置、光触媒装置等を使用した場合は、有機物酸化装置14の後段に殺菌装置を別途設けてもよい。オゾン処理装置や光触媒装置とUV酸化装置との併用により、有機物の酸化効率を上げることができる。   When a UV oxidation apparatus that emits ultraviolet rays of 185 to 254 nm is used, both organic oxidation by 185 nm and sterilization by 254 nm can be performed. In this case, the organic matter oxidation device 14 (organic matter oxidation means) can also serve as a sterilization device (sterilization means) for sterilizing the ionic component removal treated water. When an ozone treatment device, a photocatalyst device, or the like is used as the organic matter oxidation device 14, a sterilization device may be separately provided after the organic matter oxidation device 14. The combined use of an ozone treatment device, a photocatalyst device, and a UV oxidation device can increase the oxidation efficiency of organic matter.

有機物酸化装置14が備えるUVランプのUV照射電力(算出方法は後記)は、イオン成分除去処理水中のTOC濃度にもよるが、0.05kWh/m〜5kWh/mの範囲であることが好ましい。UV照射電力が0.05kWh/m未満であると、UV酸化の効果が著しく低下してしまう場合がある。また、UV照射電力が5kWh/mを超えると、UV照射電力を増やしていっても有機物の酸化が起こりにくくなり、UV照射電力に対する有機物酸化の効率が低下する場合がある。さらに、本実施形態に係る洗浄排水の処理方法および洗浄排水処理装置によれば、循環する有機酸をイオン成分除去装置で低減、除去できるため、有機物を有機酸にまで酸化するだけのUV照射電力であればよく、有機物を二酸化炭素まで酸化するUV照射電力でなくてもよい。よって、本実施形態においてUVランプのUV照射電力が0.05kWh/m〜5kWh/mとなるようにすることで、イオン成分除去処理水中の有機物が効率よく酸化される。 The UV irradiation power of the UV lamp provided in the organic matter oxidation apparatus 14 (the calculation method will be described later) depends on the TOC concentration in the ion component removal treated water, but may be in the range of 0.05 kWh / m 3 to 5 kWh / m 3. preferable. If the UV irradiation power is less than 0.05 kWh / m 3 , the effect of UV oxidation may be significantly reduced. When the UV irradiation power exceeds 5 kWh / m 3 , the organic matter is hardly oxidized even when the UV irradiation power is increased, and the efficiency of the organic matter oxidation with respect to the UV irradiation power may be reduced. Furthermore, according to the cleaning wastewater treatment method and the cleaning wastewater treatment apparatus according to the present embodiment, the circulating organic acid can be reduced and removed by the ion component removal device, and therefore, the UV irradiation power that only oxidizes the organic matter to the organic acid. Any UV irradiation power that oxidizes organic matter to carbon dioxide may be used. Therefore, in this embodiment, the organic matter in the ion component removal treated water is efficiently oxidized by setting the UV irradiation power of the UV lamp to 0.05 kWh / m 3 to 5 kWh / m 3 .

処理対象となる洗浄排水は、洗浄装置において発生した有機酸および有機物等を含む洗浄排水であればよく、特に限定されない。処理対象となる洗浄排水としては、例えば、飲料産業における飲料製品の充填前のペットボトル等の容器の洗浄により発生した洗浄排水、製品充填後の缶製品を殺菌する際に排出される洗浄排水等が挙げられる。有機酸としては、酢酸、過酢酸等が挙げられ、殺菌剤としてオキソニア(酢酸、過酢酸、過酸化水素の混合物)が用いられた場合は、有機酸の他に過酸化水素が含まれていてもよい。   The cleaning wastewater to be treated is not particularly limited as long as it is a cleaning wastewater containing organic acids and organic substances generated in the cleaning device. Examples of cleaning wastewater to be treated include cleaning wastewater generated by washing containers such as PET bottles before filling of beverage products in the beverage industry, cleaning wastewater discharged when sterilizing can products after product filling, etc. Is mentioned. Examples of organic acids include acetic acid and peracetic acid. When oxonia (a mixture of acetic acid, peracetic acid, and hydrogen peroxide) is used as a disinfectant, hydrogen peroxide is included in addition to the organic acid. Also good.

有機物としては、例えば、ホルムアルデヒド、アセトアルデヒド等のアルデヒド類、アルコール類、有機塩素化合物に代表される有機溶剤等が挙げられる。例えば、アルデヒド類は、酸化処理により、有機酸にすればよい。   Examples of organic substances include aldehydes such as formaldehyde and acetaldehyde, alcohols, organic solvents represented by organic chlorine compounds, and the like. For example, aldehydes may be converted to organic acids by oxidation treatment.

図2は、本実施形態に係る洗浄排水処理装置の他の例を示す概略構成図である。図2の洗浄排水処理装置3は、図1の洗浄排水処理装置1の構成に加えて、酸化処理水(回収洗浄水)の少なくとも一部をイオン成分除去装置12の前段に送る循環手段として、循環配管30をさらに備える。図2の洗浄排水処理装置3において、酸化処理水配管22と還元処理水配管18とが、循環配管30により接続されている。循環配管30により、酸化処理水の少なくとも一部は、イオン成分除去装置12の前段に送られる(循環工程)。   FIG. 2 is a schematic configuration diagram illustrating another example of the cleaning wastewater treatment apparatus according to the present embodiment. In addition to the configuration of the cleaning wastewater treatment apparatus 1 of FIG. 1, the cleaning wastewater treatment apparatus 3 of FIG. 2 is a circulation unit that sends at least a part of the oxidation treated water (recovered cleaning water) to the front stage of the ion component removal apparatus 12. A circulation pipe 30 is further provided. In the cleaning waste water treatment apparatus 3 of FIG. 2, the oxidation treated water pipe 22 and the reduced treated water pipe 18 are connected by a circulation pipe 30. At least a part of the oxidation-treated water is sent to the upstream side of the ion component removing device 12 by the circulation pipe 30 (circulation process).

これにより、イオン成分除去装置12への供給水量が増えるので、イオン成分除去装置12から排出されるイオン成分除去処理水中の有機物の濃度が低減され、有機物酸化装置14の負担が軽減される。また、酸化処理水を循環することにより、酸化処理により有機物が酸化されて生成したイオン成分が、イオン成分除去装置12より除去されるため、系内での有機物の濃縮を抑制することができる。   Thereby, since the amount of water supplied to the ion component removing device 12 increases, the concentration of organic matter in the ion component removing treated water discharged from the ion component removing device 12 is reduced, and the burden on the organic matter oxidizing device 14 is reduced. In addition, by circulating the oxidation-treated water, the ionic component produced by oxidizing the organic matter by the oxidation treatment is removed from the ionic component removing device 12, so that the concentration of the organic matter in the system can be suppressed.

また、例えば、酸化処理水配管22等に有機物濃度測定手段としてTOC計50等を設置して、有機物酸化装置14で酸化処理された酸化処理水のTOC等を測定し、TOC濃度が所定の値以上の場合に循環配管30により循環する制御を行ってもよい。   Further, for example, a TOC meter 50 or the like is installed as an organic matter concentration measuring means in the oxidation treatment water pipe 22 or the like, and the TOC or the like of the oxidation treatment water oxidized by the organic matter oxidation apparatus 14 is measured, and the TOC concentration is a predetermined value. In the above case, control for circulation by the circulation pipe 30 may be performed.

図3は、本実施形態に係る洗浄排水処理装置の他の例を示す概略構成図である。図3の洗浄排水処理装置5は、図2の洗浄排水処理装置3の構成に加えて、イオン成分除去装置12が還元装置10の後段に複数、並列に設けられている。   FIG. 3 is a schematic configuration diagram illustrating another example of the cleaning wastewater treatment apparatus according to the present embodiment. In addition to the configuration of the cleaning wastewater treatment apparatus 3 in FIG. 2, the cleaning wastewater treatment apparatus 5 in FIG. 3 includes a plurality of ion component removal apparatuses 12 arranged in parallel at the subsequent stage of the reduction apparatus 10.

図3の洗浄排水処理装置5は、複数(図3の例では2つ)のイオン成分除去装置12a,12bを並列に備え、そのため、循環配管も複数(図3の例では2つ)備えている。図3の洗浄排水処理装置5において、還元装置10の出口とイオン成分除去装置12aの入口とが還元処理水配管18aにより接続され、還元処理水配管18aからバルブ32を介して分岐した還元処理水配管18bがバルブ34を介してイオン成分除去装置12bの入口に接続されている。イオン成分除去装置12aの出口と有機物酸化装置14の入口とがイオン成分除去処理水配管20aにより接続され、イオン成分除去装置12bの出口とイオン成分除去処理水配管20aとがイオン成分除去処理水配管20bにより接続されている。酸化処理水配管22には循環配管30が接続され、循環配管30は分岐して、循環配管30aがバルブ36を介して還元処理水配管18aのバルブ32の後流側に接続され、循環配管30bがバルブ38を介して還元処理水配管18bのバルブ34の後流側に接続されている。   The washing waste water treatment apparatus 5 of FIG. 3 includes a plurality (two in the example of FIG. 3) of ion component removing devices 12a and 12b in parallel, and thus includes a plurality of circulation pipes (two in the example of FIG. 3). Yes. In the cleaning waste water treatment apparatus 5 of FIG. 3, the reduced treatment water branched from the reduction treatment water pipe 18a via the valve 32, the outlet of the reduction apparatus 10 and the inlet of the ionic component removal apparatus 12a are connected by the reduction treatment water pipe 18a. The pipe 18b is connected to the inlet of the ion component removing device 12b through the valve 34. The outlet of the ion component removing device 12a and the inlet of the organic matter oxidizing device 14 are connected by an ion component removing treated water pipe 20a, and the outlet of the ion component removing device 12b and the ion component removing treated water pipe 20a are connected. 20b is connected. A circulating pipe 30 is connected to the oxidation treated water pipe 22, the circulating pipe 30 is branched, and the circulating pipe 30a is connected to the downstream side of the valve 32 of the reduced treated water pipe 18a via the valve 36, and the circulating pipe 30b. Is connected to the downstream side of the valve 34 of the reduced water pipe 18b through the valve 38.

例えば、図3に示すように、バルブ32,38を「開」状態、バルブ34,36を「閉」状態とすると、還元装置10で処理された還元処理水は、イオン成分除去装置12aでイオン成分が除去され、有機物酸化装置14で酸化処理された酸化処理水の少なくとも一部は、イオン成分除去装置12bに送液される。   For example, as shown in FIG. 3, when the valves 32 and 38 are in the “open” state and the valves 34 and 36 are in the “closed” state, the reduced water treated by the reducing device 10 is ionized by the ion component removing device 12a. At least a part of the oxidized water that has been subjected to the oxidation treatment by the organic matter oxidation device 14 after the components are removed is sent to the ion component removal device 12b.

これにより、イオン成分除去装置12bにおいても有機物が酸化された酸化処理水が流れるため、有機物が除去されるとともに、イオン成分除去装置内での菌の繁殖が抑制される。また、イオン成分除去装置を完全に停止させても、装置内の有機物の量が低減されているため、装置内での菌の発生が抑制される。   Thereby, in the ion component removing device 12b, the oxidized water in which the organic matter is oxidized flows, so that the organic matter is removed and the propagation of bacteria in the ion component removing device is suppressed. Even if the ion component removing device is completely stopped, the amount of organic substances in the device is reduced, so that the generation of bacteria in the device is suppressed.

また、イオン成分除去装置12bから排出されたイオン成分除去処理水とイオン成分除去装置12aから排出されたイオン成分除去処理水とが混合されることにより、有機物濃度の低減が図れるため、有機物酸化装置14の負担が軽減される。   In addition, since the ionic component removal treated water discharged from the ionic component removal apparatus 12b and the ionic component removal treated water discharged from the ionic component removal apparatus 12a are mixed, the organic substance concentration can be reduced. The burden of 14 is reduced.

また、例えば、酸化処理水配管22等に有機物濃度測定手段としてTOC計50等を設置して、有機物酸化装置14で酸化処理された酸化処理水のTOC等を測定し、TOC濃度が所定の値以上の場合に循環配管30により循環する制御を行ってもよい。   Further, for example, a TOC meter 50 or the like is installed as an organic matter concentration measuring means in the oxidation treatment water pipe 22 or the like, and the TOC or the like of the oxidation treatment water oxidized by the organic matter oxidation apparatus 14 is measured, and the TOC concentration is a predetermined value. In the above case, control for circulation by the circulation pipe 30 may be performed.

以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。   Hereinafter, although an example and a comparative example are given and the present invention is explained more concretely in detail, the present invention is not limited to the following examples.

[実施例1]
図4の洗浄排水処理装置を用いて、以下の条件で処理した処理水のTOC濃度を測定した。図4の洗浄排水処理装置において、還元装置10の前段に原水槽40、有機物酸化装置14の後段に処理水槽42を設置し、洗浄水配管28の途中にはオキソニア添加装置44を設置した。
[Example 1]
Using the washing waste water treatment apparatus of FIG. 4, the TOC concentration of treated water treated under the following conditions was measured. In the cleaning waste water treatment apparatus of FIG. 4, the raw water tank 40 is installed upstream of the reduction apparatus 10, the treated water tank 42 is installed downstream of the organic matter oxidation apparatus 14, and the oxonia addition apparatus 44 is installed midway in the cleaning water pipe 28.

<装置条件>
・還元装置:活性炭充填
・イオン除去装置:カチオンおよびアニオン交換樹脂の混床式
・有機物酸化手段:UV酸化装置(UVランプ:ニッポ電機社製 型式SGL−500T4U(Z))
なお、UVランプは、185〜254nmの紫外線を発光するものであり、波長185nmと254nmの同時照射するものである。
<Device conditions>
・ Reducing device: filled with activated carbon ・ Ion removing device: Mixed bed type of cation and anion exchange resin ・ Organic substance oxidation means: UV oxidation device (UV lamp: Model SGL-500T4U (Z) manufactured by Nippon Electric)
The UV lamp emits ultraviolet light with a wavelength of 185 to 254 nm, and irradiates with wavelengths of 185 nm and 254 nm simultaneously.

<実験条件>
・原水:純水+オキソニア(エコラボ社製オキソニアアクティブ90)
・オキソニア濃度:1,000mg/L
・原水流量:10L/h
・通水時間:72hr連続通水
・イオン交換樹脂の再生間隔:12hr
・UV照射電力:0.3kWh/m
<Experimental conditions>
・ Raw water: Pure water + Oxonia (Oxonia Active 90 manufactured by Ecolab)
Oxonia concentration: 1,000 mg / L
・ Raw water flow rate: 10L / h
・ Water flow time: 72 hours continuous water flow ・ Regeneration interval of ion exchange resin: 12 hours
UV irradiation power: 0.3 kWh / m 3

[実施例2]
図5の洗浄排水処理装置を用いて、以下の条件で処理した処理水のTOC濃度を測定した。図5の洗浄排水処理装置は、図4の洗浄排水処理装置の構成に加えて、酸化処理水の少なくとも一部をイオン成分除去装置12の前段に送る循環配管30をさらに備える。
[Example 2]
Using the washing waste water treatment apparatus of FIG. 5, the TOC concentration of treated water treated under the following conditions was measured. The cleaning waste water treatment apparatus of FIG. 5 further includes a circulation pipe 30 that sends at least a part of the oxidation treated water to the front stage of the ion component removal apparatus 12 in addition to the configuration of the cleaning waste water treatment apparatus of FIG.

<装置条件>
・還元装置:活性炭充填
・イオン除去装置:カチオンおよびアニオン交換樹脂の混床式
・有機物酸化手段:UV酸化装置(UVランプ:ニッポ電機社製 型式SGL−500T4U(Z))
なお、UVランプは、185〜254nmの紫外線を発光するものであり、波長185nmと254nmの同時照射するものである。
<Device conditions>
・ Reducing device: filled with activated carbon ・ Ion removing device: Mixed bed type of cation and anion exchange resin ・ Organic substance oxidation means: UV oxidation device (UV lamp: Model SGL-500T4U (Z) manufactured by Nippon Electric)
The UV lamp emits ultraviolet light with a wavelength of 185 to 254 nm, and irradiates with wavelengths of 185 nm and 254 nm simultaneously.

<実験条件>
・原水:純水+オキソニア(エコラボ社製オキソニアアクティブ90)
・オキソニア濃度:1,000mg/L
・原水流量:10L/h
・循環水量:5L/h
・通水時間:72hr連続通水
・イオン交換樹脂の再生間隔:12hr
・UV照射電力:0.3kWh/m
<Experimental conditions>
・ Raw water: Pure water + Oxonia (Oxonia Active 90 manufactured by Ecolab)
Oxonia concentration: 1,000 mg / L
・ Raw water flow rate: 10L / h
・ Circulating water volume: 5L / h
・ Water flow time: 72 hours continuous water flow ・ Regeneration interval of ion exchange resin: 12 hours
UV irradiation power: 0.3 kWh / m 3

[比較例1]
図6の洗浄排水処理装置を用いて、以下の条件で処理した処理水のTOC濃度を測定した。図6の洗浄排水処理装置は、図4の洗浄排水処理装置の有機物酸化装置14に代えてUV殺菌装置46を備え、UV殺菌装置46の出口と処理水槽42の入口とが配管48により接続されている。
[Comparative Example 1]
Using the washing waste water treatment apparatus of FIG. 6, the TOC concentration of treated water treated under the following conditions was measured. The cleaning wastewater treatment apparatus of FIG. 6 includes a UV sterilization apparatus 46 instead of the organic matter oxidation apparatus 14 of the cleaning wastewater treatment apparatus of FIG. 4, and the outlet of the UV sterilization apparatus 46 and the inlet of the treated water tank 42 are connected by a pipe 48. ing.

<装置条件>
・還元装置:活性炭充填
・イオン除去装置:カチオンおよびアニオン交換樹脂の混床式
・殺菌手段:UV照射装置(UVランプ:ニッポ電機社製 型式SGL−500T4U)
なお、UVランプは、水銀原子から発光される185〜254nmの紫外線のうち、185nmの波長をランプ表面の加工により遮光したものである。
<Device conditions>
-Reduction device: filled with activated carbon-Ion removal device: Mixed bed type of cation and anion exchange resin-Sterilization means: UV irradiation device (UV lamp: Model SGL-500T4U manufactured by Nippon Electric)
The UV lamp is a lamp in which a wavelength of 185 nm is shielded by processing the lamp surface out of 185 to 254 nm of ultraviolet light emitted from mercury atoms.

<実験条件>
・原水:純水+オキソニア(エコラボ社製オキソニアアクティブ90)
・オキソニア濃度:1,000mg/L
・原水流量:10L/h
・通水時間:72hr連続通水
・イオン交換樹脂の再生間隔:12hr
・UV照射電力:0.3kWh/m
<Experimental conditions>
・ Raw water: Pure water + Oxonia (Oxonia Active 90 manufactured by Ecolab)
Oxonia concentration: 1,000 mg / L
・ Raw water flow rate: 10L / h
・ Water flow time: 72 hours continuous water flow ・ Regeneration interval of ion exchange resin: 12 hours
UV irradiation power: 0.3 kWh / m 3

実験結果を図7に示す。通水開始から3時間後、実施例1および実施例2における酸化処理水のTOCは100μg/L程度であったが、比較例1における処理水では120μg/L検出された。その後、実施例1および実施例2では長時間通水しても、TOC濃度はほぼ横ばいであった。一方、比較例1では通水時間20時間あたりから、急激にTOC濃度が増加し、72時間後には261μg/Lとなった。   The experimental results are shown in FIG. Three hours after the start of water flow, the TOC of oxidized treated water in Example 1 and Example 2 was about 100 μg / L, but 120 μg / L was detected in the treated water in Comparative Example 1. Thereafter, in Examples 1 and 2, the TOC concentration was almost flat even when water was passed for a long time. On the other hand, in Comparative Example 1, the TOC concentration increased rapidly from around 20 hours of water passage time, and reached 261 μg / L after 72 hours.

このように、実施例1および実施例2では、イオン成分除去処理水に含まれる有機物を酸化処理することにより、比較例1に比べて、洗浄排水中の有機物の量が簡易な方法で低減され、効率よく洗浄排水の回収を行うことができた。   Thus, in Example 1 and Example 2, the amount of organic matter in the cleaning wastewater is reduced by a simple method as compared with Comparative Example 1 by oxidizing the organic matter contained in the ionic component removal treated water. It was possible to recover the washing wastewater efficiently.

[実施例3]
有機物酸化に有効とされる185nmの波長は有効照射距離が短いため、有機物を含む被処理水がUVランプの近傍を通過することが望ましい。そこで、UV酸化装置を多段に設置し、被処理水がUVランプ近傍を通過する確率を高めることで、UV酸化装置の処理効率を上げる検討を行った。
[Example 3]
Since the wavelength of 185 nm effective for organic matter oxidation has a short effective irradiation distance, it is desirable that the water to be treated containing the organic matter passes near the UV lamp. Therefore, a study was conducted to increase the treatment efficiency of the UV oxidation device by installing UV oxidation devices in multiple stages and increasing the probability that the water to be treated will pass near the UV lamp.

実験装置は、図8に示す装置を用いた。実験条件を以下に示す。有機物成分としてペットボトル等から溶出が懸念されるホルムアルデヒドを用いた。UV酸化の効率を評価するため、下記式(1)で算出される流量当たりのUV照射電力(以下、UV照射電力)を用いた。UV照射電力は、通水流量およびUVランプの点灯本数を組み合わせることで調整した。
流量当たりのUV照射電力(kWh/m)=ランプ電力(W/本)×ランプ本数(本)/通水流量(m/h) ・・・(1)
The experimental apparatus used was the apparatus shown in FIG. Experimental conditions are shown below. As an organic component, formaldehyde, which is likely to be eluted from a plastic bottle or the like, was used. In order to evaluate the efficiency of UV oxidation, UV irradiation power per flow rate (hereinafter referred to as UV irradiation power) calculated by the following formula (1) was used. The UV irradiation power was adjusted by combining the water flow rate and the number of UV lamps lit.
UV irradiation power per flow rate (kWh / m 3 ) = lamp power (W / line) × number of lamps (line) / flow rate (m 3 / h) (1)

<実験条件>
・原水:ホルムアルデヒド TOCで100μg/L
・ランプ電力:18W/本 ×1,2,4本
・ランプ型式:UVランプ(ニッポ電機社製 型式SGL−500T4U(Z))
<Experimental conditions>
Raw water: 100 μg / L with formaldehyde TOC
・ Lamp power: 18W / piece × 1,2,4 ・ Lamp type: UV lamp (Nippo Electric Co., Ltd. Model SGL-500T4U (Z))

図9に、UV照射電力と処理水のTOC濃度との関係を示す。同じUV照射電力でも、UV酸化装置を多段に設置することで処理水TOC濃度が低下する傾向が見られた。この効果により、同じ処理水TOC濃度を目標とした場合、UV酸化装置を多段にすることで、UVランプが消費する電力を低減できることが示唆された。また、同じUV照射電力でもUV酸化装置を多段に設置した方が被処理水に185nmの紫外線をより効果的に照射することができるため、処理水TOC濃度が低下することが確認された。   FIG. 9 shows the relationship between the UV irradiation power and the TOC concentration of treated water. Even with the same UV irradiation power, there was a tendency that the concentration of the treated water TOC was lowered by installing UV oxidizers in multiple stages. This suggests that when the same treated water TOC concentration is targeted, the power consumed by the UV lamp can be reduced by using multiple stages of UV oxidation devices. In addition, it was confirmed that the TOC concentration of the treated water is lowered because the water to be treated can be more effectively irradiated with ultraviolet rays of 185 nm when the UV oxidizers are installed in multiple stages even with the same UV irradiation power.

1,3,5 洗浄排水処理装置、10 還元装置、12,12a,12b イオン成分除去装置、14 有機物酸化装置、16 洗浄排水配管、18,18a,18b 還元処理水配管、20,20a,20b イオン成分除去処理水配管、22 酸化処理水配管、24 洗浄水貯槽、26 洗浄装置、28 洗浄水配管、30,30a,30b 循環配管、32,34,36,38 バルブ、40 原水槽、42 処理水槽、44 オキソニア添加装置、46 UV殺菌装置、48 配管、50 TOC計。   1, 3, 5 Washing wastewater treatment device, 10 Reduction device, 12, 12a, 12b Ion component removal device, 14 Organic substance oxidation device, 16 Washing drainage piping, 18, 18a, 18b Reduction treatment water piping, 20, 20a, 20b Ion Component removal treated water piping, 22 Oxidized water piping, 24 Washing water storage tank, 26 Cleaning device, 28 Washing water piping, 30, 30a, 30b Circulation piping, 32, 34, 36, 38 Valve, 40 Raw water tank, 42 Treatment water tank 44 Oxonia addition device, 46 UV sterilization device, 48 piping, 50 TOC meter.

Claims (12)

洗浄装置から排出された有機酸および有機物を含有する洗浄排水中の前記有機酸を還元処理する還元手段と、
前記還元手段で処理された還元処理水に含まれるイオン成分を除去するイオン成分除去手段と、
前記イオン成分除去手段で処理されたイオン成分除去処理水に含まれる有機物を酸化処理する有機物酸化手段と、
前記有機物酸化手段で処理された酸化処理水の少なくとも一部を前記洗浄装置に供給する供給手段と、
を備えることを特徴とする洗浄排水の処理装置。
Reducing means for reducing the organic acid in the cleaning wastewater containing the organic acid and organic matter discharged from the cleaning device;
Ionic component removal means for removing ionic components contained in the reduced treated water treated by the reduction means;
An organic matter oxidizing means for oxidizing an organic substance contained in the ion component removing treated water treated by the ion component removing means;
Supply means for supplying at least part of the oxidized water treated by the organic matter oxidizing means to the cleaning device;
A cleaning wastewater treatment apparatus comprising:
請求項1に記載の洗浄排水の処理装置であって、
前記有機物酸化手段は、前記イオン成分除去処理水に少なくとも185nmの波長の紫外線を照射するものであることを特徴とする洗浄排水の処理装置。
It is a processing device of washing drainage according to claim 1,
The organic matter oxidizing means irradiates the ion component removal treated water with ultraviolet rays having a wavelength of at least 185 nm.
請求項1または2に記載の洗浄排水の処理装置であって、
前記酸化処理水の少なくとも一部を前記イオン成分除去手段の前段に送る循環手段をさらに備えることを特徴とする洗浄排水の処理装置。
It is a processing device of washing drainage according to claim 1 or 2,
A cleaning wastewater treatment apparatus, further comprising a circulation means for sending at least a part of the oxidation treated water to a preceding stage of the ion component removal means.
請求項3に記載の洗浄排水の処理装置であって、
前記イオン成分除去手段は、前記還元手段の後段に複数、並列に設けられ、
前記還元処理水が、前記複数のイオン成分除去手段の少なくとも1つに通水され、前記酸化処理水の少なくとも一部が、前記還元処理水が通水されたイオン成分除去手段以外のイオン成分除去手段の少なくとも1つに通水されることを特徴とする洗浄排水の処理装置。
It is a processing device of washing drainage according to claim 3,
A plurality of the ion component removing means are provided in parallel at the subsequent stage of the reducing means,
The reduced treated water is passed through at least one of the plurality of ionic component removing means, and at least a part of the oxidized treated water is removed from ionic components other than the ionic component removed means through which the reduced treated water is passed. An apparatus for treating cleaning waste water, wherein water is passed through at least one of the means.
請求項1〜4のいずれかに記載の洗浄排水の処理装置であって、
前記還元手段は、活性炭を充填したものであることを特徴とする洗浄排水の処理装置。
It is a processing device of washing drainage in any one of claims 1-4,
An apparatus for treating cleaning waste water, wherein the reducing means is filled with activated carbon.
請求項1〜5のいずれかに記載の洗浄排水の処理装置であって、
前記イオン成分除去手段は、アニオン交換樹脂およびカチオン交換樹脂の少なくとも一方が充填されたものであることを特徴とする洗浄排水の処理装置。
It is a processing device of washing drainage in any one of claims 1-5,
The treatment apparatus for washing waste water, wherein the ion component removing means is filled with at least one of an anion exchange resin and a cation exchange resin.
洗浄装置から排出された有機酸および有機物を含有する洗浄排水中の前記有機物を還元処理する還元工程と、
前記還元工程で処理された還元処理水に含まれるイオン成分を除去するイオン成分除去工程と、
前記イオン成分除去工程で処理されたイオン成分除去処理水に含まれる有機物を酸化処理する有機物酸化工程と、
前記有機物酸化工程で処理された酸化処理水の少なくとも一部を前記洗浄装置に供給する供給工程と、
を含むことを特徴とする洗浄排水の処理方法。
A reduction step of reducing the organic matter in the washing wastewater containing the organic acid and organic matter discharged from the cleaning device;
An ionic component removal step of removing an ionic component contained in the reduced treated water treated in the reduction step;
An organic matter oxidation step of oxidizing the organic matter contained in the ion component removal treated water treated in the ion component removal step;
A supply step of supplying at least a part of the oxidized water treated in the organic matter oxidation step to the cleaning device;
A method for treating cleaning wastewater, comprising:
請求項7に記載の洗浄排水の処理方法であって、
前記有機物酸化工程において、前記イオン成分除去処理水に少なくとも185nmの波長の紫外線を照射することを特徴とする洗浄排水の処理方法。
It is a processing method of washing drainage according to claim 7,
In the organic matter oxidation step, a cleaning wastewater treatment method comprising irradiating the ion component removal treated water with ultraviolet rays having a wavelength of at least 185 nm.
請求項7または8に記載の洗浄排水の処理方法であって、
前記酸化処理水の少なくとも一部を前記イオン成分除去手段の前段に送る循環工程をさらに含むことを特徴とする洗浄排水の処理方法。
It is a processing method of the washing drainage according to claim 7 or 8,
A method for treating cleaning wastewater, further comprising a circulation step of sending at least a part of the oxidation-treated water to a preceding stage of the ion component removing means.
請求項9に記載の洗浄排水の処理方法であって、
前記還元処理水が、前記還元工程の後段に複数、並列に設けられたイオン成分除去手段の少なくとも1つに通水され、前記酸化処理水の少なくとも一部が、前記還元処理水が通水されたイオン成分除去手段以外のイオン成分除去手段の少なくとも1つに通水されることを特徴とする洗浄排水の処理方法。
It is a processing method of washing drainage according to claim 9,
A plurality of the reduced treated water is passed through at least one of the ion component removing means provided in parallel at the latter stage of the reducing step, and at least a part of the oxidized treated water is passed through the reduced treated water. Washing waste water treatment method, wherein water is passed through at least one ion component removing means other than the ion component removing means.
請求項7〜10のいずれかに記載の洗浄排水の処理方法であって、
前記還元工程において、活性炭を用いて還元処理することを特徴とする洗浄排水の処理方法。
It is a processing method of washing drainage in any one of claims 7-10,
In the reduction step, the waste water is treated using activated carbon.
請求項7〜11のいずれかに記載の洗浄排水の処理方法であって、
前記イオン成分除去工程において、アニオン交換樹脂およびカチオン交換樹脂の少なくとも一方を用いてイオン成分を除去することを特徴とする洗浄排水の処理方法。
It is a processing method of washing drainage in any one of claims 7-11,
In the ion component removing step, the washing waste water treatment method is characterized in that the ion component is removed using at least one of an anion exchange resin and a cation exchange resin.
JP2012035027A 2012-02-21 2012-02-21 Washing wastewater treatment apparatus and washing wastewater treatment method Active JP5826667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012035027A JP5826667B2 (en) 2012-02-21 2012-02-21 Washing wastewater treatment apparatus and washing wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012035027A JP5826667B2 (en) 2012-02-21 2012-02-21 Washing wastewater treatment apparatus and washing wastewater treatment method

Publications (2)

Publication Number Publication Date
JP2013169512A true JP2013169512A (en) 2013-09-02
JP5826667B2 JP5826667B2 (en) 2015-12-02

Family

ID=49263842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012035027A Active JP5826667B2 (en) 2012-02-21 2012-02-21 Washing wastewater treatment apparatus and washing wastewater treatment method

Country Status (1)

Country Link
JP (1) JP5826667B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013202585A (en) * 2012-03-29 2013-10-07 Kurita Water Ind Ltd Treatment method for formaldehyde-containing waste water
JP2014166607A (en) * 2013-02-28 2014-09-11 Japan Organo Co Ltd Apparatus and method for treatment of drain water
WO2020226094A1 (en) * 2019-05-08 2020-11-12 株式会社キッツ Washing water treatment device, disinfection and water treatment device, and washing water treatment method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1157752A (en) * 1997-08-19 1999-03-02 Japan Organo Co Ltd Controlling method and device of toc component removal
JP2000317445A (en) * 1999-03-08 2000-11-21 Jgc Corp Method and device for treating organic material containing water
JP2001129564A (en) * 1999-11-04 2001-05-15 Kurita Water Ind Ltd Peracetic acid decomposing method and apparatus for treating peracetic acid-containing water
JP2004202313A (en) * 2002-12-24 2004-07-22 Kurita Water Ind Ltd Method and apparatus for treating washing wastewater
JP2006289283A (en) * 2005-04-12 2006-10-26 Nippon Rensui Co Ltd Apparatus for treating waste water, apparatus and system for recovering waste water form rinser and method for treating waste water
JP2007054784A (en) * 2005-08-26 2007-03-08 Nippon Rensui Co Ltd Drainage treatment apparatus, rinser drainage recovery system and method for sterilizing drainage treatment apparatus
JP2010247009A (en) * 2009-04-10 2010-11-04 Nippon Rensui Co Ltd Method and apparatus for removing aldehyde, apparatus for recovering container sterilization wastewater, soft drink manufacturing apparatus and drinking water manufacturing apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1157752A (en) * 1997-08-19 1999-03-02 Japan Organo Co Ltd Controlling method and device of toc component removal
JP2000317445A (en) * 1999-03-08 2000-11-21 Jgc Corp Method and device for treating organic material containing water
JP2001129564A (en) * 1999-11-04 2001-05-15 Kurita Water Ind Ltd Peracetic acid decomposing method and apparatus for treating peracetic acid-containing water
JP2004202313A (en) * 2002-12-24 2004-07-22 Kurita Water Ind Ltd Method and apparatus for treating washing wastewater
JP2006289283A (en) * 2005-04-12 2006-10-26 Nippon Rensui Co Ltd Apparatus for treating waste water, apparatus and system for recovering waste water form rinser and method for treating waste water
JP2007054784A (en) * 2005-08-26 2007-03-08 Nippon Rensui Co Ltd Drainage treatment apparatus, rinser drainage recovery system and method for sterilizing drainage treatment apparatus
JP2010247009A (en) * 2009-04-10 2010-11-04 Nippon Rensui Co Ltd Method and apparatus for removing aldehyde, apparatus for recovering container sterilization wastewater, soft drink manufacturing apparatus and drinking water manufacturing apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013202585A (en) * 2012-03-29 2013-10-07 Kurita Water Ind Ltd Treatment method for formaldehyde-containing waste water
JP2014166607A (en) * 2013-02-28 2014-09-11 Japan Organo Co Ltd Apparatus and method for treatment of drain water
WO2020226094A1 (en) * 2019-05-08 2020-11-12 株式会社キッツ Washing water treatment device, disinfection and water treatment device, and washing water treatment method
CN113767071A (en) * 2019-05-08 2021-12-07 株式会社开滋 Washing water treatment apparatus, sterilizing and purifying water treatment apparatus, and washing water treatment method
CN113767071B (en) * 2019-05-08 2023-12-22 株式会社开滋 Apparatus for treating washing water for semiconductor manufacturing/liquid crystal manufacturing and electronic parts, and method for treating washing water for semiconductor manufacturing/liquid crystal manufacturing and electronic parts

Also Published As

Publication number Publication date
JP5826667B2 (en) 2015-12-02

Similar Documents

Publication Publication Date Title
JP5000856B2 (en) Rincer drainage recovery device and Rincer drainage recovery system
JP4754657B1 (en) Rincer waste water treatment device and sterilization method of Rincer waste water treatment device
JP7193669B2 (en) Wash water treatment equipment and sterilization purification equipment
JP6752693B2 (en) Water treatment method and equipment
JP5441714B2 (en) Pure water production method and apparatus, ozone water production method and apparatus, and cleaning method and apparatus
JP5826667B2 (en) Washing wastewater treatment apparatus and washing wastewater treatment method
JP2007054784A (en) Drainage treatment apparatus, rinser drainage recovery system and method for sterilizing drainage treatment apparatus
JP2010247009A (en) Method and apparatus for removing aldehyde, apparatus for recovering container sterilization wastewater, soft drink manufacturing apparatus and drinking water manufacturing apparatus
JP5982165B2 (en) Washing wastewater treatment apparatus and washing wastewater treatment method
JP6066769B2 (en) Waste water treatment apparatus and waste water treatment method
CN103420527A (en) Purifying disinfection apparatus and method for drinking water
JP4164743B2 (en) Cleaning wastewater treatment method and apparatus
JP6138558B2 (en) Waste water treatment apparatus and waste water treatment method
JP2006192352A (en) Ultrapure water production apparatus and ultrapure water production method
JP2018089598A (en) Water treating device
JP4218140B2 (en) TOC removal device
JP2001252652A (en) Water purifying device
JP3547573B2 (en) Water treatment method
JP3300852B2 (en) Method and apparatus for treating contaminated water
JP3558378B2 (en) Water treatment method
JP2004181409A (en) Method and apparatus for water sterilization and cleaning
JP2004074043A (en) Method of sterilizing and clarifying water
JP3556515B2 (en) Wastewater treatment method using ozone and hydrogen peroxide
JPH11262783A (en) Removal of organic matter in water
JP2006218361A (en) Apparatus and method for treating water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151014

R150 Certificate of patent or registration of utility model

Ref document number: 5826667

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250