JP2007171000A - X-ray crystal structure analyzer - Google Patents

X-ray crystal structure analyzer Download PDF

Info

Publication number
JP2007171000A
JP2007171000A JP2005369317A JP2005369317A JP2007171000A JP 2007171000 A JP2007171000 A JP 2007171000A JP 2005369317 A JP2005369317 A JP 2005369317A JP 2005369317 A JP2005369317 A JP 2005369317A JP 2007171000 A JP2007171000 A JP 2007171000A
Authority
JP
Japan
Prior art keywords
ray
sample
crystal structure
goniometer
rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005369317A
Other languages
Japanese (ja)
Inventor
Masataka Maeyama
正孝 前山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rigaku Denki Co Ltd
Rigaku Corp
Original Assignee
Rigaku Denki Co Ltd
Rigaku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Denki Co Ltd, Rigaku Corp filed Critical Rigaku Denki Co Ltd
Priority to JP2005369317A priority Critical patent/JP2007171000A/en
Publication of JP2007171000A publication Critical patent/JP2007171000A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an X-ray crystal structure analyzer capable of highly accurate measurement even relative to various samples having different crystal sizes. <P>SOLUTION: In this X-ray crystal structure analyzer equipped with a condensing mirror 11 for focusing a generated X-ray into a point shape on a prescribed position, a sample S held on a sample holder provided on a goniometer 20 is irradiated with the X-ray generated from an X-ray generation device 10, to thereby analyze its crystal structure, and a distance variable means is provided on either or both of moving rails (guides) 15, 24 as a means for changing the relative distance between the X-ray generation device 10 and the goniometer 20, and thereby highly accurate measurement becomes possible even relative to various samples including a low-molecule large crystal. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、X線を照射して得られる回折点から結晶の立体構造を解析するために用いられるX線回折装置に関し、特に、発生するX線を所定の位置において点状に絞り込む集光ミラーを備えたX線回折装置に関する。   The present invention relates to an X-ray diffractometer used for analyzing a three-dimensional structure of a crystal from diffraction points obtained by irradiating X-rays, and more particularly, a condensing mirror that narrows generated X-rays into a point at a predetermined position. The present invention relates to an X-ray diffraction apparatus including

単結晶試料の結晶構造を解析するためのX線結晶構造解析装置とは、複数の回転軸に対して回転する試料に対し、微小断面に絞った平行X線を照射し、この試料からの回折X線を検出器により検出することにより、その結晶構造を解析するものである。すなわち、従来、解析すべき単結晶試料を保持しながら、χ軸、ω軸、Φ軸を含む4軸上に自在に回転させるための試料保持用ゴニオメータは、例えば、以下の特許文献1によっても既に知られており、これによれば、試料をω軸の周りに360°回転させてもゴニオメータとコリメータが衝突することのない試料保持用ゴニオメータが提供されている。   An X-ray crystal structure analyzer for analyzing the crystal structure of a single crystal sample irradiates a sample rotating with respect to a plurality of rotation axes with parallel X-rays focused on a minute cross section, and diffracts from the sample. The crystal structure is analyzed by detecting X-rays with a detector. That is, a conventional sample holding goniometer for freely rotating on four axes including the χ axis, the ω axis, and the Φ axis while holding a single crystal sample to be analyzed is disclosed in, for example, Patent Document 1 below. It is already known, and according to this, a sample holding goniometer is provided in which the goniometer and collimator do not collide even if the sample is rotated 360 ° around the ω axis.

また、以下の特許文献2によれば、試料からの回折X線によってその表面にX線回折像を生じる比較的大きな面積のシンチレータからの発光を、光ファイバーユニットによって伝送し、CCDイメージセンサによって検出するX線検出ユニット(二次元検出器)を備えたX線結晶構造解析装置も既に知られている。   Further, according to Patent Document 2 below, light emitted from a scintillator having a relatively large area that generates an X-ray diffraction image on the surface by diffracted X-rays from a sample is transmitted by an optical fiber unit and detected by a CCD image sensor. An X-ray crystal structure analyzer equipped with an X-ray detection unit (two-dimensional detector) is already known.

更に、以下の特許文献3によれば、ゴニオメータの機構をベースとして、更に、回転可能な椀部を設け、比較的簡単な構成により、X線回折装置として以外にも、他の種々の測定にも利用可能なX線回折装置が既に知られている。   Furthermore, according to the following Patent Document 3, a rotary collar is provided on the basis of a goniometer mechanism, and it can be used for various other measurements in addition to an X-ray diffractometer with a relatively simple configuration. X-ray diffractometers that can also be used are already known.

特開平11−304999号公報JP-A-11-304999 特開2002−116158号公報JP 2002-116158 A 特許第2550382号公報Japanese Patent No. 2550382

ところで、上述した試料保持用ゴニオメータを備えたX線結晶構造解析装置では、解析すべき試料を、例えば、ガラス製のキャピラリに試料ホルダに取り付け、上記ゴニオメータにより、試料を上記3軸上でそれぞれ独立に回転させると共に、二次元検出器であるX線検出ユニットを試料に対して所定の範囲内に設定する。また、その場合、精度の高い測定を行なうためには、試料に対してより大きなビームサイズのX線を照射(所謂、完浴)する必要がある。   By the way, in the X-ray crystal structure analysis apparatus provided with the above-described sample holding goniometer, a sample to be analyzed is attached to a sample holder, for example, on a glass capillary, and the samples are independently separated on the three axes by the goniometer. And the X-ray detection unit, which is a two-dimensional detector, is set within a predetermined range with respect to the sample. In that case, in order to perform highly accurate measurement, it is necessary to irradiate the sample with X-rays having a larger beam size (so-called complete bathing).

即ち、上記従来技術を含むX線結晶構造解析装置の構造では、通常、測定が可能な位置(ポイント)は一点のみであり、集光ミラーの集光点でビームサイズが最小になるが、しかしながら、特に、低分子の結晶構造解析を行なう場合など、大きな結晶では、試料に対してより大きなビームサイズのX線を照射(所謂、完浴)することが出来ず、そのため、精度の高い測定が困難であった。   That is, in the structure of the X-ray crystal structure analysis apparatus including the above-described conventional technique, normally, there is only one position (point) that can be measured, and the beam size is minimized at the focusing point of the focusing mirror. In particular, in the case of a large crystal such as when analyzing a crystal structure of a low molecule, it is not possible to irradiate a sample with X-rays having a larger beam size (so-called complete bathing). It was difficult.

なお、かかる場合、ゴニオメータ又はX線発生装置の一方、又は、これらの双方にステージを設けて、これらを移動することも考えられるが、しかしながら、その移動の後、ゴニオステージの稼動軸又は/及びX線発生装置の稼動軸を、X線と一致させる必要があることから、再調整を行なう必要が生じる。ところが、上記のゴニオメータ又はX線発生装置はその重量が重く、そのため、再調整のための時間がかかるという問題点がある。又は、上記の特許文献3により知られる構造では、回転可能な椀部に重量の重いX線検出器を搭載する必要があるため、ゴニオステージを安定して固定することが出来ないという問題がった。   In such a case, it may be possible to move the goniometer and / or the X-ray generation apparatus by providing a stage in both or both of them, however, after the movement, the operating axis of the goniometer or / and Since the operating axis of the X-ray generator needs to coincide with the X-ray, it becomes necessary to readjust. However, the goniometer or the X-ray generator described above has a problem that it is heavy and therefore takes time for readjustment. Or, in the structure known from the above-mentioned Patent Document 3, since it is necessary to mount a heavy X-ray detector on the rotatable collar, there is a problem that the gonio stage cannot be stably fixed. It was.

そこで、本発明では、上述した従来技術における問題点に鑑みて成されたものであり、すなわち、例えば、低分子試料など大きな結晶に対しても、簡単に、より大きなビームサイズのX線を照射(所謂、完浴)して測定することが出来、もって、各種の試料に対しても精度の高い測定が可能となるX線結晶構造解析装置を提供することを目的とする。   Therefore, the present invention has been made in view of the above-mentioned problems in the prior art. That is, for example, even a large crystal such as a low molecular sample can be easily irradiated with X-rays having a larger beam size. An object of the present invention is to provide an X-ray crystal structure analysis apparatus that can perform measurement (so-called complete bathing), and can perform highly accurate measurement on various samples.

そこで、本発明では、上記の目的を達成するため、発生するX線を所定の位置において点状に絞り込む集光ミラーを備え、発生したX線を試料に照射するX線源と、前記試料を保持して該試料のX線入射面を含む面内に設けられた軸を中心に回転自在に支持された試料回転台と、前記試料からの回折X線を検出するX線検出器とを有するX線結晶構造解析装置において、更に、前記X線源と前記試料回転台との間の相対的な距離を可変するための手段を備えたX線結晶構造解析装置を提供するものである。   Therefore, in the present invention, in order to achieve the above-described object, the X-ray source that irradiates the sample with the generated X-ray is provided with a condensing mirror that narrows the generated X-ray into a point shape at a predetermined position. A sample turntable that is held and supported rotatably about an axis provided in a plane including the X-ray incident surface of the sample, and an X-ray detector that detects diffracted X-rays from the sample. In the X-ray crystal structure analyzing apparatus, an X-ray crystal structure analyzing apparatus provided with means for changing a relative distance between the X-ray source and the sample turntable is further provided.

なお、本発明では、前記のX線結晶構造解析装置において、前記距離可変手段を移動用レールにより構成することが好ましく、更には、前記移動用レールを、前記X線源又は前記試料回転台の一方に取り付け、又は、その双方に取り付けることが好ましい。   In the present invention, in the X-ray crystal structure analyzing apparatus, it is preferable that the distance varying means is constituted by a moving rail, and further, the moving rail is provided by the X-ray source or the sample turntable. It is preferable to attach to one or both.

以上に述べた本発明になるX線結晶構造解析装置によれば、各種の大きの結晶に対しても、簡単に、その結晶よりも大きなビームサイズのX線を照射(所謂、完浴)することが出来、もって、低分子の結晶を含む各種の試料に対しても精度の高い測定が可能となるX線結晶構造解析装置を提供することが可能となるという、優れた効果を発揮する。   According to the X-ray crystal structure analysis apparatus according to the present invention described above, X-rays having a beam size larger than that of a crystal of various sizes can be easily irradiated (so-called complete bath). Therefore, it is possible to provide an X-ray crystal structure analyzing apparatus capable of measuring with high accuracy even for various samples including low-molecular crystals.

以下、本発明の実施の形態について、添付の図面を参照しながら詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

添付の図1は、本発明の実施の形態になるX線結晶構造解析装置の概略構造を示す上面図であり、この図において、符号10は、試料に照射するX線を発生するX線源であるX線発生装置を示している。なお、このX線発生装置10は、図示のように、そのX線には、発生したX線を所定の位置(ポイント)において点状に絞り込むための、所謂、集光ミラー11が設けられており、更に、その先端部には、コリメータ12が取り付けられている。   FIG. 1 attached herewith is a top view showing a schematic structure of an X-ray crystal structure analyzing apparatus according to an embodiment of the present invention. In this figure, reference numeral 10 denotes an X-ray source for generating X-rays irradiated on a sample. The X-ray generator which is is shown. As shown in the figure, the X-ray generator 10 is provided with a so-called condensing mirror 11 for narrowing the generated X-rays into dots at a predetermined position (point). In addition, a collimator 12 is attached to the tip portion.

一方、上記X線発生装置10から発生したX線の照射方向には、試料保持用のゴニオメータ20が配置されており、このゴニオメータ20には、解析すべき試料(サンプル)Sが、例えば、ガラス製のキャピラリなどにより、試料ホルダに取り付けられ、複数の回転軸上で回転される。これにより、試料(サンプル)Sは、試料のX線入射面を含む面内に設けられた軸を中心に、回転自在に支持される。また、このゴニオメータ20には、更に、試料からの回折X線を検出するX線検出器として、例えば、CCDイメージセンサによって構成される二次元検出器30が、上記試料(サンプル)Sを中心に回動可能に取り付けられている。   On the other hand, a sample holding goniometer 20 is arranged in the irradiation direction of the X-rays generated from the X-ray generator 10, and the sample (sample) S to be analyzed is, for example, glass in the goniometer 20. The sample is attached to the sample holder by a capillary made of the like and rotated on a plurality of rotation shafts. Thereby, the sample (sample) S is rotatably supported around an axis provided in a plane including the X-ray incident surface of the sample. Further, the goniometer 20 further includes, for example, a two-dimensional detector 30 constituted by a CCD image sensor as an X-ray detector for detecting diffracted X-rays from the sample, with the sample (sample) S as the center. It is pivotally attached.

なお、本発明は、集光ミラーを備えたX線源では、添付の図3にも示すように、それにより得られるX線ビームの径(サイズ)は、その集光点より前後の位置では点状ではなく、その径(サイズ)はその距離により変化するとの発明者の知見に基づくものである。   According to the present invention, in an X-ray source equipped with a condensing mirror, as shown in FIG. 3 attached, the diameter (size) of the X-ray beam obtained thereby is at a position before and after the condensing point. It is based on the inventor's knowledge that the diameter (size) is not point-like and changes depending on the distance.

即ち、本発明では、上記X線発生装置10の下部には図示しない車輪又はローラ又はスライド機構を設けると共に、装置が配置される床面には、移動用のレール(ガイド)15、15を配設している。一方、上記ゴニオメータ20の下部にも車輪を設けると共に、ゴニオメータが配置される床面には、移動用のレール(ガイド)25、25を配設している。なお、これらのレール15、25は、互いに平行に配設されており、そのため、X線発生装置10とゴニオメータ20との間の相対的な距離を、容易に可変することが可能となる。また、これらのレール15、25は、上記X線発生装置10から発生するX線の照射方向(即ち、集光ミラー11及びコリメータ12の取り付け方向)とも一致している。   That is, in the present invention, a wheel, a roller, or a slide mechanism (not shown) is provided at the lower part of the X-ray generator 10, and rails (guides) 15 and 15 for movement are arranged on the floor on which the device is arranged. Has been established. On the other hand, wheels are also provided in the lower part of the goniometer 20, and rails (guides) 25 and 25 for movement are arranged on the floor on which the goniometer is arranged. The rails 15 and 25 are arranged in parallel to each other, and therefore, the relative distance between the X-ray generator 10 and the goniometer 20 can be easily changed. These rails 15 and 25 also coincide with the irradiation direction of X-rays generated from the X-ray generator 10 (that is, the mounting direction of the condenser mirror 11 and the collimator 12).

以上のように、上記X線発生装置10とゴニオメータ20との間の相対的な距離を可変にすることによれば、添付の図2にも示すように、X線発生装置10の集光ミラー11の働きによって集光点に収束するX線ビームの径(サイズ)を、サイズの小さい試料(サンプル)Sには点状に(図2(A)を参照)、一方、サイズの大きな試料(サンプル)Sに対しては、X線ビームの径(サイズ)を大きくして、その大きさに適合させることが可能となる(図2(B)を参照)。即ち、低分子試料などの大きな結晶から、その他の小さな結晶まで、各種の試料に対して、X線ビームを全体に照射(所謂、完浴)することが出来、精度の高い測定を可能にする。なお、本例の場合、X線ビームの径は、例えば、図2(A)の場合には、0.2mmφ、そして、図2(A)の場合には、0.5mmφであり、その間の移動距離「d」は50mmであった。   As described above, by making the relative distance between the X-ray generator 10 and the goniometer 20 variable, as shown in FIG. The diameter (size) of the X-ray beam that converges at the condensing point by the action of 11 is made point-like for the small sample (sample) S (see FIG. 2A), while the large sample ( For the sample (S), the diameter (size) of the X-ray beam can be increased and adapted to the size (see FIG. 2B). That is, X-ray beams can be irradiated to the entire sample (so-called complete bath) from large crystals such as low-molecular-weight samples to other small crystals, enabling highly accurate measurement. . In the case of this example, the diameter of the X-ray beam is, for example, 0.2 mmφ in the case of FIG. 2A and 0.5 mmφ in the case of FIG. The moving distance “d” was 50 mm.

なお、以上に詳述した実施の形態では、図示しない車輪又はローラ又はスライド機構と共に、上記移動用のレール15、25からなる距離可変手段を、上記X線発生装置10と共に、上記ゴニオメータ20にも設けたが、しかしながら、本発明はこれに限定されることなく、その一方だけに設けることによっても同様の効果が得られることは、当業者にとっては、当然であろう。   In the embodiment described in detail above, the distance variable means including the moving rails 15 and 25 together with the wheel or roller or the slide mechanism (not shown) is provided to the goniometer 20 together with the X-ray generator 10. However, the present invention is not limited to this, and it is natural for those skilled in the art that the same effect can be obtained by providing only one of them.

また、上記の実施の形態では、上記距離可変手段として、図示しない車輪と共に上記移動用のレール15、25からなる例についてのみ述べたが、しかしながら、これにのみ限定されず、その間の相対距離を可変するものであれば、その他の手段によっても達成することが出来る。また、更に、モータ等を備えた駆動機構と共に、上記上記X線発生装置10とゴニオメータ20との間の相対的な距離を測定するセンサを設けることにより、自動的に、移動するようにすることも可能であろう。   In the above embodiment, only the example of the distance variable means including the moving rails 15 and 25 together with the wheel (not shown) has been described. However, the present invention is not limited to this, and the relative distance between them is not limited. As long as it is variable, it can also be achieved by other means. In addition, a sensor that measures the relative distance between the X-ray generator 10 and the goniometer 20 is provided together with a drive mechanism having a motor or the like, so that it automatically moves. Would also be possible.

本発明の一実施の形態になるX線結晶構造解析装置の概略構造を示す上面図である。1 is a top view showing a schematic structure of an X-ray crystal structure analysis apparatus according to an embodiment of the present invention. 上記X線結晶構造解析装置におけるX線ビームの試料への照射の状態を説明するための図である。It is a figure for demonstrating the state of irradiation to the sample of the X-ray beam in the said X-ray crystal structure analyzer. 集光ミラーを備えたX線源における集光点前後の位置とそこで得られるX線ビームの径(サイズ)との関係を示す図である。It is a figure which shows the relationship between the position before and behind the condensing point in the X-ray source provided with the condensing mirror, and the diameter (size) of the X-ray beam obtained there.

符号の説明Explanation of symbols

10 X線発生装置
11 集光ミラー
12 コリメータ
15 移動用のレール(ガイド)
20 ゴニオメータ
25 移動用のレール(ガイド)
30 二次元検出器
S 試料(サンプル)
DESCRIPTION OF SYMBOLS 10 X-ray generator 11 Condensing mirror 12 Collimator 15 Moving rail (guide)
20 Goniometer 25 Moving rail (guide)
30 Two-dimensional detector S Sample

Claims (4)

発生するX線を所定の位置において点状に絞り込む集光ミラーを備え、発生したX線を試料に照射するX線源と、前記試料を保持して該試料のX線入射面を含む面内に設けられた軸を中心に回転自在に支持された試料回転台と、前記試料からの回折X線を検出するX線検出器とを有するX線結晶構造解析装置において、更に、前記X線源と前記試料回転台との間の相対的な距離を可変するための手段を備えたことを特徴とするX線結晶構造解析装置。   An X-ray source that irradiates the sample with the generated X-rays, and a X-ray source that irradiates the sample with the generated X-rays at a predetermined position, and an X-ray incident surface of the sample. An X-ray crystal structure analyzing apparatus having a sample turntable rotatably supported about an axis provided on the X-ray source and an X-ray detector for detecting diffracted X-rays from the sample. An X-ray crystal structure analyzing apparatus comprising means for changing a relative distance between the sample rotating table and the sample rotating table. 前記請求項1に記載した装置において、前記距離可変手段を移動用レールにより構成したことを特徴とするX線結晶構造解析装置。   2. The X-ray crystal structure analyzing apparatus according to claim 1, wherein the distance varying means is constituted by a moving rail. 前記請求項1に記載した装置において、前記距離可変手段を、前記X線源又は前記試料回転台の一方に取り付けたことを特徴とするX線結晶構造解析装置。   2. The X-ray crystal structure analyzing apparatus according to claim 1, wherein the distance varying means is attached to one of the X-ray source and the sample turntable. 前記請求項1に記載した装置において、前記距離可変手段を、前記X線源及び前記試料回転台の双方に取り付けたことを特徴とするX線結晶構造解析装置。
2. The X-ray crystal structure analyzing apparatus according to claim 1, wherein the distance varying means is attached to both the X-ray source and the sample turntable.
JP2005369317A 2005-12-22 2005-12-22 X-ray crystal structure analyzer Pending JP2007171000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005369317A JP2007171000A (en) 2005-12-22 2005-12-22 X-ray crystal structure analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005369317A JP2007171000A (en) 2005-12-22 2005-12-22 X-ray crystal structure analyzer

Publications (1)

Publication Number Publication Date
JP2007171000A true JP2007171000A (en) 2007-07-05

Family

ID=38297755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005369317A Pending JP2007171000A (en) 2005-12-22 2005-12-22 X-ray crystal structure analyzer

Country Status (1)

Country Link
JP (1) JP2007171000A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113287003A (en) * 2018-11-22 2021-08-20 株式会社理学 Sample holder assembly for single crystal X-ray structure analyzer

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01216244A (en) * 1988-02-25 1989-08-30 Nippon Telegr & Teleph Corp <Ntt> Method and device for evaluating composition distribution of semiconductor mixed crystal
JPH06258260A (en) * 1993-03-05 1994-09-16 Seiko Instr Inc X-ray diffraction device
JPH06300718A (en) * 1993-04-19 1994-10-28 Seiko Instr Inc X-ray analyzer
JPH0862400A (en) * 1994-08-24 1996-03-08 Nec Corp X-ray diffraction microscopic device
JP2550382B2 (en) * 1988-02-24 1996-11-06 株式会社マックサイエンス X-ray diffractometer
JPH08338818A (en) * 1995-06-13 1996-12-24 Rikagaku Kenkyusho Sample-mounting instrument for x ray analysis
JPH1172447A (en) * 1997-08-29 1999-03-16 Rigaku Ind Co X-ray diffraction apparatus
JPH11304999A (en) * 1998-04-22 1999-11-05 Rigaku Denki Kk Goniometer for holding sample for x-ray crystal structure analyzer
JP2001066398A (en) * 1999-08-27 2001-03-16 Rigaku Corp Apparatus for measuring x-ray
JP2002116158A (en) * 2000-10-05 2002-04-19 Rigaku Corp Method for measuring with x-ray and x-ray device
JP2002148219A (en) * 2000-11-08 2002-05-22 Mac Science Co Ltd X-ray diffractometer
JP2002148218A (en) * 2000-11-08 2002-05-22 Mac Science Co Ltd X-ray diffractometer

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2550382B2 (en) * 1988-02-24 1996-11-06 株式会社マックサイエンス X-ray diffractometer
JPH01216244A (en) * 1988-02-25 1989-08-30 Nippon Telegr & Teleph Corp <Ntt> Method and device for evaluating composition distribution of semiconductor mixed crystal
JPH06258260A (en) * 1993-03-05 1994-09-16 Seiko Instr Inc X-ray diffraction device
JPH06300718A (en) * 1993-04-19 1994-10-28 Seiko Instr Inc X-ray analyzer
JPH0862400A (en) * 1994-08-24 1996-03-08 Nec Corp X-ray diffraction microscopic device
JPH08338818A (en) * 1995-06-13 1996-12-24 Rikagaku Kenkyusho Sample-mounting instrument for x ray analysis
JPH1172447A (en) * 1997-08-29 1999-03-16 Rigaku Ind Co X-ray diffraction apparatus
JPH11304999A (en) * 1998-04-22 1999-11-05 Rigaku Denki Kk Goniometer for holding sample for x-ray crystal structure analyzer
JP2001066398A (en) * 1999-08-27 2001-03-16 Rigaku Corp Apparatus for measuring x-ray
JP2002116158A (en) * 2000-10-05 2002-04-19 Rigaku Corp Method for measuring with x-ray and x-ray device
JP2002148219A (en) * 2000-11-08 2002-05-22 Mac Science Co Ltd X-ray diffractometer
JP2002148218A (en) * 2000-11-08 2002-05-22 Mac Science Co Ltd X-ray diffractometer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113287003A (en) * 2018-11-22 2021-08-20 株式会社理学 Sample holder assembly for single crystal X-ray structure analyzer

Similar Documents

Publication Publication Date Title
JP7165400B2 (en) X-ray analyzer
JP2002530671A (en) X-ray analyzer including parabolic X-ray mirror and quartz monochromator
JP2006250952A (en) Optical system for scattering of high-flux low-background two-dimensional small angle x-ray
JP2004294136A (en) X-ray diffraction device
JP2020153724A5 (en)
JP2008051802A (en) Rotator for optical tomography apparatus, and optical tomography apparatus with rotator
RU137951U1 (en) DEVICE FOR X-RAY MICROANALYSIS
JP6198406B2 (en) Micro diffraction method and apparatus
US9640292B2 (en) X-ray apparatus
JP4785402B2 (en) X-ray lens optical axis adjustment mechanism, X-ray lens optical axis adjustment method, and X-ray analyzer
JP4694296B2 (en) X-ray fluorescence three-dimensional analyzer
JPH05264479A (en) X-ray analyzer
JP2007171000A (en) X-ray crystal structure analyzer
JP5332801B2 (en) Sample analyzer and sample analysis method
JP4246599B2 (en) Mapping measuring device
JP2001013095A (en) Inorganic matter analyzing apparatus in sample and inorganic and/or organic matter analyzing apparatus in sample
JP6842084B2 (en) Portable 3-axis stress measuring device
JP5492173B2 (en) Diffraction X-ray detection method and X-ray diffraction apparatus
JP5455792B2 (en) X-ray analyzer
JP4619282B2 (en) X-ray analyzer
JP3819376B2 (en) X-ray apparatus and its anti-scatter cap
JP3197104B2 (en) X-ray analyzer
JP2006071472A (en) Ct method and ct apparatus
JP5638195B2 (en) Inspection head of surface inspection equipment
JP2004361100A (en) X-ray crystal structure analysis device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120918

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130305