JP5638195B2 - Inspection head of surface inspection equipment - Google Patents

Inspection head of surface inspection equipment Download PDF

Info

Publication number
JP5638195B2
JP5638195B2 JP2008324233A JP2008324233A JP5638195B2 JP 5638195 B2 JP5638195 B2 JP 5638195B2 JP 2008324233 A JP2008324233 A JP 2008324233A JP 2008324233 A JP2008324233 A JP 2008324233A JP 5638195 B2 JP5638195 B2 JP 5638195B2
Authority
JP
Japan
Prior art keywords
inspection
cylindrical portion
head
cylindrical
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008324233A
Other languages
Japanese (ja)
Other versions
JP2010145283A (en
Inventor
堀内 一宏
一宏 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagano Automation Co Ltd
Original Assignee
Nagano Automation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagano Automation Co Ltd filed Critical Nagano Automation Co Ltd
Priority to JP2008324233A priority Critical patent/JP5638195B2/en
Publication of JP2010145283A publication Critical patent/JP2010145283A/en
Application granted granted Critical
Publication of JP5638195B2 publication Critical patent/JP5638195B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

本発明は、被検査物の表面を検査する表面検査装置の検査ヘッドに関する。   The present invention relates to an inspection head of a surface inspection apparatus that inspects the surface of an object to be inspected.

円筒形状の被検査物の内周面に対して検査光を照射して欠陥等の有無を検査する表面検査装置では、被検査物の内部に挿入する検査ヘッドの形状が先端までの内径が同一となるストレート管形状となっている(例えば特許文献1参照。)。検査ヘッド内では、投光ファイバから導かれた検査光が集光レンズを介して内周面へ照射され、その反射光が集光レンズを介して受光ファイバへ導かれる。このため、検査ヘッドの内径は、集光レンズのレンズ径を考慮した大きさとなっている。
特開2007−315798号公報
In surface inspection equipment that inspects the inner peripheral surface of a cylindrical object to be inspected for defects, etc., the shape of the inspection head inserted into the object is the same as the inner diameter up to the tip. (For example, refer to Patent Document 1). In the inspection head, the inspection light guided from the light projecting fiber is irradiated to the inner peripheral surface via the condenser lens, and the reflected light is guided to the light receiving fiber via the condenser lens. For this reason, the inner diameter of the inspection head is set in consideration of the lens diameter of the condenser lens.
JP 2007-315798 A

検査ヘッドの形状は集光レンズによる制約を受けるため、被検査物の内周が大口径かつ奥行の深い深穴のものについては、集光レンズに近い位置から検査ヘッドを設けることで光路を遮ることなく挿入可能な長さを確保している。一方、小口径の被検査物の場合には、この検査ヘッドでは被検査物に挿入できないため、小口径の検査ヘッドに交換する必要が生じる。小口径の検査ヘッドは、検査ヘッド内の光路を遮ることなくヘッド内径を小さくするため、集光レンズから離れて焦点寄りの位置から小口径の検査ヘッドが設けられる。集光レンズとの兼ね合いから小口径の検査ヘッドでは長さが短くなり、奥行の浅い浅穴の被検査物への挿入は可能であるが深穴には対応できない。このように、被検査物の形状によって検査ヘッドを交換する手間が生じ、作業者の負担になる。   Since the shape of the inspection head is restricted by the condensing lens, if the inner periphery of the object to be inspected is a deep hole with a large diameter and a deep depth, the optical path is blocked by providing the inspection head from a position close to the condensing lens. The length that can be inserted is secured. On the other hand, in the case of an inspection object having a small diameter, since this inspection head cannot be inserted into the inspection object, it is necessary to replace the inspection head with a small diameter. The small-diameter inspection head is provided with a small-diameter inspection head from a position near the focal point away from the condenser lens in order to reduce the head inner diameter without blocking the optical path in the inspection head. Due to the balance with the condenser lens, the inspection head with a small diameter is shortened, and a shallow hole with a shallow depth can be inserted into the object to be inspected, but a deep hole cannot be accommodated. As described above, the labor of exchanging the inspection head is generated depending on the shape of the inspection object, which is a burden on the operator.

そこで、本発明は被検査物の内周面の形状が異なる場合においても交換不要な表面検査装置の検査ヘッドを提供することを目的とする。   Therefore, an object of the present invention is to provide an inspection head of a surface inspection apparatus that does not require replacement even when the shape of the inner peripheral surface of the object to be inspected is different.

本発明の表面検査装置の検査ヘッドは、被検査物(100)の内周面(100a)に検査光を照射し、その反射光の光量に基づいて前記内周面を検査する表面検査装置(1)に適用される検査ヘッド(16)であって、前記検査ヘッドは、中空筒状でその軸線(AX)の回りに回転されつつ前記被検査物の内部に挿入されるセンサヘッド(21)を有し、前記センサヘッドには、その先端側から、所定の内径を有し、かつ前記被検査物の内部に挿入可能に形成された第1筒状部(21a)と、前記第1筒状部よりも大きい内径を有し、かつ前記被検査物の内部に挿入可能に形成された第2筒状部(21b)と、が設けられ、かつ前記第1筒状部と前記第2筒状部との間には、前記第2筒状部に向かって徐々に内径が大きくなるテーパ状に形成され、かつ前記被検査物の内部に挿入可能に形成された第1テーパ部(21d)が設けられ、前記センサヘッドの外側に位置して前記検査光を集光する集光レンズ(17)を介して前記センサヘッド内に前記検査光を通過させ、前記第1筒状部の外周に設けられた開口部(16a)から前記内周面に前記検査光を照射し、前記集光レンズを介した前記検査光の光路を遮らないように、前記第1筒状部、前記第2筒状部及び前記第1テーパ部の内径が設定され、前記センサヘッドは、前記第2筒状部よりも大きい内径を有し、かつ前記被検査物の内部に挿入可能に形成された第3筒状部(21c)をさらに備え、前記第2筒状部と前記第3筒状部との間には、前記第3筒状部に向かって徐々に内径が大きくなるテーパ状に形成され、かつ前記被検査物の内部に挿入可能に形成された第2テーパ部(21e)が設けられ、前記集光レンズを介した前記検査光の光路を遮らないように、前記第1筒状部、前記第2筒状部、前記第3筒状部、前記第1テーパ部及び前記第2テーパ部の内径が設定されている、ことにより上記課題を解決する。
The inspection head of the surface inspection apparatus of the present invention irradiates the inner peripheral surface (100a) of the inspection object (100) with inspection light and inspects the inner peripheral surface based on the amount of reflected light ( 1. An inspection head (16) applied to 1), wherein the inspection head has a hollow cylindrical shape and is rotated around its axis (AX) and is inserted into the inspection object (21). The sensor head has a first cylindrical part (21a) having a predetermined inner diameter from the front end side and formed to be insertable into the inspection object, and the first cylinder. A second cylindrical part (21b) having an inner diameter larger than the shape part and formed so as to be insertable inside the inspection object, and the first cylindrical part and the second cylinder. In between the shape part, it is formed in a taper shape whose inner diameter gradually increases toward the second tubular part. It is, and the first tapered portion which is insertable formed inside of the object (21d) is provided, focusing lens for focusing said test beam is located outside of the sensor head (17) And passing the inspection light through the sensor head, irradiating the inner peripheral surface with the inspection light from an opening (16a) provided on the outer periphery of the first cylindrical portion, and passing through the condenser lens. The inner diameters of the first cylindrical portion, the second cylindrical portion, and the first tapered portion are set so as not to block the optical path of the inspection light, and the sensor head is more than the second cylindrical portion. A third cylindrical part (21c) having a large inner diameter and formed so as to be insertable inside the inspection object is further provided between the second cylindrical part and the third cylindrical part. And a tapered shape having an inner diameter that gradually increases toward the third cylindrical portion, and A second tapered portion (21e) formed so as to be insertable inside the inspection object is provided, and the first cylindrical portion and the second cylindrical portion are arranged so as not to block the optical path of the inspection light through the condenser lens. The said subject is solved by the internal diameter of a cylindrical part, a said 3rd cylindrical part, a said 1st taper part, and a said 2nd taper part being set .

本発明の表面検査装置の検査ヘッドによれば、小口径かつ浅穴の被検査物の内周面を検査する場合には、第1筒状部を被検査物の内部に挿入することにより、内周面の検査ができる。一方、大口径かつ深穴の被検査物の内周面を検査する場合には、第1筒状部及び第2筒状部を被検査物の内部に挿入することにより、内周面の検査ができる。第1筒状部よりも第2筒状部は内径が大きいので、集光レンズによる検査光の光路を遮ることがなく、小口径かつ浅穴の被検査物であっても、大口径かつ深穴の被検査物であっても検査ヘッドを交換することなく内周面の検査が可能となる。そして、第1筒状部と第2筒状部とが第1テーパ部にてテーパ形状に連結されているので、検査光の内部反射も防ぐことができる。これにより、高精度の検査が可能となる。また、第2筒状部に対して本体側に第3筒状部及び第2テーパ部を設けることにより、集光レンズ付近の検査光の光路に対しても光路を遮ることなくセンサヘッドを設けることができる。このような段付形状とすることで集光レンズから焦点までの距離が長くなっても光路を遮ることなく、光路に応じてスリムなセンサヘッドを設けることができる。
According to the inspection head of the surface inspection apparatus of the present invention, when inspecting the inner peripheral surface of the inspection object having a small diameter and a shallow hole, by inserting the first cylindrical portion into the inspection object, The inner surface can be inspected. On the other hand, when inspecting the inner peripheral surface of the inspection object having a large diameter and a deep hole, the inner peripheral surface is inspected by inserting the first cylindrical portion and the second cylindrical portion into the inspection object. Can do. Since the second cylindrical portion has a larger inner diameter than the first cylindrical portion, it does not block the optical path of the inspection light by the condensing lens, and even a small-diameter and shallow-hole object to be inspected has a large diameter and a deep depth. Even if it is a hole inspection object, the inner peripheral surface can be inspected without replacing the inspection head. And since the 1st cylindrical part and the 2nd cylindrical part are connected with the taper shape in the 1st taper part, internal reflection of inspection light can also be prevented. Thereby, a highly accurate inspection becomes possible. Further, by providing the third cylindrical portion and the second tapered portion on the main body side with respect to the second cylindrical portion, the sensor head is provided without blocking the optical path even for the optical path of the inspection light near the condenser lens. be able to. By adopting such a stepped shape, a slim sensor head can be provided according to the optical path without blocking the optical path even when the distance from the condenser lens to the focal point becomes long.

本発明の検査ヘッドの一形態において、前記センサヘッドは、一体に形成されていてもよい。この形態によれば、一体に形成されているので十分な強度を有し、安定した使用が可能となる。   In one form of the inspection head of the present invention, the sensor head may be integrally formed. According to this form, since it is integrally formed, it has sufficient strength and can be used stably.

なお、以上の説明では本発明の理解を容易にするために添付図面の参照符号を括弧書きにて付記したが、それにより本発明が図示の形態に限定されるものではない。   In addition, in the above description, in order to make an understanding of this invention easy, the reference sign of the accompanying drawing was attached in parenthesis, but this invention is not limited to the form of illustration by it.

以上、説明したように、本発明の表面検査装置の検査ヘッドにおいては、小口径かつ浅穴の被検査物の内周面を検査する場合には、第1筒状部を被検査物の内部に挿入することにより、内周面の検査ができる。一方、大口径かつ深穴の被検査物の内周面を検査する場合には、第1筒状部及び第2筒状部を被検査物の内部に挿入することにより、内周面の検査ができる。第1筒状部よりも第2筒状部は内径が大きいので、集光レンズによる検査光の光路を遮ることがなく、小口径かつ浅穴の被検査物であっても、大口径かつ深穴の被検査物であっても検査ヘッドを交換することなく内周面の検査が可能となる。そして、第1筒状部と第2筒状部とがテーパ部にてテーパ形状に連結されているので、検査光の内部反射も防ぐことができる。これにより、高精度の検査が可能となる。   As described above, in the inspection head of the surface inspection apparatus of the present invention, when inspecting the inner peripheral surface of the inspection object having a small diameter and a shallow hole, the first cylindrical portion is disposed inside the inspection object. By inserting it into the inner surface, it is possible to inspect the inner peripheral surface. On the other hand, when inspecting the inner peripheral surface of the inspection object having a large diameter and a deep hole, the inner peripheral surface is inspected by inserting the first cylindrical portion and the second cylindrical portion into the inspection object. Can do. Since the second cylindrical portion has a larger inner diameter than the first cylindrical portion, it does not block the optical path of the inspection light by the condensing lens, and even a small-diameter and shallow-hole object to be inspected has a large diameter and a deep depth. Even if it is a hole inspection object, the inner peripheral surface can be inspected without replacing the inspection head. And since the 1st cylindrical part and the 2nd cylindrical part are connected with the taper shape in the taper part, the internal reflection of test | inspection light can also be prevented. Thereby, a highly accurate inspection becomes possible.

図1に、本発明の一形態に係る検査ヘッドが適用された表面検査装置の概略構成を示す。表面検査装置1は被検査物100に設けられた円筒形の内周面100aの検査に適した装置であり、検査を実行するための検査機構2と、その検査機構2の動作制御、検査機構2による測定結果の処理等を実行するための制御部3とを備えている。さらに、検査機構2は、被検査物100に対して検査光を投光し、かつ被検査物100からの反射光を受光するための検出手段としての検出ユニット5と、その検出ユニット5に所定の動作を与えるための駆動ユニット6とを備えている。   FIG. 1 shows a schematic configuration of a surface inspection apparatus to which an inspection head according to an embodiment of the present invention is applied. The surface inspection apparatus 1 is an apparatus suitable for inspecting a cylindrical inner peripheral surface 100a provided on an object to be inspected 100, and includes an inspection mechanism 2 for executing inspection, operation control of the inspection mechanism 2, and an inspection mechanism. And a control unit 3 for executing processing of the measurement result by 2 and the like. Further, the inspection mechanism 2 projects the inspection light onto the inspection object 100 and receives the reflected light from the inspection object 100, and a detection unit 5 as a detection means and a predetermined amount to the detection unit 5 And a drive unit 6 for providing the above operations.

検出ユニット5は、検査光の光源としてのレーザダイオード(以下、LDと呼ぶ。)11と、被検査物100からの反射光を受光し、その反射光の単位時間当りの光量(反射光強度)に応じた電流又は電圧の信号を出力するフォトディテクタ(以下、PDと呼ぶ。)12と、LD11から射出される検査光を被検査物100に向かって導く投光ファイバ13と、被検査物100からの反射光をPD12に導くための受光ファイバ14と、それらのファイバ13、14を束ねた状態で保持する保持筒15と、その保持筒15の外側に同軸的に設けられる中空軸状の検査ヘッド16とを備えている。検査ヘッド16は保持筒15のさらに外側にて回転自在に支持されている。   The detection unit 5 receives a laser diode (hereinafter referred to as LD) 11 as a light source of inspection light and reflected light from the inspection object 100, and the amount of reflected light per unit time (reflected light intensity). A photodetector (hereinafter referred to as PD) 12 that outputs a current or voltage signal corresponding to the light, a light projecting fiber 13 that guides the inspection light emitted from the LD 11 toward the inspection object 100, and the inspection object 100. Light-receiving fiber 14 for guiding the reflected light from the PD 12 to the PD 12, a holding cylinder 15 that holds the fibers 13 and 14 in a bundled state, and a hollow-shaft inspection head that is coaxially provided outside the holding cylinder 15 16. The inspection head 16 is rotatably supported on the outer side of the holding cylinder 15.

保持筒15の先端には、投光ファイバ13を介して導かれた検査光を検査ヘッド16の軸線AXの方向(以下、軸線方向と呼ぶ。)に沿ってビーム状に射出させ、かつ検査ヘッド16の軸線方向に沿って検査光とは逆向きに進む反射光を受光ファイバ14に集光する集光レンズとしてのレンズ17が設けられている。検査ヘッド16の先端部(図1において右端部)には、ミラー18が固定され、検査ヘッド16の外周にはそのミラー18と対向するようにして開口部としての透光窓16aが設けられている。ミラー18は、レンズ17から射出された検査光の光路を透光窓16aに向けて変更し、かつ、透光窓16aから検査ヘッド16内に入射した反射光の光路をレンズ17に向かって進む方向に変更する。   At the tip of the holding cylinder 15, the inspection light guided through the light projecting fiber 13 is emitted in the form of a beam along the direction of the axis AX of the inspection head 16 (hereinafter referred to as the axial direction), and the inspection head A lens 17 is provided as a condensing lens for condensing the reflected light traveling in the direction opposite to the inspection light along the axial direction of 16 on the light receiving fiber 14. A mirror 18 is fixed to the tip of the inspection head 16 (the right end in FIG. 1), and a transparent window 16a serving as an opening is provided on the outer periphery of the inspection head 16 so as to face the mirror 18. Yes. The mirror 18 changes the optical path of the inspection light emitted from the lens 17 toward the light transmission window 16 a, and advances the optical path of the reflected light that has entered the inspection head 16 from the light transmission window 16 a toward the lens 17. Change direction.

駆動ユニット6は、直線駆動機構30と、回転駆動機構40と、焦点調節機構50とを備えている。直線駆動機構30は検査ヘッド16をその軸線方向に移動させる直線駆動手段として設けられている。そのような機能を実現するため、直線駆動機構30は、ベース31と、そのベース31に固定された一対のレール32と、レール32に沿って検査ヘッド16の軸線方向に移動可能なスライダ33と、そのスライダ33の側方に検査ヘッド16の軸線AXと平行に配置された送りねじ34と、その送りねじ34を回転駆動する電動モータ35とを備えている。スライダ33は検出ユニット5の全体を支持する手段として機能する。すなわち、LD11及びPD12はスライダ33に固定され、検査ヘッド16は回転駆動機構40を介してスライダ33に取り付けられ、保持筒15は焦点調節機構50を介してスライダ33に取り付けられている。さらに、スライダ33にはナット36が固定され、そのナット36には送りねじ34がねじ込まれている。従って、電動モータ35にて送りねじ34を回転駆動することにより、スライダ33がレール32に沿って検査ヘッド16の軸線方向に移動し、それに伴ってスライダ33に支持された検出ユニット5の全体が検査ヘッド16の軸線方向に移動する。直線駆動機構30を用いた検出ユニット5の駆動により、被検査物100の内周面100aに対する検査光の照射位置(走査位置)を検査ヘッド16の軸線方向に関して変化させることができる。   The drive unit 6 includes a linear drive mechanism 30, a rotation drive mechanism 40, and a focus adjustment mechanism 50. The linear drive mechanism 30 is provided as a linear drive means for moving the inspection head 16 in the axial direction. In order to realize such a function, the linear drive mechanism 30 includes a base 31, a pair of rails 32 fixed to the base 31, and a slider 33 that can move in the axial direction of the inspection head 16 along the rails 32. Further, a feed screw 34 disposed in parallel to the axis AX of the inspection head 16 and a motor 35 that rotationally drives the feed screw 34 are provided on the side of the slider 33. The slider 33 functions as a means for supporting the entire detection unit 5. That is, the LD 11 and PD 12 are fixed to the slider 33, the inspection head 16 is attached to the slider 33 via the rotation drive mechanism 40, and the holding cylinder 15 is attached to the slider 33 via the focus adjustment mechanism 50. Further, a nut 36 is fixed to the slider 33, and a feed screw 34 is screwed into the nut 36. Therefore, when the feed screw 34 is rotationally driven by the electric motor 35, the slider 33 moves along the rail 32 in the axial direction of the inspection head 16, and accordingly, the entire detection unit 5 supported by the slider 33 is moved. It moves in the axial direction of the inspection head 16. By driving the detection unit 5 using the linear drive mechanism 30, the irradiation position (scanning position) of the inspection light on the inner peripheral surface 100 a of the inspection object 100 can be changed with respect to the axial direction of the inspection head 16.

ベース31の前端(図1において右端)には壁部31aが設けられ、その壁部31aには検査ヘッド16と同軸の通し孔31bが設けられている。その通し孔31bにはサンプルピース37が取り付けられている。サンプルピース37は表面検査装置1の動作状態を判別するためのサンプルとして設けられるものであり、その中心線上には検査ヘッド16と同軸の貫通孔37aが設けられている。貫通孔37aは検査ヘッド16が通過可能な内径を有しており、検査ヘッド16はその貫通孔37aを通過して被検査物100の内部へと繰り出される。   A wall 31a is provided at the front end (right end in FIG. 1) of the base 31, and a through hole 31b coaxial with the inspection head 16 is provided in the wall 31a. A sample piece 37 is attached to the through hole 31b. The sample piece 37 is provided as a sample for determining the operating state of the surface inspection apparatus 1, and a through hole 37 a coaxial with the inspection head 16 is provided on the center line thereof. The through hole 37 a has an inner diameter through which the inspection head 16 can pass, and the inspection head 16 passes through the through hole 37 a and is fed out into the inspection object 100.

回転駆動機構40は検査ヘッド16を軸線AXの回りに回転させる回転駆動手段として設けられている。そのような機能を実現するため、回転駆動機構40は、回転駆動源としての電動モータ41と、その電動モータ41の回転を検査ヘッド16に伝達する伝達機構42とを備えている。伝達機構42には、ベルト伝達装置、歯車列等の公知の回転伝達機構を利用してよいが、この形態ではベルト伝達装置が利用される。電動モータ41の回転を伝達機構42を介して検査ヘッド16に伝達することにより、検査ヘッド16がその内部に固定されたミラー18を伴って軸線AXの回りに回転する。回転駆動機構40を用いた検査ヘッド16の回転により、被検査物100の内周面100aに対する検査光の照射位置を被検査物100の周方向に関して変化させることができる。そして、検査ヘッド16の軸線方向への移動と軸線AXの回りの回転とを組み合わせることにより、被検査物100の内周面100aをその全面に亘って検査光で走査することが可能となる。なお、検査ヘッド16の回転時において、保持筒15は回転しない。さらに、回転駆動機構40には、検査ヘッド16が所定の単位角度回転する毎にパルス信号を出力するロータリエンコーダ43が設けられている。ロータリエンコーダ43から出力されるパルス信号の個数は検査ヘッド16の回転量(回転角度)に相関し、そのパルス信号の周期は検査ヘッド16の回転速度に相関する。   The rotation drive mechanism 40 is provided as a rotation drive unit that rotates the inspection head 16 around the axis AX. In order to realize such a function, the rotation drive mechanism 40 includes an electric motor 41 as a rotation drive source and a transmission mechanism 42 that transmits the rotation of the electric motor 41 to the inspection head 16. For the transmission mechanism 42, a known rotation transmission mechanism such as a belt transmission device or a gear train may be used. In this embodiment, a belt transmission device is used. By transmitting the rotation of the electric motor 41 to the inspection head 16 via the transmission mechanism 42, the inspection head 16 rotates around the axis AX with the mirror 18 fixed therein. By rotating the inspection head 16 using the rotation drive mechanism 40, the irradiation position of the inspection light on the inner peripheral surface 100a of the inspection object 100 can be changed with respect to the circumferential direction of the inspection object 100. Then, by combining the movement of the inspection head 16 in the axial direction and the rotation around the axis AX, the inner peripheral surface 100a of the inspection object 100 can be scanned with the inspection light over the entire surface. Note that the holding cylinder 15 does not rotate when the inspection head 16 rotates. Further, the rotary drive mechanism 40 is provided with a rotary encoder 43 that outputs a pulse signal each time the inspection head 16 rotates by a predetermined unit angle. The number of pulse signals output from the rotary encoder 43 correlates with the rotation amount (rotation angle) of the inspection head 16, and the period of the pulse signals correlates with the rotation speed of the inspection head 16.

焦点調節機構50は、検査光が被検査物100の内周面100aにて焦点を結ぶように保持筒15を軸線AXの方向に駆動する焦点調整手段として設けられている。その機能を実現するため、焦点調節機構50は、保持筒15の基端部に固定された支持板51と、直線駆動機構30のスライダ33と支持板51との間に配置されて支持板51を検査ヘッド16の軸線方向に案内するレール52と、検査ヘッド16の軸線AXと平行に配置されて支持板51にねじ込まれた送りねじ53と、その送りねじ53を回転駆動する電動モータ54とを備えている。電動モータ54にて送りねじ53を回転駆動することにより、支持板51がレール52に沿って移動して保持筒15が検査ヘッド16の軸線方向に移動する。これにより、検査光が被検査物100の内周面100a上で焦点を結ぶようにレンズ17からミラー18を経て内周面100aに至る光路の長さを調節することができる。   The focus adjusting mechanism 50 is provided as a focus adjusting means for driving the holding cylinder 15 in the direction of the axis AX so that the inspection light is focused on the inner peripheral surface 100a of the inspection object 100. In order to realize the function, the focus adjustment mechanism 50 is disposed between the support plate 51 fixed to the base end portion of the holding cylinder 15 and the slider 33 and the support plate 51 of the linear drive mechanism 30. Rail 52 that guides the inspection head 16 in the axial direction, a feed screw 53 that is arranged parallel to the axis AX of the inspection head 16 and screwed into the support plate 51, and an electric motor 54 that rotationally drives the feed screw 53. It has. By rotating the feed screw 53 with the electric motor 54, the support plate 51 moves along the rail 52, and the holding cylinder 15 moves in the axial direction of the inspection head 16. Thereby, the length of the optical path from the lens 17 through the mirror 18 to the inner peripheral surface 100a can be adjusted so that the inspection light is focused on the inner peripheral surface 100a of the inspection object 100.

次に制御部3について説明する。制御部3は、表面検査装置1による検査工程の管理、検出ユニット5の測定結果の処理等を実行する演算処理部60と、その演算処理部60の指示に従って検出ユニット5の各部の動作を制御する動作制御部61と、PD12の出力信号に対して所定の処理を実行する信号処理部62と、演算処理部60に対してユーザが指示を入力するための入力部63と、演算処理部60が処理した検査結果等をユーザに提示するための出力部64と、演算処理部60にて実行すべきコンピュータプログラム、及び、測定されたデータ等を記憶する記憶部65とを備えている。演算処理部60、入力部63、出力部64及び記憶部65はパーソナルコンピュータ等の汎用コンピュータ機器を利用してこれらを構成することができる。この場合、入力部63にはキーボード、マウス等の入力機器が設けられ、出力部64にはモニタ装置が設けられる。プリンタ等の出力機器が出力部64に追加されてもよい。記憶部65には、ハードディスク記憶装置、あるいは記憶保持が可能な半導体記憶素子等の記憶装置が用いられる。動作制御部61及び信号処理部62はハードウエア制御回路によって実現されてもよいし、コンピュータユニットによって実現されてもよい。   Next, the control unit 3 will be described. The control unit 3 controls the inspection process by the surface inspection apparatus 1, the arithmetic processing unit 60 that executes processing of the measurement result of the detection unit 5, and the operation of each unit of the detection unit 5 in accordance with instructions from the arithmetic processing unit 60. Operation control unit 61, signal processing unit 62 that executes predetermined processing on the output signal of PD 12, input unit 63 for a user to input an instruction to arithmetic processing unit 60, and arithmetic processing unit 60 Are provided with an output unit 64 for presenting the examination results and the like processed by the user, a computer program to be executed by the arithmetic processing unit 60, and a storage unit 65 for storing measured data and the like. The arithmetic processing unit 60, the input unit 63, the output unit 64, and the storage unit 65 can be configured using a general-purpose computer device such as a personal computer. In this case, the input unit 63 is provided with input devices such as a keyboard and a mouse, and the output unit 64 is provided with a monitor device. An output device such as a printer may be added to the output unit 64. The storage unit 65 is a hard disk storage device or a storage device such as a semiconductor storage element capable of storing data. The operation control unit 61 and the signal processing unit 62 may be realized by a hardware control circuit or may be realized by a computer unit.

被検査物100の内周面100aの表面を検査する場合、演算処理部60、動作制御部61及び信号処理部62のそれぞれは次の通り動作する。なお、この場合、被検査物100は検査ヘッド16と同軸上に配置される。検査の開始にあたって、演算処理部60は入力部63からの指示に従って動作制御部61に被検査物100の内周面100aを検査するために必要な動作の開始を指示する。その指示を受けた動作制御部61は、LD11を所定の強度で発光させるとともに、検査ヘッド16が軸線方向に移動し、かつ軸線AXの回りに一定速度で回転するようにモータ35及び41の動作を制御する。さらに、動作制御部61は、検査光が被検査面としての内周面100a上で焦点を結ぶようにモータ54の動作を制御する。このような動作制御により、内周面100aがその一端から他端まで検査光によって走査される。なお、検査ヘッド16の軸線方向の駆動に関しては、一定速度の送り動作としてもよいし、検査ヘッド16が一回転する毎に所定ピッチずつ移動する間欠的な送り動作としてもよい。   When inspecting the surface of the inner peripheral surface 100a of the inspection object 100, each of the arithmetic processing unit 60, the operation control unit 61, and the signal processing unit 62 operates as follows. In this case, the inspection object 100 is arranged coaxially with the inspection head 16. In starting the inspection, the arithmetic processing unit 60 instructs the operation control unit 61 to start an operation necessary for inspecting the inner peripheral surface 100 a of the inspection object 100 in accordance with an instruction from the input unit 63. Upon receiving the instruction, the operation control unit 61 causes the LD 11 to emit light with a predetermined intensity, and the operations of the motors 35 and 41 so that the inspection head 16 moves in the axial direction and rotates around the axis AX at a constant speed. To control. Further, the operation control unit 61 controls the operation of the motor 54 so that the inspection light is focused on the inner peripheral surface 100a as the surface to be inspected. By such operation control, the inner peripheral surface 100a is scanned by inspection light from one end to the other end. The driving of the inspection head 16 in the axial direction may be a feeding operation at a constant speed, or an intermittent feeding operation that moves by a predetermined pitch every time the inspection head 16 rotates.

上述した内周面100aの走査に連係して信号処理部62にはPD12の出力信号が順次導かれる。信号処理部62は、PD12の出力信号を演算処理部60にて処理するために必要なアナログ信号処理を実施し、さらに、その処理後のアナログ信号を所定のビット数でA/D変換し、得られたデジタル信号を反射光信号として演算処理部60に出力する。演算処理部60にて実行する信号処理としては、PD12が検出した反射光の明暗差を拡大するようにその出力信号を非線形に増幅する処理、出力信号からノイズ成分を除去する処理といった各種の処理を適宜に用いてよい。高速フーリエ変換処理、逆フーリエ変換処理等を適宜に組み合わせることも可能である。また、信号処理部62によるA/D変換は、ロータリエンコーダ43から出力されるパルス列をサンプリングクロック信号として利用して行われる。これにより、検査ヘッド16が所定角度回転する間のPD12の受光量に相関した階調のデジタル信号が生成されて信号処理部62から出力される。   The output signal of the PD 12 is sequentially guided to the signal processing unit 62 in conjunction with the above-described scanning of the inner peripheral surface 100a. The signal processing unit 62 performs analog signal processing necessary for processing the output signal of the PD 12 by the arithmetic processing unit 60, and further performs A / D conversion on the analog signal after the processing with a predetermined number of bits, The obtained digital signal is output to the arithmetic processing unit 60 as a reflected light signal. The signal processing executed by the arithmetic processing unit 60 includes various processes such as a process of nonlinearly amplifying the output signal so as to enlarge the brightness difference of the reflected light detected by the PD 12 and a process of removing a noise component from the output signal. May be used as appropriate. Fast Fourier transform processing, inverse Fourier transform processing, and the like can be appropriately combined. The A / D conversion by the signal processing unit 62 is performed using a pulse train output from the rotary encoder 43 as a sampling clock signal. As a result, a digital signal having a gradation correlated with the amount of light received by the PD 12 while the inspection head 16 rotates by a predetermined angle is generated and output from the signal processing unit 62.

信号処理部62から反射光信号を受け取った演算処理部60は、その取り込んだ信号を記憶部65に記憶する。さらに、演算処理部60は、記憶部65が記憶する反射光信号を利用して被検査物100の内周面100aを平面的に展開した2次元画像を生成する。その2次元画像は、例えば被検査物100の周方向をx軸方向、検査ヘッド16の軸線方向をy軸方向とする直交2軸座標系で定義される平面上に内周面100aを展開した画像に相当する。なお、演算処理部60における2次元画像の生成時には、反射光信号から得られる原画像に対して、エッジ処理、二値化処理等を施すことにより、検出すべき欠陥等を強調した2次元画像を生成してもよい。そして、演算処理部60は、得られた画像を所定のアルゴリズムで処理することにより、内周面100aに許容限度を超える欠陥等が存在するか否か等を判定し、その判定結果を出力部64に出力する。   The arithmetic processing unit 60 that has received the reflected light signal from the signal processing unit 62 stores the received signal in the storage unit 65. Further, the arithmetic processing unit 60 uses the reflected light signal stored in the storage unit 65 to generate a two-dimensional image in which the inner peripheral surface 100a of the inspection object 100 is developed in a plane. In the two-dimensional image, for example, the inner peripheral surface 100a is developed on a plane defined by an orthogonal two-axis coordinate system in which the circumferential direction of the inspection object 100 is the x-axis direction and the axial direction of the inspection head 16 is the y-axis direction. Corresponds to an image. Note that, when generating a two-dimensional image in the arithmetic processing unit 60, a two-dimensional image in which defects to be detected are emphasized by performing edge processing, binarization processing, etc. on the original image obtained from the reflected light signal. May be generated. Then, the arithmetic processing unit 60 determines whether or not a defect exceeding an allowable limit exists on the inner peripheral surface 100a by processing the obtained image with a predetermined algorithm, and outputs the determination result to the output unit. 64.

図2に、検査ヘッド16の拡大図を示す。検査ヘッド16は、被検査物100の内部へ挿入されるセンサヘッド21と、センサヘッド21を固定する本体側ヘッド22とを有する。センサヘッド21には、先端側から小径でストレート管形状の第1筒状部21aと、第1筒状部21aよりも内径の大きい第2筒状部21bと、第2筒状部21bよりも内径の大きい第3筒状部21cと、第1筒状部21aと第2筒状部21bとの間を連結する第1テーパ部21dと、第2筒状部21bと第3筒状部21cとの間を連結する第2テーパ部21eとが設けられている。センサヘッド21は、管形状で金属等の素材で一体に形成されている。第1筒状部21a、第2筒状部21b及び第3筒状部21cは、軸線AXを中心とした同軸状に配置される。第3筒状部21cは、本体側ヘッド22へ固定されている。なお、第1筒状部21aの先端部には、上述したミラー18が固定され、第1筒状部21aの外周にはそのミラーと対向するようにして透光窓16aが設けられている。第1テーパ部21dは、第1筒状部21aと第2筒状部21bとの間を第2筒状部21bに向かって徐々に内径が大きくなるようなテーパ形状に形成されている。第2テーパ部21eも同様の構成となる。このようなテーパ形状とすることで、検査光の内部反射を防ぐことができ、高精度の検査をすることができる。   FIG. 2 shows an enlarged view of the inspection head 16. The inspection head 16 includes a sensor head 21 that is inserted into the inspection object 100 and a main body side head 22 that fixes the sensor head 21. The sensor head 21 includes a first tubular portion 21a having a small diameter and a straight tube shape from the front end side, a second tubular portion 21b having a larger inner diameter than the first tubular portion 21a, and a second tubular portion 21b. The 3rd cylindrical part 21c with a large internal diameter, the 1st taper part 21d which connects between the 1st cylindrical part 21a and the 2nd cylindrical part 21b, the 2nd cylindrical part 21b, and the 3rd cylindrical part 21c And a second taper portion 21e that connects the two. The sensor head 21 has a tubular shape and is integrally formed of a material such as metal. The 1st cylindrical part 21a, the 2nd cylindrical part 21b, and the 3rd cylindrical part 21c are arrange | positioned coaxially centering on the axis line AX. The third cylindrical portion 21 c is fixed to the main body side head 22. In addition, the mirror 18 mentioned above is fixed to the front-end | tip part of the 1st cylindrical part 21a, and the transparent window 16a is provided in the outer periphery of the 1st cylindrical part 21a so that the mirror may be opposed. 21 d of 1st taper parts are formed in the taper shape so that an internal diameter may become large gradually toward the 2nd cylindrical part 21b between the 1st cylindrical part 21a and the 2nd cylindrical part 21b. The second tapered portion 21e has the same configuration. By adopting such a tapered shape, internal reflection of inspection light can be prevented, and high-precision inspection can be performed.

測定対象となる被検査物100の内周面100aとレンズ17との距離をa(図2では、レンズ17と透光窓16aとの距離をa1、透光窓16aと内周面100aとの距離をa2とし、a=a1+a2となる。)、レンズ17の径をDとすると、各テーパ部21d、21eのテーパ角度θの制限は、
tanθ=D/2a
となる。テーパ角度θは、各テーパ部21d、21eのテーパ面と平行な直線と軸線AXに平行な直線とのなす角である。センサヘッド21の形状は、レンズ17を通過する検査光及び反射光の光路を遮らないように設定される。このため、センサヘッド21の先端側の第1筒状部21aでは小径となり、本体側の第3筒状部21cでは大径となる。各筒状部21a〜21cの長さは、各筒状部21a〜21cの所望の外径に基づき求められる内径が光路と干渉しない長さに設定される。
The distance between the inner peripheral surface 100a of the object 100 to be measured and the lens 17 is a (in FIG. 2, the distance between the lens 17 and the transparent window 16a is a1, and the distance between the transparent window 16a and the inner peripheral surface 100a is a. If the distance is a2 and a = a1 + a2, and the diameter of the lens 17 is D, the limitation on the taper angle θ of each of the taper portions 21d and 21e is
tan θ = D / 2a
It becomes. The taper angle θ is an angle formed by a straight line parallel to the tapered surfaces of the taper portions 21d and 21e and a straight line parallel to the axis AX. The shape of the sensor head 21 is set so as not to block the optical path of inspection light and reflected light passing through the lens 17. For this reason, the first cylindrical portion 21a on the distal end side of the sensor head 21 has a small diameter, and the third cylindrical portion 21c on the main body side has a large diameter. The length of each cylindrical part 21a-21c is set to the length by which the internal diameter calculated | required based on the desired outer diameter of each cylindrical part 21a-21c does not interfere with an optical path.

検査ヘッド16の作用を説明する。図3に内部の奥行が深い深穴で、かつ内径が大径の被検査物101の内周面101aの走査を説明する図を示す。このような深穴かつ大径の被検査物101の内部であってもセンサヘッド21の第3筒状部21cまで挿入可能であり、内周面101aを走査できる。図4は、内部の奥行が浅い浅穴で、かつ内径が小径の被検査物102の内周面102aの走査を説明する図である。浅穴かつ小径の被検査物102の場合、従来のような大径ストレート形状のセンサヘッドでは、被検査物102の内部に挿入することができず、センサヘッドを小径ストレート形状のものに交換せざるを得ない。本形態の検査ヘッド16では、第1筒状部21aが小径なので検査ヘッド16を交換することなく被検査物102の内部にも第1筒状部21aを挿入することができる。被検査物100は、一例として、内径が4〜8[mm]、内部の奥行が20〜60[mm]のものが検査される。つまり、小口径として4[mm]程度、大口径として8[mm]程度、浅穴として20[mm]程度、深穴として60[mm]程度をそれぞれ想定している。   The operation of the inspection head 16 will be described. FIG. 3 is a diagram illustrating scanning of the inner peripheral surface 101a of the inspection object 101 having a deep hole with a deep inner depth and a large inner diameter. Even inside the inspection object 101 having such a deep hole and a large diameter, the third cylindrical portion 21c of the sensor head 21 can be inserted, and the inner peripheral surface 101a can be scanned. FIG. 4 is a diagram for explaining scanning of the inner peripheral surface 102a of the inspection object 102 having a shallow hole with a shallow inner depth and a small inner diameter. In the case of the inspection object 102 having a shallow hole and a small diameter, a conventional large-diameter straight sensor head cannot be inserted into the inspection object 102, and the sensor head can be replaced with a small-diameter straight object. I must. In the inspection head 16 of this embodiment, since the first cylindrical portion 21a has a small diameter, the first cylindrical portion 21a can be inserted into the inspection object 102 without replacing the inspection head 16. As an example, the inspection object 100 is inspected having an inner diameter of 4 to 8 [mm] and an inner depth of 20 to 60 [mm]. That is, it is assumed that the small diameter is about 4 [mm], the large diameter is about 8 [mm], the shallow hole is about 20 [mm], and the deep hole is about 60 [mm].

図5に、深穴で、かつ内部に段差を有し、奥側で小径となる被検査物103の内周面103aの走査を説明する図を示す。このような内部に段差を有する被検査物103では、大径ストレート形状のセンサヘッドでは、奥側の小径部に挿入できず、一方、小径ストレート形状のセンサヘッドでは、センサヘッドの長さが足りず、奥側の走査ができない。本形態の検査ヘッド16では、センサヘッド21の長さも従来の大径ストレート形状のセンサヘッドと同様の長さを有しており、さらに第1筒状部21aが小径なので奥側の小径部であっても挿入可能となる。   FIG. 5 is a diagram for explaining scanning of the inner peripheral surface 103a of the inspection object 103 which is a deep hole and has a step inside, and which has a small diameter on the back side. In such an inspected object 103 having a step inside, a large-diameter straight-shaped sensor head cannot be inserted into the small-diameter portion on the back side, while a small-diameter straight-shaped sensor head is short in length. The back side cannot be scanned. In the inspection head 16 of this embodiment, the length of the sensor head 21 is the same as that of the conventional large-diameter straight-shaped sensor head, and the first cylindrical portion 21a has a small diameter. Even if there is, it can be inserted.

本発明は、上述した形態に限定されることなく、種々の形態にて実施することができる。例えば、本形態では、3つの筒状部21a〜21c、2つのテーパ部21d、21eを有するセンサヘッド21で説明したがこれに限定されない。例えば、2つの筒状部と1つのテーパ部を有するセンサヘッドであってもよい。あるいは、4つ以上の筒状部と3つ以上のテーパ部を有するセンサヘッドであってもよい。筒状部及びテーパ部の個数は、レンズ17から検査面までの距離と光路とに応じて適宜設けてよい。センサヘッド21の材質は、金属に限られず、一例として、ガラス、樹脂等でもよい。   The present invention is not limited to the above-described form and can be implemented in various forms. For example, in this embodiment, the sensor head 21 having the three cylindrical portions 21a to 21c and the two tapered portions 21d and 21e has been described, but the present invention is not limited to this. For example, a sensor head having two cylindrical portions and one tapered portion may be used. Or the sensor head which has four or more cylindrical parts and three or more taper parts may be sufficient. The number of the cylindrical portions and the tapered portions may be appropriately provided according to the distance from the lens 17 to the inspection surface and the optical path. The material of the sensor head 21 is not limited to metal, and may be glass, resin, or the like as an example.

本発明の一形態に係る検査ヘッドが適用された表面検査装置の概略構成を示す図。The figure which shows schematic structure of the surface inspection apparatus with which the test | inspection head which concerns on one form of this invention was applied. 検査ヘッドの拡大図。The enlarged view of an inspection head. 深穴で、かつ大径の被検査物の内周面の走査を説明する図。The figure explaining the scanning of the internal peripheral surface of a to-be-tested object which is a deep hole and has a large diameter. 浅穴で、かつ小径の被検査物の内周面の走査を説明する図。The figure explaining the scanning of the inner peripheral surface of a to-be-inspected object with a shallow hole and a small diameter. 深穴で、かつ内部に段差を有し、奥側で小径となる被検査物の内周面の走査を説明する図。The figure explaining the scanning of the internal peripheral surface of the to-be-inspected object which has a level | step difference inside and is a deep hole, and becomes a small diameter on the back side.

符号の説明Explanation of symbols

1 表面検査装置
16 検査ヘッド
16a 透光窓(開口部)
17 レンズ(集光レンズ)
21 センサヘッド
21a 第1筒状部
21b 第2筒状部
21d テーパ部
100 被検査物
100a 内周面
AX 軸線
DESCRIPTION OF SYMBOLS 1 Surface inspection apparatus 16 Inspection head 16a Translucent window (opening part)
17 Lens (Condenser lens)
21 Sensor head 21a 1st cylindrical part 21b 2nd cylindrical part 21d Tapered part 100 Inspected object 100a Inner peripheral surface AX Axis line

Claims (2)

被検査物の内周面に検査光を照射し、その反射光の光量に基づいて前記内周面を検査する表面検査装置に適用される検査ヘッドであって、
前記検査ヘッドは、中空筒状でその軸線の回りに回転されつつ前記被検査物の内部に挿入されるセンサヘッドを有し、
前記センサヘッドには、その先端側から、所定の内径を有し、かつ前記被検査物の内部に挿入可能に形成された第1筒状部と、前記第1筒状部よりも大きい内径を有し、かつ前記被検査物の内部に挿入可能に形成された第2筒状部と、が設けられ、かつ前記第1筒状部と前記第2筒状部との間には、前記第2筒状部に向かって徐々に内径が大きくなるテーパ状に形成され、かつ前記被検査物の内部に挿入可能に形成された第1テーパ部が設けられ、
前記センサヘッドの外側に位置して前記検査光を集光する集光レンズを介して前記センサヘッド内に前記検査光を通過させ、前記第1筒状部の外周に設けられた開口部から前記内周面に前記検査光を照射し、
前記集光レンズを介した前記検査光の光路を遮らないように、前記第1筒状部、前記第2筒状部及び前記第1テーパ部の内径が設定され
前記センサヘッドは、前記第2筒状部よりも大きい内径を有し、かつ前記被検査物の内部に挿入可能に形成された第3筒状部をさらに備え、前記第2筒状部と前記第3筒状部との間には、前記第3筒状部に向かって徐々に内径が大きくなるテーパ状に形成され、かつ前記被検査物の内部に挿入可能に形成された第2テーパ部が設けられ、
前記集光レンズを介した前記検査光の光路を遮らないように、前記第1筒状部、前記第2筒状部、前記第3筒状部、前記第1テーパ部及び前記第2テーパ部の内径が設定されていることを特徴とする表面検査装置の検査ヘッド。
An inspection head applied to a surface inspection apparatus that irradiates an inner peripheral surface of an object to be inspected with inspection light and inspects the inner peripheral surface based on the amount of reflected light,
The inspection head has a sensor head that is inserted into the inspection object while being rotated around its axis in a hollow cylindrical shape,
The sensor head has a first cylindrical portion that has a predetermined inner diameter from the front end side and that can be inserted into the inspection object, and an inner diameter that is larger than the first cylindrical portion. And a second cylindrical part formed so as to be insertable inside the inspection object, and between the first cylindrical part and the second cylindrical part, the second cylindrical part is provided. A tapered portion having an inner diameter that gradually increases toward the cylindrical portion, and a first tapered portion that is formed so as to be insertable inside the inspection object;
The inspection light is allowed to pass through the sensor head via a condensing lens that is located outside the sensor head and condenses the inspection light, and the opening is provided on the outer periphery of the first cylindrical portion. Irradiate the inner peripheral surface with the inspection light,
Inner diameters of the first cylindrical portion, the second cylindrical portion, and the first tapered portion are set so as not to block the optical path of the inspection light via the condenser lens ,
The sensor head further includes a third cylindrical portion having an inner diameter larger than that of the second cylindrical portion and formed to be insertable into the inspection object, and the second cylindrical portion and the second cylindrical portion, A second tapered portion formed between the third cylindrical portion and a tapered shape having an inner diameter that gradually increases toward the third cylindrical portion, and that can be inserted into the inspection object. Is provided,
The first cylindrical portion, the second cylindrical portion, the third cylindrical portion, the first tapered portion, and the second tapered portion so as not to block the optical path of the inspection light through the condenser lens. An inspection head of a surface inspection apparatus, wherein the inner diameter of the surface inspection apparatus is set .
前記センサヘッドは、一体に形成されていることを特徴とする請求項に記載の検査ヘッド。 The inspection head according to claim 1 , wherein the sensor head is integrally formed.
JP2008324233A 2008-12-19 2008-12-19 Inspection head of surface inspection equipment Active JP5638195B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008324233A JP5638195B2 (en) 2008-12-19 2008-12-19 Inspection head of surface inspection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008324233A JP5638195B2 (en) 2008-12-19 2008-12-19 Inspection head of surface inspection equipment

Publications (2)

Publication Number Publication Date
JP2010145283A JP2010145283A (en) 2010-07-01
JP5638195B2 true JP5638195B2 (en) 2014-12-10

Family

ID=42565871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008324233A Active JP5638195B2 (en) 2008-12-19 2008-12-19 Inspection head of surface inspection equipment

Country Status (1)

Country Link
JP (1) JP5638195B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7131792B2 (en) * 2017-10-26 2022-09-06 長野オートメーション株式会社 inspection system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60178815U (en) * 1984-05-09 1985-11-27 三菱重工業株式会社 Intraductal inspection scope
JPH0114914Y2 (en) * 1988-05-26 1989-05-02
JP4997367B2 (en) * 2006-05-23 2012-08-08 キリンテクノシステム株式会社 Surface inspection device

Also Published As

Publication number Publication date
JP2010145283A (en) 2010-07-01

Similar Documents

Publication Publication Date Title
US7602487B2 (en) Surface inspection apparatus and surface inspection head apparatus
US7944554B2 (en) Inspection head supporting structure in surface inspecting apparatus and surface inspecting apparatus
WO2007135915A1 (en) Surface examining device
JP4923208B2 (en) Support structure of inspection head in surface inspection equipment
JP2007315803A (en) Surface inspection device
JP4923211B2 (en) Surface inspection device
JP4339094B2 (en) Surface inspection device
JP2010139432A (en) Surface inspection device
JP5638195B2 (en) Inspection head of surface inspection equipment
WO2019083009A1 (en) Inspection system and inspection method
JP4997367B2 (en) Surface inspection device
JP6157245B2 (en) Laser processing apparatus and laser optical axis adjustment method
JP2008164532A (en) Apparatus and method for surface inspection
JP4887517B2 (en) Surface inspection apparatus and centering adjustment method for inspection head
JP4923210B2 (en) Surface inspection device
JP2007315823A (en) Surface inspecting device
JP4923209B2 (en) Surface inspection device
JP5223478B2 (en) Scattering characteristic evaluation equipment
JP2008076322A (en) Surface inspection device
WO2019113955A1 (en) Sub-film defect detection method and sub-film defect detection device
JP5533583B2 (en) Thickness measuring device for translucent tubular object
JP5570323B2 (en) Laser processing apparatus and laser processing method
JP2009128156A (en) Inspection head for surface inspection device and assembling method of inspection head
JP7131792B2 (en) inspection system
JP2007315804A (en) Surface inspection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131028

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140625

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140625

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140804

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141022

R150 Certificate of patent or registration of utility model

Ref document number: 5638195

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250