JP2007171105A - Current detection circuit - Google Patents

Current detection circuit Download PDF

Info

Publication number
JP2007171105A
JP2007171105A JP2005372237A JP2005372237A JP2007171105A JP 2007171105 A JP2007171105 A JP 2007171105A JP 2005372237 A JP2005372237 A JP 2005372237A JP 2005372237 A JP2005372237 A JP 2005372237A JP 2007171105 A JP2007171105 A JP 2007171105A
Authority
JP
Japan
Prior art keywords
output
circuit
current
phase
value priority
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005372237A
Other languages
Japanese (ja)
Inventor
Yasuyuki Wada
泰行 和田
Masashi Sadohara
正志 佐土原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2005372237A priority Critical patent/JP2007171105A/en
Publication of JP2007171105A publication Critical patent/JP2007171105A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Current Or Voltage (AREA)
  • Inverter Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a simple and inexpensive current detection circuit capable of detecting imbalance of an output current from an inverter. <P>SOLUTION: Each output current of U-phase, V-phase and W-phase from the inverter 10 is detected by current transformers 21, 22, 23 respectively, and rectified and smoothed by rectifying circuits 24, 25, 26 respectively. Each output from the rectifying circuits 24, 25, 26 is input into a maximum value preferential circuit 31 and a minimum value preferential circuit 32, and a signal acquired by dividing an output from the maximum value preferential circuit 31 is compared with an output signal from the minimum value preferential circuit by a comparator 35. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電流検出回路に関し、特に簡単な回路構成でインバータの出力電流の異常を検出する電流検出回路に関する。   The present invention relates to a current detection circuit, and more particularly to a current detection circuit that detects an abnormality in an output current of an inverter with a simple circuit configuration.

従来、変流器を介して検出される電路の電流を全波整流器により全波整流し、これを抵抗で分圧した後A/D変換してマイクロコンピュータで検出する一方、全波整流器の例えば正極側ダイオードをフォトカプラのダイオードで置き換え、その受光素子側に抵抗を接続して各相を流れる電流極性を検出し、全波整流信号×各相電流極性信号から各相合成電流値を求め、この各相合成電流値を平均化処理した後その中の最大,最小値を求め、その比が予め設定されたレベル以上のとき欠相と判断する欠相検出回路が開示されている(例えば特許文献1参照)。
図5は従来の欠相検出装置の構成図である。
図に示すように、電路の電流を検出する変流器CTと、この変流器CTの出力を全波整流する全波整流回路51と、マイクロコンピュータ等の演算処理手段52とから構成されている。
また、全波整流回路52と並列に抵抗R1、R2の直列回路、およびスイッチング素子SWと平滑コンデンサC1、C2の直列回路が接続され、平滑コンデンサC1、C2の端子電圧は演算処理手段52への電源として用いられる。
また、抵抗R1、R2で分圧された電圧は電流検出用として、スイッチング素子SWがオフしている期間にA/D変換されて演算処理手段52に与えられる。全波整流回路51の正極性側にはフォトカプラPHr,PHs,PHtのフォトダイオードが接続され、受光素子としてのフォトトランジスタ側には抵抗Rr,Rs,Rtが接続され、これによって各相の電流極性を検出している。
図6は演算処理手段の欠相判別部を示すブロック図で、符号61はA/D変換手段、62は全波整流データ、63r〜63tは各相極性信号、64r〜64tは乗算手段、65r〜65tは各相合成電流、66r〜66tは平均化処理手段、67は最大値・最小値演算手段、68は欠相判別手段をそれぞれ示す。全波整流回路51の出力電圧を抵抗分圧しA/D変換した値に、図4の抵抗Rr〜Rtを流れる電流の極性信号を掛け合わせて各相合成電流(各相合成電流:全波整流データ×極性信号)を求め、これを平均化処理手段66r〜66tにて平均化処理してその平均値を求め、さらに演算手段67によりその中の最大、最小値を求め、その比が予め設定された値以上のとき欠相と判別している。
特開2003−302435号公報
Conventionally, the current of the electric circuit detected via the current transformer is full-wave rectified by a full-wave rectifier, and this is divided by a resistor and then A / D converted and detected by a microcomputer. Replace the positive side diode with a photocoupler diode, connect a resistor to the light receiving element side to detect the polarity of the current flowing through each phase, find the total current value of each phase from the full wave rectified signal × each phase current polarity signal, There is disclosed an open phase detection circuit that averages each combined current value of each phase, obtains the maximum and minimum values therein, and determines the open phase when the ratio is equal to or higher than a preset level (for example, a patent) Reference 1).
FIG. 5 is a block diagram of a conventional phase loss detection device.
As shown in the figure, it is composed of a current transformer CT that detects the current in the electric circuit, a full-wave rectifier circuit 51 that full-wave rectifies the output of the current transformer CT, and an arithmetic processing means 52 such as a microcomputer. Yes.
A series circuit of resistors R1 and R2 and a series circuit of switching elements SW and smoothing capacitors C1 and C2 are connected in parallel with the full-wave rectifier circuit 52. The terminal voltages of the smoothing capacitors C1 and C2 are supplied to the arithmetic processing means 52. Used as a power source.
Further, the voltage divided by the resistors R1 and R2 is A / D converted and supplied to the arithmetic processing means 52 for current detection during a period in which the switching element SW is off. Photocouplers PHr, PHs, and PHt are connected to the positive polarity side of the full-wave rectifier circuit 51, and resistors Rr, Rs, and Rt are connected to the phototransistor side as a light receiving element. Polarity is detected.
FIG. 6 is a block diagram showing an open phase discriminating section of the arithmetic processing means. Reference numeral 61 is A / D conversion means, 62 is full-wave rectified data, 63r to 63t are phase phase signals, 64r to 64t are multiplication means, and 65r. Reference numerals ˜65t denote combined currents of the respective phases, 66r to 66t denote averaging processing means, 67 denotes a maximum value / minimum value calculation means, and 68 denotes an open phase determination means. Each phase combined current (each phase combined current: full wave rectification) is obtained by multiplying the output voltage of the full wave rectifier circuit 51 by resistance dividing and A / D conversion and the polarity signal of the current flowing through the resistors Rr to Rt in FIG. Data × polarity signal) is averaged by the averaging processing means 66r to 66t to obtain the average value, and the computing means 67 obtains the maximum and minimum values, and the ratio is set in advance. If the value is greater than the specified value, it is determined that the phase is missing.
JP 2003-302435 A

このように、従来の欠相検出回路は、各相の電流を検出する変流器CTの出力を全波整流し、負担抵抗に共通の負担抵抗を用いて全波整流データを求め、この全波整流データに極性信号を掛け合わせて各相合成電流を求め、それぞれの各相合成電流の平均値を求め、その中の最大,最小値の比を演算することによって欠相を判別ししているので、極性信号を生成するためのフォトカプラやマイクロコンピュータ等の演算処理手段を必要とし、回路構成が複雑であるという問題があった。
本発明はこのような問題点に鑑みてなされたものであり、簡素な回路構成で低コストの電流検出回路を提供することを目的とする。
As described above, the conventional open-phase detection circuit performs full-wave rectification on the output of the current transformer CT that detects the current of each phase, obtains full-wave rectification data using a common burden resistance as the burden resistance, The phase commutation data is multiplied by the polarity signal to determine the combined current of each phase, the average value of the combined current of each phase is calculated, and the missing phase is determined by calculating the ratio between the maximum and minimum values. Therefore, there is a problem that an arithmetic processing means such as a photocoupler or a microcomputer for generating a polarity signal is required, and the circuit configuration is complicated.
The present invention has been made in view of such problems, and an object thereof is to provide a low-cost current detection circuit with a simple circuit configuration.

上記問題を解決するため、本発明は、次のように構成したものである。
請求項1に記載の発明は、インバータの各相の出力電流をそれぞれ検出する複数の変流器と、前記変流器の出力をそれぞれ整流する複数の整流回路と、前記整流回路の中の最も大きい出力信号を検出する最大値優先回路と、前記整流回路の中の最も小さい出力信号を検出する最小値優先回路と、前記最大値優先回路の出力と前記最小値優先回路の出力とを比較する比較器とを備え、前記最大値優先回路の出力と前記最小値優先回路の出力との差分から前記各相の出力電流の不平衡を検出することを特徴としている。
また、請求項2に記載の発明は、前記整流回路は、前記変流器の出力にそれぞれ接続される負担抵抗と、前記変流器の出力をそれぞれ整流するダイオードと、整流された信号を平滑するコンデンサと、前記コンデンサの電荷を所定の時定数で放電する放電抵抗と、を備えたことを特徴としている。
また、請求項3に記載の発明は、前記最大値優先回路の出力が所定のレベルを超えたことを検出する比較器と、前記レベルを設定するレベル設定回路とを備え、前記出力電流の過電流を検出することを特徴としている。
In order to solve the above problems, the present invention is configured as follows.
The invention according to claim 1 includes a plurality of current transformers that respectively detect output currents of respective phases of the inverter, a plurality of rectifier circuits that rectify the outputs of the current transformers, and the most of the rectifier circuits. The maximum value priority circuit for detecting a large output signal, the minimum value priority circuit for detecting the smallest output signal in the rectifier circuit, and the output of the maximum value priority circuit and the output of the minimum value priority circuit are compared. A comparator, and detecting an imbalance in the output current of each phase from the difference between the output of the maximum value priority circuit and the output of the minimum value priority circuit.
According to a second aspect of the present invention, the rectifier circuit includes a load resistor connected to the output of the current transformer, a diode for rectifying the output of the current transformer, and a smoothed signal. And a discharge resistor for discharging the capacitor with a predetermined time constant.
According to a third aspect of the present invention, there is provided a comparator that detects that the output of the maximum value priority circuit exceeds a predetermined level, and a level setting circuit that sets the level. It is characterized by detecting current.

請求項1に記載の発明によると、各相のそれぞれの出力電流を検出する変流器からの信号をそれぞれ整流し、各相間で最も大きい出力信号と各相間で最も小さい出力信号とを比較し、その差分の大きさから各相の電流の不平衡を検出しているので、マイクロコンピュータ等の演算処理手段を必要せず簡素な回路構成で出力電流の不平衡が検出できる。
請求項2に記載の発明によると、整流回路が、変流器の出力をそれぞれ整流するダイオードと、整流された信号を平滑するコンデンサと、コンデンサの電荷を所定の時定数で放電する放電抵抗とを備えれば、放電の時定数をインバータの出力周波数範囲に対応して設定できるので、精度の良いインバータの欠相検出回路が実現できる。
請求項3に記載の発明によると、前記電流検出回路が、最大値優先回路の出力が所定のレベルを超えたことを検出する比較器と、前記レベルを設定するレベル設定回路とを備えれば、簡単な回路構成で欠相と過電流が検出できる。
According to the first aspect of the invention, the signals from the current transformers that detect the respective output currents of the respective phases are rectified, and the largest output signal between the phases is compared with the smallest output signal between the phases. Since the current imbalance of each phase is detected from the magnitude of the difference, it is possible to detect the output current imbalance with a simple circuit configuration without requiring an arithmetic processing means such as a microcomputer.
According to the invention described in claim 2, the rectifier circuit includes a diode for rectifying the output of each current transformer, a capacitor for smoothing the rectified signal, and a discharge resistor for discharging the charge of the capacitor with a predetermined time constant. Since the discharge time constant can be set in accordance with the output frequency range of the inverter, an accurate phase loss detection circuit for the inverter can be realized.
According to the invention of claim 3, if the current detection circuit includes a comparator that detects that the output of the maximum value priority circuit exceeds a predetermined level, and a level setting circuit that sets the level. , Phase loss and overcurrent can be detected with a simple circuit configuration.

以下、本発明の実施の形態について図を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の第1実施例を示す電流検出回路の回路図である。
図において、21、22、23はインバータ10のU相、V相、W相の出力電流をそれぞれ検出するための変流器、24、25、26は整流回路、31は最大値優先回路、32は最小値優先回路、33、34は抵抗、35は比較器である。
また、40はインバータ10によって駆動される三相交流電動機である。
最大値優先回路31は3個のダイオードで構成され、アノード側を整流回路24、25、26の出力にそれぞれ接続し、カソード側を互いに接続し、電流値が最大となる相の電流に対応した信号を出力する。
また、同様に最小値優先回路32は3個のダイオードで構成され、カソード側を整流回路24、25、26の出力にそれぞれ接続し、アノード側を互いに接続し、電流値が最小となる相の電流に対応した信号を出力する。
FIG. 1 is a circuit diagram of a current detection circuit showing a first embodiment of the present invention.
In the figure, 21, 22 and 23 are current transformers for detecting the output currents of the U phase, V phase and W phase of the inverter 10, 24, 25 and 26 are rectifier circuits, 31 is a maximum value priority circuit, 32, respectively. Is a minimum value priority circuit, 33 and 34 are resistors, and 35 is a comparator.
Reference numeral 40 denotes a three-phase AC motor driven by the inverter 10.
The maximum value priority circuit 31 is composed of three diodes, the anode side is connected to the outputs of the rectifier circuits 24, 25, and 26, and the cathode sides are connected to each other, corresponding to the current of the phase having the maximum current value. Output a signal.
Similarly, the minimum value priority circuit 32 is composed of three diodes, the cathode side is connected to the outputs of the rectifier circuits 24, 25, and 26, the anode sides are connected to each other, and the current value is minimized. Outputs a signal corresponding to the current.

次に、整流回路の詳細な構成について説明する。
図2は、整流回路24の回路図である。
整流回路25および整流回路26も、整流回路24と同じ回路構成であるので、整流回路24についてのみ説明する。
図2において、241は変流器21の出力に接続された負担抵抗、242は半波整流するためのダイオード、243は半波整流された信号を平滑するためのコンデンサ、244はコンデンサの電荷を所定の時定数で放電するための放電抵抗、245はオペアンプで電圧フォロワ回路を形成している。なお、本実施例では半波整流を行ったが、全波整流しても良い。
Next, a detailed configuration of the rectifier circuit will be described.
FIG. 2 is a circuit diagram of the rectifier circuit 24.
Since the rectifier circuit 25 and the rectifier circuit 26 have the same circuit configuration as the rectifier circuit 24, only the rectifier circuit 24 will be described.
In FIG. 2, 241 is a burden resistance connected to the output of the current transformer 21, 242 is a diode for half-wave rectification, 243 is a capacitor for smoothing the half-wave rectified signal, and 244 is the charge of the capacitor. A discharge resistor 245 for discharging at a predetermined time constant is an operational amplifier that forms a voltage follower circuit. In this embodiment, half-wave rectification is performed, but full-wave rectification may be performed.

次に本実施例の動作について説明する。
図3は本発明の電流検出回路の各部の動作を示す信号波形の模式図である。
インバータの出力電流には一般に高調波成分が含まれるが、説明を分かり易くする為に基本波成分のみの正弦波電流波形とした。図3(a)は正常時の各部の信号波形を示し、図3(b)は欠相時の各部の信号波形を示している。
Next, the operation of this embodiment will be described.
FIG. 3 is a schematic diagram of signal waveforms showing the operation of each part of the current detection circuit of the present invention.
The output current of the inverter generally includes a harmonic component, but a sine wave current waveform having only a fundamental component is used for easy understanding. FIG. 3A shows signal waveforms at various parts during normal operation, and FIG. 3B shows signal waveforms at various parts during phase loss.

先ず、正常時の動作について説明する。
図3(a)において、311、312、313はそれぞれU相電流、V相電流、W相電流の電流検出波形で、図2に示した整流回路の負担抵抗241(U相)の両端の電圧波形である。
また、314は最大値優先回路31の出力信号、315は最大値優先回路31の出力信号314を抵抗33、34で分圧した分圧信号で、この分圧信号は比較器35のマイナス端子に入力されている。また、316は最小値優先回路32の出力信号で、比較器35のプラス端子に入力されている。
図から分かるように、正常時においては、最小値優先回路32の出力316は最大値優先回路31の出力314に比較的近い値となるため、分圧信号315より大きい値を示し、比較器出力(出力端子A)はHレベルになる。
First, the normal operation will be described.
3A, reference numerals 311, 312, and 313 denote current detection waveforms of a U-phase current, a V-phase current, and a W-phase current, respectively, and the voltages at both ends of the burden resistor 241 (U-phase) of the rectifier circuit shown in FIG. It is a waveform.
Reference numeral 314 is an output signal of the maximum value priority circuit 31, 315 is a divided signal obtained by dividing the output signal 314 of the maximum value priority circuit 31 by the resistors 33 and 34, and this divided signal is applied to the negative terminal of the comparator 35. Have been entered. Reference numeral 316 denotes an output signal of the minimum value priority circuit 32, which is input to the plus terminal of the comparator 35.
As can be seen from the figure, since the output 316 of the minimum value priority circuit 32 is relatively close to the output 314 of the maximum value priority circuit 31 under normal conditions, the value is larger than the divided voltage signal 315, and the comparator output (Output terminal A) becomes H level.

次に、欠相により出力電流に不平衡が発生した場合の動作について説明する。
図3(b)において、311、312、313はそれぞれU相電流、V相電流、W相電流の電流検出波形である。図に示すようにW相が欠相し、W相に全く電流が流れない場合の動作について説明する。
最大値優先回路31の出力信号314は、出力電流の周期に対してコンデンサ243と抵抗244による放電の時定数が充分長い場合は正常時に近い信号波形となるため、分圧信号315も正常時に近い信号波形となる。一方、最小値優先回路32の出力信号は、W相の整流回路の出力信号はゼロになるため、この値が優先されゼロになる。従って、欠相時においては、最大値優先回路の分圧信号315より最小値優先回路の出力信号316の方が小さく、比較器出力はLレベルになる。
Next, the operation in the case where an imbalance occurs in the output current due to phase loss will be described.
In FIG. 3B, 311, 312, and 313 are current detection waveforms of the U-phase current, V-phase current, and W-phase current, respectively. As shown in the figure, the operation when the W phase is lost and no current flows through the W phase will be described.
The output signal 314 of the maximum value priority circuit 31 has a signal waveform close to normal when the time constant of discharge by the capacitor 243 and the resistor 244 is sufficiently long with respect to the period of the output current, so the divided signal 315 is also close to normal. It becomes a signal waveform. On the other hand, the output signal of the minimum value priority circuit 32 is zero because the output signal of the W-phase rectifier circuit is zero. Therefore, at the time of phase loss, the output signal 316 of the minimum value priority circuit is smaller than the divided signal 315 of the maximum value priority circuit, and the comparator output becomes L level.

このように、本実施例によるとマイクロコンピュータ等の演算処理手段を必要せず、簡素な回路構成で不平衡電流の検出ができる。     Thus, according to the present embodiment, it is possible to detect an unbalanced current with a simple circuit configuration without requiring an arithmetic processing means such as a microcomputer.

図4は、本発明の第2実施例を示す電流検出回路の回路図である。
図において、36はレベル設定回路、37は比較器である。
インバータの出力に過電流が流れ、最大値検出回路31の出力が、レベル設定回路36で設定した値を超えると、比較器37の出力(出力端子B)がLレベルになる。
このように本実施例では第1実施例で示した電流検出回路に比較器およびレベル設定回路を付加しているので、簡単な回路構成で不平衡電流と過電流が検出できる。
FIG. 4 is a circuit diagram of a current detection circuit showing a second embodiment of the present invention.
In the figure, 36 is a level setting circuit, and 37 is a comparator.
When an overcurrent flows in the output of the inverter and the output of the maximum value detection circuit 31 exceeds the value set by the level setting circuit 36, the output (output terminal B) of the comparator 37 becomes L level.
Thus, in this embodiment, since the comparator and the level setting circuit are added to the current detection circuit shown in the first embodiment, the unbalanced current and the overcurrent can be detected with a simple circuit configuration.

一般の多相交流電源における各相間の不平衡電流検出にも利用できる。     It can also be used to detect unbalanced current between phases in a general multiphase AC power source.

本発明の第1実施例を示す電流検出回路の回路図1 is a circuit diagram of a current detection circuit according to a first embodiment of the present invention. 本発明の整流回路の回路図Circuit diagram of the rectifier circuit of the present invention 本発明の電流検出回路の各部の動作を示す信号波形の模式図Schematic diagram of signal waveforms showing the operation of each part of the current detection circuit of the present invention 本発明の第2実施例を示す電流検出回路の回路図Circuit diagram of a current detection circuit showing a second embodiment of the present invention 従来の欠相検出装置の構成図Configuration diagram of conventional phase loss detector 従来の欠相検出装置の演算処理手段の欠相判別部を示すブロック図The block diagram which shows the phase loss discrimination | determination part of the arithmetic processing means of the conventional phase loss detection apparatus

符号の説明Explanation of symbols

10 インバータ
20 電流検出回路
21〜23 変流器
24〜26 整流回路
241 負担抵抗
242 ダイオード
243 コンデンサ
244 放電抵抗
245 オペアンプ
31 最大値優先回路
32 最小値優先回路
33、34 抵抗
35、37 比較器
36 レベル設定回路
40 三相交流電動機
DESCRIPTION OF SYMBOLS 10 Inverter 20 Current detection circuit 21-23 Current transformer 24-26 Rectification circuit 241 Burden resistance 242 Diode 243 Capacitor 244 Discharge resistance 245 Operational amplifier 31 Maximum value priority circuit 32 Minimum value priority circuit 33, 34 Resistance 35, 37 Comparator 36 Level Setting circuit 40 Three-phase AC motor

Claims (3)

インバータの各相の出力電流をそれぞれ検出する複数の変流器と、前記変流器の出力をそれぞれ整流する複数の整流回路と、前記整流回路の中の最も大きい出力信号を検出する最大値優先回路と、前記整流回路の中の最も小さい出力信号を検出する最小値優先回路と、前記最大値優先回路の出力と前記最小値優先回路の出力とを比較する比較器とを備え、前記最大値優先回路の出力と前記最小値優先回路の出力との差分から前記各相の出力電流の不平衡を検出することを特徴とする電流検出回路。   A plurality of current transformers for detecting the output current of each phase of the inverter, a plurality of rectifier circuits for rectifying the output of each of the current transformers, and a maximum value priority for detecting the largest output signal in the rectifier circuit Circuit, a minimum value priority circuit for detecting the smallest output signal in the rectifier circuit, and a comparator for comparing the output of the maximum value priority circuit and the output of the minimum value priority circuit, A current detection circuit for detecting an imbalance in output current of each phase from a difference between an output of a priority circuit and an output of the minimum value priority circuit. 前記整流回路は、前記変流器の出力にそれぞれ接続される負担抵抗と、前記変流器の出力をそれぞれ整流するダイオードと、整流された信号を平滑するコンデンサと、前記コンデンサの電荷を所定の時定数で放電する放電抵抗と、を備えたことを特徴とする請求項1記載の電流検出回路。   The rectifier circuit includes a burden resistor connected to the output of the current transformer, a diode for rectifying the output of the current transformer, a capacitor for smoothing the rectified signal, and a charge of the capacitor for a predetermined amount. The current detection circuit according to claim 1, further comprising: a discharge resistor that discharges with a time constant. 前記最大値優先回路の出力が所定のレベルを超えたことを検出する比較器と、前記レベルを設定するレベル設定回路とを備え、
前記出力電流の過電流を検出することを特徴とする請求項1記載の電流検出回路。
A comparator that detects that the output of the maximum value priority circuit exceeds a predetermined level; and a level setting circuit that sets the level;
The current detection circuit according to claim 1, wherein an overcurrent of the output current is detected.
JP2005372237A 2005-12-26 2005-12-26 Current detection circuit Pending JP2007171105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005372237A JP2007171105A (en) 2005-12-26 2005-12-26 Current detection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005372237A JP2007171105A (en) 2005-12-26 2005-12-26 Current detection circuit

Publications (1)

Publication Number Publication Date
JP2007171105A true JP2007171105A (en) 2007-07-05

Family

ID=38297850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005372237A Pending JP2007171105A (en) 2005-12-26 2005-12-26 Current detection circuit

Country Status (1)

Country Link
JP (1) JP2007171105A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010124664A (en) * 2008-11-21 2010-06-03 Toshiba Corp Ac output unstable state detector and power converter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010124664A (en) * 2008-11-21 2010-06-03 Toshiba Corp Ac output unstable state detector and power converter

Similar Documents

Publication Publication Date Title
KR960003405B1 (en) Ground detector and detecting method of inverter apparatus
JP5024827B2 (en) Inverter device
JP3409327B2 (en) Inverter device
EP3352364A1 (en) Inverter substrate, method for determining connection sequence, and method for determining open phase
CN108474818B (en) Insulation resistance measuring device
KR100806686B1 (en) Switching Power Supply Comprising Output Power Control Circuit
JP5870265B2 (en) DC power supply
JP2008253008A (en) Power converter and method for deciding incorrect connection of power supply
JP5874019B2 (en) DC power supply
JP2001197757A (en) Power converter
JP2007171105A (en) Current detection circuit
KR101623284B1 (en) Elevator control device
JP5978927B2 (en) 5 level power converter
KR102036578B1 (en) Apparatus for detecting output phase open in inverter
JP5978926B2 (en) 5 level power converter
CN111262462A (en) Filter capacitor failure detection method of inverter
JP2003302435A (en) Open phase detection device
JP2008092800A (en) Power-conversion device of current control type
JPH0843453A (en) Voltage drop detection circuit
JP5147897B2 (en) Rectifier circuit inspection device, rectifier circuit inspection method
JP4466346B2 (en) Ground fault detection circuit for semiconductor power converter
US7973510B2 (en) Apparatus for controlling inverter
JPH08262085A (en) Three-phase unbalance detector and power converter
JP2006033904A (en) Three-phase phase interruption detector and air conditioner using it
JP4667771B2 (en) Inverter device