JP2007175686A - Anaerobic sprinkling filtration method and apparatus for organic waste water - Google Patents

Anaerobic sprinkling filtration method and apparatus for organic waste water Download PDF

Info

Publication number
JP2007175686A
JP2007175686A JP2005381293A JP2005381293A JP2007175686A JP 2007175686 A JP2007175686 A JP 2007175686A JP 2005381293 A JP2005381293 A JP 2005381293A JP 2005381293 A JP2005381293 A JP 2005381293A JP 2007175686 A JP2007175686 A JP 2007175686A
Authority
JP
Japan
Prior art keywords
water
anaerobic
raw water
tank
methane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005381293A
Other languages
Japanese (ja)
Inventor
Toichiro Koyama
登一郎 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
N II T KK
Original Assignee
N II T KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by N II T KK filed Critical N II T KK
Priority to JP2005381293A priority Critical patent/JP2007175686A/en
Publication of JP2007175686A publication Critical patent/JP2007175686A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new anaerobic sprinkling filtration method and apparatus which enable an anaerobic biological treatment of raw water with a thin concentration of an organic matter without heating to perform of raw water purification and methane gas generation. <P>SOLUTION: Plane members each made of synthetic fiber with a mesh pore size of 5-30 mm, in which water absorbing yarn with sludge is arranged along a three-dimensional network core material fill a treatment tank having an oxygen free atmosphere. A raw water sprinkling part is installed in the upper part of the tank, and raw water is made to flow down in a form of a liquid film along the inside of each plane member to be subjected methane fermentation. Subsequently treated water is discharged from the bottom of the treatment tank. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、有機性排水の嫌気性生物処理装置に関し、メタン発酵処理の対象とした場合に不適と従来看做されていたBODが比較的少ない原水(BOD500〜1000mg/l程度)についても、効果的かつ省エネルギー的にBODを除去し、かつメタンガスを発生できる新規メタン発酵処理技術に関する。The present invention relates to an anaerobic biological treatment apparatus for organic wastewater, and is effective even for raw water (BOD of about 500 to 1000 mg / l), which has been conventionally regarded as unsuitable when subjected to methane fermentation treatment, with relatively little BOD. The present invention relates to a novel methane fermentation treatment technology capable of removing BOD and generating methane gas efficiently and energy-saving.

嫌気性生物処理技術としてのメタン発酵法の技術では、従来UASB法が代表的技術である。(特許文献1:特許公開平11−207384:嫌気性処理方法および装置)
UASB法はメタン菌をグラニュール状に造粒化することにより、リアクター内のメタン菌の濃度を高濃度に維持できるという特徴があり、その結果、廃水中の有機物を効率よく処理できる。例えば、UASB装置では、CODCrの容積負荷が10〜15(kg/m.d)という極めて大きい負荷条件でも効率よく運転できるという特徴がある。
Conventionally, the UASB method is a typical technology in the technology of methane fermentation as an anaerobic biological treatment technology. (Patent Literature 1: Patent Publication No. 11-207384: Anaerobic treatment method and apparatus)
The UASB method has a feature that the concentration of methane bacteria in the reactor can be maintained at a high concentration by granulating the methane bacteria into a granular form, and as a result, organic matter in waste water can be efficiently treated. For example, the UASB apparatus has a feature that the COD Cr volumetric load can be efficiently operated even under an extremely large load condition of 10 to 15 (kg / m 3 .d).

しかし、UASB法にBODが希薄(1000mg/l以下)の原水を適用した場合は、メタン菌グラニュールの形成、維持が困難であり、また汚泥馴致中にバルキングトラブルが起きやすい。また原水SSが高い場合も、グラニュール形成が困難になる。さらに原水流量が少ない場合は、グラニュールを上昇水流で流動化させるために、処理水を原水側に循環して、上昇水流を増加させるための循環ポンプが必要という欠点があった。However, when raw water with a low BOD (1000 mg / l or less) is applied to the UASB method, it is difficult to form and maintain methane bacteria granules, and bulking troubles easily occur during sludge acclimatization. Moreover, granule formation becomes difficult also when raw | natural water SS is high. Further, when the raw water flow rate is small, there is a disadvantage that a circulating pump is required to circulate the treated water to the raw water side to increase the upward water flow in order to fluidize the granules with the upward water flow.

さらに、UASB法の場合、有機物負荷量が高くなると(例えばCOD容積負荷10kg/m.d以上)発生するガス量が多くなるが、この際リアクター内からのガス抜きを確実に行わないと、ガス排出時の吹き出し等によりグラニュール状の汚泥の流出が多くなり、リアクター内にグラニュール汚泥を留めておくことが困難になるという問題点もあった。Furthermore, in the case of the UASB method, when the organic load becomes high (for example, a COD volumetric load of 10 kg / m 3 .d or more), the amount of gas generated increases, but at this time, if degassing from the reactor is not performed reliably, There was also a problem that granulated sludge flowed out frequently due to blowout during gas discharge, and it was difficult to keep the granular sludge in the reactor.

一方メタン菌グラニュールを使わずに、ラシヒリング、プラスチック板などのメタン菌付着部材を充填した塔に原水を上向流で供給し、メタン発酵を行う「浸漬ろ床式メタン発酵法」も周知である。(非特許文献2:須藤隆一編著、水質保全のための生物学pp176−177、産業用水調査会発行、2004年11月3日)
しかしこの方法も、原水BODが希薄(およそ1000mg/l以下)の場合は、メタン発酵反応が遅くなり、実用的ではなかった。
On the other hand, the “submerged filter bed type methane fermentation method”, in which raw water is supplied in an upward flow to a tower packed with methane bacteria adhesion members such as Raschig rings and plastic plates without using methane bacteria granules, is also well known. is there. (Non-patent document 2: edited by Ryuichi Sudo, Biology pp176-177 for water quality conservation, published by Industrial Water Research Council, November 3, 2004)
However, this method was also not practical when the raw water BOD was dilute (approximately 1000 mg / l or less), because the methane fermentation reaction was slow.

有機性廃水の嫌気性菌には、環境温度30〜35℃の中温域を至適温度とする中温嫌気性菌、50〜55℃の高温域を至適温度とする高温嫌気性菌などがあるが、UASB、浸漬ろ床法ともに、槽内温度を中温メタン菌が活動しやすい35℃程度に加温する必要があったので、原水BODが希薄であると、加温エネルギーが回収メタンガスではまかなえないという難点もあった。Examples of anaerobic bacteria in organic wastewater include mesophilic anaerobic bacteria whose optimum temperature is in the medium temperature range of 30 to 35 ° C., and high temperature anaerobic bacteria whose optimum temperature is in the high temperature range of 50 to 55 ° C. However, both the UASB and the submerged filter bed method needed to heat the temperature in the tank to about 35 ° C where mesophilic methane bacteria are active, so if the raw water BOD is dilute, the heating energy can be covered by the recovered methane gas. There was also the difficulty of not.

本発明は、前記従来技術の問題点を解決する技術であり、比較的低濃度のBODの原水には不適当であった従来の嫌気性処理技術を改善し、BODが1000mg/l以下の原水に対しても、加温することなく、効果的にメタン発酵処理可能な新規技術を提供することを課題にしている。The present invention is a technique for solving the above-mentioned problems of the prior art, and improves the conventional anaerobic treatment technique, which was unsuitable for relatively low concentration raw water of BOD, and has a BOD of 1000 mg / l or less. However, it is an object to provide a new technology capable of effectively performing methane fermentation without heating.

課題を解決する手段Means to solve the problem

メタン発酵処理においては、余剰汚泥の発生量が好気性処理よりも著しく少ないことが特徴であるが、この事実は、逆にメタン菌を大量に増殖させるのに時間がかかることを意味しており、生物処理装置を設置する際には十分量のメタン菌を槽内に確保することが重要ポイントである。
本発明は、従来好気性生物処理に適用されてきた散水ろ床法を、嫌気性生物処理にも効果的に適用できるよう工夫し、メタン菌大量保持という重要ポイントを実現した。
In methane fermentation treatment, the amount of excess sludge generated is significantly smaller than that in aerobic treatment, but this fact means that it takes time to grow methane bacteria in large quantities. When installing a biological treatment device, it is important to ensure a sufficient amount of methane bacteria in the tank.
The present invention has devised the trickling filter method that has been applied to conventional aerobic biological treatment so that it can be effectively applied to anaerobic biological treatment, and has realized an important point of mass retention of methane bacteria.

従来の好気性散水ろ床装置は、空気が流通できる槽内にラシヒリングなどの粒状のろ材を層状に堆積させて微生物を付着させて、その上から汚水を散布し、浸透流下した処理水を槽外へ取り出す構造である。しかし、このようにろ材塊を層状に堆積させると、増殖した微生物体によりろ材間の空隙が目詰まりして、汚水の透過が著しく悪化する。また偏流(原水短絡)がおきる。またろ材として、層状にスポンジ製濾材を堆積させる場合は、スポンジが柔らかいため重みでスポンジが潰れてしまい、閉塞部が発生し偏流が起きる欠点があった。A conventional aerobic trickling filter device is a method in which granular filter media such as Raschig rings are deposited in layers in a tank where air can circulate, and microorganisms are attached to the tank. It is a structure to take out. However, when the filter medium mass is deposited in a layered manner in this way, the space between the filter media is clogged by the grown microorganisms, and the permeation of sewage is significantly deteriorated. In addition, drift (raw water short circuit) occurs. Further, when a sponge filter medium is deposited as a filter medium, since the sponge is soft, the sponge is crushed by weight, and there is a drawback that a clogging portion is generated and a drift occurs.

本発明は、充填材全体を十分に原水と接触させ、汚濁成分の分解処理能力を高めることができる新規な嫌気性散水ろ床装置である。
本発明者は、散水ろ床法をメタン発酵技術に適用する場合、芯材によって強度を高めたネットワーク(立体網目)構造の充填材を用い、メタン発酵菌が付着固定化される吸水性汚泥付着糸が配備された空隙部がつぶれないようにし、かつ空隙サイズを3mm以上とすることがポイントであることを見出した。これに対し、従来のポリウレタンフォームなどのスポンジろ材のように、スポンジ空隙サイズが小さい(孔サイズ0.05〜2mm程度であり、これ以上大きくすることはスポンジ製造技術のうえで困難)とSS及び生物膜成長によって孔の閉塞が起きるため、嫌気性処理が効果的に行えない。
The present invention is a novel anaerobic trickling filter apparatus that can sufficiently bring the entire filler into contact with raw water and enhance the decomposition treatment ability of polluted components.
When applying the water trickling filter method to the methane fermentation technology, the present inventor uses a filler having a network (three-dimensional network) structure whose strength is increased by a core material, and adheres to water-absorbing sludge in which methane-fermenting bacteria are adhered and immobilized. It has been found that it is important that the gap where the yarn is deployed is not crushed and the gap size is 3 mm or more. On the other hand, the sponge pore size is small (pore size is about 0.05 to 2 mm, and it is difficult to make it larger than this in terms of sponge manufacturing technology), as is the case with conventional sponge filter media such as polyurethane foam, SS and Anaerobic treatment cannot be effectively performed because pores are blocked by biofilm growth.

すなわち、本発明は、無酸素雰囲気の槽内に「立体的網目状の芯材に沿わせて吸水性の汚泥付着糸を配し、網目孔サイズ5〜30mmの合成繊維編織面部材」を充填し、該槽上部に原水散水部を設けて、前記部材内部に液膜状で流下させてメタン醗酵処理したのち、該処理槽底部から処理水を流出させることを特徴とする嫌気性散水ろ床処理方法であり、また、無酸素雰囲気の槽内に「立体的網目状の芯材に沿わせて吸水性の汚泥付着糸を配し、該網目孔サイズ5〜30mmの合成繊維編織面部材」を充填し、該槽上部に原水散水部を設けて前記部材内部を液膜状で流下させるように構成し、処理槽底部に処理水流出水面を設け、かつ該槽に生成メタン含有ガス排出部を設けたたことを特徴とする嫌気性散水ろ床装置である。That is, the present invention fills a synthetic fiber knitted surface member having a mesh hole size of 5 to 30 mm with a water-absorbing sludge adhering yarn along a three-dimensional mesh core material in an oxygen-free atmosphere tank. An anaerobic water filter, characterized in that a raw water sprinkling section is provided at the top of the tank, and after the methane fermentation treatment is performed by flowing down the liquid inside the member, the treated water is discharged from the bottom of the processing tank. This is a treatment method, and “a synthetic fiber woven surface member having a water-absorbing sludge-attached yarn along a three-dimensional mesh-like core material and having a mesh hole size of 5 to 30 mm” in an oxygen-free tank. And a raw water sprinkling part is provided at the top of the tank so that the inside of the member flows down in the form of a liquid film, a treated water effluent surface is provided at the bottom of the processing tank, and a generated methane-containing gas discharge part is provided in the tank. It is the anaerobic watering filter apparatus characterized by having provided.

本発明者が知る限りでは、散水ろ床法をメタン発酵処理などの嫌気性処理に適用する研究例は従来ないようである。その理由は、「曝気ブロワーを設置して曝気を行わなくても好気性生物処理が可能という点に最大の魅力がある散水ろ床法」を、原理的に曝気操作が不要な嫌気性生物処理に適用しても特にメリットがないと考えられていたためではないかと思われる。As far as the present inventor is aware, there seems to be no research example in which the watering filter method is applied to anaerobic treatment such as methane fermentation treatment. The reason for this is the “watering filter method, which is the most attractive in that aerobic biological treatment is possible without aeration by installing an aeration blower”, in principle anaerobic biological treatment that does not require aeration operation. It seems that it was because it was thought that there was no particular merit even if it was applied to.

本発明者はこのような固定観念を打破し、散水ろ床法をメタン発酵処理に効果的に適用するためには如何に構成すれば良いのかを追及した結果、嫌気性微生物を付着させるための付着材の構造、郷土、空隙サイズを最適化することによって、前記したような従来のメタン発酵処理技術の欠点を解決した。As a result of pursuing how the water spray filter method can be effectively applied to the methane fermentation treatment, the present inventor has overcome such a fixed idea, and as a result, has adhered to anaerobic microorganisms. By optimizing the structure, hometown, and void size of the adhering material, the disadvantages of the conventional methane fermentation treatment technology as described above were solved.

発明の効果The invention's effect

▲1▼本発明の素材は、空隙サイズが非常に大きいので、原水SSおよび生物膜成長による空隙部閉塞が起きない。汚泥吸着糸(BXY)は自重の5倍の吸水性を持ち、親水性が極めて良好で汚泥付着も良好である。したがって少量の流水で均一に濡れ、汚泥剥離部、汚泥乾燥部が出来ない。
したがって高メタン菌濃度、長時間のSRT、嫌気性生物と原水との良好な接触効果を確保できるので、BODが希薄な原水に対しても、メタン発酵反応を効果的に適用できる。また活性汚泥法のような曝気操作が不要なため、きわめて省エネルギー的に有機性排水を浄化できる。
また原水SSが高濃度でもSS除去工程を前段に設置することなくメタン発酵処理可能である。また空隙部のSS及びまたは微生物による閉塞が起きないので、原水のショートパス(短絡流)がなく、設定したHRT(水理学的滞留時間)を確保できるので、良好な処理水質が安定して得られる。
▲2▼メタン菌保持量が多量にできるので水温30℃未満(15〜25℃程度)の原水でも、水温低下による反応速度の減少を相殺できる。したがって原水を加温することなくメタン発酵処理でき、加温エネルギーが不要であり、加温設備も不要になる。したがって曝気不要効果と合いまって、有機性排水を非常に省エネルギー的に浄化処理できる。
▲3▼余剰汚泥発生量が非常に少ないので、汚泥処理・処分が非常に容易である。
▲4▼UASBのようにメタン菌グラニュールの増殖育成が不要であり、当然グラニュールを流動化させる必要もないので、処理水循環ポンプが不要である。
▲5▼ろ床を槽に水没させる嫌気性処理方式に比し、槽壁に水圧がかからないので、ろ床の外壁構造体の建設費が安い。
(1) Since the material of the present invention has a very large void size, the void portion is not blocked by the raw water SS and the biofilm growth. The sludge adsorbing yarn (BXY) has a water absorption of 5 times its own weight, has extremely good hydrophilicity and good sludge adhesion. Therefore, even with a small amount of running water, it is uniformly wet and the sludge stripping part and sludge drying part cannot be made.
Therefore, a high methane concentration, long-time SRT, and good contact effect between anaerobic organisms and raw water can be ensured, so that the methane fermentation reaction can be effectively applied even to raw water with a low BOD. Moreover, since an aeration operation like the activated sludge method is not required, the organic waste water can be purified in an extremely energy saving manner.
Moreover, even if raw water SS is high concentration, a methane fermentation process is possible, without installing SS removal process in the front | former stage. In addition, since there is no blockage of SS and / or microorganisms in the void, there is no short path (short circuit flow) of the raw water, and the set HRT (hydraulic residence time) can be secured, so that good treated water quality can be obtained stably. It is done.
(2) Since the amount of methane bacteria retained can be increased, even with raw water having a water temperature of less than 30 ° C. (about 15 to 25 ° C.), the decrease in reaction rate due to a decrease in water temperature can be offset. Therefore, methane fermentation can be performed without heating raw water, no heating energy is required, and no heating equipment is required. Therefore, combined with the aeration unnecessary effect, the organic waste water can be purified in a very energy-saving manner.
(3) Since the amount of excess sludge generated is very small, sludge treatment and disposal is very easy.
(4) Unlike UASB, there is no need to grow and grow methane bacteria granules, and naturally there is no need to fluidize the granules, so a treated water circulation pump is unnecessary.
(5) Compared with the anaerobic treatment method in which the filter bed is submerged in the tank, water pressure is not applied to the tank wall, so the construction cost of the outer wall structure of the filter bed is low.

図1を参照しながら、本発明の一実施例を説明する。
空気の進入を遮断した嫌気性槽1内に、「吸水性合成繊維製で、空隙サイズ5〜30mmの立体的網目構造部材」2を多数枚、家屋建築現場の足場などに使われるパイプフレームなどの型枠に、立体的網目構造部材面(一枚の厚み20mm程度)を複数枚重ね合わせ、網目の面が、嫌気性槽1の高さ方向になるように固定したものを充填する。網目構造の充填材を嫌気性散水ろ床として機能させるので、当然、前記充填材は水没した状態ではなく、嫌気性槽1内の気相中に位置している。
An embodiment of the present invention will be described with reference to FIG.
In the anaerobic tank 1 that blocks air from entering, there are a large number of “three-dimensional mesh structure members made of water-absorbing synthetic fibers and having a gap size of 5 to 30 mm” 2, pipe frames used for scaffolding etc. at the building construction site, etc. A plurality of three-dimensional mesh structure member surfaces (one thickness of about 20 mm) are overlapped on the mold, and the mold is fixed so that the mesh surface is in the height direction of the anaerobic tank 1. Since the mesh-structured filler is made to function as an anaerobic trickling filter bed, the filler is naturally not in a submerged state but positioned in the gas phase in the anaerobic tank 1.

本発明に言う「吸水性合成繊維製で、空隙サイズ5〜30mmの立体的ネットワーク部材」として非常に好適な部材は、(特許文献:特開2002−136986)に開示されている生物付着材(商品名:バイオフィクス;記号BX:エヌ・イー・ティ(株)製品)が挙げられる。According to the present invention, “a three-dimensional network member made of a water-absorbing synthetic fiber and having a gap size of 5 to 30 mm” is very suitable as a bioadhesive material disclosed in (Patent Document: JP-A-2002-136986). (Trade name: biofix; symbol BX: product of NIT Co., Ltd.).

この接触材は、図2−1およびこの拡大図2−2のように、立体的なネット状の芯材1を有し、ネット状の芯材1に沿わせて、嫌気性微生物(酸発酵菌、メタン菌、硫酸還元菌)汚泥付着糸2配されている。この汚泥付着糸2は、たとえばアクリルハイバルク繊維のような微生物汚泥の付着性の良好な「吸水性」糸条にて形成されている。また芯材1を構成するモノフィラメント3よりも太繊度で形成されて、芯材1により形成される立体的な空間内を所定の体積割合で占めることができるように構成されている。This contact material has a three-dimensional net-like core material 1 as shown in FIG. 2-1 and this enlarged view 2-2, and anaerobic microorganisms (acid fermentation) along the net-like core material 1. Bacteria, methane bacteria, sulfate-reducing bacteria) 2 sludge adhesion yarns are arranged. The sludge-attached yarn 2 is formed of “water-absorbing” yarn with good adhesion of microbial sludge such as acrylic high bulk fiber. The monofilament 3 constituting the core material 1 is formed to be thicker than the monofilament 3 and can occupy a three-dimensional space formed by the core material 1 at a predetermined volume ratio.

芯材1は、たとえば合成樹脂製の腰の強いモノフィラメント3により構成されている。このモノフィラメント3は、図3に示すように複数のΩ字状の部分と逆Ω字状の部分とが交互に凹凸状に配置された連続糸により構成されている。そして芯材1は、複数のモノフィラメント3、3、…が並列に配置されるとともに、隣り合うモノフィラメント3、3のΩ字状の部分どうしすなわち凸部どうしあるいは逆Ω字状の部分どうしすなわち凹部どうしが連結糸4によって相互に結び付けられることで、上述のように立体的なネット状に形成されている。このため、矢印方向に伸縮できる。The core material 1 is composed of, for example, a strong monofilament 3 made of synthetic resin. As shown in FIG. 3, the monofilament 3 is composed of a continuous yarn in which a plurality of Ω-shaped portions and inverted Ω-shaped portions are alternately arranged in an uneven shape. In the core material 1, a plurality of monofilaments 3, 3,... Are arranged in parallel, and Ω-shaped portions of adjacent monofilaments 3, 3, that is, convex portions or inverted Ω-shaped portions, that is, concave portions. Are connected to each other by the connecting thread 4 to form a three-dimensional net as described above. For this reason, it can expand and contract in the direction of the arrow.

本発明に言う「網目孔サイズ」とは、図3の、隣同士の連結糸4との間隙長さを意味する。網目孔サイズを変化させるには、網目構造部材を図2−1の矢印方向に伸縮させればよい。
本発明の骨子の一つは、この網目サイズを5mm以上と大きな孔径としたことであり、この結果、原水SSによる閉塞、嫌気性微生物増殖による空隙部の閉塞が起きなくなるという重要効果がある。(前記のようにスポンジを充填材とする技術では、スポンジの空隙サイズが小さいため、不可避的にSSまたは微生物による閉塞がおきる。)なお網目サイズを30mm以上にすると、嫌気性菌の付着面積がかなり減少するので好ましくない。
The “mesh hole size” referred to in the present invention means the gap length between adjacent connecting yarns 4 in FIG. In order to change the mesh hole size, the mesh structure member may be expanded and contracted in the direction of the arrow in FIG.
One of the gist of the present invention is that the mesh size is set to a large pore size of 5 mm or more. As a result, there is an important effect that the blockage by the raw water SS and the blockage of the void due to anaerobic microorganism growth do not occur. (As described above, in the technique using a sponge as a filler, since the gap size of the sponge is small, clogging with SS or microorganisms is unavoidable.) When the mesh size is set to 30 mm or more, the adhesion area of anaerobic bacteria is increased. Since it decreases considerably, it is not preferable.

次に、本発明の第2のポイントである充填材繊維の「吸水性」とは、繊維と繊維の間に水分が吸収される性質と定義される。
すなわち、繊維自体に吸湿性がなくても表面が濡れる状態で隙間が適当ならば、水は毛細管現象で繊維全体の隙間に浸透する。例えばアクリル繊維は、アクリロニトルが主成分であり、繊維自体の吸湿性は少ないが、アクリル繊維糸を多数本撚糸しハイバルク状にすると、毛細管構造が形成され、大きな吸水性を持つ。この現象が吸水である。吸水性は、繊維の集合状態によって大きく影響される。吸水量は繊維の種類の他、糸の撚り、布の構造、仕上げ加工によって大きく影響され、吸水性は吸水量の他に吸水速度で評価されることも多い。
吸水速度は繊維自体の界面化学的濡れ抵抗と繊維集合体の多孔度(空隙率)に大きく依存している。繊維自身が濡れにくいポリエステル、ポリプロピレン、羊毛製品などは多孔度を変えても吸水量はさほど変化しないが、アクリル繊維など他の繊維製品では多孔度75%または85%で吸水量は最大になる。
Next, the “water absorption” of the filler fiber, which is the second point of the present invention, is defined as the property that moisture is absorbed between the fibers.
That is, even if the fiber itself is not hygroscopic, if the gap is appropriate when the surface is wet, water penetrates into the gap of the entire fiber by capillary action. For example, acrylic fiber is mainly composed of acrylonitrile, and the fiber itself has a low hygroscopic property. However, when a large number of acrylic fiber yarns are twisted into a high bulk shape, a capillary structure is formed and has a large water absorption. This phenomenon is water absorption. Water absorption is greatly influenced by the aggregate state of the fibers. The amount of water absorption is greatly influenced not only by the type of fiber but also by the twist of the yarn, the structure of the fabric, and the finishing process, and the water absorption is often evaluated by the water absorption rate in addition to the water absorption amount.
The water absorption rate greatly depends on the interfacial chemical wetting resistance of the fiber itself and the porosity (porosity) of the fiber assembly. Polyester, polypropylene, wool products, etc., which are difficult to wet the fibers themselves, do not change the water absorption amount even if the porosity is changed, but other fiber products such as acrylic fibers have the maximum water absorption amount of 75% or 85%.

このような構成・構造の本発明の充填材は、立体的な網目状の芯材1に沿わせて「吸水性の嫌気性微生物汚泥付着糸2」を配した構成であり、厚みを有した編織構造体を形成し、この所定の厚みにもとづく立体的な空間内で「吸水性の嫌気性汚泥付着糸2」が所定の体積割合を占める。The filler of the present invention having such a configuration / structure is a configuration in which “water-absorbing anaerobic microbial sludge adhering yarn 2” is arranged along the three-dimensional mesh-like core material 1, and has a thickness. A knitted fabric structure is formed, and “water-absorbing anaerobic sludge adhering yarn 2” occupies a predetermined volume ratio in a three-dimensional space based on the predetermined thickness.

本発明に使用するこのような空隙サイズの大きい、ネートワーク構造の吸水性充填材の充填方法は、図2−1の網目面が嫌気性槽1の高さ方向になるように、多数枚数を隣接させて充填する方法が好適である。なお網目面を嫌気槽1の水平方向になるように充填する方法でもよいが、BXの伸縮方向の制約があるため、やや設置しにくいので、BX面を垂直方向に設置するほうが実用的である。The filling method of the water-absorbing filler having a large gap size used in the present invention and having the structure of the nate workpiece has a large number of sheets so that the mesh surface of FIG. 2-1 is in the height direction of the anaerobic tank 1. A method of filling adjacently is preferable. Although the method of filling the mesh surface so as to be in the horizontal direction of the anaerobic tank 1 is possible, it is more practical to install the BX surface in the vertical direction because there is a restriction on the expansion and contraction direction of the BX. .

有機性廃水(原水)3を、充填材2の上部に送り込み、多孔管などの散水部材6から散水し、嫌気性微生物が多量に保持された充填材の空隙内を液膜状に流下させる。上部から散水される原水(被処理液)は短絡することなく、ネットワーク構造の個々の空隙に均一に行き渡り、ゆっくり流下しつつ、汚泥付着糸に付着したメタン発酵菌と均一に接触して嫌気性生物反応が進む。密閉式なので悪臭が外部に漏れることがなく、臭気対策容易であり、ろ床蠅等の問題ない。
散水部材6はタンク1内の上部に水平方向に配備され、その中心部に貫通する回転軸に固設されて、回転自在に構成されている。なお原水の散水にはスプリンクラーを使用してもよい。嫌気槽1の下部には水面4があり、処理水5が流出する。7はメタン発酵処理によって原水から発生した嫌気性ガス(メタンガス、炭酸ガス、硫化水素などの混合ガス)である。
Organic waste water (raw water) 3 is fed into the upper part of the filler 2 and sprinkled from a water sprinkling member 6 such as a perforated tube to flow down in the space of the filler in which a large amount of anaerobic microorganisms are retained. The raw water sprayed from the top (liquid to be treated) spreads evenly in the individual voids of the network structure without short-circuiting, slowly flowing down, and evenly contacting the methane-fermenting bacteria adhering to the sludge-attached yarn, making it anaerobic Biological reaction proceeds. Since it is a sealed type, bad odors do not leak to the outside, odor control is easy, and there is no problem with filter bed.
The water sprinkling member 6 is disposed horizontally in the upper part of the tank 1, is fixed to a rotating shaft that penetrates through the central portion thereof, and is configured to be rotatable. A sprinkler may be used for watering the raw water. There is a water surface 4 at the lower part of the anaerobic tank 1, and the treated water 5 flows out. 7 is an anaerobic gas (mixed gas of methane gas, carbon dioxide gas, hydrogen sulfide, etc.) generated from raw water by methane fermentation treatment.

本発明の吸水性充填材を嫌気性散水ろ床に用いた場合に、三次元的に配置された「メタン発酵菌汚泥付着糸2」の空隙部分を、原水が一気に流下するのではなく、「メタン発酵菌汚泥付着糸2」を伝わって液膜状で滴下し、順次緩慢に流れ落ちる。その結果、原水とメタン発酵菌汚泥付着糸2へのBODの接触確率と接触時間を大きくでき、メタン発酵反応が円滑に進む。
もしも、吸水性が少ない繊維(例えば塩化ビニリデンなど)を汚泥付着糸2に用いると、メタン菌などの嫌気性微生物の付着が起きにくく、メタン菌保持量が貧弱になる。また散水された原水が充填材と濡れにくく、緩慢に流下せずに、短時間で槽の底に落下してしまうため、メタン菌との接触時間が不足し、メタン生成反応が充分進まないという致命的問題を引き起こす。
When the water-absorbing filler of the present invention is used for an anaerobic trickling filter bed, the raw water does not flow down at a stretch through the void portion of the three-dimensionally arranged “methane fermentation bacteria sludge adhering yarn 2”. It travels along the methane-fermenting fungus sludge adhering yarn 2 ”and drops in the form of a liquid film, and then slowly flows down. As a result, the contact probability and contact time of BOD to the raw water and the methane-fermenting bacteria sludge adhering yarn 2 can be increased, and the methane fermentation reaction proceeds smoothly.
If fibers with low water absorption (for example, vinylidene chloride) are used for the sludge-attached yarn 2, adhesion of anaerobic microorganisms such as methane bacteria hardly occurs, and the amount of methane bacteria retained becomes poor. In addition, the sprinkled raw water is difficult to get wet with the filler and does not flow slowly but falls to the bottom of the tank in a short time, so the contact time with methane bacteria is insufficient, and the methane production reaction does not proceed sufficiently Causes a fatal problem.

この結果、原水中のBOD成分が、高度に嫌気性処理を受け、BODが少ない処理水5となって流出してゆく。ろ床部の流下速度を高め、過剰汚泥を剥離させたい場合などは、処理水5の一部を嫌気性散水ろ床部の散水部に循環させても当然良い。
なお、高度にBODを除去したい場合は、処理水5を、好気的な散水ろ床処理、好気的生物膜処理、活性汚泥処理などの好気性生物処理を行えばよい。また処理水5を好気性処理しない場合、処理水5中のSSが多い場合は、SSを沈殿槽で除去したのち放流すれば良い。
As a result, the BOD component in the raw water is subjected to a highly anaerobic treatment and flows out as treated water 5 with less BOD. For example, when the flow rate of the filter bed is increased to remove excess sludge, a part of the treated water 5 may be circulated to the water spray part of the anaerobic water filter bed.
In addition, what is necessary is just to perform aerobic biological treatments, such as an aerobic trickling filter treatment, an aerobic biofilm treatment, and activated sludge treatment, when removing BOD highly. Further, when the treated water 5 is not subjected to an aerobic treatment, when the SS in the treated water 5 is large, it may be discharged after removing the SS in the sedimentation tank.

図1の構造の小型試験装置を用いて、本発明の効果を検証した。The effect of the present invention was verified using a small test apparatus having the structure shown in FIG.

1.試験装置の仕様

Figure 2007175686
1. Test equipment specifications
Figure 2007175686

比較例Comparative example

なお図1の装置に充填するろ材の性能を比較するために、表1のバイオフィクスに代えて、さいころ状の粒状ポリウレタンフォーム製スポンジ(一辺30mmの立方体、スポンジの孔サイズ0.8mm)を13リットルランダム充填した散水ろ床装置を設置し、並列試験を行った。ポリウレタンフォームは疎水性であり、水に濡れにくい。In order to compare the performance of the filter medium filled in the apparatus shown in FIG. 1, instead of the biofix shown in Table 1, a 13-diameter granular polyurethane foam sponge (cube with a side of 30 mm, sponge pore size of 0.8 mm) was used. A sprinkling filter device filled with liters was installed and a parallel test was conducted. Polyurethane foam is hydrophobic and difficult to wet with water.

2.原水水質
水温:20℃
CODCr:500mg/l
原水組成:ショ糖、酢酸ナトリウム、プロピオン酸、酵母エキス、微量無機塩(酸カリウム、塩化カルシウム、塩化マグネシウム、塩化鉄、硫酸マンガン)
2. Raw water quality <br/> Water temperature: 20C
CODCr: 500 mg / l
Raw water composition: sucrose, sodium acetate, propionic acid, yeast extract, trace inorganic salts (acid potassium, calcium chloride, magnesium chloride, iron chloride, manganese sulfate)

3.実験経過及び結果
運転開始前に、下水汚泥の嫌気性消化施設から嫌気性消化汚泥を10L採取し、モノポンプで上記試験装置の上部からに、1L/hrの流量で10時間供給し、充填材の吸水性繊維部に植種した。その後、槽内の空気を窒素ガスで置換し、表2の原水を槽上部から散水し、実験を開始した。
運転経過日数によって、HRT(水理的滞留時間の略記号であり、充填部見かけ容積を原水流量(L/hr)で割った値。単位はhr)を次のように設定した。
すなわち運転開始日から60日までは、24hr、61日から90日はHRT12hr、91日から120日は6hr、121日から150日は3hrとした。
なお、ろ床体積当たりのCOD負荷は、HRT3時間の場合4(kg/m・d)になり、HRT12時間の場合で、1(kg/m・d)に相当する。
3. Process and results Before start of operation, 10L of anaerobic digested sludge was collected from the anaerobic digestion facility of sewage sludge and supplied from the upper part of the test apparatus with a monopump at a flow rate of 1L / hr for 10 hours. Then, it was planted in the water-absorbing fiber part of the filler. Then, the air in a tank was substituted with nitrogen gas, the raw water of Table 2 was sprinkled from the tank upper part, and experiment was started.
The HRT (abbreviated symbol for hydraulic residence time, the value obtained by dividing the apparent volume of the packed portion by the raw water flow rate (L / hr), the unit is hr) was set as follows depending on the number of operating days.
That is, from the operation start date to 60 days, 24 hours, 61 days to 90 days were HRT 12 hours, 91 days to 120 days were 6 hours, and 121 days to 150 days were 3 hours.
The COD load per filter bed volume is 4 (kg / m 3 · d) for HRT 3 hours and 1 (kg / m 3 · d) for HRT 12 hours.

水質分析は運転開始後、30日後から開始した。
1週間に一回処理水をサンプリングし、CODcrを測定し、COD除去率を求めた。
また、1週間に一回生成ガス量と、メタンガス濃度を分析し、原水CODcrベースのメタン回収率を計算した。メタン回収率=メタン発生量/理論的メタン発生量と定義する。(理論的に、除去CODcr1gから0.35リットルのメタンガスが得られる。)
Water quality analysis was started 30 days after the start of operation.
The treated water was sampled once a week, CODcr was measured, and the COD removal rate was determined.
In addition, the amount of produced gas and the methane gas concentration were analyzed once a week, and the methane recovery rate based on the raw water CODcr was calculated. Methane recovery rate = defined as methane generation / theoretical methane generation. (Theoretically, 0.35 liters of methane gas can be obtained from 1 g of removed CODcr.)

この結果を表1に示す。括弧内は比較例の粒状スポンジを用いた場合の結果である。表1の結果から、水温20℃、COD500mg/lというで、通常のメタン醗酵法に比較して、著しく低水温、低濃度の原水にもかかわらず、本発明の嫌気性散水ろ床によるCOD除去効果は非常に優れていた。

Figure 2007175686
しかも、HRTが3時間というきわめてCOD負荷(4Kg/m・d)の条件においても、COD除去率は約60%が得られた。このことは、本発明生物保持材のメタン菌の保持量が非常に大きいことを意味している。実際に試験終了後に、生物保持材を取り出して、保持されていた汚泥量を測定した結果、38g/L保持材という高濃度であった。The results are shown in Table 1. The results in parentheses are the results when the comparative granular sponge is used. From the results shown in Table 1, COD removal by the anaerobic trickling filter of the present invention is performed at a water temperature of 20 ° C. and COD of 500 mg / l, even though the raw water has a remarkably low water temperature and low concentration compared to the ordinary methane fermentation method. The effect was very good.
Figure 2007175686
Moreover, the COD removal rate of about 60% was obtained even under extremely COD load conditions (4 kg / m 3 · d) of HRT of 3 hours. This means that the amount of methane bacterium retained in the biological support material of the present invention is very large. After the test was actually completed, the biological retaining material was taken out and the amount of retained sludge was measured. As a result, the concentration was as high as 38 g / L retaining material.

比較例の粒状スポンジは、本発明と一原水、HRTにおいて、処理水C0D除去率が本発明に比べ、著しく劣っていた。この原因は、スポンジの孔が0.8mmと小さいためにスポンジ孔が嫌気性生物汚泥によって閉塞し、スポンジ表面に付着している生物だけしか原水浄化に利用されないこと及び疎水性であるためであった。また運転開始後90日以後にスポンジ充填層が部分的に閉塞し、「みずみち」が形成されてしまい、原水の短絡が発生した。このこともCOD除去率が悪化した原因であった。The granular sponge of the comparative example was significantly inferior in the treated water COD removal rate compared to the present invention in the present invention, the raw water, and the HRT. This is because the pores of the sponge are as small as 0.8 mm and the sponge pores are blocked by anaerobic biological sludge, and only the organisms attached to the sponge surface are used for purification of raw water and are hydrophobic. It was. Further, after 90 days from the start of operation, the sponge packed layer was partially clogged to form “Mimizumi”, and a short circuit of raw water occurred. This was also the cause of the deterioration of the COD removal rate.

本発明の装置主要構造Main structure of the apparatus of the present invention 図2−1 本発明の充填材例 図2−2 図2−1の拡大図Fig. 2-1 Example of filler of the present invention Fig. 2-2 Enlarged view of Fig. 2-1 充填材細部拡大図Detail detail of filler

符号の説明Explanation of symbols

1 芯材 2 汚泥付着糸 3 モノフィラメント
4 連結糸 5 開口となっている部分
6嫌気性散水ろ床装置 7 立体網目構造充填材 8原水 9処理水水面
10処理水 11原水散水用分散板 12メタン含有ガス排出部 13水封器
DESCRIPTION OF SYMBOLS 1 Core material 2 Sludge adhesion thread 3 Monofilament 4 Connecting thread 5 Open part 6 Anaerobic water spray filter device 7 Three-dimensional mesh structure filler 8 Raw water 9 Treated water surface 10 Treated water 11 Raw water sprinkling dispersion plate 12 Contains methane Gas outlet 13 Water seal

Claims (1)

1.無酸素雰囲気の槽内に「立体的網目状の芯材に沿わせて吸水性の汚泥付着糸を配し、網目孔サイズ5〜30mmの合成繊維製平面部材」を充填し、該槽上部に原水散水部を設けて、前記部材内部に液膜状で流下させてメタン醗酵処理したのち、該処理槽底部から処理水を流出させることを特徴とする嫌気性散水ろ床処理方法。
2.無酸素雰囲気の槽内に「立体的網目状の芯材に沿わせて吸水性の汚泥付着糸を配し、該網目孔サイズ5〜30mmの合成繊維製平面部材」を充填し、該槽上部に原水散水部を設けて前記部材内部を液膜状で流下させるように構成し、処理槽底部に処理水流出水面を設け、かつ該槽に生成メタン含有ガス排出部を設けたたことを特徴とする嫌気性散水ろ床装置。
1. Filled with a “synthetic fiber planar member having a mesh hole size of 5 to 30 mm by arranging a water-absorbing sludge adhering yarn along a three-dimensional mesh-like core material” in an oxygen-free atmosphere tank, An anaerobic sprinkling filter treatment method characterized by providing a raw water sprinkling section, allowing a methane fermentation treatment to flow down in the form of a liquid film inside the member, and then allowing the treated water to flow out from the bottom of the treatment tank.
2. Filled with a “synthetic fiber planar member having a mesh hole size of 5 to 30 mm by arranging a water-absorbing sludge-attached yarn along a three-dimensional mesh-like core material” in an oxygen-free atmosphere tank, A raw water sprinkling part is provided to flow down in a liquid film form inside the member, a treated water outflow surface is provided at the bottom of the treatment tank, and a generated methane-containing gas discharge part is provided in the tank. Anaerobic sprinkling filter equipment.
JP2005381293A 2005-12-26 2005-12-26 Anaerobic sprinkling filtration method and apparatus for organic waste water Pending JP2007175686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005381293A JP2007175686A (en) 2005-12-26 2005-12-26 Anaerobic sprinkling filtration method and apparatus for organic waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005381293A JP2007175686A (en) 2005-12-26 2005-12-26 Anaerobic sprinkling filtration method and apparatus for organic waste water

Publications (1)

Publication Number Publication Date
JP2007175686A true JP2007175686A (en) 2007-07-12

Family

ID=38301397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005381293A Pending JP2007175686A (en) 2005-12-26 2005-12-26 Anaerobic sprinkling filtration method and apparatus for organic waste water

Country Status (1)

Country Link
JP (1) JP2007175686A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011092862A (en) * 2009-10-30 2011-05-12 N Ii T Kk Apparatus for treating waste water with trickling filter
US10773981B2 (en) 2011-05-26 2020-09-15 Metawater Co., Ltd. Sewage treatment system having a trickling filter with wash unit
CN113843955A (en) * 2021-09-27 2021-12-28 宜兴市明圆塑料电器有限公司 Production equipment and production process for water treatment internal and external devillicate combined filler

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58223496A (en) * 1982-06-18 1983-12-26 Mitsubishi Heavy Ind Ltd Methane fermentation tank
JPH05115277A (en) * 1991-10-28 1993-05-14 Ngk Insulators Ltd Water scattering filter bed type bioreactor using comb type support
JPH11682A (en) * 1997-06-10 1999-01-06 N Ii T Kk Biological carrier for fluidized bed and its manufacture
JP2001137879A (en) * 1999-11-18 2001-05-22 N Ii T Kk Contact material for water treatment
JP2002136986A (en) * 2000-11-07 2002-05-14 N Ii T Kk Contact material for biological treatment
JP2004322084A (en) * 2003-04-08 2004-11-18 Spring Field Kk Biological filtration system
JP2005066432A (en) * 2003-08-22 2005-03-17 N Ii T Kk Sewage treatment apparatus
WO2005095289A1 (en) * 2004-03-30 2005-10-13 Kumamoto Technology And Industry Foundation Method for treating ammonia-containing wastewater
JP2006116381A (en) * 2004-10-19 2006-05-11 Kazuaki Tamatsubo Method and apparatus for methane-fermenting organic waste water
JP2006205142A (en) * 2005-01-24 2006-08-10 N Ii T Kk Tank for conditioning raw water

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58223496A (en) * 1982-06-18 1983-12-26 Mitsubishi Heavy Ind Ltd Methane fermentation tank
JPH05115277A (en) * 1991-10-28 1993-05-14 Ngk Insulators Ltd Water scattering filter bed type bioreactor using comb type support
JPH11682A (en) * 1997-06-10 1999-01-06 N Ii T Kk Biological carrier for fluidized bed and its manufacture
JP2001137879A (en) * 1999-11-18 2001-05-22 N Ii T Kk Contact material for water treatment
JP2002136986A (en) * 2000-11-07 2002-05-14 N Ii T Kk Contact material for biological treatment
JP2004322084A (en) * 2003-04-08 2004-11-18 Spring Field Kk Biological filtration system
JP2005066432A (en) * 2003-08-22 2005-03-17 N Ii T Kk Sewage treatment apparatus
WO2005095289A1 (en) * 2004-03-30 2005-10-13 Kumamoto Technology And Industry Foundation Method for treating ammonia-containing wastewater
JP2006116381A (en) * 2004-10-19 2006-05-11 Kazuaki Tamatsubo Method and apparatus for methane-fermenting organic waste water
JP2006205142A (en) * 2005-01-24 2006-08-10 N Ii T Kk Tank for conditioning raw water

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011092862A (en) * 2009-10-30 2011-05-12 N Ii T Kk Apparatus for treating waste water with trickling filter
US10773981B2 (en) 2011-05-26 2020-09-15 Metawater Co., Ltd. Sewage treatment system having a trickling filter with wash unit
CN113843955A (en) * 2021-09-27 2021-12-28 宜兴市明圆塑料电器有限公司 Production equipment and production process for water treatment internal and external devillicate combined filler
CN113843955B (en) * 2021-09-27 2023-06-20 宜兴市明圆塑料电器有限公司 Production equipment and production process for water treatment internal and external filament separation combined filler

Similar Documents

Publication Publication Date Title
CN106316004B (en) A kind of method of the direct deep purifying of high concentrated organic wastewater
CN102863081B (en) Three-dimensional ecological deodorization dephosphorization denitrification method as well as device and application
US7297274B2 (en) Fixed-film anaerobic digestion of flushed waste
WO2003035558A2 (en) Fixed-film anaerobic digestion of flushed manure
CN102491498B (en) Ecological carbon-fiber composite, preparation method thereof and sewage treatment reactor containing ecological carbon-fiber composite
CN101792228A (en) Double-layer artificial wetland system for strengthening sewage denitrification and dephosphorization and operation method thereof
CN102190374B (en) Trickling biofilter
CN105417838B (en) A kind of High water cut bidirectional flow sponge-type wet-land rainwater purifies reclaiming system of regulating and storing
CN109928488B (en) River aeration membrane assembly, aeration membrane system and method
CN101857336A (en) Water recycling circulating system
CN107662979A (en) A kind of practical spoil disposal and anticlogging horizontal plug-flow artificial wet land system
CN208218613U (en) A kind of integrated multi-functional wet land treating system
CN204779037U (en) Standpipe denitrogenation filler device
JP2007175686A (en) Anaerobic sprinkling filtration method and apparatus for organic waste water
CN104085998A (en) Constructed wetland system capable of reinforcing microbial actions
CN109502749B (en) Movable green-top anti-blocking sewage treatment process
CN102173531B (en) In-situ processing method of alkaline land washing water
CN113371927B (en) Be adapted to small-size distributed rural domestic sewage&#39;s processing system
CN104743671A (en) Vertical tube denitrification filler device
CN106315974A (en) Sewage treatment device integrating ozone and biological aerated filter
CN108862604B (en) Netted basalt fiber combined type baffling constructed wetland system
CN207451867U (en) A kind of lamination building block system sewage-treatment plant
CN207845442U (en) The device of multistage up-flow surface water body nitrogen removal synchronous with organic matter
CN216141414U (en) High-efficient ecological wetland clean system
CN110697977A (en) Treatment process of landfill closure leachate

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061212

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061212

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080306

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080306

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080516

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090417

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20091020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111220