JP2007170897A - Liquid-receiving reservoir for liquid sensor, and cooling device equipped with the same - Google Patents

Liquid-receiving reservoir for liquid sensor, and cooling device equipped with the same Download PDF

Info

Publication number
JP2007170897A
JP2007170897A JP2005366078A JP2005366078A JP2007170897A JP 2007170897 A JP2007170897 A JP 2007170897A JP 2005366078 A JP2005366078 A JP 2005366078A JP 2005366078 A JP2005366078 A JP 2005366078A JP 2007170897 A JP2007170897 A JP 2007170897A
Authority
JP
Japan
Prior art keywords
liquid
liquid receiving
sensor
receiving surface
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005366078A
Other languages
Japanese (ja)
Other versions
JP4736786B2 (en
Inventor
Toshiaki Kikui
俊明 菊井
Toshihiko Matsuda
利彦 松田
Shigeru Narakino
滋 楢木野
Kazuhiro Seguchi
和宏 瀬口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005366078A priority Critical patent/JP4736786B2/en
Publication of JP2007170897A publication Critical patent/JP2007170897A/en
Application granted granted Critical
Publication of JP4736786B2 publication Critical patent/JP4736786B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid-receiving reservoir for efficiently transferring dripping liquid to the detection region, for detecting the liquid, in a short time, and to provide the cooling device provided with the same. <P>SOLUTION: The liquid-receiving sensor comprises a flat first liquid-receiving surface 2a on one side; a first liquid-receiving part 2 provided with the outer peripheral wall 2b along the outer periphery of the first liquid-receiving surface 2a; a three tabular protrusions 5 formed in the first liquid-receiving surface 2a; two of the first groove parts 5a held inbetween the tabular protrusions 5; and a sensor fixing part 4, communicating with the first groove part 5a and fixing a liquid sensor 3. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、滴下した液体を受け止め、その液体を液体センサの検出領域へ移送する液体センサ用受液容器及びそれを備えた冷却装置に関するもので、例えば電子機器の筐体内部に配設された超小型演算処理装置(以下、MPUと称する)などの発熱電子部品を、液体冷媒の循環を利用して冷却するときに用いられる冷却装置の液体冷媒の漏れを検出する場合に用いられるものである。   The present invention relates to a liquid sensor receiving container for receiving a dropped liquid and transferring the liquid to a detection region of a liquid sensor and a cooling device including the same, and is disposed inside a casing of an electronic device, for example. It is used when detecting leakage of liquid refrigerant in a cooling device used when cooling a heat-generating electronic component such as an ultra-compact processing unit (hereinafter referred to as MPU) using the circulation of liquid refrigerant. .

最近のコンピューターにおけるデータ処理の高速化の動きはきわめて急速であり、MPUのクロック周波数は、以前と比較して格段に高いものになってきている。   Recently, the speed of data processing in computers has been very rapid, and the clock frequency of MPU has become much higher than before.

その結果、MPUの発熱量が増大し、従来のように放熱フィンを有するヒートシンクを発熱体に接触させて放熱する方法だけなく、そのヒートシンクをファンで直接冷却する方法、あるいは受熱体と放熱体とをヒートパイプを用いて熱接続したヒートシンクモジュールを構成して、その放熱体をファンの送風で強制冷却する方法などが採用されている。   As a result, the amount of heat generated by the MPU increases, and not only the conventional method of dissipating heat by bringing a heat sink having a radiation fin into contact with the heat generator, but also a method of directly cooling the heat sink with a fan, or a heat receiver and a radiator A heat sink module in which the heat sink is thermally connected using a heat pipe is configured, and a method of forcibly cooling the heat radiating body by blowing air from a fan is employed.

さらに、近年の半導体集積回路における演算処理の高速化、処理容量の大容量化、及び画像処理の高速化などに伴い、従来では大型電子計算機の分野で用いられていたような液体冷媒の循環による効率的な冷却装置が、比較的可搬性の高いデスクトップパソコンやPCサーバなどの電子機器にも搭載されはじめている。   Furthermore, with the recent increase in processing speed, processing capacity, and image processing speed in semiconductor integrated circuits, the liquid refrigerant circulation that has been used in the field of large-sized computers has been used. Efficient cooling devices are beginning to be installed in electronic devices such as desktop PCs and PC servers that are relatively portable.

今後は、受熱体と放熱体のそれぞれにおいて、熱伝導性の高い液体冷媒との効率的な熱交換を行わせ、同時にポンプを用いてその液体冷媒を循環駆動させることで、受熱体から放熱体の方向へ熱輸送を行い、発熱体の熱を効率的に放熱体に伝え、さらに外部へ放熱する冷却装置なども必要不可欠となってきている。   In the future, each of the heat receiving body and the heat radiating body performs efficient heat exchange with the liquid refrigerant having high thermal conductivity, and at the same time uses a pump to circulate and drive the liquid refrigerant, so that the heat receiving body and the heat radiating body A cooling device or the like is also indispensable for transporting heat in the direction of, efficiently transferring the heat of the heating element to the radiator, and further dissipating the heat to the outside.

今後は、ポンプを用いて熱伝導性の高い液体冷媒を強制循環させ受熱体と放熱体との間で効率的な熱交換をさせて放熱する冷却装置なども必要不可欠となってきており、さらにその冷却能力の向上と小型・軽量化がより一層必要とされている。   In the future, cooling devices that use a pump to forcibly circulate liquid refrigerant with high thermal conductivity and efficiently exchange heat between the heat receiving body and the heat radiating body will become indispensable. There is a further need to improve the cooling capacity and to reduce the size and weight.

また、そのような冷却装置においては、信頼性の向上を目的として液体冷媒の漏れを早期にしかも確実に検出できる冷却装置が必要となり、複数の発熱電子部品の冷却に対応しながら液体冷媒の漏れも検出できる従来の技術としては、例えば(特許文献1)に開示されているように、複数の冷却エレメントに何らかの原因で液体冷媒の漏れが発生しても、液体センサをハウジング内に設けて早期の検出を可能とした冷却装置が知られている。   In addition, such a cooling device requires a cooling device that can detect liquid refrigerant leakage early and reliably for the purpose of improving reliability. For example, as disclosed in (Patent Document 1), as a conventional technique capable of detecting a liquid refrigerant, even if leakage of a liquid refrigerant occurs for some reason in a plurality of cooling elements, a liquid sensor is provided in the housing for an early stage. There is known a cooling device capable of detecting the above.

図11(a)、(b)は、その(特許文献1)に示された実施の形態で、図11(a)の(特許文献1)の実施の形態に記載の冷却装置の主要部の断面図と、図11(b)の同冷却装置の正面図を用いて説明する。   11 (a) and 11 (b) are embodiments shown in (Patent Document 1) of the main part of the cooling device described in the embodiment (Patent Document 1) of FIG. 11 (a). A cross-sectional view and a front view of the cooling device in FIG.

図11(a)に示したように、モジュール基板50の表面には複数の集積回路素子51が実装されている。コールドプレート52は、発熱電子部品である集積回路素子51の冷却体を表しており、その内部に液体冷媒が通る流通路53を有している。また、コールドプレート52は、その一面に集積回路素子51の各々に対応する複数の冷却エレメント54を有している。   As shown in FIG. 11A, a plurality of integrated circuit elements 51 are mounted on the surface of the module substrate 50. The cold plate 52 represents a cooling body of the integrated circuit element 51 that is a heat generating electronic component, and has a flow passage 53 through which liquid refrigerant passes. The cold plate 52 has a plurality of cooling elements 54 corresponding to each of the integrated circuit elements 51 on one surface thereof.

そして、冷却エレメント54の各々の頂部がそれぞれ各集積回路素子51に密着するよ
うに、コールドプレート52はハウジング55によりモジュール基板50に固定されている。
The cold plate 52 is fixed to the module substrate 50 by the housing 55 so that the tops of the cooling elements 54 are in close contact with the integrated circuit elements 51, respectively.

ここで、ハウジング55は、例えば、モジュール基板50及びコールドプレート52の外周縁部に沿う枠型形状のもので、流通路53は各冷却エレメント54の内部に連通しており、流通路53内に液体冷媒を通すことで、集積回路素子51に対する効率的な冷却が可能になる。   Here, the housing 55 has, for example, a frame shape along the outer peripheral edges of the module substrate 50 and the cold plate 52, and the flow passages 53 communicate with the inside of each cooling element 54. By passing the liquid refrigerant, the integrated circuit element 51 can be efficiently cooled.

また、図11(b)に示したように、冷却エレメント54はコールドプレート52上に複数個設けられており、液体センサ56は冷却エレメント54の下方に位置するようにハウジング55内に収容されている。本実施の形態では、液体冷媒が水であるので、液体センサ56としては、例えば、水の付着による電気抵抗の変化を検出するものを採用可能である。   Further, as shown in FIG. 11B, a plurality of cooling elements 54 are provided on the cold plate 52, and the liquid sensor 56 is accommodated in the housing 55 so as to be positioned below the cooling element 54. Yes. In the present embodiment, since the liquid refrigerant is water, for example, a sensor that detects a change in electrical resistance due to adhesion of water can be employed as the liquid sensor 56.

その液体センサ56は、図11(a)に示したように、コールドプレート52に固定される帯状の絶縁体基板56aと、この絶縁体基板56aの冷却エレメント54側の面に形成される少なくとも2本の導体パターン56bとを含んでいる。   As shown in FIG. 11A, the liquid sensor 56 includes a strip-shaped insulator substrate 56a fixed to the cold plate 52 and at least two surfaces formed on the surface of the insulator substrate 56a on the cooling element 54 side. And a conductor pattern 56b.

この構成によると、2本の導体パターン56b間におけるインピーダンスの大小により液体センサ56への水の付着を検出することができる。   According to this configuration, the adhesion of water to the liquid sensor 56 can be detected based on the magnitude of the impedance between the two conductor patterns 56b.

つまり、この実施の形態によると、液体センサ56をハウジング55内に設けているので、漏水の発生からその検出までの時間を大幅に短縮することができる。   That is, according to this embodiment, since the liquid sensor 56 is provided in the housing 55, the time from the occurrence of water leakage to its detection can be greatly shortened.

一方、前述したような冷却装置の液体冷媒の漏れ検出に対応したものではないが、例えば(特許文献2)に開示されているように、床面上に少し浮かせた状態で設置された半導体装置やその配管からの液体の漏れを検出するために、漏れが生じやすい床面やそこに配置された受け皿などにその漏れの有無を光学的に検出する液体センサを取り付けるための部材も知られている。   On the other hand, although it does not correspond to the liquid refrigerant leakage detection of the cooling device as described above, for example, as disclosed in (Patent Document 2), the semiconductor device installed in a slightly floating state on the floor surface In addition, in order to detect liquid leaks from pipes and pipes, members for attaching a liquid sensor that optically detects the presence or absence of leaks to a floor surface that tends to leak or a tray placed there are also known. Yes.

図12(a)、(b)はその(特許文献2)に示された実施の形態で、図12(a)の(特許文献2)の実施の形態に記載の液体センサ本体を待受部材に装着する途中の状態の断面図と、図12(b)の同液体センサ本体を待受部材に取り付けた後の状態の断面図を用いて説明する。   12 (a) and 12 (b) show an embodiment shown in (Patent Document 2). The liquid sensor main body described in the embodiment of (Patent Document 2) in FIG. 12 (a) is used as a standby member. A cross-sectional view in the middle of mounting on the device and a cross-sectional view in a state after the liquid sensor main body of FIG. 12B is attached to the standby member will be described.

この実施の形態の液体センサは、被浸水面Mに対して着脱可能とされ、その被浸水面M上における液体の漏れを検出するものであって、被浸水面M上に固設される待受部材100と、漏液検知手段を備えた液体センサ本体110と、待受部材100に対し液体センサ本体110を被浸水面Mと平行な矢印で示した方向へ移動させつつ着脱させることを可能とした嵌合手段とを備えて構成されている。   The liquid sensor according to this embodiment is detachable from the surface to be submerged M, detects a liquid leak on the surface to be submerged M, and waits to be fixed on the surface to be submerged M. The receiving member 100, the liquid sensor main body 110 provided with the liquid leakage detecting means, and the standby member 100 can be attached and detached while moving the liquid sensor main body 110 in the direction indicated by the arrow parallel to the surface to be submerged M. And a fitting means.

待受部材100は、被浸水面M上に予め固定した状態で立設された雄ネジ軸101と、液体センサ本体110の組付けに先だって予め雄ネジ軸101の上端部にナット109を螺合し、そのナット109の締め付けにより固定される取付部材102とから構成されている。   The standby member 100 includes a male screw shaft 101 erected in a state of being fixed in advance on the surface to be submerged M and a nut 109 screwed into the upper end of the male screw shaft 101 in advance prior to assembly of the liquid sensor main body 110. The mounting member 102 is fixed by tightening the nut 109.

なお、取付部材102は、合成樹脂製であり、全体として概ね直方体状をなすとともに、上下方向に貫通するボルト孔103が形成され、そのボルト孔103に金属製の筒体104が固着されている。   The attachment member 102 is made of a synthetic resin and has a substantially rectangular parallelepiped shape as a whole, and a bolt hole 103 penetrating in the vertical direction is formed, and a metal cylinder 104 is fixed to the bolt hole 103. .

また、取付部材102には、その下面に密着されるとともに、取付部材102の後方(図12(a)における左方)へ延出する平板状の反射板105がカシメ付けにより固着されている。また、反射板105は、金属板材からなり、その上面(表面)は反射率の高い色(例えば、シルバーや白など)とされている。   In addition, a flat reflector 105 that is in close contact with the lower surface of the mounting member 102 and extends to the rear of the mounting member 102 (leftward in FIG. 12A) is fixed by caulking. Further, the reflection plate 105 is made of a metal plate material, and the upper surface (surface) thereof has a color with high reflectivity (for example, silver or white).

そして、取付部材102の左右両側面には、前後方向(取付部材102を被浸水面Mに固定した状態でその被浸水面Mと平行な方向)に直線状に延びるガイドリブ(図示せず)が形成されているとともに、各ガイドリブよりも上方であって比較的前端に近い位置に係止突起(図示せず)が形成され、さらに、その後面には嵌合凹部108が形成されている。   On both the left and right side surfaces of the mounting member 102, guide ribs (not shown) extending linearly in the front-rear direction (a direction parallel to the submerged surface M with the mounting member 102 fixed to the submerged surface M). In addition to being formed, a locking projection (not shown) is formed at a position that is above the guide ribs and relatively near the front end, and a fitting recess 108 is formed on the rear surface.

また、液体センサ本体110は、上面開放の略直方体状をなすケース111と、このケース111の開口部を液密状態に塞ぐ蓋112と、ケース111内に収容された回路基板113と、回路基板113に接続されたケーブル(図示せず)とを備えて構成されている。   The liquid sensor main body 110 includes a case 111 having a substantially rectangular parallelepiped shape with an open top surface, a lid 112 for closing the opening of the case 111 in a liquid-tight state, a circuit board 113 accommodated in the case 111, and a circuit board. And a cable (not shown) connected to 113.

ここで、ケース111は透光性を有する合成樹脂材料からなり、そのケース111の下面には、取付部材102に組み付けた状態において反射板105の上面に対して図面には現れない程度の微小な隙間を空けて対向する検知面115が形成されている。   Here, the case 111 is made of a synthetic resin material having translucency, and the bottom surface of the case 111 is so small that it does not appear in the drawing with respect to the top surface of the reflection plate 105 in a state assembled to the mounting member 102. A detection surface 115 is formed opposite to each other with a gap.

そして、そのケース111の前面には、左右一対のアーム部116が突出形成され、各アーム部116の内面には、前後方向に直線状に延びるガイド溝117が形成されているとともに、取付部材102の係止突起と係止可能な係止溝118が形成されている。   A pair of left and right arm portions 116 project from the front surface of the case 111, and a guide groove 117 extending linearly in the front-rear direction is formed on the inner surface of each arm portion 116, and the attachment member 102. A locking groove 118 that can be locked with the locking protrusion is formed.

さらに、ケース111の前面における両アーム部116の間の位置には、嵌合突起119が形成されている。   Further, a fitting protrusion 119 is formed at a position between the arm portions 116 on the front surface of the case 111.

また、回路基板113はケース111内に固定され、その回路基板113の下面には、発光部120と受光部121が検知面115の上方に位置するように取り付けられている。   The circuit board 113 is fixed in the case 111, and the light emitting unit 120 and the light receiving unit 121 are attached to the lower surface of the circuit board 113 so as to be positioned above the detection surface 115.

また、ケーブルは、検出回路(図示せず)と回路基板113とに接続されており、発光部120に対し光を発するための電気信号を送るとともに、受光部121で受光した光の強度に応じた電気信号を検出回路へ送るための信号伝達の機能を有する。   The cable is connected to a detection circuit (not shown) and the circuit board 113, and sends an electrical signal for emitting light to the light emitting unit 120 and also according to the intensity of light received by the light receiving unit 121. It has a function of signal transmission for sending the electrical signal to the detection circuit.

かかるケーブルは、ケース111の側面に突成した筒状導出部を通して液体センサ本体110の外部へ導出されている。このケーブルの導出方向は、液体センサ本体110を取付部材102に固定した状態においてはその被浸水面Mと概ね平行となる。   Such a cable is led out of the liquid sensor main body 110 through a cylindrical lead-out portion protruding from the side surface of the case 111. The lead-out direction of the cable is substantially parallel to the surface to be submerged M when the liquid sensor main body 110 is fixed to the attachment member 102.

そして、被浸水面Mに固定されている取付部材102に対して液体センサ本体110を組み付けると、使用可能な状態となる。この状態において、被浸水面M上において液体の漏れがない場合には、発光部120から発せられた光が、検知面115において全反射して受光部121で受光される。   Then, when the liquid sensor main body 110 is assembled to the attachment member 102 fixed to the surface to be submerged M, the liquid sensor main body 110 can be used. In this state, when there is no liquid leakage on the surface to be immersed M, the light emitted from the light emitting unit 120 is totally reflected by the detection surface 115 and received by the light receiving unit 121.

これに対し、被浸水面M上に液体が漏れ出した場合には、その液体が反射板105と検知面115との間の隙間に毛細管現象によって引き込まれ、その引き込まれた液体が反射板105と検知面115との間に介在する状態となる。この場合は、発光部120から発した光の多くが、検知面115と液体中を透過し、反射板105で反射し、もう一度液体中と検知面115を透過し、受光部121で受光されるのであるが、このときに受光される光の強度は、検知面115で全反射した場合に比べて弱い。   On the other hand, when the liquid leaks onto the surface to be submerged M, the liquid is drawn into the gap between the reflecting plate 105 and the detection surface 115 by capillary action, and the drawn liquid is reflected in the reflecting plate 105. And the detection surface 115. In this case, most of the light emitted from the light emitting unit 120 is transmitted through the detection surface 115 and the liquid, is reflected by the reflection plate 105, passes through the liquid and the detection surface 115 again, and is received by the light receiving unit 121. However, the intensity of the light received at this time is weaker than that of the case where the light is totally reflected by the detection surface 115.

そして、この受光部121で受光される光の強度が電気信号としてケーブルを介して検出回路へ送られ、検出回路では、送られてきた電気信号に基づいて液体の漏れの有無が検出される。   The intensity of light received by the light receiving unit 121 is sent as an electrical signal to the detection circuit via a cable, and the detection circuit detects the presence or absence of liquid leakage based on the sent electrical signal.

さらに、(特許文献3)では、液体センサ本体の取り付け部材が、その待受部材に対して着脱自在であって、液体の漏れを検出し、その漏れの原因箇所を修理した後に、床面や受け皿に残った液体を除去して乾燥させて元の状態に戻すのが比較的容易で、しかも一旦取り付けた後は容易に外れることのないように改善された構成が開示されている。
特開平7−263603号公報(第5頁、図2及び図3) 特開2002−116138号公報(第8頁の図12、第10頁の図11) 特開2004−28921号公報(第10頁、図1)
Furthermore, in (Patent Document 3), the attachment member of the liquid sensor main body is detachable from the standby member, and after detecting the leakage of the liquid and repairing the cause of the leakage, An improved configuration is disclosed that removes the liquid remaining in the tray and allows it to be dried and returned to its original state, and is not easily removed once attached.
JP-A-7-263603 (5th page, FIG. 2 and FIG. 3) JP 2002-116138 A (FIG. 12 on page 8, FIG. 11 on page 10) JP 2004-28921 A (page 10, FIG. 1)

しかしながら、(特許文献1)に記載されたような従来の技術では、複数の集積回路素子51のそれぞれに対応して密着した複数の冷却エレメント54のいずれについても、その漏れの滴下する場所が液体センサ56の真上であれば比較的早い検出が可能である反面、仮に、その滴下する場所が液体センサ56の真上ではなく、少しでも外れたり、集積回路素子51からモジュール基板50の方へ伝わったりすると、液体センサ56方向へ漏れた液体冷媒を移送するための受液容器がないので、液体センサ56で検出される前に電子回路の動作に支障が出るおそれもある。   However, in the conventional technique as described in (Patent Document 1), in any of the plurality of cooling elements 54 that are in close contact with each other corresponding to each of the plurality of integrated circuit elements 51, the place where the leakage drops is liquid. Although it is possible to detect relatively quickly if it is directly above the sensor 56, it is assumed that the dripping place is not directly above the liquid sensor 56, but is slightly removed, or from the integrated circuit element 51 toward the module substrate 50. If it is transmitted, there is no liquid receiving container for transferring the liquid refrigerant leaking in the direction of the liquid sensor 56, so that there is a possibility that the operation of the electronic circuit may be disturbed before being detected by the liquid sensor 56.

つまり、ハウジング55内に漏れた液体冷媒が溜まりその漏れが検出されるまでの時間が比較的長く、漏れの検出力が十分ではないという課題があった。   That is, there is a problem that the time until the liquid refrigerant that has leaked in the housing 55 accumulates and the leak is detected is relatively long, and the detection power of the leak is not sufficient.

また、漏れた液体冷媒を確実に受け止め溜めるためには、冷却エレメント54と液体センサ56を収容するハウジング55が必ず必要となり、高密度実装されたモジュール基板50に適用する場合であれば、そのハウジング55をモジュール基板50の外周全体に亘って接触させる必要があるので、その接触部を確保しようとするとモジュール基板50のパターン設計が制約を受けてしまい、構造も複雑となるので、設計や製作が困難になってしまうという課題があった。   Further, in order to reliably receive and accumulate the leaked liquid refrigerant, a housing 55 that accommodates the cooling element 54 and the liquid sensor 56 is absolutely necessary, and if this is applied to the module substrate 50 that is mounted with high density, the housing 55 needs to be brought into contact with the entire outer periphery of the module substrate 50. Therefore, if the contact portion is to be secured, the pattern design of the module substrate 50 is restricted and the structure becomes complicated. There was a problem that it would be difficult.

また、(特許文献2)や(特許文献3)に記載されたような従来の技術では、床面や受け皿などのように比較的広い範囲に及ぶような漏れ量の多い場合の漏れの検出には適しているが、液体センサ本体110の検知面115が非常に狭い領域なので、その漏れ自体が比較的微量である場合には、その検出領域に液体の漏れが入り込み、検出されるまでには長い時間を要するという課題があった。   In addition, in the conventional techniques described in (Patent Document 2) and (Patent Document 3), it is possible to detect a leak when there is a large amount of leakage such as a floor surface or a saucer. Is suitable, but since the detection surface 115 of the liquid sensor body 110 is a very narrow area, if the leak itself is relatively small, the liquid leaks into the detection area and is detected. There was a problem that it took a long time.

本発明は、このような従来の課題を解決するものであり、滴下した液体を受け止める受液部を有し、そこに滴下した液体が比較的微量であっても、その液体を効率的に液体センサの検出領域に移送し、短時間で検出できるようにした液体センサ用受液容器及びそれを備えた冷却装置を提供することを目的とする。   The present invention solves such a conventional problem, and has a liquid receiving portion for receiving the dropped liquid, and even if the amount of dropped liquid is relatively small, the liquid can be efficiently removed. An object of the present invention is to provide a liquid receiving container for a liquid sensor which is transferred to a detection region of a sensor and can be detected in a short time, and a cooling device including the same.

上記目的を達成するために、本発明は、一方に平坦な受液面を有し、その受液面の外周側縁部に沿って外周壁が立設された受液部と、受液面上に配置された1乃至複数の溝部と、溝部の一方端に液体センサを固定するセンサ固定部と、を備えたことを特徴とする。   In order to achieve the above object, the present invention provides a liquid receiving surface having a flat liquid receiving surface on one side, and an outer peripheral wall erected along an outer peripheral side edge of the liquid receiving surface, and a liquid receiving surface It is characterized by comprising one or a plurality of groove portions arranged above and a sensor fixing portion for fixing a liquid sensor to one end of the groove portion.

本発明の液体センサ用受液容器は、滴下した液体を受け止める受液部を有しており、その液体を効率的に液体センサの検出領域に移送して検出を容易にする。   The liquid sensor receiving container of the present invention has a liquid receiving part that receives the dropped liquid, and efficiently transfers the liquid to the detection region of the liquid sensor to facilitate detection.

本発明の請求項1記載の発明によれば、一方に平坦な受液面を有し、その受液面の外周側縁部に沿って外周壁が立設された受液部と、受液面上に配置された1乃至複数の溝部と、溝部の一方端に液体センサを固定するセンサ固定部と、を備えた液体センサ用受液容器で、受液部に滴下した液体が一旦平坦な受液面により受け止められ、次にその受け止められた液体が、受液面上の所定の位置に配置された溝部に流入し、さらにその溝部に流入した液体には、その溝部による毛細管現象も作用しながら、その溝部の一方端に液体センサを固定するセンサ固定部まで案内されるので、そのセンサ固定部の内部の液体センサの検出領域への移送がより促進される。   According to the first aspect of the present invention, there is provided a liquid receiving portion having a flat liquid receiving surface on one side and an outer peripheral wall erected along an outer peripheral side edge of the liquid receiving surface; A liquid sensor receiving container comprising one or a plurality of groove portions arranged on a surface and a sensor fixing portion for fixing a liquid sensor to one end of the groove portion. The liquid dripped onto the liquid receiving portion is once flat. The liquid received by the liquid receiving surface and then the received liquid flows into the groove portion arranged at a predetermined position on the liquid receiving surface, and the capillary phenomenon due to the groove portion also acts on the liquid flowing into the groove portion. However, since it is guided to the sensor fixing portion that fixes the liquid sensor to one end of the groove portion, the transfer to the detection region of the liquid sensor inside the sensor fixing portion is further promoted.

従って、受液部に滴下した液体が比較的微量であっても、その液体を効率的に液体センサの検出領域に移送でき、短時間での検出が可能となる。   Therefore, even if the amount of liquid dropped on the liquid receiving portion is relatively small, the liquid can be efficiently transferred to the detection area of the liquid sensor, and detection in a short time is possible.

また、受液面の外周側縁部に沿って立設された外周壁には、一旦受液面で受け止められた液体が液体センサ用受液容器の外部に溢れ出るのを防止する作用があり、確実にセンサ固定部の内部の液体センサの検出領域へその液体が流れていくようにできる。   In addition, the outer peripheral wall erected along the outer peripheral side edge of the liquid receiving surface has an action of preventing the liquid once received by the liquid receiving surface from overflowing to the outside of the liquid receiving container for the liquid sensor. The liquid can surely flow to the detection area of the liquid sensor inside the sensor fixing portion.

本発明の請求項2記載の発明によれば、一方に平坦な受液面を有し、その受液面の外周側縁部に沿って外周壁を立設した受液部と、受液面に対して反対側の面上に配置された1乃至複数の溝部と、溝部の一方端に液体センサを固定するセンサ固定部と、を備えた液体センサ用受液容器で、受液部に滴下した液体が一旦平坦な受液面により受け止められ、次にその受け止められた液体が、その受液面の一方端より反対側へターンして、その受液面に対して反対側の面の所定の位置に配置された溝部に流入し、さらにその溝部に流入した液体には、その溝部による毛細管現象も作用しながら、その溝部の一方端に液体センサを固定するセンサ固定部まで案内されるので、そのセンサ固定部の内部の液体センサの検出領域への移送がより促進される。   According to the invention described in claim 2 of the present invention, a liquid receiving portion having a flat liquid receiving surface on one side, and an outer peripheral wall erected along the outer peripheral side edge of the liquid receiving surface, and the liquid receiving surface A liquid receiving container for a liquid sensor, including one or a plurality of groove portions disposed on a surface opposite to the liquid surface, and a sensor fixing portion for fixing the liquid sensor to one end of the groove portion. The received liquid is once received by the flat liquid receiving surface, and then the received liquid turns to the opposite side from one end of the liquid receiving surface, and the predetermined surface on the opposite side to the liquid receiving surface Since the liquid flowing into the groove portion arranged at the position of the groove and further flowing into the groove portion is also guided by a capillary phenomenon due to the groove portion, it is guided to a sensor fixing portion that fixes the liquid sensor to one end of the groove portion. The transfer to the detection area of the liquid sensor inside the sensor fixing part is further promoted

従って、受液部に滴下した液体が比較的微量であっても、その液体を効率的に液体センサの検出領域に移送でき、短時間での検出が可能となる。   Therefore, even if the amount of liquid dropped on the liquid receiving portion is relatively small, the liquid can be efficiently transferred to the detection area of the liquid sensor, and detection in a short time is possible.

また、受液面の一方端で反対側へターンして、その受液面に対して反対側の面の所定の位置に配置された溝部を通ってセンサ固定部の方へ戻るように液体の移送ができ、受液面側に溝部を配置しなくてもよいので、限られたスペースでも受液面を確保できる。   Further, the liquid is turned so as to return to the sensor fixing portion through a groove portion arranged at a predetermined position on the surface opposite to the liquid receiving surface by turning to the opposite side at one end of the liquid receiving surface. Since the liquid can be transferred and the groove does not have to be disposed on the liquid receiving surface side, the liquid receiving surface can be secured even in a limited space.

さらに、受液面の外周側縁部に沿って立設された外周壁には、一旦受液面で受け止められた液体が液体センサ用受液容器の外部に溢れ出るのを防止する作用があり、確実にセンサ固定部の内部の液体センサの検出領域へその液体が流れていくようにできる。   Furthermore, the outer peripheral wall standing along the outer peripheral side edge of the liquid receiving surface has an action of preventing the liquid once received by the liquid receiving surface from overflowing to the outside of the liquid receiving container for the liquid sensor. The liquid can surely flow to the detection area of the liquid sensor inside the sensor fixing portion.

本発明の請求項3記載の発明によれば、受液面に液体が滴下され、液体センサが検知可能な使用状態において、受液部の受液面を、センサ固定部に近づくに従って重力方向へ下降するように傾斜させるので、受液部に滴下した液体が重力の作用によりその受液面の傾斜方向に沿って円滑に流れ、センサ固定部の内部の液体センサの検出領域へより効率的に移送することができる。   According to the third aspect of the present invention, in a use state where the liquid is dripped onto the liquid receiving surface and the liquid sensor can detect, the liquid receiving surface of the liquid receiving unit moves in the direction of gravity as it approaches the sensor fixing unit. Since the liquid is inclined so as to descend, the liquid dripped onto the liquid receiving part smoothly flows along the inclination direction of the liquid receiving surface by the action of gravity, and more efficiently into the detection area of the liquid sensor inside the sensor fixing part. Can be transported.

本発明の請求項4記載の発明によれば、受液面に液体が滴下され、液体センサが検知可能な使用状態において、溝部を、受液部の受液面の傾斜方向に沿って直線状に配置するの
で、溝部に流入した液体を、センサ固定部の内部の液体センサの検出領域へ最短距離で案内する作用があり、短時間での検出が可能となる。
According to the invention described in claim 4 of the present invention, in the use state where the liquid is dripped onto the liquid receiving surface and the liquid sensor can detect, the groove portion is linear along the inclination direction of the liquid receiving surface of the liquid receiving portion. Therefore, the liquid flowing into the groove portion is guided to the detection area of the liquid sensor inside the sensor fixing portion at the shortest distance, and detection in a short time becomes possible.

本発明の請求項5記載の発明によれば、受液面に液体が滴下され、液体センサが検知可能な使用状態において、溝部の底面を、センサ固定部に近づくに従って重力方向へ下降するように傾斜させるので、溝部に流入した液体が重力の作用によりその溝部の傾斜方向に沿って円滑に流れ、その溝部の一方端に液体センサを固定するセンサ固定部の内部の液体センサの検出領域へより効率的に移送することができる。   According to the invention described in claim 5 of the present invention, the liquid is dropped on the liquid receiving surface, and in a use state where the liquid sensor can detect, the bottom surface of the groove portion is lowered in the direction of gravity as it approaches the sensor fixing portion. Since it is inclined, the liquid that has flowed into the groove flows smoothly along the inclination direction of the groove due to the action of gravity, and the liquid sensor is fixed to one end of the groove. It can be transferred efficiently.

本発明の請求項6記載の発明によれば、受液面に液体が滴下され、液体センサが検知可能な使用状態において、受液部の受液面を、センサ固定部から離れるに従って重力方向へ下降するように傾斜させるので、受液部に滴下した液体が重力の作用によりその受液面の傾斜方向に沿って円滑に流れ、その受液面の一方端より反対側の面へターンして、その受液面に対して反対側の面の所定の位置に配置された溝部を通って、その溝部の一方端に液体センサを固定するセンサ固定部の内部の液体センサの検出領域への移送がより促進される。   According to the sixth aspect of the present invention, in a use state where the liquid is dripped onto the liquid receiving surface and the liquid sensor can detect, the liquid receiving surface of the liquid receiving unit moves in the direction of gravity as the distance from the sensor fixing unit increases. Since the liquid is inclined so as to descend, the liquid dripped onto the liquid receiving part flows smoothly along the inclined direction of the liquid receiving surface by the action of gravity, and turns to the surface opposite to the one end of the liquid receiving surface. The liquid sensor passes through a groove portion disposed at a predetermined position on the surface opposite to the liquid receiving surface, and is transferred to the detection region of the liquid sensor inside the sensor fixing portion that fixes the liquid sensor to one end of the groove portion. Is more promoted.

本発明の請求項7記載の発明によれば、受液面に液体が滴下され、液体センサが検知可能な使用状態において、溝部を、受液面に対して反対側の面の傾斜方向に沿って直線状に配置するので、その溝部に流入した液体にはその溝部による毛細管現象も作用しながら、その溝部の一方端に液体センサを固定するセンサ固定部の内部の液体センサの検出領域へ最短距離で案内する作用があり、短時間での検出が可能となる。   According to the seventh aspect of the present invention, in a use state where the liquid is dropped on the liquid receiving surface and the liquid sensor can detect, the groove portion extends along the inclined direction of the surface opposite to the liquid receiving surface. Since the liquid flowed into the groove is also affected by the capillary action of the groove, the shortest distance to the detection area of the liquid sensor inside the sensor fixing part that fixes the liquid sensor to one end of the groove There is an effect of guiding by distance, and detection in a short time becomes possible.

本発明の請求項8記載の発明によれば、少なくともその一方に平坦な面を有する覆設部を、溝部を覆うように組み合わせ、その溝部と覆設部の平坦な面との間に隙間を形成するので、その溝部と覆設部の平坦な面との間の隙間に流入した液体に対して毛細管現象による吸引力が作用し、その隙間での液体の移送力を容易に大きくすることができ、センサ固定部の内部の液体センサの検出領域への移送をより促進することができる。   According to the eighth aspect of the present invention, the covering portion having a flat surface on at least one of the covering portions is combined so as to cover the groove portion, and a gap is formed between the groove portion and the flat surface of the covering portion. Therefore, the suction force by capillary action acts on the liquid flowing into the gap between the groove and the flat surface of the covering portion, and the liquid transfer force in the gap can be easily increased. It is possible to further promote the transfer of the liquid sensor inside the sensor fixing portion to the detection region.

本発明の請求項9記載の発明によれば、受液部に開口部を設け、その開口部を取り囲むように突出壁を形成したので、その開口部に、例えば固定部材を挿入して冷却装置などの他の関連部材に容易に固定できるという作用があり、その液体センサ用受液容器を電子機器の筐体内部の冷却装置、周辺機器、または他の関連部材などの液体が滴下すると考えられる場所に配置して容易に固定できる。   According to the ninth aspect of the present invention, since the opening is provided in the liquid receiving portion and the protruding wall is formed so as to surround the opening, for example, a fixing member is inserted into the opening to cool the cooling device. It is considered that liquid such as a cooling device, peripheral device, or other related member inside the casing of the electronic device is dropped on the liquid sensor receiving container. Can be easily fixed by placing it in place.

また、開口部を取り囲むように形成された突出壁には、受液部の受液面で受け止められた液体が、その開口部に挿入された固定部材との界面を伝わってその液体センサ用受液容器の外部に溢れ出るのを防止する作用があり、その液体を確実にセンサ固定部の内部の液体センサの検出領域へ移送できる。   In addition, on the protruding wall formed so as to surround the opening, the liquid received by the liquid receiving surface of the liquid receiving part travels through the interface with the fixing member inserted into the opening and receives the liquid sensor. This has the effect of preventing the liquid container from overflowing, and the liquid can be reliably transferred to the detection area of the liquid sensor inside the sensor fixing portion.

本発明の請求項10記載の発明によれば、受液面に液体が滴下され、液体センサが検知可能な使用状態において、開口部を取り囲むように形成された突出壁の頂面を、受液部の外周側縁部に沿って立設された外周壁の頂面よりも重力方向で上方に位置させるので、その開口部に挿入された固定部材との界面には、一旦液体が到達すると毛細管現象により吸い込まれ、液体センサ用受液容器の外部に容易に溢れ出る可能性があるが、外周壁の頂面よりも重力方向で上方に位置させると、その界面に液体が吸い込まれるのを防止する作用があり、その液体を確実にセンサ固定部の内部の液体センサの検出領域へ移送できる。   According to the invention of claim 10 of the present invention, the top surface of the protruding wall formed so as to surround the opening in the use state where the liquid is dropped on the liquid receiving surface and the liquid sensor can detect the liquid receiving surface. Since it is positioned above the top surface of the outer peripheral wall erected along the outer peripheral edge of the portion in the direction of gravity, once the liquid reaches the interface with the fixing member inserted into the opening, the capillary tube Although it may be sucked in due to a phenomenon and easily overflow to the outside of the liquid sensor container, if it is positioned above the top surface of the outer peripheral wall in the direction of gravity, it prevents liquid from being sucked into the interface. The liquid can be reliably transferred to the detection area of the liquid sensor inside the sensor fixing portion.

本発明の請求項11記載の発明によれば、開口部を取り囲むように形成された突出壁とセンサ固定部との間に凸部を形成するので、その開口部に挿入された固定部材が仮に金属
製の場合であっても、突出壁とセンサ固定部との間に形成された凹凸部によりその固定部材と液体センサとの間の沿面距離を長く設定できるので、その分、耐電圧特性を向上する作用がある。
According to the eleventh aspect of the present invention, since the convex portion is formed between the protruding wall formed so as to surround the opening and the sensor fixing portion, the fixing member inserted into the opening is temporarily Even if it is made of metal, the unevenness formed between the protruding wall and the sensor fixing part can set the creeping distance between the fixing member and the liquid sensor to be long, so the withstand voltage characteristics can be increased accordingly. There is an action to improve.

つまり、その液体センサ用受液容器の冷却装置への固定やその冷却装置の電子機器内への搭載などの取り扱いの際に、金属製の固定部材を介して人体からの静電気により液体センサが電気的に破壊するのを未然に防止することができる。   In other words, when the liquid sensor receiving container is fixed to the cooling device or when the cooling device is mounted in an electronic device, the liquid sensor is electrically charged by static electricity from the human body via the metal fixing member. Can be prevented beforehand.

本発明の請求項12記載の発明によれば、受液面の外周側縁部に立設された外周壁のコーナー部の内面形状を、その立設方向と垂直な断面において円弧状とするので、その外周壁のコーナー部での液体が毛細管現象により反重力方向へ這い上がりするのを抑制し、受液面で受け止められた液体が液体センサ用受液容器の外部に溢れ出るのを防止する作用があり、その液体をより確実にセンサ固定部の内部の液体センサの検出領域へ移送できる。   According to the twelfth aspect of the present invention, the inner surface shape of the corner portion of the outer peripheral wall erected on the outer peripheral side edge of the liquid receiving surface is an arc shape in a cross section perpendicular to the erection direction. The liquid at the corner of the outer peripheral wall is prevented from creeping up in the antigravity direction due to capillary action, and the liquid received on the liquid receiving surface is prevented from overflowing outside the liquid receiving container for the liquid sensor. The liquid can be transferred to the detection area of the liquid sensor inside the sensor fixing portion more reliably.

本発明の請求項13記載の発明によれば、一方に平坦な第1の受液面を有し、その第1の受液面の外周側縁部に沿って外周壁を立設した第1の受液部と、第1の受液面上に配置された1乃至複数の第1の溝部と、一方に平坦な第2の受液面を有し、その第2の受液面の外周側縁部に沿って外周壁を立設した第2の受液部と、第2の受液面上に配置された1乃至複数の第2の溝部と、第1の溝部及び第2の溝部の一方端に液体センサを固定するセンサ固定部と、を備え、第1の受液面と第2の受液面を相互に略直角方向に位置させるので、その液体センサ用受液容器が電子機器内に搭載される冷却装置に固定され、その電子機器が相互に略直角となる2方向のいずれの方向に設置されたとしても、滴下した液体をそれぞれの方向において確実に受け止めて検出できるという作用がある。   According to the thirteenth aspect of the present invention, the first liquid receiving surface that is flat on one side and the outer peripheral wall is erected along the outer peripheral side edge of the first liquid receiving surface. Liquid receiving portion, one or more first groove portions disposed on the first liquid receiving surface, and a flat second liquid receiving surface on one side, the outer periphery of the second liquid receiving surface A second liquid receiving portion having an outer peripheral wall standing along the side edge, one or more second groove portions disposed on the second liquid receiving surface, the first groove portion and the second groove portion A sensor fixing portion for fixing the liquid sensor to one end of the first liquid receiving surface, and the first liquid receiving surface and the second liquid receiving surface are positioned substantially perpendicular to each other. Regardless of whether the electronic device is fixed in a cooling device mounted in the device and the electronic device is installed in any of two directions that are substantially perpendicular to each other, the dropped liquid can be reliably transferred in each direction. There is an effect that can be detected only stop by.

本発明の請求項14記載の発明によれば、一方に平坦な第1の受液面を有し、その第1の受液面の外周側縁部に沿って外周壁を立設した第1の受液部と、第1の受液面上に配置された1乃至複数の第1の溝部と、一方に平坦な第2の受液面を有し、その第2の受液面の外周側縁部に沿って外周壁を立設した第2の受液部と、第2の受液面に対して反対側の面上に配置された1乃至複数の第2の溝部と、第1の溝部及び第2の溝部の一方端に液体センサを固定するセンサ固定部と、を備え、第1の受液面と第2の受液面を相互に略直角方向に位置させるので、その液体センサ用受液容器が電子機器内に搭載される冷却装置に固定され、その電子機器が相互に略直角となる2方向のいずれの方向に設置されたとしても、滴下した液体をそれぞれの方向において確実に受け止めて検出できるという作用がある。   According to the fourteenth aspect of the present invention, the first liquid receiving surface that is flat on one side and the outer peripheral wall is erected along the outer peripheral side edge of the first liquid receiving surface. Liquid receiving portion, one or more first groove portions disposed on the first liquid receiving surface, and a flat second liquid receiving surface on one side, the outer periphery of the second liquid receiving surface A second liquid receiving portion having an outer peripheral wall erected along the side edge, one or more second groove portions disposed on a surface opposite to the second liquid receiving surface, and the first And a sensor fixing portion for fixing the liquid sensor to one end of the second groove portion, and the first liquid receiving surface and the second liquid receiving surface are positioned substantially perpendicular to each other. Even if the liquid container for sensor is fixed to the cooling device mounted in the electronic device, and the electronic device is installed in any of the two directions that are substantially perpendicular to each other, the dropped liquid can An effect that can be detected reliably received in countercurrent.

しかも、第2の受液面の一方端でターンして、その第2の受液面に対して反対側の面の所定の位置に配置された溝部を通ってセンサ固定部の方へ戻るように液体の移送ができ、第2の受液面側に溝部を配置しなくてもよいので、限られたスペースでも第2の受液面を十分確保できる。   Moreover, it turns at one end of the second liquid receiving surface and returns to the sensor fixing portion through a groove portion arranged at a predetermined position on the surface opposite to the second liquid receiving surface. In addition, since the liquid can be transferred and the groove portion does not have to be disposed on the second liquid receiving surface side, the second liquid receiving surface can be sufficiently secured even in a limited space.

本発明の請求項15記載の発明によれば、一方に平坦な第1の受液面を有し、その第1の受液面の外周側縁部に沿って外周壁を立設した第1の受液部と、第1の受液面上に配置された1乃至複数の第1の溝部と、一方に平坦な第2の受液面を有し、その第2の受液面の外周側縁部に沿って外周壁を立設した第2の受液部と、第2の受液面上に配置された1乃至複数の第2の溝部と、一方に平坦な第3の受液面を有し、その第3の受液面の外周側縁部に沿って外周壁を立設した第3の受液部と、第3の受液面上に配置された1乃至複数の第3の溝部と、第1から第3までの溝部の一方端に液体センサを固定するセンサ固定部と、を備え、第1から第3までの受熱面を相互に略直角方向に位置させるので、その液体センサ用受液容器が電子機器内に搭載される冷却装置に固定され、その電子機器が相互に略直角となる3方向のいずれの方向に設置されたとしても、滴下した液体をそれぞれの方
向において確実に受け止めて検出できるという作用がある。
According to the fifteenth aspect of the present invention, the first liquid receiving surface that is flat on one side and the outer peripheral wall is erected along the outer peripheral side edge of the first liquid receiving surface. Liquid receiving portion, one or more first groove portions disposed on the first liquid receiving surface, and a flat second liquid receiving surface on one side, the outer periphery of the second liquid receiving surface A second liquid receiving portion having an outer peripheral wall standing along the side edge, one or more second groove portions disposed on the second liquid receiving surface, and a third liquid receiving portion flat on one side A third liquid receiving portion having a surface and an outer peripheral wall standing along the outer peripheral side edge of the third liquid receiving surface; and one or a plurality of first liquid disposed on the third liquid receiving surface 3 and a sensor fixing part for fixing the liquid sensor to one end of the first to third groove parts, and the first to third heat receiving surfaces are positioned substantially perpendicular to each other. The liquid sensor container is inside the electronic device. Even if the electronic device is fixed to the mounted cooling device and the electronic device is installed in any one of the three directions that are substantially perpendicular to each other, there is an effect that the dropped liquid can be reliably received and detected in each direction. .

本発明の請求項16記載の発明によれば、一方に平坦な第1の受液面を有し、その第1の受液面の外周側縁部に沿って外周壁を立設した第1の受液部と、第1の受液面上に配置された1乃至複数の第1の溝部と、一方に平坦な第2の受液面を有し、その第2の受液面の外周側縁部に沿って外周壁を立設した第2の受液部と、第2の受液面に対して反対側の面上に配置された1乃至複数の第2の溝部と、一方に平坦な第3の受液面を有し、その第3の受液面の外周側縁部に沿って外周壁を立設した第3の受液部と、第3の受液面に対して反対側の面上に配置された1乃至複数の第3の溝部と、第1から第3までの溝部の一方端に液体センサを固定するセンサ固定部と、を備え、第1から第3までの受熱面を相互に略直角方向に位置させるので、その液体センサ用受液容器が電子機器内に搭載される冷却装置に固定され、その電子機器が相互に略直角となる3方向のいずれの方向に設置されたとしても、滴下した液体をそれぞれの方向において確実に受け止めて検出できるという作用がある。   According to the sixteenth aspect of the present invention, the first liquid receiving surface that is flat on one side and the outer peripheral wall is erected along the outer peripheral side edge of the first liquid receiving surface. Liquid receiving portion, one or more first groove portions disposed on the first liquid receiving surface, and a flat second liquid receiving surface on one side, the outer periphery of the second liquid receiving surface A second liquid receiving part having an outer peripheral wall erected along the side edge part, one or more second groove parts arranged on a surface opposite to the second liquid receiving surface, and one of them A third liquid receiving portion having a flat third liquid receiving surface and having an outer peripheral wall erected along an outer peripheral side edge of the third liquid receiving surface; and a third liquid receiving surface One to a plurality of third grooves arranged on the opposite surface, and a sensor fixing part for fixing the liquid sensor to one end of the first to third grooves, the first to third Since the heat receiving surfaces are positioned in a direction substantially perpendicular to each other, Even if the liquid sensor container is fixed to a cooling device mounted in an electronic device and the electronic device is installed in any of the three directions that are substantially perpendicular to each other, the dropped liquid can There is an effect that it can be received and detected reliably in the direction.

しかも、第2、第3の受液面の一方端でターンして、その第2、第3の受液面に対して反対側の面の所定の位置に配置されたそれぞれの溝部を通ってセンサ固定部の方へ戻るように液体の移送ができ、第2、第3の受液面側に溝部を配置しなくてもよいので、限られたスペースでも第2、第3の受液面を十分確保できる。   Moreover, it turns at one end of the second and third liquid receiving surfaces, and passes through the respective groove portions arranged at predetermined positions on the surface opposite to the second and third liquid receiving surfaces. The liquid can be transferred so as to return to the sensor fixing portion, and it is not necessary to arrange a groove on the second and third liquid receiving surfaces, so the second and third liquid receiving surfaces can be used even in a limited space. Can be secured sufficiently.

本発明の請求項17記載の発明によれば、受液部の外周壁の側面にフック部を設けたので、液体の検出が可能なように液体センサが液体センサ用受液容器のセンサ固定部に固定された状態で、その液体センサのリード線をそのフック部に係止することにより、外部にそのリード線が不要に延在するのを防止する作用がある。   According to the seventeenth aspect of the present invention, since the hook portion is provided on the side surface of the outer peripheral wall of the liquid receiving portion, the liquid sensor is a sensor fixing portion of the liquid receiving container for the liquid sensor so that the liquid can be detected. By locking the lead wire of the liquid sensor to the hook portion in a state of being fixed to the hook, there is an effect of preventing the lead wire from extending unnecessarily to the outside.

つまり、リード線が不要に延在して受液面の上に垂れ下がり、その受液面を流れる液体がそのリード線を伝わって電子機器側に流れていくのを防止できる。   That is, it is possible to prevent the lead wire from extending unnecessarily and hanging down on the liquid receiving surface, and the liquid flowing through the liquid receiving surface from flowing along the lead wire to the electronic device side.

また、その液体センサ用受液容器を固定した冷却装置を電子機器内に搭載する際において、そのリード線を作業者が手や工具にひっかけて、その液体センサのリード線引き出し部に機械的なダメージや断線状態を引き起こしてしまうのを未然に防止することができる。   In addition, when mounting the cooling device to which the liquid sensor receiving container is fixed in an electronic device, an operator hooks the lead wire on a hand or a tool and mechanically connects the lead wire lead-out portion of the liquid sensor. It is possible to prevent damage and disconnection from occurring.

本発明の請求項18記載の発明によれば、請求項1から17いずれか1項に記載の液体センサ用受液容器を備えた冷却装置なので、内部を循環する液体冷媒の漏れが予想される所定の位置に固定された液体センサ用受液容器が、その液体冷媒の滴下を確実に受け止め、その液体センサ用受液容器に固定された液体センサによる検出が容易となり、その冷却装置の搭載された電子機器の電子回路の動作に支障が出る前に処置することができるので、より高い信頼性を得ることが可能となる。   According to the eighteenth aspect of the present invention, since the cooling device is provided with the liquid sensor receiving container according to any one of the first to seventeenth aspects, leakage of the liquid refrigerant circulating inside is expected. The liquid sensor receiving container fixed at a predetermined position reliably receives the dripping of the liquid refrigerant, facilitates detection by the liquid sensor fixed to the liquid sensor receiving container, and the cooling device is mounted. In addition, since it is possible to take measures before the operation of the electronic circuit of the electronic device is hindered, higher reliability can be obtained.

以下本発明の実施の形態について図面を用いて説明する。なお、各図面において液体センサ用受液容器の第1の受液部側を下方、第2の受液部側を上方として以下に説明する。   Embodiments of the present invention will be described below with reference to the drawings. In each drawing, the first liquid receiving part side of the liquid sensor receiving container will be described below, and the second liquid receiving part side will be described below.

(実施の形態1)
図1〜図8において、図1は本発明の実施の形態1に係わる液体センサ用受液容器の斜視図で、図2は本発明の実施の形態1に係わる液体センサ用受液容器の分解斜視図で、図3(a)は本発明の実施の形態1に係わる液体センサ用受液容器の平面図で、図3(b)は、同図(a)のA−A矢視断面図で、図3(c)は、同図(a)のB−B矢視断面図で、図4(a)は本発明の実施の形態1に係わる液体センサ用受液容器の平面図で、図4(b)は、同図(a)のC−C矢視部分断面図で、図4(c)は、同図(a)のD−D矢視
部分断面図で、図5(a)は、図4(c)のE−E矢視断面図で、図5(b)は、覆設部とその一方の側端部に形成された第2の受液部の斜視図で、図5(c)は、同図の背面側斜視図で、図6(a)、(b)は、第2の受液部の外周壁のコーナー部の内面形状を説明する図で、図7は、冷却装置に液体センサ用受液容器を固定した状態図で、図8は、冷却装置の受熱一体ポンプと液体センサ用受液容器の位置関係を示した図である。
(Embodiment 1)
1 to 8, FIG. 1 is a perspective view of a liquid sensor receiving container according to the first embodiment of the present invention, and FIG. 2 is an exploded view of the liquid sensor receiving container according to the first embodiment of the present invention. FIG. 3A is a perspective view, FIG. 3A is a plan view of a liquid receiving container for a liquid sensor according to Embodiment 1 of the present invention, and FIG. 3B is a cross-sectional view taken along the line AA in FIG. 3 (c) is a cross-sectional view taken along the line BB in FIG. 3 (a), and FIG. 4 (a) is a plan view of the liquid sensor receiving container according to Embodiment 1 of the present invention. 4B is a partial cross-sectional view taken along the line CC of FIG. 4A, and FIG. 4C is a partial cross-sectional view taken along the line D-D of FIG. ) Is a cross-sectional view taken along the line E-E in FIG. 4C, and FIG. 5B is a perspective view of the covering portion and the second liquid receiving portion formed on one side end portion thereof. FIG. 5 (c) is a rear perspective view of FIG. 6 (a), (b). FIG. 7 is a diagram for explaining the inner surface shape of the corner portion of the outer peripheral wall of the second liquid receiving unit, FIG. 7 is a state diagram in which the liquid sensor liquid receiving container is fixed to the cooling device, and FIG. It is the figure which showed the positional relationship of an integrated pump and the liquid receiving container for liquid sensors.

まず、図1で示したように、本実施の形態に係わる液体センサ用受液容器1は、破線の矢印F、Sで示した2方向の重力方向の液体の滴下に対応したもので、その第1の受液部2には、その上側に、破線の矢印Fで示した重力方向に滴下する液体を受け止める平坦な第1の受液面2aを有し、その第1の受液面2aの外周側縁部に沿って少なくとも0.5mm以上の高さの外周壁2bが立設されている。   First, as shown in FIG. 1, the liquid sensor receiving container 1 according to the present embodiment corresponds to the drop of liquid in the gravitational direction in two directions indicated by broken arrows F and S. The first liquid receiving unit 2 has a flat first liquid receiving surface 2a for receiving the liquid dropped in the direction of gravity indicated by the broken arrow F on the upper side, and the first liquid receiving surface 2a. An outer peripheral wall 2b having a height of at least 0.5 mm or more is erected along the outer peripheral side edge.

この第1の受液部2の外周側縁部に沿って立設された外周壁2bは、一旦その第1の受液面2aで受け止められた液体が液体センサ用受液容器1の外部に溢れ出るのを防止する作用があり、検出しようとする液体が、継続的に第1の受液面2aに滴下していくと、外部に溢れ出ることなく、一旦第1の受液面2aで受け止められる。   The outer peripheral wall 2b erected along the outer peripheral side edge of the first liquid receiving part 2 has a liquid once received by the first liquid receiving surface 2a outside the liquid sensor receiving container 1. There is an action to prevent overflow, and when the liquid to be detected continuously drops on the first liquid receiving surface 2a, it does not overflow to the outside, but once on the first liquid receiving surface 2a. It is accepted.

そして、破線で示した液体センサ3を固定するセンサ固定部4の内部がその液体センサ3の検出領域となっていて、その検出領域に浸入してきた液体が液体センサ3に付着して、そのセンサ抵抗が急激に変化して検出可能となるので、その方向に向かって、液体が確実に移送できるようにしている。   And the inside of the sensor fixing part 4 which fixes the liquid sensor 3 shown with the broken line becomes the detection area | region of the liquid sensor 3, The liquid which infiltrated the detection area adheres to the liquid sensor 3, and the sensor Since the resistance changes abruptly and becomes detectable, the liquid can be reliably transferred toward that direction.

特に、センサ固定部4は箱型形状をしており、液体センサ3を収容するように固定し、さらにそのセンサ固定部4の内壁と液体センサ3との隙間が所定の間隔に設定されているので、移送された液体が一旦一旦液体センサ3とセンサ固定部4の内壁との隙間に到達すると、その隙間による毛細管現象による吸引力も働いて液体センサ3の検出領域に液体が広がるので、短時間での検出が可能となっている。   In particular, the sensor fixing portion 4 has a box shape, is fixed so as to receive the liquid sensor 3, and the gap between the inner wall of the sensor fixing portion 4 and the liquid sensor 3 is set at a predetermined interval. Therefore, once the transferred liquid reaches the gap between the liquid sensor 3 and the inner wall of the sensor fixing portion 4, the suction force due to the capillary phenomenon due to the gap also works and the liquid spreads in the detection region of the liquid sensor 3, so that the time is short. Detection is possible.

また、第1の受液面2aに液体が滴下され、液体センサ3が検知可能な使用状態において、第1の受液面2aは、センサ固定部4に近づくに従って破線の矢印Fで示した重力方向へ下降するように傾斜しているので、第1の受液部2に滴下した液体がその重力の作用によりその第1の受液面2aの傾斜方向に沿って円滑に流れ、センサ固定部4の内部の液体センサ3の検出領域へより効率的に移送される。   In addition, when the liquid is dripped onto the first liquid receiving surface 2a and the liquid sensor 3 can detect the first liquid receiving surface 2a, the gravity indicated by the broken arrow F as it approaches the sensor fixing portion 4 Since the liquid drops to the first liquid receiving part 2, the liquid dripped onto the first liquid receiving part 2 flows smoothly along the inclination direction of the first liquid receiving surface 2 a by the action of the gravity, and the sensor fixing part 4 is more efficiently transferred to the detection area of the liquid sensor 3 inside.

一方、第1の受液面2aの所定位置には、高さが0.5〜5.0mmの3本の平板状凸部5が、0.5〜2.0mmの間隔で隣り合って、センサ固定部4へ向かって直線状に形成されており、その3本の平板状凸部5に挟まれて2本の第1の溝部5aが配置されている。   On the other hand, at a predetermined position of the first liquid receiving surface 2a, three flat convex portions 5 having a height of 0.5 to 5.0 mm are adjacent to each other at intervals of 0.5 to 2.0 mm. It is formed in a straight line toward the sensor fixing portion 4, and two first groove portions 5 a are disposed between the three flat plate-like convex portions 5.

そして、第1の受液面2aからこの2本の第1の溝部5aに流入した液体には、その第1の溝部5aによる毛細管現象が作用しながら、その第1の溝部5aに連通するとともにその一方の端部に液体センサ3を固定するセンサ固定部4まで案内されるので、そのセンサ固定部4の内部の液体センサ3の検出領域への移送がより促進される。   The liquid flowing into the two first groove portions 5a from the first liquid receiving surface 2a is communicated with the first groove portion 5a while the capillary action by the first groove portions 5a acts. Since it is guided to the sensor fixing part 4 that fixes the liquid sensor 3 at one end thereof, the transfer of the liquid sensor 3 inside the sensor fixing part 4 to the detection region is further promoted.

また、第1の受液面2aに液体が滴下され、液体センサ3が検知可能な使用状態において、2本の第1の溝部5aの底面も、平坦な第1の受液面2aと同様に、センサ固定部4に近づくに従って破線の矢印Fで示した重力方向へ下降するように傾斜しているので、その第1の溝部5aに流入した液体が重力の作用によりその第1の溝部5aの底面の傾斜方向に沿って円滑に流れ、その第1の溝部5aに連通した箱型形状のセンサ固定部4の内部の液体センサ3の検出領域へより効率的に移送される。   Further, in the use state where the liquid is dropped on the first liquid receiving surface 2a and the liquid sensor 3 can detect, the bottom surfaces of the two first groove portions 5a are also the same as the flat first liquid receiving surface 2a. As the sensor fixing part 4 is approached, it is inclined so as to descend in the direction of gravity indicated by the broken arrow F, so that the liquid that has flowed into the first groove part 5a acts on the first groove part 5a by the action of gravity. The liquid flows smoothly along the inclination direction of the bottom surface, and is more efficiently transferred to the detection region of the liquid sensor 3 inside the box-shaped sensor fixing portion 4 communicating with the first groove 5a.

しかも、第1の受液面2aに液体が滴下され、液体センサ3が検知可能な使用状態において、その2本の第1の溝部5aがその第1の受液部2の第1の受液面2aの傾斜方向に沿って直線状に配置されているので、第1の溝部5aに流入した液体がセンサ固定部4の内部の液体センサ3の検出領域へ最短距離で案内されるので、より短時間での検出が可能となる。   In addition, when the liquid is dripped onto the first liquid receiving surface 2a and the liquid sensor 3 can detect it, the two first grooves 5a are the first liquid receiving parts of the first liquid receiving part 2. Since it is arranged linearly along the inclination direction of the surface 2a, the liquid flowing into the first groove 5a is guided to the detection region of the liquid sensor 3 inside the sensor fixing part 4 at the shortest distance. Detection in a short time is possible.

さらに、少なくともその下側に平坦な面を有する覆設部6が、前述した3本の平板状凸部5に挟まれた第1の溝部5aの一部を覆うように組み合わされ、その第1の溝部5aと覆設部6の下側の平坦な面との間に2本の隙間6aが形成されている。   Further, the covering portion 6 having a flat surface at least on the lower side thereof is combined so as to cover a part of the first groove portion 5a sandwiched between the three flat plate-like convex portions 5 described above. Two gaps 6 a are formed between the groove portion 5 a and the flat surface below the covering portion 6.

そして、その第1の溝部5aと覆設部6の下側の平坦な面との間の隙間6aに流入した液体に対して毛細管現象による吸引力が作用し、その隙間6aでの液体の移送力が容易に大きくなるので、センサ固定部4の内部の液体センサ3の検出領域への移送がより促進される。   And the attraction | suction force by a capillary action acts with respect to the liquid which flowed into the clearance gap 6a between the 1st groove part 5a and the lower flat surface of the covering part 6, and the transfer of the liquid in the clearance gap 6a Since the force is easily increased, the transfer of the liquid sensor 3 inside the sensor fixing unit 4 to the detection region is further promoted.

以上の説明のように、平坦な第1の受液面2aで受け止められた液体は、その第1の受液面2aから直接的にセンサ固定部4の内部に移送され、あるいは3本の平板状凸部5に挟まれた第1の溝部5aに流入して移送され、その第1の溝部5aに連通するとともにその第1の溝部5aの一方端に液体センサ3を固定するセンサ固定部4の内部に到達するが、そのセンサ固定部4の内部が液体センサ3の検出領域となっているので、第1の受液部2の第1の受液面2aに滴下した液体が比較的微量であっても、その液体を効率的に液体センサ3の検出領域に移送でき、短時間での検出が可能となる。   As described above, the liquid received by the flat first liquid receiving surface 2a is transferred directly from the first liquid receiving surface 2a to the inside of the sensor fixing portion 4, or three flat plates. The sensor fixing portion 4 that flows into the first groove portion 5a sandwiched between the convex portions 5 and is transferred, communicates with the first groove portion 5a, and fixes the liquid sensor 3 to one end of the first groove portion 5a. However, since the inside of the sensor fixing portion 4 is a detection region of the liquid sensor 3, a relatively small amount of liquid is dropped on the first liquid receiving surface 2a of the first liquid receiving portion 2. Even so, the liquid can be efficiently transferred to the detection region of the liquid sensor 3, and detection in a short time becomes possible.

つまり、第1の受液面2aが滴下した液体を受け止め、2本の第1の溝部5aがその液体を液体センサ3の検出領域、つまりセンサ固定部4の内部へ確実に移送できるようになっている。   That is, the first liquid receiving surface 2a receives the dropped liquid, and the two first grooves 5a can reliably transfer the liquid to the detection area of the liquid sensor 3, that is, the inside of the sensor fixing portion 4. ing.

ここで、液体センサ3には、2本のリード線3aが接続されており、そのリード線3aは、センサ固定部4の内部で直角方向に折り曲げられ上方へ引き出されているので、その液体センサ用受液容器1の外部の電子機器との電気的な接続が可能となっている。   Here, two lead wires 3 a are connected to the liquid sensor 3, and the lead wires 3 a are bent in a right angle direction inside the sensor fixing portion 4 and drawn upward. Electrical connection with an external electronic device of the liquid receiving container 1 is possible.

また、第1の受液部2の外周側縁部には、この液体センサ用受液容器1を後述する冷却装置に固定するための固定部材(図示せず)を挿入する2個の開口部2cが設けられて、その開口部2cを取り囲むようにそれぞれ突出壁2dが形成されているので、その開口部2cに固定部材を挿入して他の関連部材、例えば、後述する冷却装置の受熱一体ポンプのベース部材に容易に固定できるという作用がある。   In addition, two openings into which a fixing member (not shown) for fixing the liquid sensor liquid receiving container 1 to a cooling device to be described later is inserted in the outer peripheral side edge of the first liquid receiving part 2. 2c is provided, and the projecting walls 2d are formed so as to surround the opening 2c. Therefore, a fixing member is inserted into the opening 2c, and another related member, for example, a heat receiving unit of a cooling device described later is integrated. There exists an effect | action that it can fix to the base member of a pump easily.

つまり、その液体センサ用受液容器1を電子機器の筐体内部の冷却装置、周辺機器、または他の関連部材などの液体が滴下すると考えられる場所に配置して容易に固定できる。   That is, the liquid sensor receiving container 1 can be easily fixed by being disposed in a place where liquid such as a cooling device, a peripheral device, or other related members inside the casing of the electronic device is expected to drip.

また、開口部2cを取り囲むように形成された突出壁2dには、第1の受液面2aで受け止めた液体が、その開口部2cに挿入された固定部材との界面を伝わって液体センサ用受液容器1の外部に溢れ出るのを防止する作用があり、その液体を確実にセンサ固定部4の内部の液体センサ3の検出領域へ移送できる。   Further, on the protruding wall 2d formed so as to surround the opening 2c, the liquid received by the first liquid receiving surface 2a travels through the interface with the fixing member inserted into the opening 2c, and is used for the liquid sensor. This has the effect of preventing the liquid receiving container 1 from overflowing, and the liquid can be reliably transferred to the detection region of the liquid sensor 3 inside the sensor fixing portion 4.

また、開口部2cに挿入された固定部材との界面には、一旦液体が到達すると毛細管現象により吸い込まれ、液体センサ用受液容器1の外部に容易に溢れ出る可能性があるので、第1の受液面2aに液体が滴下され、液体センサ3が検知可能な使用状態において、その開口部2cを取り囲むように形成された突出壁2dの頂面を、第1の受液部2の外周側
縁部に沿って立設された外周壁2bの頂面よりも重力方向で上方に位置させ、その界面に液体が吸い込まれるのを防止するようにしたので、その液体を確実にセンサ固定部4の内部の液体センサ3の検出領域へ移送できる。
In addition, once the liquid reaches the interface with the fixing member inserted into the opening 2c, the liquid is sucked by capillary action and may easily overflow to the outside of the liquid sensor receiving container 1. When the liquid is dripped onto the liquid receiving surface 2a and the liquid sensor 3 can detect it, the top surface of the protruding wall 2d formed so as to surround the opening 2c is the outer periphery of the first liquid receiving portion 2 Since it is positioned above the top surface of the outer peripheral wall 2b erected along the side edge in the direction of gravity and prevents the liquid from being sucked into the interface, the liquid is surely attached to the sensor fixing portion. 4 can be transferred to the detection region of the liquid sensor 3 inside.

また、覆設部6の下方に位置する第1の受液面2aには、やや大きめの開口部2eが設けられ、その開口部2eを取り囲むように形成された突出壁2fには、第1の受液面2aで受け止めた液体が、その開口部2eに挿入される固定部材(図示せず)との界面を伝わって液体センサ受液容器1の外部に溢れ出るのを防止する作用があり、その液体をセンサ固定部4の内部の液体センサ3の検出領域へ確実に移送できる。   The first liquid receiving surface 2a located below the covering portion 6 is provided with a slightly larger opening 2e, and the protruding wall 2f formed so as to surround the opening 2e has a first The liquid received by the liquid receiving surface 2a is prevented from overflowing outside the liquid sensor liquid receiving container 1 through the interface with a fixing member (not shown) inserted into the opening 2e. The liquid can be reliably transferred to the detection region of the liquid sensor 3 inside the sensor fixing portion 4.

なお、その開口部2eに挿入された固定部材との界面には、一旦液体が到達すると毛細管現象により吸い込まれ、液体センサ用受液容器1の外部に容易に溢れ出る可能性があるので、第1の受液面2aに液体が滴下され、液体センサ3が検知可能な使用状態において、その開口部2eを取り囲むように形成された突出壁2fの頂面も、第1の受液部2の外周側縁部に沿って立設された外周壁2bの頂面よりも重力方向で上方に位置させ、その界面に液体が吸い込まれるのを防止するようにした。   Note that once the liquid reaches the interface with the fixing member inserted into the opening 2e, the liquid is sucked by capillary action and may easily overflow to the outside of the liquid sensor receiving container 1. The top surface of the projecting wall 2f formed so as to surround the opening 2e in a use state where the liquid is dropped on the first liquid receiving surface 2a and can be detected by the liquid sensor 3, is also the first liquid receiving portion 2. It was positioned above the top surface of the outer peripheral wall 2b erected along the outer peripheral edge in the direction of gravity to prevent liquid from being sucked into the interface.

一方、覆設部6の一方の側端部には、平坦な第2の受液面7aを有する第2の受液部7が一体成型されており、第1の受液面2aと第2の受液面7aが相互に略直角方向に位置しているので、液体センサ用受液容器1が破線の矢印Sで示した重力方向で下方となるように設置されたとしても、その液体を第2の受液面7aで確実に受け止められるようになっている。   On the other hand, a second liquid receiving portion 7 having a flat second liquid receiving surface 7a is integrally formed at one side end of the covering portion 6, and the first liquid receiving surface 2a and the second liquid receiving surface 7a are secondly formed. Since the liquid receiving surfaces 7a are positioned substantially perpendicular to each other, even if the liquid receiving container 1 for the liquid sensor is installed so as to be downward in the direction of gravity indicated by the broken line arrow S, the liquid The second liquid receiving surface 7a can be reliably received.

つまり、第2の受液部7が重力方向で下方になるように設置された場合は、破線の矢印Sで示した重力方向に液体が滴下するので、第2の受液部7の外周側縁部に沿って立設された外周壁7bは、一旦その第2の受液面7aで受け止められた液体が液体センサ用受液容器1の外部に溢れ出るのを防止する作用があり、検出しようとする液体が、継続的に第2の受液面7aに滴下していくと、外部に溢れ出ることなく、一旦第2の受液面7aで受け止められ、破線で示した液体センサ3を固定するセンサ固定部4の内部がその液体センサ3の検出領域となるので、最終的に、その方向に向かって、液体が確実に移送できるようにしている。   That is, when the second liquid receiving unit 7 is installed so as to be downward in the direction of gravity, the liquid drops in the direction of gravity indicated by the dashed arrow S, so that the outer peripheral side of the second liquid receiving unit 7 The outer peripheral wall 7b erected along the edge serves to prevent the liquid once received by the second liquid receiving surface 7a from overflowing outside the liquid receiving container 1 for the liquid sensor. When the liquid to be continuously dripped onto the second liquid receiving surface 7a, the liquid sensor 3 indicated by a broken line is once received by the second liquid receiving surface 7a without overflowing outside. Since the inside of the sensor fixing portion 4 to be fixed becomes a detection region of the liquid sensor 3, finally, the liquid can be reliably transferred toward that direction.

また、第2の受液面7aに液体が滴下され、液体センサ3が検知可能な使用状態において、平坦な第2の受液面7aは、センサ固定部4から離れるに従って破線の矢印Sで示した重力方向へ下降するように傾斜しているので、第2の受液部7に滴下した液体がその重力の作用によりその第2の受液面7aの傾斜方向に沿って円滑に流れ、その第2の受液面7aの一方端より反対側の面へターンして、その第2の受液面7aに対して反対側の面に形成された4本の平板状凸部8に挟まれて配置された3本の第2の溝部8a(図3(a)、図5(c)参照)に流入していく。   Further, in a use state where the liquid is dripped onto the second liquid receiving surface 7a and the liquid sensor 3 can detect, the flat second liquid receiving surface 7a is indicated by a broken arrow S as the distance from the sensor fixing portion 4 increases. The liquid dropped onto the second liquid receiving portion 7 flows smoothly along the inclination direction of the second liquid receiving surface 7a by the action of the gravity, The second liquid receiving surface 7a is turned to the opposite surface from one end, and is sandwiched between four flat plate-shaped convex portions 8 formed on the surface opposite to the second liquid receiving surface 7a. The three second groove portions 8a (see FIG. 3A and FIG. 5C) arranged in this manner flow into the second groove portion 8a.

そして、その第2の溝部8aに流入した液体には、その第2に溝部8aによる毛細管現象や破線の矢印Sで示した重力方向へ下降するように傾斜した外周壁2bとその第2の溝部8aとの間に形成された隙間により毛細管現象による吸引力も作用しながら、その第2の溝部8aに連通するとともにその一方の端部に液体センサ3を固定するセンサ固定部4まで案内されるので、そのセンサ固定部4の内部の液体センサ3の検出領域への移送がより促進される。   The liquid that has flowed into the second groove 8a includes the outer peripheral wall 2b that is inclined so as to descend in the direction of gravity indicated by the capillary action by the groove 8a and the broken arrow S, and the second groove. Since the suction force due to the capillary action is also exerted by the gap formed with 8a, it communicates with the second groove 8a and is guided to the sensor fixing part 4 for fixing the liquid sensor 3 to one end thereof. The transfer to the detection area of the liquid sensor 3 inside the sensor fixing part 4 is further promoted.

また、第2の受液面7aに液体が滴下され、液体センサ3が検知可能な使用状態において、第2の溝部8aは、第2の受液面7aに対して反対側の面の傾斜方向に沿って直線状に配置されているので、その第2の溝部8aに連通するセンサ固定部4の内部の液体セン
サ3の検出領域へ最短距離で案内する作用があり、短時間での検出が可能となる。
In addition, when the liquid is dripped onto the second liquid receiving surface 7a and the liquid sensor 3 can detect the second groove portion 8a, the second groove 8a is inclined with respect to the surface opposite to the second liquid receiving surface 7a. Are arranged in a straight line along the second groove portion 8a, so that there is an action of guiding to the detection region of the liquid sensor 3 inside the sensor fixing portion 4 communicating with the second groove portion 8a in the shortest distance, and detection in a short time is possible. It becomes possible.

従って、第2の受液部7に滴下した液体が比較的微量であっても、その液体を効率的に液体センサ3の検出領域に移送でき、短時間での検出が可能となる。   Therefore, even if the amount of liquid dropped on the second liquid receiving unit 7 is relatively small, the liquid can be efficiently transferred to the detection region of the liquid sensor 3, and detection can be performed in a short time.

つまり、第2の受液面7aが滴下した液体を受け止め、3本の第2の溝部8aがその液体を液体センサ3の検出領域、つまりセンサ固定部4の内部へ確実に移送できるようになっている。   That is, the second liquid receiving surface 7a receives the dropped liquid, and the three second groove portions 8a can reliably transfer the liquid to the detection region of the liquid sensor 3, that is, the inside of the sensor fixing portion 4. ing.

次に、嵌合部9については、詳細に後述するが、第1の受液部2の平坦な第1の受液面2aに形成された嵌合用凸部9a(図2参照)と覆設部6に形成された嵌合用孔部9b(図2参照)とを軽く圧入して嵌合させることによって、相互の位置関係が規制されるので、第1の受液部2に対して覆設部6を所定の位置に組み合わせることが容易となる。   Next, the fitting portion 9 will be described in detail later, but is fitted with a fitting convex portion 9a (see FIG. 2) formed on the flat first liquid receiving surface 2a of the first liquid receiving portion 2. Since the mutual positional relationship is regulated by lightly press-fitting and fitting the fitting hole 9b (see FIG. 2) formed in the portion 6, the first liquid receiving portion 2 is covered. It becomes easy to combine the part 6 in a predetermined position.

なお、本実施の形態の場合は、最終的に液体センサ用受液容器1が冷却装置に固定された状態では、覆設部6がその冷却装置の受熱一体ポンプを載置するベース部材と第1の受液部2との間に挟持され、2個の開口部2cに挿入される固定部材により固定されているので、第1の受液部2と覆設部6との間で、両者をあらかじめ固定する必要はないが、必要に応じて、接着、熱溶着、超音波溶着などの固着方法により固定しても何ら問題はない。   In the case of the present embodiment, in a state where the liquid sensor receiving container 1 is finally fixed to the cooling device, the covering portion 6 and the base member on which the heat receiving integrated pump of the cooling device is placed Between the first liquid receiving part 2 and the covering part 6, since both are sandwiched between the first liquid receiving part 2 and fixed by a fixing member inserted into the two openings 2 c. Is not required to be fixed in advance, but there is no problem if it is fixed by an adhering method such as adhesion, heat welding, or ultrasonic welding as required.

さらに、第2の受液部7の外周を取り囲み、第1の受液面2aの外周側縁部に沿って立設された外周壁2bの側面に2個のフック部10(図3(a)、図5(a)参照)が設けられているので、液体の検出が可能なように液体センサ3が液体センサ用受液容器1のセンサ固定部4に固定された状態で、そのリード線3aをそのフック部10に係止することにより、外部にリード線3aが不要に延在するのを容易に防止できる。   Further, two hook portions 10 (FIG. 3 (a) are formed on the side surface of the outer peripheral wall 2b that surrounds the outer periphery of the second liquid receiving portion 7 and is erected along the outer peripheral side edge of the first liquid receiving surface 2a. 5)), the lead wire in a state where the liquid sensor 3 is fixed to the sensor fixing portion 4 of the liquid sensor receiving container 1 so that the liquid can be detected. By locking 3a to the hook portion 10, it is possible to easily prevent the lead wire 3a from extending unnecessarily to the outside.

つまり、リード線3aが不要に延在して第1の受液面2aの上または第2の受液面7aの上に垂れ下がり、それらの受液面を流れる液体がそのリード線3aを伝わって電子機器側に流れていくのを防止できる。   That is, the lead wire 3a extends unnecessarily and hangs down on the first liquid receiving surface 2a or the second liquid receiving surface 7a, and the liquid flowing on those liquid receiving surfaces travels through the lead wire 3a. It can be prevented from flowing to the electronic device side.

また、その液体センサ用受液容器1を固定した冷却装置を電子機器内に搭載する際において、そのリード線3aを作業者が手や工具にひっかけたりして、その液体センサ3のリード線引き出し部に機械的なダメージや断線状態を引き起こしてしまうのを未然に防止することができる。   Further, when the cooling device to which the liquid sensor receiving container 1 is fixed is mounted in an electronic device, the lead wire 3a is pulled by a worker or a hand, and the lead wire of the liquid sensor 3 is pulled out. It is possible to prevent mechanical damage or disconnection from occurring in the part.

なお、本実施の形態の液体センサ用受液容器1の材質としては、検出しようとする液体が冷却装置の液体冷媒としての水の場合であれば、寸法安定性、耐熱性、電気絶縁性、耐久性、成型加工性などを考慮して、熱可塑性樹脂材料が好ましく、特に、第1の受液面2aや第2の受液面7aの表面に滴下した液体が、その表面をスムーズに流れるように、なるべく表面の平滑化に適した樹脂材料を選択するとよい。   In addition, as the material of the liquid sensor receiving container 1 of the present embodiment, if the liquid to be detected is water as the liquid refrigerant of the cooling device, dimensional stability, heat resistance, electrical insulation, In consideration of durability, molding processability, etc., a thermoplastic resin material is preferable. In particular, the liquid dropped on the surface of the first liquid receiving surface 2a or the second liquid receiving surface 7a flows smoothly on the surface. Thus, it is preferable to select a resin material suitable for smoothing the surface as much as possible.

なお、所望の特性が得られれば熱硬化性樹脂でもよく、または検出しようとする液体による腐食性、耐電圧、重量などの影響で問題がなければ金属製材料であっても構わない。   A thermosetting resin may be used as long as desired characteristics are obtained, or a metal material may be used as long as there is no problem due to the influence of the corrosiveness, withstand voltage, weight, etc. due to the liquid to be detected.

さらに、検出しようとする液体が、塩溶液、アルカリ・酸性水、塩素、酸洗容液等の液体の場合であれば、耐蝕性についても考慮する必要がある。   Furthermore, if the liquid to be detected is a liquid such as a salt solution, alkali / acidic water, chlorine, or pickling solution, it is necessary to consider corrosion resistance.

一方、センサ固定部4に固定される液体センサ3としては、アルミナ(Al23)基板上に、炭素系導電ペーストを用いて、櫛歯状に一対の電極を焼き付けた上に樹脂製の感湿
膜を塗布し、その樹脂の中に均一に炭素粒子が分散された電気抵抗式であって、検出可能な湿度範囲が0〜100%に対応した結露センサが好ましい。
On the other hand, as the liquid sensor 3 to be fixed to the sensor fixing portion 4, a pair of electrodes are baked on an alumina (Al 2 O 3 ) substrate using a carbon-based conductive paste, and then made of resin. A dew sensor that is an electric resistance type in which a moisture-sensitive film is applied and carbon particles are uniformly dispersed in the resin and has a detectable humidity range of 0 to 100% is preferable.

その結露センサは、乾燥しているときには、その樹脂が収縮しており炭素粒子間の距離が小さく、センサ抵抗は数kΩであるが、結露時には、逆にその樹脂が膨張して、炭素粒子間の距離が大きくなり、センサ抵抗は100kΩ以上の高抵抗となる。   When the condensation sensor is dry, the resin is contracted and the distance between the carbon particles is small, and the sensor resistance is several kΩ. And the sensor resistance becomes a high resistance of 100 kΩ or more.

従って、このような電気抵抗式の結露センサを、センサ固定部4の内部に固定される液体センサ3として用いれば、そのセンサ固定部4の内部の検出領域に浸入してきた液体が付着して、そのセンサ抵抗が急激に変化するので、その抵抗変化をその液体センサ3に接続された2本のリー線3aを介して電子機器内の検出回路で容易に検出可能となる。   Therefore, if such an electric resistance type dew condensation sensor is used as the liquid sensor 3 fixed inside the sensor fixing part 4, the liquid that has entered the detection area inside the sensor fixing part 4 adheres, Since the sensor resistance changes abruptly, the resistance change can be easily detected by the detection circuit in the electronic device via the two lead wires 3a connected to the liquid sensor 3.

なお、結露センサ以外にも、他に水晶振動子式結露センサや光学式結露センサなども利用可能であるが、いずれもセンサ固定部4に浸入してきた液体とその液体センサ3との位置関係、応答速度、サイズ、重量、電気的特性などを考慮して適宜選択すればよい。   In addition to the dew condensation sensor, a crystal resonator type dew condensation sensor, an optical dew condensation sensor, and the like can also be used. However, the positional relationship between the liquid that has entered the sensor fixing unit 4 and the liquid sensor 3 is the same. What is necessary is just to select suitably considering response speed, a size, a weight, an electrical property, etc.

次に、図2の本発明に実施の形態1に係わる液体センサ用受液容器1の分解斜視図を用いて、一部重複するが、前述した内容を補足して説明する。   Next, using the exploded perspective view of the liquid sensor receiving container 1 according to the first embodiment of the present invention shown in FIG.

なお、本来、液体センサ3は、センサ固定部4に固定された状態で組み合わされるが、本図では説明しやすいように、第1の受液部2において最終的に置かれる位置に示した。   Note that the liquid sensor 3 is originally assembled in a state of being fixed to the sensor fixing unit 4, but is shown in a position where it is finally placed in the first liquid receiving unit 2 for easy explanation.

この図でも明らかなように、第1の受液面2a上には、3本の平板状凸部5がセンサ固定部4の内部に固定される液体センサ3の方向に向かって直線状に形成されており、その平板状凸部5で挟まれて2本の第1の溝部5aが配置されている。   As is apparent from this figure, on the first liquid receiving surface 2 a, three flat convex portions 5 are formed linearly toward the direction of the liquid sensor 3 fixed inside the sensor fixing portion 4. The two first groove portions 5a are arranged so as to be sandwiched between the flat plate-like convex portions 5.

その平板状凸部5は、液体センサ3に近い方の領域において、小さな段差が形成され少し下がっているが、その領域の第1の溝部5aを覆うように覆設部6が組み合わされ、その第1の溝部5aと覆設部6の下側の平坦な面との間に隙間6a(図3(c)、図4(c)参照)が形成されている。   The flat convex portion 5 is formed with a small step in the region closer to the liquid sensor 3 and is slightly lowered, but the covering portion 6 is combined so as to cover the first groove portion 5a in the region, A gap 6a (see FIGS. 3C and 4C) is formed between the first groove 5a and the lower flat surface of the covering portion 6.

そして、前述したように、第1の受液面2aで受け止められ、第1の溝部5aを通ってその隙間6aに流入した液体に対して毛細管現象による吸引力が作用し、その隙間6aでの液体の移送力が容易に大きくなるので、センサ固定部4の内部の液体センサ3の検出領域への移送がより促進される。   Then, as described above, a suction force due to capillary action acts on the liquid received by the first liquid receiving surface 2a and flowing into the gap 6a through the first groove 5a, and the gap 6a Since the liquid transfer force easily increases, the transfer to the detection area of the liquid sensor 3 inside the sensor fixing part 4 is further promoted.

また、第1の受液面2aのやや液体センサ3に近い方に、円筒形状の嵌合用凸部9aが形成され、一方、覆設部6には円形状の嵌合用孔部9bが形成されているので、組み合わせの際にはこれらを嵌合させることによって、相互の位置関係が規制されるので、第1の受液部2に対して覆設部6を所定の位置に組み合わせることが容易となる。   Further, a cylindrical fitting convex portion 9a is formed on the first liquid receiving surface 2a slightly closer to the liquid sensor 3, while a circular fitting hole portion 9b is formed on the covering portion 6. Therefore, since the mutual positional relationship is regulated by fitting them together at the time of combination, it is easy to combine the covering portion 6 at a predetermined position with respect to the first liquid receiving portion 2. It becomes.

さらに、開口部2eを取り囲むように形成された突出壁2fとセンサ固定部4との間に円弧状の凸部11を形成したので、その開口部2eに挿入された固定部材が金属製であっても、突出壁2fとセンサ固定部4との間に形成された円弧状の凸部11により液体センサ3とその固定部材との間の沿面距離を長く設定できるので、その分、耐電圧特性を向上することができる。   Further, since the arc-shaped convex portion 11 is formed between the protruding wall 2f formed so as to surround the opening 2e and the sensor fixing portion 4, the fixing member inserted into the opening 2e is made of metal. However, since the creeping distance between the liquid sensor 3 and the fixing member can be set longer by the arc-shaped convex portion 11 formed between the protruding wall 2f and the sensor fixing portion 4, the withstand voltage characteristics are accordingly increased. Can be improved.

つまり、その液体センサ用受液容器1の冷却装置への固定やその冷却装置の電子機器への搭載などの取り扱いの際に、人体からの静電気によって、金属製の固定部材を介して液体センサ3が電気的に破壊されるのを未然に防止することができる。   That is, when the liquid sensor receiving container 1 is fixed to the cooling device or the cooling device is mounted on an electronic device, the liquid sensor 3 is passed through the metal fixing member due to static electricity from the human body. Can be prevented from being electrically destroyed.

次に、図3(a)〜(c)を用いて、一部重複するが、前述した内容を補足して説明する。   Next, a part of the description will be supplemented by using FIGS. 3A to 3C.

まず、図3(a)の本発明の実施の形態1に係わる液体センサ用受液容器1の平面図で示したように、第1の受液部2は、その上側に、滴下する液体を受け止める平坦な第1の受液面2aを有し、その第1の受液面2aの外周側縁部に沿って外周壁2bが立設されている。   First, as shown in the plan view of the liquid sensor receiving container 1 according to Embodiment 1 of the present invention shown in FIG. 3A, the first liquid receiving part 2 has a liquid to be dropped on its upper side. It has a flat first liquid receiving surface 2a to be received, and an outer peripheral wall 2b is erected along the outer peripheral side edge of the first liquid receiving surface 2a.

この第1の受液面2aの外周側縁部に沿って立設された外周壁2bは、一旦その第1の受液面2aで受け止めた液体が液体センサ用受液容器1の外部に溢れ出るのを防止する作用があり、センサ固定部4の内部に液体センサ3(図3(c)参照)が固定され、その液体センサ3の検出領域となっているので、最終的にその方向に向かって、液体が確実に流れていくようにしている。   The outer peripheral wall 2b erected along the outer peripheral side edge of the first liquid receiving surface 2a is such that the liquid once received by the first liquid receiving surface 2a overflows outside the liquid sensor receiving container 1. The liquid sensor 3 (see FIG. 3C) is fixed inside the sensor fixing part 4 and serves as a detection area for the liquid sensor 3, so that in the final direction The liquid is surely flowing toward it.

また、平坦な第1の受液面2aの所定位置には、高さが0.5〜5.0mmの3本の平板状凸部5が、0.5〜2.0mmの間隔で隣り合って、センサ固定部4へ向かって直線状に形成されており、その3本の平板状凸部5で挟まれて2本の第1の溝部5aが配置されている。   In addition, at a predetermined position on the flat first liquid receiving surface 2a, three flat convex portions 5 having a height of 0.5 to 5.0 mm are adjacent to each other at intervals of 0.5 to 2.0 mm. Then, it is formed in a straight line toward the sensor fixing portion 4, and two first groove portions 5 a are arranged between the three flat plate-like convex portions 5.

一方、第2の受液部7の外周を取り囲み、第1の受液面2aの外周側縁部に沿って立設された外周壁2bの側面に2個のフック部10(図5(a)参照)が設けられているので、液体の検出が可能なように液体センサ3が液体センサ用受液容器1のセンサ固定部4に固定された状態で、そのリード線3aをそのフック部10に係止することにより、外部にリード線3aが不要に延在するのを容易に防止できる。   On the other hand, two hook portions 10 (FIG. 5 (a) are formed on the side surface of the outer peripheral wall 2b that surrounds the outer periphery of the second liquid receiving portion 7 and is erected along the outer peripheral side edge of the first liquid receiving surface 2a. Since the liquid sensor 3 is fixed to the sensor fixing part 4 of the liquid sensor receiving container 1 so that the liquid can be detected, the lead wire 3a is connected to the hook part 10 so that the liquid can be detected. By being locked to the lead wire 3a, it is possible to easily prevent the lead wire 3a from being extended unnecessarily.

つまり、リード線3aが不要に延在して第1の受液面2aの上または第2の受液面7aの上に垂れ下がり、それらの受液面を流れる液体がそのリード線3aを伝わって電子機器側に流れていくのを防止できる。   That is, the lead wire 3a extends unnecessarily and hangs down on the first liquid receiving surface 2a or the second liquid receiving surface 7a, and the liquid flowing on those liquid receiving surfaces travels through the lead wire 3a. It can be prevented from flowing to the electronic device side.

そして、図3(b)の同図(a)のA−A矢視断面図で示したように、第1の受液面2aに液体が滴下され、液体センサ3が検知可能な使用状態において、平坦な第1の受液面2aは、センサ固定部4に近づくに従って破線の矢印Fで示した重力方向へ下降するように傾斜しているので、検出しようとする液体が、継続的に第1の受液面2aに滴下していくと、一旦その第1の受液面2aで受け止められ、外部に溢れ出ることなく、重力の作用によりその第1の受液面2aの傾斜方向に沿って、実線の矢印で示した方向へ液体が円滑に流れ、センサ固定部4の内部の液体センサ3の検出領域までその液体をより効率的に移送できるようにしている。   Then, as shown in the AA arrow sectional view of FIG. 3A in FIG. 3B, the liquid is dropped on the first liquid receiving surface 2 a, and the liquid sensor 3 can detect the use state. The flat first liquid receiving surface 2a is inclined so as to descend in the gravitational direction indicated by the broken-line arrow F as it approaches the sensor fixing portion 4, so that the liquid to be detected is continuously supplied to the first liquid receiving surface 2a. When the liquid drops on the first liquid receiving surface 2a, the liquid is once received by the first liquid receiving surface 2a, and does not overflow to the outside, but along the inclination direction of the first liquid receiving surface 2a by the action of gravity. Thus, the liquid smoothly flows in the direction indicated by the solid line arrow so that the liquid can be more efficiently transferred to the detection region of the liquid sensor 3 inside the sensor fixing portion 4.

なお、第1の受液面2aの傾斜に沿って流れた液体は、開口部2eを取り囲むように形成された突出壁2fにぶつかるが、その突出壁2fに沿って迂回しながら、センサ固定部4の内部へ直接流れていく。   The liquid flowing along the inclination of the first liquid receiving surface 2a hits the protruding wall 2f formed so as to surround the opening 2e, but the sensor fixing portion is detoured along the protruding wall 2f. It flows directly to the inside of 4.

なお、本実施の形態については、第1の受液面2aと破線の矢印Fで示した重力方向に対して垂直な仮想直線との内角である傾斜角度θ1を5〜10°を範囲で設定したが、この角度は、この液体センサ用受液容器1の設置スペースや液体の検出速度などを考慮して適宜設定すればよい。   In the present embodiment, the inclination angle θ1, which is the internal angle between the first liquid receiving surface 2a and a virtual straight line perpendicular to the gravitational direction indicated by the dashed arrow F, is set within a range of 5 to 10 °. However, this angle may be set as appropriate in consideration of the installation space of the liquid sensor receiving container 1 and the liquid detection speed.

一方、第2の受液部7が重力方向で下方になるように設置された場合は、破線の矢印Sで示した重力方向に液体が滴下するので、その液体を第2の受液面7aが受け止められる
ようになっている。
On the other hand, when the second liquid receiving portion 7 is installed so as to be downward in the direction of gravity, the liquid drops in the direction of gravity indicated by the dashed arrow S, so that the liquid is supplied to the second liquid receiving surface 7a. Can be received.

ここで、第2の受液面7aに液体が滴下され、液体センサ3が検知可能な使用状態において、平坦な第2の受液面7aは、センサ固定部4から離れるに従って破線の矢印Sで示した重力方向へ下降するように傾斜しているので、第2の受液部7に滴下した液体がその重力の作用によりその第2の受液面7aの傾斜方向に沿って円滑に流れ、その第2の受液面7aの一方端より反対側の面へ実線の矢印で示したようにターンして、その第2の受液面7aに対して反対側の面に形成された4本の平板状凸部8に挟まれた3本の第2の溝部8a(図3(a)、図5(c)参照)に流入していく。   Here, when the liquid is dropped on the second liquid receiving surface 7a and the liquid sensor 3 can detect, the flat second liquid receiving surface 7a is indicated by a dashed arrow S as the distance from the sensor fixing portion 4 increases. Since it is inclined so as to descend in the direction of gravity shown, the liquid dripped onto the second liquid receiving part 7 flows smoothly along the inclination direction of the second liquid receiving surface 7a by the action of the gravity, Four lines formed on the surface opposite to the second liquid receiving surface 7a by turning to the surface on the opposite side from the one end of the second liquid receiving surface 7a as indicated by the solid line arrow. It flows into the three 2nd groove parts 8a (refer FIG. 3 (a) and FIG.5 (c)) pinched | interposed into the flat plate-shaped convex part 8 of this.

そして、その第2の溝部8aに流入した液体には、その第2に溝部8aによる毛細管現象も作用しながら、その第2の溝部8aに連通するとともにその一方の端部に液体センサ3を固定するセンサ固定部4まで案内されるので、そのセンサ固定部4の内部の液体センサ3の検出領域への移送がより促進される。   The liquid flowing into the second groove 8a is connected to the second groove 8a and the liquid sensor 3 is fixed to one end of the liquid while the second capillary action is caused by the groove 8a. Therefore, the transfer to the detection region of the liquid sensor 3 inside the sensor fixing unit 4 is further promoted.

また、第2の受液面7aに液体が滴下され、液体センサ3が検知可能な使用状態において、第2の溝部8aは、第2の受液面7aに対して反対側の面の傾斜方向に沿って直線状に配置されているので、その第2の溝部8aに連通するセンサ固定部4の内部の液体センサ3の検出領域へ最短距離で案内する作用があり、短時間での検出が可能となる。   In addition, when the liquid is dripped onto the second liquid receiving surface 7a and the liquid sensor 3 can detect the second groove portion 8a, the second groove 8a is inclined with respect to the surface opposite to the second liquid receiving surface 7a. Are arranged in a straight line along the second groove portion 8a, so that there is an action of guiding to the detection region of the liquid sensor 3 inside the sensor fixing portion 4 communicating with the second groove portion 8a in the shortest distance, and detection in a short time is possible. It becomes possible.

従って、第2の受液部7に滴下した液体が比較的微量であっても、その液体を効率的に液体センサ3の検出領域に移送でき、短時間での検出が可能となる。   Therefore, even if the amount of liquid dropped on the second liquid receiving unit 7 is relatively small, the liquid can be efficiently transferred to the detection region of the liquid sensor 3, and detection can be performed in a short time.

しかも、第2の受液面7aの一方端でターンして、その第2の受液面7aに対して反対側の面の所定の位置に形成された4本の平板状凸部8に挟まれた3本の第2の溝部8aを通ってセンサ固定部4の方へ戻るように液体の移送ができ、第2の受液面7a側に第2の溝部8aを配置しなくてもよいので、限られたスペースでも第2の受液面7aを十分確保できる。   Moreover, it turns at one end of the second liquid receiving surface 7a and is sandwiched between four flat projections 8 formed at predetermined positions on the surface opposite to the second liquid receiving surface 7a. The liquid can be transferred so as to return to the sensor fixing portion 4 through the three second groove portions 8a, and the second groove portion 8a need not be arranged on the second liquid receiving surface 7a side. Therefore, the second liquid receiving surface 7a can be sufficiently secured even in a limited space.

なお、本実施の形態については、第2の受液面7aと破線の矢印Sで示した重力方向に対して垂直な仮想直線との内角である傾斜角度θ2を5〜10°を範囲で設定したが、この角度は、この液体センサ用受液容器1の設置スペースや液体の検出速度などを考慮して適宜設定すればよい。   In the present embodiment, the inclination angle θ2 that is an internal angle between the second liquid receiving surface 7a and a virtual straight line perpendicular to the gravitational direction indicated by the broken arrow S is set in a range of 5 to 10 °. However, this angle may be set as appropriate in consideration of the installation space of the liquid sensor receiving container 1 and the liquid detection speed.

また、前述したように、円弧状の凸部11は、第1の受液部2に設けられた開口部2eを取り囲むように形成された突出壁2fとセンサ固定部4の間に形成され、覆設部6の下側の面に形成された円弧状の凹部12と嵌合するように組み合わさっている。   In addition, as described above, the arc-shaped convex portion 11 is formed between the protruding wall 2f formed so as to surround the opening 2e provided in the first liquid receiving portion 2 and the sensor fixing portion 4, They are combined so as to be fitted with an arcuate recess 12 formed on the lower surface of the covering portion 6.

従って、その開口部2eに挿入される固定部材が金属製であっても、突出壁2fを取り囲むように形成された円弧状の凸部11により液体センサ3とその固定部材の間の沿面距離を長く設定できるので、その分、耐電圧特性を向上することができる。   Accordingly, even if the fixing member inserted into the opening 2e is made of metal, the creeping distance between the liquid sensor 3 and the fixing member is increased by the arc-shaped convex portion 11 formed so as to surround the protruding wall 2f. Since it can be set longer, the withstand voltage characteristic can be improved accordingly.

つまり、その液体センサ用受液容器1の冷却装置への固定やその冷却装置の電子機器への搭載などの取り扱いの際に、人体からの静電気によって、金属製の固定部材を介して液体センサ3が電気的に破壊されるのを未然に防止することができる。   That is, when the liquid sensor receiving container 1 is fixed to the cooling device or the cooling device is mounted on an electronic device, the liquid sensor 3 is passed through the metal fixing member due to static electricity from the human body. Can be prevented from being electrically destroyed.

そして、図3(c)の同図(a)のB−B矢視断面図で示したように、第1の受液面2aの所定位置には、平板状凸部5がセンサ固定部4に向かって形成されており、その平板状凸部5で挟まれては第1の溝部5aが配置されている。   Then, as shown in the sectional view taken along the line BB in FIG. 3A, a flat plate-like convex portion 5 is provided at a predetermined position on the first liquid receiving surface 2a. 1st groove part 5a is arrange | positioned between the flat convex parts 5.

そして、第1の受液面2aからこの第1の溝部5aに流入した液体には、その第1の溝部5aによる毛細管現象も作用しながら、その第1の溝部5aに連通するとともにその一方の端部に液体センサ3を固定するセンサ固定部4まで案内されるので、そのセンサ固定部4の内部の液体センサ3の検出領域への移送がより促進される。   The liquid flowing into the first groove portion 5a from the first liquid receiving surface 2a communicates with the first groove portion 5a while acting also on the capillary phenomenon due to the first groove portion 5a, and one of them. Since it is guided to the sensor fixing portion 4 that fixes the liquid sensor 3 to the end portion, the transfer of the liquid sensor 3 inside the sensor fixing portion 4 to the detection region is further promoted.

また、第1の受液面2aに液体が滴下され、液体センサ3が検知可能な使用状態において、2本の第1の溝部5aの底面も、平坦な第1の受液面2aと同様に、センサ固定部4に近づくに従って破線の矢印Fで示した重力方向へ下降するように傾斜しているので、その第1の溝部5aに流入した液体が重力の作用によりその第1の溝部5aの傾斜方向に沿って円滑に流れ、その第1の溝部5aに連通した箱型形状のセンサ固定部4の内部の液体センサ3の検出領域へより効率的に移送される。   Further, in the use state where the liquid is dropped on the first liquid receiving surface 2a and the liquid sensor 3 can detect, the bottom surfaces of the two first groove portions 5a are also the same as the flat first liquid receiving surface 2a. As the sensor fixing part 4 is approached, it is inclined so as to descend in the direction of gravity indicated by the broken arrow F, so that the liquid that has flowed into the first groove part 5a acts on the first groove part 5a by the action of gravity. It flows smoothly along the inclination direction, and is more efficiently transferred to the detection region of the liquid sensor 3 inside the box-shaped sensor fixing part 4 communicating with the first groove 5a.

しかも、第1の受液面2aに液体が滴下され、液体センサ3が検知可能な使用状態において、その2本の第1の溝部5aがその第1の受液部2の第1の受液面2aの傾斜方向に沿って直線状に配置されているので、第1の溝部5aに流入した液体がセンサ固定部4の内部の液体センサ3の検出領域へ最短距離で案内されるので、より短時間での検出が可能となる。   In addition, when the liquid is dripped onto the first liquid receiving surface 2a and the liquid sensor 3 can detect it, the two first grooves 5a are the first liquid receiving parts of the first liquid receiving part 2. Since it is arranged linearly along the inclination direction of the surface 2a, the liquid flowing into the first groove 5a is guided to the detection region of the liquid sensor 3 inside the sensor fixing part 4 at the shortest distance. Detection in a short time is possible.

さらに、少なくともその下側に平坦な面を有する覆設部6が、前述した3本の平板状凸部5に挟まれた第1の溝部5aの一部を覆うように組み合わされ、その第1の溝部5aと覆設部6の下側の平坦な面との間に隙間6aが形成されている。   Further, the covering portion 6 having a flat surface at least on the lower side thereof is combined so as to cover a part of the first groove portion 5a sandwiched between the three flat plate-like convex portions 5 described above. A gap 6 a is formed between the groove portion 5 a and the flat surface below the covering portion 6.

そして、その第1の溝部5aと覆設部6の下側の平坦な面との間の隙間6aに流入した液体に対して毛細管現象による吸引力が作用し、その隙間6aでの液体の移送力が容易に大きくなるので、センサ固定部4の内部の液体センサ3の検出領域への移送がより促進される。   And the attraction | suction force by a capillary action acts with respect to the liquid which flowed into the clearance gap 6a between the 1st groove part 5a and the lower flat surface of the covering part 6, and the transfer of the liquid in the clearance gap 6a Since the force is easily increased, the transfer of the liquid sensor 3 inside the sensor fixing unit 4 to the detection region is further promoted.

そして、その液体が一旦液体センサ3とセンサ固定部4の内壁との隙間に到達すると、その隙間が所定の間隔、例えば0.1〜1.0mmとなるように設定されているので、その隙間による毛細管現象による吸引力も働いて液体センサ3の検出領域に液体が広がるので、短時間での検出が可能となっている。   Then, once the liquid reaches the gap between the liquid sensor 3 and the inner wall of the sensor fixing portion 4, the gap is set to be a predetermined interval, for example, 0.1 to 1.0 mm. Since the liquid is spread in the detection region of the liquid sensor 3 due to the suction force due to the capillary phenomenon caused by the above, detection in a short time is possible.

一方、第2の受液部7が重力方向で下方になるように設置された場合は、破線の矢印Sで示した重力方向に液体が滴下するので、その液体を第2の受液面7aが受け止められるようになっている。   On the other hand, when the second liquid receiving portion 7 is installed so as to be downward in the direction of gravity, the liquid drops in the direction of gravity indicated by the dashed arrow S, so that the liquid is supplied to the second liquid receiving surface 7a. Can be received.

ここで、第2の受液面7aに液体が滴下され、液体センサ3が検知可能な使用状態において、平坦な第2の受液面7aは、センサ固定部4から離れるに従って破線の矢印Sで示した重力方向へ下降するように傾斜しているので、第2の受液部7に滴下した液体がその重力の作用によりその第2の受液面7aの傾斜方向に沿って円滑に流れ、その第2の受液面7aの一方端より反対側の面へ実線の矢印で示したようにターンして、その第2の受液面7aに対して反対側の面に形成された4本の平板状凸部8に挟まれた3本の第2の溝部8a(図3(a)、図5(c)参照)に流入していく。   Here, when the liquid is dropped on the second liquid receiving surface 7a and the liquid sensor 3 can detect, the flat second liquid receiving surface 7a is indicated by a dashed arrow S as the distance from the sensor fixing portion 4 increases. Since it is inclined so as to descend in the direction of gravity shown, the liquid dripped onto the second liquid receiving part 7 flows smoothly along the inclination direction of the second liquid receiving surface 7a by the action of the gravity, Four lines formed on the surface opposite to the second liquid receiving surface 7a by turning to the surface on the opposite side from the one end of the second liquid receiving surface 7a as indicated by the solid line arrow. It flows into the three 2nd groove parts 8a (refer FIG. 3 (a) and FIG.5 (c)) pinched | interposed into the flat plate-shaped convex part 8 of this.

また、その第2の溝部8aに流入した液体には、その第2に溝部8aによる毛細管現象や破線の矢印Sで示した重力方向へ下降するように傾斜した外周壁2bとその第2の溝部8aとの間に形成された隙間により毛細管現象による吸引力も作用しながら、その第2の溝部8aに連通するとともにその一方の端部に液体センサ3を固定するセンサ固定部4の内部まで案内されるので、そのセンサ固定部4の内部の液体センサ3の検出領域への移送がより促進される。   In addition, the liquid flowing into the second groove 8a includes the outer peripheral wall 2b and the second groove that are inclined so as to descend in the gravitational direction indicated by the capillary action or the broken arrow S by the second groove 8a. While being attracted by capillarity due to the gap formed between the first and second grooves 8a, the second groove 8a communicates with the second groove 8a and is guided to the inside of the sensor fixing portion 4 for fixing the liquid sensor 3 to one end thereof. Therefore, the transfer of the liquid sensor 3 inside the sensor fixing portion 4 to the detection region is further promoted.

そして、その液体が一旦液体センサ3とセンサ固定部4の内壁との隙間に到達すると、その隙間が所定の間隔、例えば0.1〜1.0mmとなるように設定されているので、その隙間による毛細管現象による吸引力も働いて液体センサ3の検出領域に液体が広がるので、短時間での検出が可能となっている。   Then, once the liquid reaches the gap between the liquid sensor 3 and the inner wall of the sensor fixing portion 4, the gap is set to be a predetermined interval, for example, 0.1 to 1.0 mm. Since the liquid is spread in the detection region of the liquid sensor 3 due to the suction force due to the capillary phenomenon caused by the above, detection in a short time is possible.

また、第2の受液面7aに液体が滴下され、液体センサ3が検知可能な使用状態において、第2の溝部8aは、第2の受液面7aに対して反対側の面の傾斜方向に沿って直線状に配置されているので、その第2の溝部8aに連通するセンサ固定部4の内部の液体センサ3の検出領域へ最短距離で案内する作用があり、短時間での検出が可能となる。   In addition, when the liquid is dripped onto the second liquid receiving surface 7a and the liquid sensor 3 can detect the second groove portion 8a, the second groove 8a is inclined with respect to the surface opposite to the second liquid receiving surface 7a. Are arranged in a straight line along the second groove portion 8a, so that there is an action of guiding to the detection region of the liquid sensor 3 inside the sensor fixing portion 4 communicating with the second groove portion 8a in the shortest distance, and detection in a short time is possible. It becomes possible.

従って、第2の受液部7に滴下した液体が比較的微量であっても、その液体を効率的に液体センサ3の検出領域に移送でき、短時間での検出が可能となる。   Therefore, even if the amount of liquid dropped on the second liquid receiving unit 7 is relatively small, the liquid can be efficiently transferred to the detection region of the liquid sensor 3, and detection can be performed in a short time.

しかも、第2の受液面7aの一方端でターンして、その第2の受液面7aに対して反対側の面の所定の位置に形成された4本の平板状凸部8に挟まれた3本の第2の溝部8aを通ってセンサ固定部4の方へ戻るように液体の移送ができ、第2の受液面7a側に第2の溝部8aを配置しなくてもよいので、限られたスペースでも第2の受液面7aを十分確保できる。   Moreover, it turns at one end of the second liquid receiving surface 7a and is sandwiched between four flat projections 8 formed at predetermined positions on the surface opposite to the second liquid receiving surface 7a. The liquid can be transferred so as to return to the sensor fixing portion 4 through the three second groove portions 8a, and the second groove portion 8a need not be arranged on the second liquid receiving surface 7a side. Therefore, the second liquid receiving surface 7a can be sufficiently secured even in a limited space.

また、本実施の形態では、開口部2eに挿入される固定部材が金属製である場合の絶縁距離も考慮して、第2の受液面7aの一方端でターンさせて、その第2の受液面7aに対して反対側の面の所定の位置に形成された4本の平板状凸部8に挟まれた3本の第2の溝部8aを通ってセンサ固定部4の方へ戻るように液体の移送をさせたが、そのような絶縁距離を考慮する必要がない場合には、その第2の受液面7aに代えて、第2の溝部8aに対向する外周壁2bの内側面を第2の受液面としてそこに第2の溝部を配置すれば、より短時間での検出が可能となる。   In the present embodiment, in consideration of the insulation distance when the fixing member inserted into the opening 2e is made of metal, the second member 7a is turned at one end of the second liquid receiving surface 7a, and the second Returning to the sensor fixing portion 4 through the three second groove portions 8a sandwiched between the four flat projections 8 formed at predetermined positions on the surface opposite to the liquid receiving surface 7a. In the case where it is not necessary to consider such an insulation distance, instead of the second liquid receiving surface 7a, the inside of the outer peripheral wall 2b facing the second groove 8a is transferred. If the second groove portion is disposed therewith the side surface as the second liquid receiving surface, detection in a shorter time becomes possible.

次に、図4(a)〜(c)を用いて、一部重複するが、前述した内容を補足して説明する。   Next, a part of the description will be supplemented by using FIGS. 4 (a) to 4 (c).

まず、図4(a)は本発明の実施の形態1に係わる液体センサ用受液容器1の平面図で、図3(a)と同一なので説明を省略する。   First, FIG. 4A is a plan view of the liquid sensor receiving container 1 according to Embodiment 1 of the present invention, which is the same as FIG.

次に、図4(b)の同図(a)のC−C矢視部分断面図で示したように、平坦な第1の受液面2aの所定位置には、高さが0.5〜5.0mmの3本の平板状凸部5が、0.5〜2.0mmの間隔で隣り合って、センサ固定部4へ向かって直線状に形成されており、その3本の平板状凸部5で挟まれて2本の第1の溝部5aが配置されている。   Next, as shown in the CC cross-sectional partial cross-sectional view of FIG. 4B, the height of the predetermined first position of the flat first liquid receiving surface 2a is 0.5. Three flat convex portions 5 of ˜5.0 mm are formed adjacent to each other at intervals of 0.5 to 2.0 mm and linearly toward the sensor fixing portion 4, and the three flat plate shapes are formed. Two first groove portions 5 a are arranged between the convex portions 5.

また、第1の受液面2aに液体が滴下され、液体センサ3が検知可能な使用状態において、この第1の受液面2aと2本の第1の溝部5aの底面はどちらも、図3(b)、(c)で示したように、センサ固定部4に近づくに従って破線の矢印Fで示した重力方向へ下降するように傾斜しているので、その第1の溝部5aに流入した液体が重力の作用によりその第1の溝部5aの底面の傾斜方向に沿って円滑に流れ、センサ固定部4の内部の液体センサ3の検出領域へ効率的に移送される。   In addition, when the liquid is dripped onto the first liquid receiving surface 2a and the liquid sensor 3 can detect it, both the first liquid receiving surface 2a and the bottom surfaces of the two first groove portions 5a are illustrated in FIG. 3 (b) and 3 (c), since it is inclined to descend in the direction of gravity indicated by the broken arrow F as it approaches the sensor fixing portion 4, it flows into the first groove portion 5a. The liquid flows smoothly along the inclination direction of the bottom surface of the first groove portion 5a by the action of gravity, and is efficiently transferred to the detection region of the liquid sensor 3 inside the sensor fixing portion 4.

しかも、第1の受液面2aに液体が滴下され、液体センサ3が検知可能な使用状態において、その2本の第1の溝部5aがその第1の受液部2の第1の受液面2aの傾斜方向に沿って直線状に配置されているので、第1の溝部5aに流入した液体がセンサ固定部4の内部の液体センサ3の検出領域へ最短距離で案内されるので、より短時間での検出が可能
となる。
In addition, when the liquid is dripped onto the first liquid receiving surface 2a and the liquid sensor 3 can detect it, the two first grooves 5a are the first liquid receiving parts of the first liquid receiving part 2. Since it is arranged linearly along the inclination direction of the surface 2a, the liquid flowing into the first groove 5a is guided to the detection region of the liquid sensor 3 inside the sensor fixing part 4 at the shortest distance. Detection in a short time is possible.

また、図4(c)の同図(a)のD−D矢視部分断面図で示したように、少なくともその下側に平坦な面を有する覆設部6が、前述した3本の平板状凸部5に挟まれた第1の溝部5aの一部を覆うように組み合わされ、その第1の溝部5aと覆設部6の下側の平坦な面との間に2本の隙間6aが形成されている。   Further, as shown in the partial cross-sectional view taken along the line DD in FIG. 4C, the covering portion 6 having a flat surface at least on the lower side thereof is the above-described three flat plates. Two gaps 6a are combined between the first groove 5a and the flat surface below the covering portion 6 so as to cover a part of the first groove 5a sandwiched between the convex portions 5. Is formed.

そして、その第1の溝部5aと覆設部6の下側の平坦な面との間の隙間6aに流入した液体に対して毛細管現象による吸引力が作用し、その隙間6aでの液体の移送力が容易に大きくなるので、センサ固定部4の内部の液体センサ3の検出領域への移送がより促進される。   And the attraction | suction force by a capillary action acts with respect to the liquid which flowed into the clearance gap 6a between the 1st groove part 5a and the lower flat surface of the covering part 6, and the transfer of the liquid in the clearance gap 6a Since the force is easily increased, the transfer of the liquid sensor 3 inside the sensor fixing unit 4 to the detection region is further promoted.

また、前述したように、開口部2eを取り囲むように形成された突出壁2fとセンサ固定部4との間に円弧状の凸部11が形成され、覆設部6の下面に形成された円弧状の凹部12と嵌合するように組み合わさるようになっているので、その開口部2eに挿入された固定部材が金属製であっても、突出壁2fとセンサ固定部4との間に形成された円弧状の凸部11により液体センサ3とその固定部材の間の沿面距離を長く設定できるので、その分、耐電圧特性を向上することができる。   In addition, as described above, the arc-shaped convex portion 11 is formed between the projecting wall 2 f formed so as to surround the opening 2 e and the sensor fixing portion 4, and the circle formed on the lower surface of the covering portion 6. Since it is combined so as to be fitted to the arc-shaped recess 12, it is formed between the protruding wall 2 f and the sensor fixing portion 4 even if the fixing member inserted into the opening 2 e is made of metal. Since the creeping distance between the liquid sensor 3 and its fixing member can be set longer by the arc-shaped convex portion 11 thus formed, the withstand voltage characteristic can be improved accordingly.

つまり、その液体センサ用受液容器1の冷却装置への固定やその冷却装置の電子機器への搭載などの取り扱いの際に、人体からの静電気によって、金属製の固定部材を介して液体センサ3が電気的に破壊されるのを未然に防止することができる。   That is, when the liquid sensor receiving container 1 is fixed to the cooling device or the cooling device is mounted on an electronic device, the liquid sensor 3 is passed through the metal fixing member due to static electricity from the human body. Can be prevented from being electrically destroyed.

次に、図5(a)〜(c)を用いて、一部重複するが、前述した内容を補足して説明する。   Next, a part of the description will be supplemented by using FIGS. 5A to 5C.

図5(a)は、図4(c)のE−E矢視断面図で、第2の受液部7が重力方向で下方になるように設置された場合は、破線の矢印Sで示した重力方向に液体が滴下するので、図5(b)の下方に平坦な面を有する覆設部6とその一方の側端部に形成された第2の受液部7の斜視図で示したように、その液体をセンサ固定部4の上方に位置する第2の受液面7aが受け止められるようになっている。   FIG. 5A is a cross-sectional view taken along the line E-E in FIG. 4C, and the second liquid receiving unit 7 is indicated by a broken-line arrow S when installed so as to be downward in the direction of gravity. 5b is a perspective view of the covering portion 6 having a flat surface below the second liquid receiving portion 7 formed on one side end portion thereof, because the liquid drops in the direction of gravity. As described above, the second liquid receiving surface 7a positioned above the sensor fixing portion 4 can receive the liquid.

ここで、第2の受液面7aに液体が滴下され、液体センサ3が検知可能な使用状態において、平坦な第2の受液面7aは、図3(b)、(c)を用いて前述したように、センサ固定部4から離れるに従って破線の矢印Sで示した重力方向へ下降するように傾斜しているので、第2の受液部7に滴下した液体がその重力の作用によりその第2の受液面7aの傾斜方向に沿って円滑に流れ、その第2の受液面7aの一方端より反対側の面へターンして、その第2の受液面7aに対して反対側の面に形成された4本の平板状凸部8に挟まれた3本の第2の溝部8aに流入していく。   Here, in a use state where the liquid is dropped onto the second liquid receiving surface 7a and the liquid sensor 3 can detect, the flat second liquid receiving surface 7a is shown in FIGS. 3B and 3C. As described above, since it is inclined to descend in the direction of gravity indicated by the dashed arrow S as it is away from the sensor fixing portion 4, the liquid dropped on the second liquid receiving portion 7 is affected by the action of gravity. It smoothly flows along the inclination direction of the second liquid receiving surface 7a, turns to the surface opposite to the one end of the second liquid receiving surface 7a, and is opposite to the second liquid receiving surface 7a. It flows into three second groove portions 8a sandwiched between four flat plate-like convex portions 8 formed on the side surface.

そして、さらにその第2の溝部8aに流入した液体には、その第2に溝部8aによる毛細管現象や前述したように破線の矢印Sで示した重力方向へ下降するように傾斜した外周壁2bとその第2の溝部8aとの間に形成された隙間により毛細管現象による吸引力も作用しながら、その第2の溝部8aに連通するとともにその一方の端部に液体センサ3を固定するセンサ固定部4の内部まで案内されるので、そのセンサ固定部4の内部の液体センサ3の検出領域への移送がより促進される。   Further, the liquid that has flowed into the second groove portion 8a further includes the outer peripheral wall 2b that is inclined to descend in the direction of gravity indicated by the broken arrow S as described above, and the capillary phenomenon caused by the groove portion 8a. A sensor fixing portion 4 that communicates with the second groove portion 8a and fixes the liquid sensor 3 at one end thereof while the suction force due to capillary action is also acting by the gap formed between the second groove portion 8a. Therefore, the transfer to the detection area of the liquid sensor 3 inside the sensor fixing part 4 is further promoted.

図5(c)は、下方に平坦な面を有する覆設部6とその一方の側端部に形成された第2の受液部7の背面側斜視図で、第2の受液面7aの反対側の面の所定位置には、高さが0.5〜5.0mmの4本の平板状凸部8が、0.5〜2.0mmの間隔で隣り合って、セ
ンサ固定部4の方向へ向かって形成されており、その4本の平板状凸部8に挟まれた3本の第2の溝部8aが、液体センサ3(図示せず)を固定するセンサ固定部4に連通するように配置されている状態を示している。
FIG. 5C is a rear perspective view of the covering portion 6 having a flat surface below and the second liquid receiving portion 7 formed at one side end thereof, and the second liquid receiving surface 7a. Four flat plate-like convex portions 8 having a height of 0.5 to 5.0 mm are adjacent to each other at a predetermined position on the surface opposite to each other at an interval of 0.5 to 2.0 mm. The three second grooves 8a sandwiched between the four flat projections 8 communicate with the sensor fixing portion 4 that fixes the liquid sensor 3 (not shown). The state where it is arranged is shown.

なお、箱型形状のセンサ固定部4の内壁に形成された位置決め用凸部4aは、液体センサ3にあらかじめ設けられた嵌合孔(図示せず)と嵌合させてその液体センサ3を所定の位置に位置決めするためのものである。   The positioning convex portion 4a formed on the inner wall of the box-shaped sensor fixing portion 4 is fitted into a fitting hole (not shown) provided in the liquid sensor 3 in advance, so that the liquid sensor 3 is predetermined. It is for positioning to the position.

次に、図6は、第2の受液部の外周壁のコーナー部の内面形状を説明する図で、図6の(a)、(b)を用いて、第2の受液部7の外周壁7bのコーナー部の内面形状について説明する。   Next, FIG. 6 is a diagram for explaining the inner surface shape of the corner portion of the outer peripheral wall of the second liquid receiving part. Using (a) and (b) of FIG. The inner surface shape of the corner portion of the outer peripheral wall 7b will be described.

図6の(a)は、覆設部6とその一方の側端部に形成された第2の受液部7の平面図で、第2の受液部7の第2の受液面7aの外周側縁部に沿って外周壁7bが立設されており、その外周壁7bと覆設部6がコーナー部Rにおいて接続され、そのコーナー部Rの内面形状が、その立設方向と垂直な断面において円弧状となっている。   6A is a plan view of the covering portion 6 and the second liquid receiving portion 7 formed on one side end portion thereof, and the second liquid receiving surface 7a of the second liquid receiving portion 7. FIG. An outer peripheral wall 7b is erected along the outer peripheral side edge of the outer peripheral wall, and the outer peripheral wall 7b and the covering portion 6 are connected at the corner portion R, and the inner surface shape of the corner portion R is perpendicular to the erected direction. The cross section is arcuate.

つまり、第2の受液面7aに液体が滴下され、液体センサ3が検知可能な使用状態においては、第2の受液部7が重力方向で下方になるように液体センサ用受液容器1が設置され、破線の矢印Sで示した重力方向に液体が滴下するので、ここで、第2の受液容面7aに対しては、覆設部6も外周壁7bと同じように、一旦その第2の受液面7aで受け止められた液体が液体センサ用受液容器1の外部に溢れ出るのを防止する作用があるので、実質的には、覆設部6は第2の受液面7aの外周側縁部に沿って立設された外周壁7bの一部とみなすことができる。   That is, in a use state where the liquid is dropped on the second liquid receiving surface 7a and can be detected by the liquid sensor 3, the liquid receiving container 1 for the liquid sensor is arranged so that the second liquid receiving unit 7 is downward in the direction of gravity. Since the liquid drops in the direction of gravity indicated by the broken-line arrow S, the covering portion 6 is also temporarily attached to the second liquid receiving surface 7a in the same manner as the outer peripheral wall 7b. Since the liquid received by the second liquid receiving surface 7a has an action of preventing the liquid sensor liquid receiving container 1 from overflowing outside, the covering portion 6 substantially has the second liquid receiving surface. It can be regarded as a part of the outer peripheral wall 7b erected along the outer peripheral side edge of the surface 7a.

また、図6の(b)は、同図(a)のF−F矢視部分断面図で、外周壁7bの立設方向と垂直な断面におけるコーナー部Rの内面形状を示しており、その内面形状が円弧状となっている。   6B is a partial cross-sectional view taken along the line FF in FIG. 6A, and shows the inner surface shape of the corner portion R in a cross section perpendicular to the standing direction of the outer peripheral wall 7b. The inner surface shape is an arc shape.

このような形状にすることにより、第2の受液部7が重力方向で下方になるように設置された場合には、その外周壁7bのコーナー部Rでの液体が毛細管現象により反重力方向(図6(a)の破線の矢印Sとは反対に方向)へ這い上がりするのを抑制するので、第2の受液面7aで受け止められた液体が液体センサ用受液容器1の外部に溢れ出るのを防止する作用があり、より確実にセンサ固定部4の内部の液体センサ3の検出領域へ移送できる。   By adopting such a shape, when the second liquid receiving portion 7 is installed so as to be downward in the direction of gravity, the liquid at the corner portion R of the outer peripheral wall 7b is anti-gravity due to capillary action. Since the liquid is prevented from creeping up (in the direction opposite to the dashed arrow S in FIG. 6A), the liquid received by the second liquid receiving surface 7a is outside the liquid receiving container 1 for liquid sensor. It has an effect of preventing overflow and can be transferred to the detection area of the liquid sensor 3 inside the sensor fixing portion 4 more reliably.

なお、液体が水の場合であれば、そのコーナー部Rの内面形状については、その立設方向と垂直な断面において円弧の半径を1〜5mmに設定するのが好ましい。   If the liquid is water, the inner radius of the corner portion R is preferably set to a radius of 1 to 5 mm in the cross section perpendicular to the standing direction.

また、図7は、冷却装置に液体センサ用受液容器1を固定した状態図で、液循環用のポンプを内蔵しMPUなどの発熱電子部品(図示せず)と熱接続される受熱一体ポンプ13の液吐出側と液吸込側のそれぞれに、2本の液輸送路14、15が接続されている。   Further, FIG. 7 is a state diagram in which the liquid sensor receiving container 1 is fixed to the cooling device, and a heat receiving integrated pump that incorporates a liquid circulating pump and is thermally connected to a heating electronic component (not shown) such as an MPU. Two liquid transport paths 14 and 15 are connected to each of the 13 liquid discharge sides and the liquid suction side.

液輸送路14は、フレキシブルでガス透過性の少ない高分子材料、例えばブチルゴムやフッ素ゴムなどを用いたフレキシブルチューブとさらにその一方の屈曲部分には銅、アルミニウム、ステンレス鋼などの金属管がホースバンドで接続された構成となっており、液輸送路15も同様にフレキシブルチューブと金属管がホースバンドで接続された構成で、いずれも液循環路の一部を構成している。   The liquid transport path 14 is a flexible tube using a flexible and low gas permeability polymer material such as butyl rubber or fluoro rubber, and a metal tube such as copper, aluminum, stainless steel or the like at one bent portion thereof is a hose band. Similarly, the liquid transport path 15 is also configured by connecting a flexible tube and a metal pipe with a hose band, both of which constitute a part of the liquid circulation path.

また、気液分離用の密閉型のリザーブタンク16は、その液輸送路15のフレキシブル
チューブにホースバンドで接続され、しかもラジエータ17のコアチューブ(図示せず)がそのリザーブタンク16の一方端に隣接配置され、その片側に寄せられて接続されているので、そのリザーブタンク16も液循環路の一部を構成している。
The hermetic reserve tank 16 for gas-liquid separation is connected to the flexible tube of the liquid transport path 15 by a hose band, and the core tube (not shown) of the radiator 17 is connected to one end of the reserve tank 16. Since they are arranged adjacent to each other and connected to one side, the reserve tank 16 also constitutes a part of the liquid circulation path.

そして、そのラジエータ17のコアチューブの他方端には連通タンク18が接続され、さらには側面から見てコの字状となるようにラジエータ17を挟み込んでリザーブタンク16に連通タンク18がタンク連結部材17aで連結され対向配置しているので、その間に風路が形成されて、より放熱性能を向上している。   A communication tank 18 is connected to the other end of the core tube of the radiator 17, and the communication tank 18 is connected to the reserve tank 16 by sandwiching the radiator 17 so as to have a U-shape when viewed from the side. Since it is connected by 17a and opposedly arranged, an air passage is formed between them, and the heat dissipation performance is further improved.

さらに、連通タンク18には液輸送路14を構成するフレキシブルチューブがホースバンドで接続されている。   Further, a flexible tube constituting the liquid transport path 14 is connected to the communication tank 18 by a hose band.

つまり、受熱一体ポンプ13は発熱電子部品と接触し内部を流れる液体冷媒と熱交換しながら熱を奪い、一方、その熱交換により高温に熱せられた液体冷媒は矢印で示した方向へ吐出された後、液輸送路14を矢印の方向へ通過して連通タンク18に流れ込み熱輸送を行う。   That is, the heat receiving integrated pump 13 takes heat while exchanging heat with the liquid refrigerant flowing in contact with the heat-generating electronic component, while the liquid refrigerant heated to a high temperature by the heat exchange is discharged in the direction indicated by the arrow. Thereafter, the liquid passes through the liquid transport path 14 in the direction of the arrow and flows into the communication tank 18 to perform heat transport.

そして、連通タンク18はラジエータ17の一部を構成する複数のコアチューブのそれぞれと接続され連通しているので、その液体冷媒はラジエータ17のコアチューブの中を流通する間で熱交換し放熱した後、液循環路の一部を構成するリザーブタンク16の内部を流れ、液輸送路15を通過して受熱一体ポンプ13に戻る。   Since the communication tank 18 is connected to and communicates with each of the plurality of core tubes constituting a part of the radiator 17, the liquid refrigerant exchanges heat and dissipates heat while flowing through the core tube of the radiator 17. After that, it flows through the reserve tank 16 constituting a part of the liquid circulation path, passes through the liquid transport path 15, and returns to the heat receiving integrated pump 13.

このような液循環動作を繰り返し行うことで、発熱電子部品から熱を奪い有効な冷却効果が得られる。   By repeating such a liquid circulation operation, heat is removed from the heat generating electronic component, and an effective cooling effect is obtained.

つまり、この冷却装置が電子機器に搭載された状態では、ベース部材19が冷却を必要とするMPUなどの発熱電子部品の実装された回路基板に固定部材20aによりその4箇所が固定され、受熱一体ポンプ13の受熱面がその発熱電子部品と強固に熱接続した状態となっているので、所望の冷却効果が得られている。   That is, in a state in which this cooling device is mounted on an electronic device, the base member 19 is fixed to the circuit board on which a heat generating electronic component such as an MPU that requires cooling is fixed by the fixing member 20a, and the heat receiving unit is integrated. Since the heat receiving surface of the pump 13 is in a state of being firmly thermally connected to the heat generating electronic component, a desired cooling effect is obtained.

そして、受熱一体ポンプ13は、ベース部材19に載置された状態で固定部材20bによってその四隅が固定され、さらに、そのベース部材19の下面のコーナーの所定の位置には、液体センサ用受液容器1が配置された状態で固定部材20cによりその2箇所が固定され、受熱一体ポンプ13と液輸送路14、15とのそれぞれの接続部21からの液体冷媒の漏れを受け止めて検出できるようにしている。   The four corners of the heat receiving integrated pump 13 are fixed by the fixing member 20b in a state of being mounted on the base member 19, and the liquid sensor liquid receiving liquid is disposed at a predetermined position of the corner on the lower surface of the base member 19. The two locations are fixed by the fixing member 20c in a state where the container 1 is arranged so that the liquid refrigerant leaks from the connection portions 21 of the heat receiving integrated pump 13 and the liquid transport paths 14 and 15 so as to be detected. ing.

そして、その電子機器の稼動中において、万が一その冷却装置の液体冷媒が接続部21から漏れても、その液体センサ用受液容器1が、その漏れた液体冷媒を受け止め、前述した液体センサ3の検出領域まで移送するので、その液体冷媒が付着した液体センサ3の抵抗変化を2本のリード線3aを介した電子機器側の検出回路で容易に検出可能となっている。   And even if the liquid refrigerant of the cooling device leaks from the connection part 21 during the operation of the electronic device, the liquid sensor receiving container 1 receives the leaked liquid refrigerant, and the liquid sensor 3 described above Since it is transferred to the detection region, the resistance change of the liquid sensor 3 to which the liquid refrigerant has adhered can be easily detected by the detection circuit on the electronic device side via the two lead wires 3a.

つまり、このような液体センサ用受液容器1を備えた冷却装置では、内部を循環する液体冷媒の漏れが予想される所定の位置に配置した液体センサ用受液容器1が、その液体冷媒の滴下を確実に受け止め、その液体センサ用受液容器1に固定された液体センサ3により短時間で検出できるので、その冷却装置の搭載された電子機器の電子回路の動作に支障が出る前に処置することができ、より高い信頼性を得ることが可能となる。   That is, in the cooling device including the liquid sensor receiving container 1 as described above, the liquid sensor receiving container 1 disposed at a predetermined position where the leakage of the liquid refrigerant circulating inside is expected, Since the dripping is reliably received and can be detected in a short time by the liquid sensor 3 fixed to the liquid-receiving container 1 for the liquid sensor, a measure is taken before the operation of the electronic circuit of the electronic device on which the cooling device is mounted is disturbed. And higher reliability can be obtained.

図8は、前述した冷却装置の受熱一体ポンプ13と液体センサ用受液容器1の位置関係を示した図で、その冷却装置を構成する他の主要な要素については省略して示した。   FIG. 8 is a view showing the positional relationship between the heat receiving integrated pump 13 of the cooling device and the liquid sensor receiving vessel 1 described above, and other main elements constituting the cooling device are omitted.

ここで、受熱一体ポンプ13の側面には、液輸送路14に接続するための吐出口21aと、液輸送路15に接続するための吸込口21bが設けられ、それぞれが前述した接続部21を構成している。   Here, a discharge port 21 a for connecting to the liquid transport path 14 and a suction port 21 b for connecting to the liquid transport path 15 are provided on the side surface of the heat receiving integrated pump 13. It is composed.

そして、ベース部材19の下面のコーナーには、その接続部21からの液体冷媒の漏れを、破線の矢印FとSで示した2方向の重力方向の液体の滴下に対応して検出可能なように、液体センサ用受液容器1が配置されている。   Then, at the corner of the lower surface of the base member 19, it is possible to detect the leakage of the liquid refrigerant from the connecting portion 21 corresponding to the liquid drop in the two gravitational directions indicated by the broken arrows F and S. In addition, a liquid sensor receiving container 1 is disposed.

つまり、重力方向が矢印Fとなるように電子機器が設置された場合には、第1の受液面2aが接続部21を構成する吐出口21aと吸込口21bの下方に位置し、重力方向が矢印Sとなるように電子機器が配置された場合には、第2の受液面7aが接続部21を構成する吐出口21aと吸込口21bの下方に位置するようになっており、電子機器が相互に略直角となる2方向のいずれの方向に設置されたとしても、滴下した液体をそれぞれの方向において確実に受け止めて検出できるようになっている。   That is, when the electronic device is installed so that the direction of gravity is the arrow F, the first liquid receiving surface 2a is positioned below the discharge port 21a and the suction port 21b constituting the connection portion 21, and the gravity direction When the electronic device is arranged so that becomes the arrow S, the second liquid receiving surface 7a is positioned below the discharge port 21a and the suction port 21b constituting the connection portion 21, and the electronic device Even if the device is installed in any of two directions that are substantially perpendicular to each other, the dropped liquid can be reliably received and detected in each direction.

(実施の形態2)
図9(a)は、本発明の実施の形態2に係わる液体センサ用受液容器の斜視図で、図9(b)は、その受液部のみの斜視図で、冷却装置などに固定するための固定部材を挿入する開口部やフック部などを省略し、主要部分のみを簡略的に示した。
(Embodiment 2)
FIG. 9A is a perspective view of a liquid sensor receiving container according to the second embodiment of the present invention, and FIG. 9B is a perspective view of only the liquid receiving part, which is fixed to a cooling device or the like. For this reason, an opening portion and a hook portion for inserting a fixing member for the purpose are omitted, and only a main portion is shown in a simplified manner.

本実施の形態に係わる液体センサ用受液容器30は、破線の矢印Fで示した1方向の重力方向の液体の滴下のみに対応したもので、上方には平坦な受液面31aを有し、その外周側縁部に沿って少なくとも0.5mm以上の高さの外周壁31bを立設した受液部31と、その受液面31aの所定位置には、3本の平板状凸部32がセンサ固定部33へ向かって直線状に形成されており、その3本の平板状凸部32に挟まれて2本の溝部32aが配置され、その溝部32aに連通するとともにその一方の端部に液体センサ3を固定する箱型形状のセンサ固定部33を備えている。   The liquid sensor receiving container 30 according to the present embodiment corresponds only to the liquid drop in one gravity direction indicated by the dashed arrow F, and has a flat liquid receiving surface 31a on the upper side. The liquid receiving part 31 is provided with an outer peripheral wall 31b having a height of at least 0.5 mm along the outer peripheral side edge, and three flat convex parts 32 are provided at predetermined positions on the liquid receiving surface 31a. Is formed in a straight line toward the sensor fixing portion 33, and is provided with two groove portions 32a sandwiched between the three plate-like convex portions 32, and communicates with the groove portion 32a and one end thereof. A box-shaped sensor fixing portion 33 for fixing the liquid sensor 3 is provided.

この受液面31aの外周側縁部に沿って立設された外周壁31bは、一旦その受液面31aで受け止めた液体が液体センサ用受液容器30の外部に溢れ出るのを防止する作用があり、破線で示した液体センサ3を固定するセンサ固定部33の内部の液体センサ3の検出領域へ液体が確実に移送できるようにしている。   The outer peripheral wall 31b erected along the outer peripheral side edge of the liquid receiving surface 31a acts to prevent the liquid once received by the liquid receiving surface 31a from overflowing to the outside of the liquid sensor receiving container 30. The liquid can be reliably transferred to the detection region of the liquid sensor 3 inside the sensor fixing portion 33 for fixing the liquid sensor 3 indicated by the broken line.

また、受液面31aに液体が滴下され、液体センサ3が検知可能な使用状態において、受液面31aは、センサ固定部33に近づくに従って破線の矢印Fで示した重力方向へ下降するように傾斜しているので、検出しようとする液体が、継続的に受液面31aに滴下していくと、その受液面31aで受け止められ、外部に溢れ出ることなく、重力の作用によりその受液面31aの傾斜方向に沿って液体が円滑に流れ、センサ固定部33の内部の方向へその液体をより効率的に移送できるようにしている。   Further, in a use state where the liquid is dripped onto the liquid receiving surface 31 a and the liquid sensor 3 can detect, the liquid receiving surface 31 a descends in the direction of gravity indicated by the broken arrow F as it approaches the sensor fixing portion 33. Since the liquid to be detected continuously drops on the liquid receiving surface 31a because it is inclined, it is received by the liquid receiving surface 31a and does not overflow to the outside, but the liquid is received by the action of gravity. The liquid smoothly flows along the inclined direction of the surface 31a, and the liquid can be transferred more efficiently in the direction inside the sensor fixing portion 33.

一方、受液面31aの所定位置には、高さが0.5〜5.0mmの3本の平板状凸部32が、0.5〜2.0mmの間隔で隣り合って、センサ固定部33へ向かって直線状に形成されており、その3本の平板状凸部32に挟まれて2本の溝部32aが配置されている。   On the other hand, at a predetermined position of the liquid receiving surface 31a, three flat convex portions 32 having a height of 0.5 to 5.0 mm are adjacent to each other at intervals of 0.5 to 2.0 mm, so that the sensor fixing portion It is formed in a straight line toward 33, and two groove portions 32 a are arranged between the three flat plate-like convex portions 32.

そして、受液面31aからその2本の溝部32aに流入した液体には、その溝部32aによる毛細管現象も作用しながら、その溝部32aに連通するとともにその一方の端部に液体センサ3を固定するセンサ固定部33まで案内されるので、そのセンサ固定部33の内部の液体センサ3の検出領域への移送がより促進される。   The liquid flowing into the two groove portions 32a from the liquid receiving surface 31a communicates with the groove portion 32a while the capillary phenomenon due to the groove portion 32a acts, and the liquid sensor 3 is fixed to one end portion thereof. Since it is guided to the sensor fixing part 33, the transfer to the detection area of the liquid sensor 3 inside the sensor fixing part 33 is further promoted.

また、受液面31aに液体が滴下され、液体センサ3が検知可能な使用状態において、2本の溝部32aの底面も、平坦な受液面31aと同様に、センサ固定部33に近づくに従って破線の矢印Fで示した重力方向へ下降するように傾斜しているので、その溝部32aに流入した液体がその重力の作用によりその溝部32aの傾斜方向に沿って円滑に流れ、その溝部32aに連通するセンサ固定部33の内部の液体センサ3の検出領域へより効率的に移送することができる。   Further, in a use state where the liquid is dripped onto the liquid receiving surface 31a and the liquid sensor 3 can detect, the bottom surfaces of the two groove portions 32a are broken as they approach the sensor fixing portion 33, similarly to the flat liquid receiving surface 31a. The liquid flowing into the groove portion 32a smoothly flows along the inclination direction of the groove portion 32a by the action of the gravity and communicates with the groove portion 32a. Therefore, it can be more efficiently transferred to the detection area of the liquid sensor 3 inside the sensor fixing part 33.

しかも、その2本の溝部32aがその受液部31の受液面31aの傾斜方向に沿って直線状に配置されているので、溝部32aに流入した液体を、センサ固定33部の内部の液体センサ3の検出領域へ最短距離で案内する作用があり、短時間での検出が可能となる。   Moreover, since the two groove portions 32a are linearly arranged along the inclination direction of the liquid receiving surface 31a of the liquid receiving portion 31, the liquid that has flowed into the groove portion 32a is allowed to flow inside the sensor fixing 33 portion. There is an effect of guiding to the detection area of the sensor 3 at the shortest distance, and detection in a short time becomes possible.

さらに、前述した3本の平板状凸部32により挟まれた2本の溝部32aの一部を覆うように下方に平坦な面を有する覆設部34がその上方より組み合わされ、その溝部32aと覆設部34の下方の平坦な面との間に2本の隙間34aが形成されている。   Further, a covering portion 34 having a flat surface on the lower side is combined from above so as to cover a part of the two groove portions 32a sandwiched between the three plate-like convex portions 32, and the groove portion 32a and Two gaps 34 a are formed between the flat surface below the covering portion 34.

また、その覆設部34は、その一方の側端部に前述したセンサ固定部33が一体成型されている。   Further, the covering portion 34 is integrally formed with the sensor fixing portion 33 described above at one side end portion thereof.

そして、その溝部32aから覆設部34との間の隙間34aに流入した液体に対して毛細管現象による吸引力が作用し、その隙間34aでの液体の移送力を容易に大きくすることができ、センサ固定部33の内部の液体センサ3の検出領域への移送をより促進することができる。   Then, a suction force due to capillary action acts on the liquid flowing into the gap 34a between the groove portion 32a and the covering portion 34, and the liquid transfer force in the gap 34a can be easily increased. Transfer of the liquid sensor 3 inside the sensor fixing portion 33 to the detection region can be further promoted.

以上の説明のように、平坦な受液面31aで受け止められた液体は、その受液面31aから直接的にセンサ固定部33の内部に移送され、あるいは3本の平板状凸部32に挟まれた溝部32aに流入して移送され、その溝部32aに連通したセンサ固定部33の内部に到達するが、そのセンサ固定部33の内部が液体センサ3の検出領域となっているので、受液部31の受液面31aに滴下した液体が比較的微量であっても、その液体を効率的に液体センサ3の検出領域に移送でき、短時間での検出が可能となる。   As described above, the liquid received by the flat liquid receiving surface 31a is directly transferred from the liquid receiving surface 31a to the inside of the sensor fixing portion 33, or is sandwiched between the three flat convex portions 32. However, since the inside of the sensor fixing portion 33 is a detection region of the liquid sensor 3, the liquid receiving portion receives the liquid. Even if the amount of liquid dropped on the liquid receiving surface 31a of the part 31 is relatively small, the liquid can be efficiently transferred to the detection region of the liquid sensor 3, and detection in a short time is possible.

つまり、受液面31aが滴下した液体を受け止め、2本の溝部32aがその液体を液体センサ3の検出領域、つまりセンサ固定部33の内部へ確実に移送できるようになっている。   That is, the liquid receiving surface 31a receives the dropped liquid, and the two groove portions 32a can reliably transfer the liquid to the detection region of the liquid sensor 3, that is, the inside of the sensor fixing portion 33.

ここで、液体センサ3には、2本のリード線3aが接続されており、そのリード線3aは、センサ固定部33の内部で直角方向に曲げられ上方へ引き出されているので、その液体センサ用受液容器30の外部の電子機器との電気的な接続が可能となっている。   Here, two lead wires 3 a are connected to the liquid sensor 3, and the lead wires 3 a are bent in a right angle direction inside the sensor fixing portion 33 and drawn upward, so that the liquid sensor Electrical connection with an external electronic device of the liquid receiving container 30 is possible.

(実施の形態3)
図10(a)は、本発明の実施の形態3に係わる液体センサ用受液容器40の斜視図で、図10(b)は、その受液部のみの斜視図で、冷却装置などに固定するための固定部材を挿入する開口部やフック部などを省略し、主要部分のみを簡略的に示した。
(Embodiment 3)
FIG. 10A is a perspective view of a liquid sensor receiving container 40 according to Embodiment 3 of the present invention, and FIG. 10B is a perspective view of only the liquid receiving part, which is fixed to a cooling device or the like. The opening portion and the hook portion for inserting the fixing member for the purpose are omitted, and only the main portion is shown in a simplified manner.

本実施の形態に係る液体センサ用受液容器40は、破線の矢印F、S、Tで示した3方向の重力方向の液体の滴下に対応したもので、上方の面に平坦な第1の受液面41aを有し、その第1の受液面41aの外周側縁部に沿って少なくとも0.5mm以上の高さの外周壁41bを立設した第1の受液部41と、第1の受液面41aの所定の位置に3本の平板状凸部44が形成され、その平板状凸部44に挟まれて2本の第1の溝部44aが配置され、側方の面に平坦な第2の受液面42aを有し、その第2の受液面42aの外周側縁
部に沿って少なくとも0.5mm以上の高さの外周壁42bを立設した第2の受液部42と、第2の受液面42aの所定の位置に平板状凸部45が形成され、その平板状凸部45に挟まれて2本の第2の溝部45aが配置され、側方の面に平坦な第3の受液面43aを有し、その第3の受液面43aの外周側縁部に沿って少なくとも0.5mm以上の高さの外周壁43bを立設した第3の受液部43と、第3の受液面43aの所定の位置に3本の平板状凸部46が形成され、その平板状凸部46に挟まれて2本の第3の溝部46aが配置され、第1の溝部44a、第2の溝部45a、及び第3の溝部46aのいずれにも連通するとともにその一方の端部に液体センサ3を固定する箱型形状のセンサ固定部47と、を備え、第1から第3までの受熱面41a、42a、43aを相互に略直角方向に位置させている。
The liquid sensor receiving container 40 according to the present embodiment corresponds to the drop of liquid in the gravitational direction in three directions indicated by broken arrows F, S, and T, and is flat on the upper surface. A first liquid receiving portion 41 having a liquid receiving surface 41a and having an outer peripheral wall 41b standing at a height of at least 0.5 mm along the outer peripheral side edge of the first liquid receiving surface 41a; Three plate-like convex portions 44 are formed at predetermined positions on one liquid receiving surface 41a, and two first groove portions 44a are arranged between the plate-like convex portions 44, and are formed on the side surfaces. A second liquid receiving surface having a flat second liquid receiving surface 42a, and an outer peripheral wall 42b having a height of at least 0.5 mm or more standing along the outer peripheral side edge of the second liquid receiving surface 42a. The plate-like convex portion 45 is formed at a predetermined position on the portion 42 and the second liquid receiving surface 42a, and the two second groove portions 4 are sandwiched between the plate-like convex portions 45. a, a flat third liquid receiving surface 43a on the side surface, and an outer peripheral wall having a height of at least 0.5 mm along the outer peripheral side edge of the third liquid receiving surface 43a The third liquid receiving portion 43 erected 43b and three flat convex portions 46 are formed at predetermined positions on the third liquid receiving surface 43a, and two are sandwiched between the flat convex portions 46. The third groove portion 46a is disposed, communicates with any of the first groove portion 44a, the second groove portion 45a, and the third groove portion 46a, and fixes the liquid sensor 3 to one end thereof. The first to third heat receiving surfaces 41a, 42a, 43a are positioned substantially perpendicular to each other.

ここで、第1の受液部41は、破線の矢印Fで示した重力方向の液体の滴下に対応したもので、その外周側縁部に立設された外周壁41bは、一旦第1の受液面41aで受け止めた液体が液体センサ用受液容器40の外部に溢れ出るのを防止する作用があり、破線で示した液体センサ3を固定するセンサ固定部47の内部の液体センサ3の検出領域へ液体が確実に移送できるようにしている。   Here, the first liquid receiving part 41 corresponds to the dripping of the liquid in the gravitational direction indicated by the broken-line arrow F, and the outer peripheral wall 41b erected on the outer peripheral side edge thereof is once the first liquid receiving part 41. The liquid received on the liquid receiving surface 41a has an action of preventing the liquid sensor liquid receiving container 40 from overflowing, and the liquid sensor 3 inside the sensor fixing portion 47 for fixing the liquid sensor 3 indicated by a broken line is used. The liquid can be reliably transferred to the detection region.

また、第1の受液面41aに液体が滴下され、液体センサ3が検知可能な使用状態において、第1の受液面41aは、センサ固定部47に近づくに従って、破線の矢印Fで示した重力方向へ下降するように傾斜しているので、検出しようとする液体が、継続的に第1の受液面41aに滴下していくと、その第1の受液面41aで受け止められ、外部に溢れ出ることなく、重力の作用によりその第1の受液面41aの傾斜方向に沿って液体が円滑に流れ、センサ固定部47の内部の方向へその液体をより効率的に移送できるようにしている。   Further, in a use state where the liquid is dropped on the first liquid receiving surface 41 a and the liquid sensor 3 can detect, the first liquid receiving surface 41 a is indicated by a dashed arrow F as it approaches the sensor fixing portion 47. Since the liquid is inclined so as to descend in the direction of gravity, when the liquid to be detected continuously drops on the first liquid receiving surface 41a, the liquid is received by the first liquid receiving surface 41a and externally The liquid smoothly flows along the inclined direction of the first liquid receiving surface 41a by the action of gravity without overflowing, and can be transferred more efficiently in the direction of the inside of the sensor fixing portion 47. ing.

一方、第1の受液面41aの所定位置には、高さが0.5〜5.0mmの3本の平板状凸部44が、0.5〜2.0mmの間隔で隣り合って、センサ固定部47へ向かって直線状に形成されており、その3本の平板状凸部44に挟まれて2本の第1の溝部44aが配置されている。   On the other hand, at a predetermined position of the first liquid receiving surface 41a, three flat convex portions 44 having a height of 0.5 to 5.0 mm are adjacent to each other at intervals of 0.5 to 2.0 mm. It is formed in a straight line toward the sensor fixing portion 47, and two first groove portions 44a are arranged between the three flat plate-shaped convex portions 44.

そして、第1の受液面41aからその2本の第1の溝部44aに流入した液体には、その第1の溝部44aによる毛細管現象も作用しながら、その第1の溝部44aに連通するとともにその一方の端部に液体センサ3を固定するセンサ固定部47まで案内されるので、そのセンサ固定部47の内部の液体センサ3の検出領域への移送がより促進される。   The liquid flowing into the two first groove portions 44a from the first liquid receiving surface 41a communicates with the first groove portion 44a while acting on the capillary action of the first groove portions 44a. Since it is guided to the sensor fixing part 47 that fixes the liquid sensor 3 at one end thereof, the transfer of the liquid sensor 3 inside the sensor fixing part 47 to the detection region is further promoted.

また、第1の受液面41aに液体が滴下され、液体センサ3が検知可能な使用状態において、2本の第1の溝部44aの底面も、平坦な第1の受液面41aと同様に、センサ固定部47に近づくに従って破線の矢印Fで示した重力方向へ下降するように傾斜しているので、その第1の溝部44aに流入した液体が重力の作用によりその第1の溝部44aの傾斜方向に沿って円滑に流れ、その第1の溝部44aに連通するセンサ固定部47の内部の液体センサ3の検出領域へより効率的に移送することができる。   Further, in a use state where the liquid is dropped on the first liquid receiving surface 41a and the liquid sensor 3 can detect, the bottom surfaces of the two first groove portions 44a are also the same as the flat first liquid receiving surface 41a. As the sensor fixing portion 47 is approached, it is inclined so as to descend in the direction of gravity indicated by the dashed arrow F, so that the liquid flowing into the first groove portion 44a is caused by the action of the gravity of the first groove portion 44a. The liquid flows smoothly along the inclination direction, and can be more efficiently transferred to the detection region of the liquid sensor 3 inside the sensor fixing portion 47 communicating with the first groove portion 44a.

しかも、その2本の第1の溝部44aがその第1の受液部41の第1の受液面41aの傾斜方向に沿って直線状に配置されているので、第1の溝部44aに流入した液体を、センサ固定部47の液体センサ3の検出領域へ最短距離で案内する作用があり、短時間での検出が可能となる。   Moreover, since the two first groove portions 44a are linearly arranged along the inclination direction of the first liquid receiving surface 41a of the first liquid receiving portion 41, the first groove portion 44a flows into the first groove portion 44a. The liquid thus guided is guided to the detection area of the liquid sensor 3 of the sensor fixing portion 47 at the shortest distance, and detection in a short time becomes possible.

次に、第2の受液部42は、破線の矢印Sで示した重力方向の液体の滴下に対応したもので、その外周側縁部に立設された外周壁42bは、一旦第2の受液面42aで受け止めた液体が液体センサ用受液容器40の外部に溢れ出るのを防止する作用があり、破線で示
した液体センサ3を固定するセンサ固定部47の内部の液体センサ3の検出領域へ液体が確実に移送できるようにしている。
Next, the second liquid receiving portion 42 corresponds to the drop of the liquid in the gravity direction indicated by the broken arrow S, and the outer peripheral wall 42b erected on the outer peripheral side edge portion is temporarily attached to the second liquid receiving portion 42. The liquid received by the liquid receiving surface 42a has an effect of preventing the liquid sensor liquid receiving container 40 from overflowing, and the liquid sensor 3 inside the sensor fixing portion 47 for fixing the liquid sensor 3 indicated by the broken line is used. The liquid can be reliably transferred to the detection region.

また、第2の受液面42aに液体が滴下され、液体センサ3が検知可能な使用状態において、第2の受液面42aは、センサ固定部47に近づくに従って、破線の矢印Sで示した重力方向へ下降するように傾斜しているので、検出しようとする液体が、継続的に第2の受液面42aに滴下していくと、その第2の受液面42aで受け止められ、外部に溢れ出ることなく、重力の作用によりその第2の受液面42aの傾斜方向に沿って液体が円滑に流れ、センサ固定部47の内部の方向へその液体をより効率的に移送できるようにしている。   In addition, when the liquid is dropped onto the second liquid receiving surface 42a and the liquid sensor 3 can detect the second liquid receiving surface 42a, the second liquid receiving surface 42a is indicated by a dashed arrow S as it approaches the sensor fixing portion 47. Since the liquid is inclined so as to descend in the direction of gravity, when the liquid to be detected continuously drops on the second liquid receiving surface 42a, the liquid is received by the second liquid receiving surface 42a and externally The liquid smoothly flows along the inclination direction of the second liquid receiving surface 42a by the action of gravity without overflowing the liquid, and the liquid can be transferred more efficiently in the direction inside the sensor fixing portion 47. ing.

一方、第2の受液面42aの所定位置には、高さが0.5〜5.0mmの3本の平板状凸部45が、0.5〜2.0mmの間隔で隣り合って、センサ固定部47へ向かって直線状に形成されており、その3本の平板状凸部45で挟まれて2本の第2の溝部45aが配置されている。   On the other hand, at a predetermined position of the second liquid receiving surface 42a, three flat convex portions 45 having a height of 0.5 to 5.0 mm are adjacent to each other at an interval of 0.5 to 2.0 mm. It is formed in a straight line toward the sensor fixing portion 47, and two second groove portions 45a are disposed between the three flat convex portions 45.

そして、第2の受液面42aから2本の第2の溝部45aに流入した液体には、その第2の溝部45aによる毛細管現象も作用しながら、その第2の溝部45aに連通するとともにその一方の端部に液体センサ3を固定するセンサ固定部47まで案内されるので、そのセンサ固定部47の内部の液体センサ3の検出領域への移送がより促進される。   The liquid flowing into the two second groove portions 45a from the second liquid receiving surface 42a communicates with the second groove portion 45a while acting on the capillary phenomenon due to the second groove portion 45a and the liquid. Since it is guided to the sensor fixing part 47 that fixes the liquid sensor 3 at one end, the transfer of the liquid sensor 3 inside the sensor fixing part 47 to the detection region is further promoted.

また、第2の受液面42aに液体が滴下され、液体センサ3が検知可能な使用状態において、2本の第2の溝部45aの底面も、平坦な第2の受液面42aと同様に、センサ固定部47に近づくに従って破線の矢印Sで示した重力方向へ下降するように傾斜しているので、その第2の溝部45aに流入した液体が重力の作用によりその第2の溝部45aの傾斜方向に沿って円滑に流れ、その第2の溝部45aに連通するセンサ固定部47の内部の液体センサ3の検出領域へより効率的に移送することができる。   In addition, when the liquid is dropped on the second liquid receiving surface 42a and the liquid sensor 3 can detect, the bottom surfaces of the two second groove portions 45a are also the same as the flat second liquid receiving surface 42a. As the sensor fixing part 47 is approached, it is inclined so as to descend in the direction of gravity indicated by the broken arrow S, so that the liquid flowing into the second groove part 45a is caused by the action of the gravity of the second groove part 45a. The liquid flows smoothly along the inclination direction and can be more efficiently transferred to the detection region of the liquid sensor 3 inside the sensor fixing portion 47 communicating with the second groove 45a.

しかも、その2本の第2の溝部45aがその第2の受液面42aの傾斜方向に沿って直線状に配置されているので、第2の溝部45aに流入した液体を、センサ固定部47の液体センサ3の検出領域へ最短距離で案内する作用があり、短時間での検出が可能となる。   Moreover, since the two second groove portions 45a are linearly arranged along the inclination direction of the second liquid receiving surface 42a, the liquid that has flowed into the second groove portion 45a is allowed to flow into the sensor fixing portion 47. The liquid sensor 3 is guided to the detection area of the liquid sensor 3 with the shortest distance, and detection in a short time becomes possible.

さらに、第3の受液部43は、破線の矢印Tで示した重力方向の液体の滴下に対応したもので、その外周側縁部に立設された外周壁43bは、一旦第3の受液面43aで受け止めた液体が液体センサ用受液容器40の外部に溢れ出るのを防止する作用があり、破線で示した液体センサ3を固定するセンサ固定部47の内部の液体センサ3の検出領域へ液体が確実に移送できるようにしている。   Further, the third liquid receiving portion 43 corresponds to the drop of the liquid in the gravity direction indicated by the broken arrow T, and the outer peripheral wall 43b erected on the outer peripheral side edge portion is temporarily attached to the third liquid receiving portion 43. The liquid sensor 3 has a function of preventing the liquid received by the liquid surface 43a from overflowing outside the liquid sensor receiving container 40, and is detected by the liquid sensor 3 inside the sensor fixing portion 47 for fixing the liquid sensor 3 indicated by a broken line. This ensures that the liquid can be transferred to the area.

また、第3の受液面43aに液体が滴下され、液体センサ3が検知可能な使用状態において、第3の受液面43aは、センサ固定部47に近づくに従って、破線の矢印Tで示した重力方向へ下降するように傾斜しているので、検出しようとする液体が、継続的に第3の受液面43aに滴下していくと、その第3の受液面43aで受け止められ、外部に溢れ出ることなく、重力の作用によりその第3の受液面43aの傾斜方向に沿って液体が円滑に流れ、センサ固定部47の内部の方向へその液体をより効率的に移送できるようにしている。   Further, in a use state where the liquid is dropped on the third liquid receiving surface 43 a and the liquid sensor 3 can detect, the third liquid receiving surface 43 a is indicated by a broken arrow T as it approaches the sensor fixing portion 47. Since the liquid is inclined so as to descend in the direction of gravity, when the liquid to be detected continuously drops on the third liquid receiving surface 43a, the liquid is received by the third liquid receiving surface 43a and externally. The liquid smoothly flows along the inclined direction of the third liquid receiving surface 43a by the action of gravity without overflowing, and can be transferred more efficiently in the direction of the inside of the sensor fixing portion 47. ing.

一方、第3の受液面43aの所定位置には、高さが0.5〜5.0mmの3本の平板状凸部46が、0.5〜2.0mmの間隔で隣り合って、センサ固定部47へ向かって直線状に形成されており、その3本の平板状凸部46に挟まれて2本の第3の溝部46aが配置されている。   On the other hand, at a predetermined position of the third liquid receiving surface 43a, three flat convex portions 46 having a height of 0.5 to 5.0 mm are adjacent to each other at an interval of 0.5 to 2.0 mm. It is formed in a straight line toward the sensor fixing portion 47, and two third groove portions 46a are arranged between the three flat plate-like convex portions 46.

そして、第3の受液面43aからその2本の第3の溝部46aに流入した液体には、その第3の溝部46aによる毛細管現象も作用しながら、その第3の溝部46aに連通するとともにその一方の端部に液体センサ3を固定するセンサ固定部47まで案内されるので、そのセンサ固定部47の内部の液体センサ3の検出領域への移送がより促進される。   The liquid flowing into the two third groove portions 46a from the third liquid receiving surface 43a communicates with the third groove portion 46a while acting on the capillary action of the third groove portions 46a. Since it is guided to the sensor fixing part 47 that fixes the liquid sensor 3 at one end thereof, the transfer of the liquid sensor 3 inside the sensor fixing part 47 to the detection region is further promoted.

また、第3の受液面43aに液体が滴下され、液体センサ3が検知可能な使用状態において、2本の第3の溝部46aの底面も、平坦な第3の受液面43aと同様に、センサ固定部47に近づくに従って破線の矢印Tで示した重力方向へ下降するように傾斜しているので、その第3の溝部46aに流入した液体が重力の作用によりその第3の溝部46aの傾斜方向に沿って円滑に流れ、その第3の溝部46aに連通するセンサ固定部47の内部の液体センサ3の検出領域へより効率的に移送することができる。   Further, in a use state where the liquid is dropped on the third liquid receiving surface 43a and the liquid sensor 3 can detect, the bottom surfaces of the two third groove portions 46a are also the same as the flat third liquid receiving surface 43a. As the sensor fixing portion 47 is approached, it is inclined so as to descend in the direction of gravity indicated by the broken arrow T, so that the liquid flowing into the third groove portion 46a is caused by the action of the gravity of the third groove portion 46a. The liquid flows smoothly along the inclination direction and can be more efficiently transferred to the detection region of the liquid sensor 3 inside the sensor fixing portion 47 communicating with the third groove portion 46a.

しかも、その2本の第3の溝部46aがその第3の受液面43aの傾斜方向に沿ってその一部が直線状に配置されているので、第3の溝部46aに流入した液体を、センサ固定部47の液体センサ3の検出領域へ最短距離で案内する作用があり、短時間での検出が可能となる。   Moreover, since the two third grooves 46a are partly arranged along the inclination direction of the third liquid receiving surface 43a, the liquid flowing into the third groove 46a is There is an effect of guiding the detection area of the liquid sensor 3 of the sensor fixing portion 47 at the shortest distance, and detection in a short time becomes possible.

また、3方向に平坦な面を有する覆設部48は、センサ固定部47と一体成型されているが、第1の溝部44a、第2の溝部45a、及び第3の溝部46aのいずれに対しても、上から覆うのが可能なように3方向に平坦な面を有しており、それらの溝部44a、45a、46aと覆設部48を組み合わせて、それぞれの溝部44a、45a、46aと覆設部48の3方向の平坦な面との間に隙間48a(一部のみ図示)が形成されている。   In addition, the covering portion 48 having a flat surface in three directions is integrally formed with the sensor fixing portion 47, but any of the first groove portion 44a, the second groove portion 45a, and the third groove portion 46a is formed. However, it has flat surfaces in three directions so that it can be covered from above, and the groove portions 44a, 45a, 46a and the covering portion 48 are combined to form the respective groove portions 44a, 45a, 46a, and A gap 48a (only a part is shown) is formed between the covering portion 48 and the flat surface in the three directions.

そして、それらの溝部44a、45a、46aと覆設部48との間の隙間48aに流入した液体に対して毛細管現象による吸引力が作用し、その隙間48aでの液体の移送力を容易に大きくすることができ、センサ固定部47の内部の液体センサ3の検出領域への移送をより促進することができる。   Then, a suction force by capillary action acts on the liquid flowing into the gap 48a between the grooves 44a, 45a, 46a and the covering portion 48, and the liquid transfer force in the gap 48a is easily increased. Therefore, the transfer of the liquid sensor 3 inside the sensor fixing portion 47 to the detection region can be further promoted.

以上説明したように、平坦な第1から第3の受液面41a、42a、43aのいずれかで受け止められた液体は、その受液面41a、42a、43aから直接的にセンサ固定部47の内部に移送され、あるいは平板状凸部44、45、46により挟まれたそれぞれの溝部44a、45a、46aに流入して移送され、そのいずれの溝部にも連通したセンサ固定部47の内部に到達するが、そのセンサ固定部47の内部が液体センサ3の検出領域となっているので、いずれかの受液面に滴下した液体が比較的微量であっても、その液体を効率的に液体センサ3の検出領域に移送でき、短時間での検出が可能となる。   As described above, the liquid received by any one of the flat first to third liquid receiving surfaces 41a, 42a, 43a is directly from the liquid receiving surfaces 41a, 42a, 43a of the sensor fixing portion 47. It is transferred to the inside, or flows into each of the grooves 44a, 45a, 46a sandwiched by the flat plate-shaped convex portions 44, 45, 46, and is transferred to the inside of the sensor fixing portion 47 that communicates with any of the grooves. However, since the inside of the sensor fixing portion 47 is a detection region of the liquid sensor 3, even if a relatively small amount of liquid is dropped on any liquid receiving surface, the liquid is efficiently removed from the liquid sensor. 3 can be transferred to the detection region 3 and can be detected in a short time.

つまり、この液体センサ用受液容器40が設置された方向に対応して、第1から第3の受液面41a、42a、43aのいずれかが滴下した液体を受け止め、それぞれの受液面に配置された溝部44a、45a、46aのいずれかがその液体を液体センサ3の検出領域、つまりセンサ固定部47の内部へ確実に移送できるようになっている。   That is, in response to the direction in which the liquid sensor receiving container 40 is installed, any of the first to third liquid receiving surfaces 41a, 42a, 43a receives the dropped liquid, and each liquid receiving surface receives the liquid. Any of the disposed grooves 44 a, 45 a, 46 a can reliably transfer the liquid into the detection area of the liquid sensor 3, that is, inside the sensor fixing portion 47.

ここで、液体センサ3には、2本のリード線3aが接続されており、そのリード線3aは、センサ固定部47の内部で直角方向に曲げられ上方へ引き出されているので、その液体センサ用受液容器40の外部の電子機器との電気的な接続が可能となっている。   Here, two lead wires 3 a are connected to the liquid sensor 3, and the lead wires 3 a are bent in a right angle direction inside the sensor fixing portion 47 and drawn upward, so that the liquid sensor Electrical connection with an external electronic device of the liquid receiving container 40 is possible.

なお、以上の実施の形態1〜3の説明においては、受液面に平板状凸部を一体的に形成してその受液面上に溝部が配置された場合について説明したが、例えばその下面に複数の平板状凸部を一体的に形成した覆設部、あるいはその下面に複数の平板状凸部を一体的に形成した別体の部材などを受液面上に配設して、受液面上にその平板状凸部により挟まれ
た溝部が配置されるような形態にしても構わないし、また単に受液面上に1乃至複数の凹部を形成して溝部が配置されるような形態としてもよい。
In the above description of the first to third embodiments, the description has been given of the case where the flat plate-like convex portion is integrally formed on the liquid receiving surface and the groove is disposed on the liquid receiving surface. A cover member formed integrally with a plurality of flat plate-shaped convex portions or a separate member integrally formed with a plurality of flat plate-shaped convex portions on its lower surface is disposed on the liquid receiving surface. The groove portion sandwiched between the flat plate-like convex portions may be arranged on the liquid surface, or the groove portion is simply formed by forming one or a plurality of concave portions on the liquid receiving surface. It is good also as a form.

また、センサ固定部は、液体をより吸引しやすいように、液体センサを収容するような箱型形状にしてその内部と液体を移送する溝部とを連通させるのが好ましいが、そのような形態でなくても十分な検出が可能であれば、例えば、液体センサの一部または全部を露出させて、単に液体を移送する溝部の一方端にその液体センサを固定部材で固定するような形態でも構わない。   In addition, the sensor fixing part is preferably a box shape that accommodates the liquid sensor so that the liquid can be sucked more easily, and the inside thereof communicates with the groove part that transfers the liquid. If sufficient detection is possible even if it is not necessary, for example, a configuration may be adopted in which a part or all of the liquid sensor is exposed and the liquid sensor is simply fixed to one end of the groove for transferring the liquid with a fixing member. Absent.

また、受液面上には直線状で複数の溝部を配置するのが好ましいが、そのサイズ、形状、数量は、以上の実施の形態で説明されたものに限定されず、例えばその形状を湾曲状や矩形状にしたり、あるいは大きさの制約を受ける場合などには複数個でなく1個にしたりしてもよい。   In addition, it is preferable to arrange a plurality of grooves in a straight line on the liquid receiving surface, but the size, shape, and quantity are not limited to those described in the above embodiments, and the shape is curved, for example. In the case of a shape or a rectangle, or when the size is restricted, the number may be one instead of plural.

さらに、製造を容易にするために、覆設部とセンサ固定部とを一体成型品で構成したが、それらの構成要素を別々の部材で構成しても構わない   Furthermore, in order to facilitate the manufacture, the covering portion and the sensor fixing portion are configured as an integrally molded product, but those components may be configured as separate members.

本発明は、冷却装置の液体冷媒の漏れを検出するのに適用できるだけでなく、例えば半導体装置やその配管からの液体の漏れなど他のさまざまな用途において、液体滴下の有無を短時間で検出するのに適用できる。   The present invention can be applied not only to detect leakage of liquid refrigerant in a cooling device, but also to detect the presence or absence of liquid dripping in a short time in various other applications such as leakage of liquid from a semiconductor device or its piping, for example. Applicable to.

本発明の実施の形態1に係わる液体センサ用受液容器の斜視図The perspective view of the liquid receiving container for liquid sensors concerning Embodiment 1 of this invention. 本発明の実施の形態1に係わる液体センサ用受液容器の分解斜視図The disassembled perspective view of the liquid receiving container for liquid sensors concerning Embodiment 1 of this invention. (a)本発明の実施の形態1に係わる液体センサ用受液容器の平面図、(b)同図(a)のA−A矢視断面図、(c)同図(a)のB−B矢視断面図(A) Plan view of liquid receiving container for liquid sensor according to Embodiment 1 of the present invention, (b) AA cross-sectional view of FIG. (A), (c) B- of FIG. B arrow cross section (a)本発明の実施の形態1に係わる液体センサ用受液容器の平面図、(b)同図(a)のC−C矢視部分断面図、(c)同図(a)のD−D矢視部分断面図(A) Plan view of liquid receiving container for liquid sensor according to Embodiment 1 of the present invention, (b) Partial sectional view taken along the line CC of FIG. 1 (a), (c) D of FIG. -D partial sectional view (a)図4(c)のE−E矢視断面図、(b)覆設部とその一方の側端部に形成された第2の受液部の斜視図、(c)覆設部とその一方の側端部に形成された第2の受液部の背面側斜視図(A) EE arrow sectional view of FIG.4 (c), (b) The perspective view of the 2nd liquid receiving part formed in the covering part and its one side edge part, (c) Covering part And the back side perspective view of the 2nd liquid receiving part formed in the one side edge part 第2の受液部の外周壁のコーナー部の内面形状を説明する図The figure explaining the inner surface shape of the corner part of the outer peripheral wall of a 2nd liquid receiving part 冷却装置に液体センサ用受液容器を固定した状態図State diagram with liquid sensor receiving container fixed to cooling device 冷却装置の受熱一体ポンプと液体センサ用受液容器の位置関係を示した図The figure which showed the positional relationship of the heat receiving integrated pump of a cooling device, and the liquid receiving container for liquid sensors (a)本発明の実施の形態2に係わる液体センサ用受液容器の斜視図、(b)その受液部のみの斜視図(A) Perspective view of liquid receiving container for liquid sensor according to Embodiment 2 of the present invention, (b) Perspective view of only the liquid receiving part (a)本発明の実施の形態3に係わる液体センサ用受液容器の斜視図、(b)その受液部のみの斜視図(A) Perspective view of liquid receiver for liquid sensor according to Embodiment 3 of the present invention, (b) Perspective view of only the liquid receiver (a)(特許文献1)の実施の形態に記載の冷却装置の主要部の断面図、(b)同冷却装置の正面図(A) Sectional drawing of the principal part of the cooling device as described in embodiment of (patent document 1), (b) Front view of the cooling device (a)(特許文献2)の実施の形態に記載の液体センサ本体を待受部材に装着する途中の状態の断面図、(b)同液体センサ本体を待受部材に取り付けた後の状態の断面図(A) Sectional drawing of the state in the middle of mounting | wearing a standby member with the liquid sensor main body as described in embodiment of (patent document 2), (b) The state after attaching the liquid sensor main body to a standby member Cross section

符号の説明Explanation of symbols

1 液体センサ用受液容器
2 第1の受液部
2a 第1の受液面
2b 外周壁
2c 開口部
2d 突出壁
2e 開口部
2f 突出壁
3 液体センサ
3a リード線
4 センサ固定部
4a 位置決め用凸部
5 平板状凸部
5a 第1の溝部
6 覆設部
6a 隙間
7 第2の受液部
7a 第2の受液面
8 平板状凸部
8a 第2の溝部
9 嵌合部
9a 嵌合用凸部
9b 嵌合用孔部
10 フック部
11 凸部
12 凹部
13 受熱一体ポンプ
14 液輸送路
15 液輸送路
16 リザーブタンク
17 ラジエータ
17a タンク連結部材
18 連通タンク
19 ベース部材
20a 固定部材
20b 固定部材
20c 固定部材
21 接続部
21a 吐出口
21b 吸込口
30 液体センサ用受液容器
31 受液部
31a 受液面
31b 外周壁
32 平板状凸部
32a 溝部
33 センサ固定部
34 覆設部
34a 隙間
40 液体センサ用受液容器
41 第1の受液部
41a 第1の受液面
41b 外周壁
42 第2の受液部
42a 第2の受液面
42b 外周壁
43 第3の受液部
43a 第3の受液面
43b 外周壁
44 平板状凸部
44a 第1の溝部
45 平板状凸部
45a 第2の溝部
46 平板状凸部
46a 第3の溝部
47 センサ固定部
48 覆設部
48a 隙間
F 重力方向
M 被浸水面
R コーナー部
S 重力方向
T 重力方向
θ1 傾斜角度
θ2 傾斜角度
DESCRIPTION OF SYMBOLS 1 Liquid receiving container for liquid sensors 2 1st liquid receiving part 2a 1st liquid receiving surface 2b Outer peripheral wall 2c Opening part 2d Projecting wall 2e Opening part 2f Projecting wall 3 Liquid sensor 3a Lead wire 4 Sensor fixing | fixed part 4a Positioning convex Part 5 Flat convex part 5a First groove part 6 Covering part 6a Clearance 7 Second liquid receiving part 7a Second liquid receiving surface 8 Flat convex part 8a Second groove part 9 Fitting part 9a Fitting convex part 9b Fitting hole 10 Hook 11 Projection 12 Concave 13 Heat receiving integrated pump 14 Liquid transport path 15 Liquid transport path 16 Reserve tank 17 Radiator 17a Tank connecting member 18 Communication tank 19 Base member 20a Fixing member 20b Fixing member 20c Fixing member 21 Connection part 21a Discharge port 21b Suction port 30 Liquid sensor receiving container 31 Liquid receiving part 31a Liquid receiving surface 31b Outer peripheral wall 32 Flat plate-like convex part 32a Groove part 33 Sensor fixing part 34 Covering part 34a Clearance 40 Liquid sensor receiving container 41 First liquid receiving part 41a First liquid receiving surface 41b Outer peripheral wall 42 Second liquid receiving part 42a Second liquid receiving surface 42b Outer peripheral wall 43 3rd liquid receiving part 43a 3rd liquid receiving surface 43b Peripheral wall 44 Flat plate-like convex part 44a 1st groove part 45 Flat plate-like convex part 45a 2nd groove part 46 Flat plate-like convex part 46a 3rd groove part 47 Sensor fixation Part 48 Covering part 48a Clearance F Gravity direction M Submerged surface R Corner part S Gravity direction T Gravity direction θ1 Inclination angle θ2 Inclination angle

Claims (18)

受液面の外周側縁部に沿って側壁が立設された受液部と、前記受液面に形成された溝部と、前記溝部の一方端に液体センサを固定するセンサ固定部と、を備えたことを特徴とする液体センサ用受液容器。 A liquid receiving portion having a side wall standing along an outer peripheral side edge of the liquid receiving surface; a groove formed on the liquid receiving surface; and a sensor fixing portion for fixing a liquid sensor to one end of the groove. A liquid receiving container for a liquid sensor, comprising: 受液面の外周側縁部に沿って側壁が立設された受液部と、前記受液面に対して反対側の面に形成された溝部と、前記溝部の一方端に液体センサを固定するセンサ固定部と、を備えたことを特徴とする液体センサ用受液容器。 A liquid sensor having a side wall erected along the outer peripheral edge of the liquid receiving surface, a groove formed on the surface opposite to the liquid receiving surface, and a liquid sensor fixed to one end of the groove And a sensor fixing part for receiving the liquid sensor. 前記受液部の受液面を、前記センサ固定部が重力方向の下側になるように傾斜させることを特徴とする請求項1記載の液体センサ用受液容器。 The liquid receiving container for a liquid sensor according to claim 1, wherein the liquid receiving surface of the liquid receiving part is inclined so that the sensor fixing part is on the lower side in the gravity direction. 液体センサ用受液容器の使用状態において、前記溝部を、前記受液部の受液面の傾斜方向に沿って配置することを特徴とする請求項3記載の液体センサ用受液容器。 4. The liquid receiving container for a liquid sensor according to claim 3, wherein the groove is arranged along an inclination direction of a liquid receiving surface of the liquid receiving part in a usage state of the liquid receiving container for the liquid sensor. 液体センサ用受液容器の使用状態において、前記溝部の底面を、前記センサ固定部に近づくに従って重力方向へ傾斜させることを特徴とする請求項1記載の液体センサ用受液容器。 The liquid receiving container for a liquid sensor according to claim 1, wherein the bottom surface of the groove portion is inclined in the direction of gravity as the liquid receiving container for the liquid sensor is used, as it approaches the sensor fixing portion. 前記受液面に液体が滴下され、前記液体センサが検知可能な使用状態において、前記受液部の受液面を、前記センサ固定部から離れるに従って重力方向へ下降するように傾斜させることを特徴とする請求項2記載の液体センサ用受液容器。 The liquid receiving surface of the liquid receiving unit is inclined so that the liquid receiving surface of the liquid receiving unit is lowered in the gravitational direction as it is separated from the sensor fixing unit in a use state where the liquid is dropped on the liquid receiving surface and the liquid sensor can detect. The liquid receiving container for a liquid sensor according to claim 2. 前記受液面に液体が滴下され、前記液体センサが検知可能な使用状態において、前記溝部を、前記受液面に対して反対側の面の傾斜方向に沿って直線状に配置することを特徴とする請求項6記載の液体センサ用受液容器。
In the use state where the liquid is dripped onto the liquid receiving surface and the liquid sensor can detect, the groove portion is arranged linearly along the inclination direction of the surface opposite to the liquid receiving surface. The liquid receiving container for a liquid sensor according to claim 6.
前記溝部を覆うように覆設部を組み合わせ、前記溝部と前記覆設部の平坦な面との間に隙間を形成することを特徴とする請求項1または2記載の液体センサ用受液容器。 The liquid receiving container for a liquid sensor according to claim 1 or 2, wherein a covering portion is combined so as to cover the groove portion, and a gap is formed between the groove portion and a flat surface of the covering portion. 前記受液部に開口部を設け、その開口部を取り囲むように突出壁を形成することを特徴とする請求項1または2記載の液体センサ用受液容器。 The liquid receiving container for a liquid sensor according to claim 1, wherein an opening is provided in the liquid receiving part, and a protruding wall is formed so as to surround the opening. 前記受液面に液体が滴下され、前記液体センサが検知可能な使用状態において、前記開口部を取り囲むように形成された突出壁の頂面を、前記受液部の外周側縁部に沿って立設された側壁の頂面よりも重力方向で上方に位置させることを特徴とする請求項9記載の液体センサ用受液容器。 In a use state where the liquid is dripped onto the liquid receiving surface and the liquid sensor can detect, the top surface of the protruding wall formed so as to surround the opening is along the outer peripheral side edge of the liquid receiving portion. The liquid receiving container for a liquid sensor according to claim 9, wherein the liquid receiving container is positioned above the top surface of the standing side wall in the direction of gravity. 前記開口部を取り囲むように形成された突出壁と前記センサ固定部との間に凸部を形成することを特徴とする請求項9記載の液体センサ用受液容器。 The liquid receiving container for a liquid sensor according to claim 9, wherein a convex portion is formed between a protruding wall formed so as to surround the opening and the sensor fixing portion. 前記受液面の外周側縁部に立設された外周壁のコーナー部の内面形状を、その立設方向と垂直な断面において円弧状とすることを特徴とする請求項1または2記載の液体センサ用受液容器。 The liquid according to claim 1 or 2, wherein an inner surface shape of a corner portion of an outer peripheral wall provided upright at an outer peripheral side edge portion of the liquid receiving surface is an arc shape in a cross section perpendicular to the standing direction. Liquid receiver for sensor. 一方に平坦な第1の受液面を有し、その第1の受液面の外周側縁部に沿って外周壁を立設した第1の受液部と、前記第1の受液面上に配置された1乃至複数の第1の溝部と、一方に平坦な第2の受液面を有し、その第2の受液面の外周側縁部に沿って外周壁を立設した
第2の受液部と、前記第2の受液面上に配置された1乃至複数の第2の溝部と、前記第1の溝部及び前記第2の溝部の一方端に液体センサを固定するセンサ固定部と、を備え、前記第1の受液面と前記第2の受液面を相互に略直角方向に位置させることを特徴とする液体センサ用受液容器。
A first liquid receiving surface having a flat first liquid receiving surface on one side, and an outer peripheral wall erected along an outer peripheral side edge of the first liquid receiving surface, and the first liquid receiving surface One or more first groove portions disposed above and a flat second liquid receiving surface on one side, and an outer peripheral wall is erected along an outer peripheral side edge of the second liquid receiving surface A liquid sensor is fixed to one end of the second liquid receiving part, the one or more second groove parts disposed on the second liquid receiving surface, and the first groove part and the second groove part. A liquid receiving container for a liquid sensor, wherein the first liquid receiving surface and the second liquid receiving surface are positioned substantially perpendicular to each other.
一方に平坦な第1の受液面を有し、その第1の受液面の外周側縁部に沿って外周壁を立設した第1の受液部と、前記第1の受液面上に配置された1乃至複数の第1の溝部と、一方に平坦な第2の受液面を有し、その第2の受液面の外周側縁部に沿って外周壁を立設した第2の受液部と、前記第2の受液面に対して反対側の面上に配置された1乃至複数の第2の溝部と、前記第1の溝部及び前記第2の溝部の一方端に液体センサを固定するセンサ固定部と、を備え、前記第1の受液面と前記第2の受液面を相互に略直角方向に位置させることを特徴とする液体センサ用受液容器。 A first liquid receiving surface having a flat first liquid receiving surface on one side, and an outer peripheral wall erected along an outer peripheral side edge of the first liquid receiving surface, and the first liquid receiving surface One or more first groove portions disposed above and a flat second liquid receiving surface on one side, and an outer peripheral wall is erected along an outer peripheral side edge of the second liquid receiving surface A second liquid receiving part, one or more second groove parts disposed on a surface opposite to the second liquid receiving surface, and one of the first groove part and the second groove part A liquid sensor receiving container, wherein the first liquid receiving surface and the second liquid receiving surface are positioned substantially perpendicular to each other. . 一方に平坦な第1の受液面を有し、その第1の受液面の外周側縁部に沿って外周壁を立設した第1の受液部と、前記第1の受液面上に配置された1乃至複数の第1の溝部と、一方に平坦な第2の受液面を有し、その第2の受液面の外周側縁部に沿って外周壁を立設した第2の受液部と、前記第2の受液面上に配置された1乃至複数の第2の溝部と、一方に平坦な第3の受液面を有し、その第3の受液面の外周側縁部に沿って外周壁を立設した第3の受液部と、前記第3の受液面上に配置された1乃至複数の第3の溝部と、前記第1から第3までの溝部の一方端に液体センサを固定するセンサ固定部と、を備え、前記第1から第3までの受熱面を相互に略直角方向に位置させることを特徴とする液体センサ用受液容器。 A first liquid receiving surface having a flat first liquid receiving surface on one side, and an outer peripheral wall erected along an outer peripheral side edge of the first liquid receiving surface, and the first liquid receiving surface One or more first groove portions disposed above and a flat second liquid receiving surface on one side, and an outer peripheral wall is erected along an outer peripheral side edge of the second liquid receiving surface A third liquid receiving surface having a second liquid receiving portion, one or more second groove portions disposed on the second liquid receiving surface, and a flat third liquid receiving surface on one side; A third liquid receiving portion having an outer peripheral wall erected along an outer peripheral side edge of the surface, one or more third groove portions disposed on the third liquid receiving surface, And a sensor fixing part for fixing the liquid sensor to one end of the groove part up to 3, wherein the first to third heat receiving surfaces are positioned substantially perpendicular to each other. container. 一方に平坦な第1の受液面を有し、その第1の受液面の外周側縁部に沿って外周壁を立設した第1の受液部と、前記第1の受液面上に配置された1乃至複数の第1の溝部と、一方に平坦な第2の受液面を有し、その第2の受液面の外周側縁部に沿って外周壁を立設した第2の受液部と、前記第2の受液面に対して反対側の面上に配置された1乃至複数の第2の溝部と、一方に平坦な第3の受液面を有し、その第3の受液面の外周側縁部に沿って外周壁を立設した第3の受液部と、前記第3の受液面に対して反対側の面上に配置された1乃至複数の第3の溝部と、前記第1から第3までの溝部の一方端に液体センサを固定するセンサ固定部と、を備え、前記第1から第3までの受熱面を相互に略直角方向に位置させることを特徴とする液体センサ用受液容器。 A first liquid receiving surface having a flat first liquid receiving surface on one side, and an outer peripheral wall erected along an outer peripheral side edge of the first liquid receiving surface, and the first liquid receiving surface One or more first groove portions disposed above and a flat second liquid receiving surface on one side, and an outer peripheral wall is erected along an outer peripheral side edge of the second liquid receiving surface A second liquid receiving portion; one or more second groove portions disposed on a surface opposite to the second liquid receiving surface; and a flat third liquid receiving surface on one side. A third liquid receiving portion having an outer peripheral wall standing along the outer peripheral side edge of the third liquid receiving surface; and 1 disposed on a surface opposite to the third liquid receiving surface. Or a plurality of third groove portions and a sensor fixing portion for fixing a liquid sensor to one end of the first to third groove portions, and the first to third heat receiving surfaces are substantially perpendicular to each other. Liquid sensor characterized by being positioned in a direction Use liquid receiving container. 前記受液部の外周壁の側面にフック部を設けることを特徴とする請求項1から16いずれか1項に記載の液体センサ用受液容器。 The liquid receiving container for a liquid sensor according to any one of claims 1 to 16, wherein a hook portion is provided on a side surface of the outer peripheral wall of the liquid receiving portion. 請求項1から17いずれか1項に記載の液体センサ用受液容器を備えたことを特徴とする冷却装置。 A cooling device comprising the liquid receiving container for a liquid sensor according to claim 1.
JP2005366078A 2005-12-20 2005-12-20 Liquid receiving container for liquid sensor and cooling device provided with the same Expired - Fee Related JP4736786B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005366078A JP4736786B2 (en) 2005-12-20 2005-12-20 Liquid receiving container for liquid sensor and cooling device provided with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005366078A JP4736786B2 (en) 2005-12-20 2005-12-20 Liquid receiving container for liquid sensor and cooling device provided with the same

Publications (2)

Publication Number Publication Date
JP2007170897A true JP2007170897A (en) 2007-07-05
JP4736786B2 JP4736786B2 (en) 2011-07-27

Family

ID=38297662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005366078A Expired - Fee Related JP4736786B2 (en) 2005-12-20 2005-12-20 Liquid receiving container for liquid sensor and cooling device provided with the same

Country Status (1)

Country Link
JP (1) JP4736786B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009300402A (en) * 2008-06-17 2009-12-24 Olympus Corp Analyzer and analytical method
JP2012013462A (en) * 2010-06-29 2012-01-19 Noritz Corp Combustion device
JP2020067364A (en) * 2018-10-24 2020-04-30 住友電装株式会社 Electric apparatus
CN115326300A (en) * 2022-08-22 2022-11-11 安徽兴盛达制冷铜管制造有限公司 Energy-saving air tightness detection device for refrigerator liquid storage device production

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59124350A (en) * 1982-12-31 1984-07-18 Konishiroku Photo Ind Co Ltd Both side recording method and its apparatus
JPH0199038A (en) * 1987-10-12 1989-04-17 Seiko Epson Corp Ink ribbon made of photosensitive body
JPH0283440A (en) * 1988-09-21 1990-03-23 Ishikawajima Harima Heavy Ind Co Ltd Method for measuring heat conductivity

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0199038U (en) * 1987-12-23 1989-07-03
JPH0283440U (en) * 1988-12-16 1990-06-28
JP2500735Y2 (en) * 1991-03-19 1996-06-12 三菱重工業株式会社 Leak detection device
JPH0669798U (en) * 1993-03-16 1994-09-30 日本分光株式会社 Liquid leak detector for optical analyzer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59124350A (en) * 1982-12-31 1984-07-18 Konishiroku Photo Ind Co Ltd Both side recording method and its apparatus
JPH0199038A (en) * 1987-10-12 1989-04-17 Seiko Epson Corp Ink ribbon made of photosensitive body
JPH0283440A (en) * 1988-09-21 1990-03-23 Ishikawajima Harima Heavy Ind Co Ltd Method for measuring heat conductivity

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009300402A (en) * 2008-06-17 2009-12-24 Olympus Corp Analyzer and analytical method
JP2012013462A (en) * 2010-06-29 2012-01-19 Noritz Corp Combustion device
JP2020067364A (en) * 2018-10-24 2020-04-30 住友電装株式会社 Electric apparatus
JP7001039B2 (en) 2018-10-24 2022-01-19 住友電装株式会社 Electrical equipment
CN115326300A (en) * 2022-08-22 2022-11-11 安徽兴盛达制冷铜管制造有限公司 Energy-saving air tightness detection device for refrigerator liquid storage device production

Also Published As

Publication number Publication date
JP4736786B2 (en) 2011-07-27

Similar Documents

Publication Publication Date Title
US10095285B2 (en) Portable electronic device and detachable auxiliary heat-dissipating module thereof
US6655449B1 (en) Heat dissipation device by liquid cooling
US7289320B2 (en) Electronic device with waterproof and heat-dissipating structure
US20170188481A1 (en) Heat Sink With Protrusions On Multiple Sides Thereof And Apparatus Using The Same
US8002443B2 (en) LED array module
US7165603B2 (en) Tower type heat sink
US9807906B2 (en) Liquid-cooling device and system thereof
US20080101041A1 (en) Electronic device having water-repellent structure and draining structure
KR20160139094A (en) Closed cabinet for electric device having heat pipe
JP2007281127A (en) Circuit device equipped with capacitor, and capacitor module
JP5210433B2 (en) LED unit
CN107006136B (en) Heat dissipation mechanism and electronic speed regulator and electronic device with same
EP1701604A1 (en) Electronic device with a waterproof heat-dissipating structure
JP2007323160A (en) Electronic apparatus
US10617031B2 (en) Electronic device
JP2009231511A (en) Casing
JP4736786B2 (en) Liquid receiving container for liquid sensor and cooling device provided with the same
JP2007012856A (en) Led apparatus and housing therefor
JP2015023279A (en) Cabinet for power electronic apparatus
TWM516708U (en) Water cooling equipment
JP2023084125A (en) photography light
JP2017033779A (en) Light source device, display device and electronic apparatus
JP2010033103A (en) Electronic equipment and printed circuit board
JP2008210593A (en) Illuminating device
US7631686B2 (en) Liquid cooling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081216

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110418

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees