JP2007169413A - Inclusion carrier - Google Patents

Inclusion carrier Download PDF

Info

Publication number
JP2007169413A
JP2007169413A JP2005367687A JP2005367687A JP2007169413A JP 2007169413 A JP2007169413 A JP 2007169413A JP 2005367687 A JP2005367687 A JP 2005367687A JP 2005367687 A JP2005367687 A JP 2005367687A JP 2007169413 A JP2007169413 A JP 2007169413A
Authority
JP
Japan
Prior art keywords
inclusion
water
polysaccharide
polysaccharides
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005367687A
Other languages
Japanese (ja)
Other versions
JP5343302B2 (en
Inventor
Yumiko Omori
友美子 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2005367687A priority Critical patent/JP5343302B2/en
Publication of JP2007169413A publication Critical patent/JP2007169413A/en
Application granted granted Critical
Publication of JP5343302B2 publication Critical patent/JP5343302B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inclusion carrier composed of water-soluble polysaccharides imparting high hydrophilicity and modifying inclusion ability while utilizing advantages essential to the polysaccharides such as slight adverse effects on environments or human bodies. <P>SOLUTION: The inclusion carrier is characterized in that the carrier is composed of the water-soluble polysaccharides in which a carboxy group or various salts of the carboxy group are introduced by selectively oxidizing primary hydroxy groups of a monosaccharide constituting the polysaccharides. The primary hydroxy groups of the polysaccharide can selectively be oxidized in the presence of an N-oxyl compound with a co-oxidizing agent by dispersing or dissolving the polysaccharides in an aqueous system. The inclusion composite obtained by including an active component such as a food, a cosmetic, a medicine, ink or an agrochemical in an inclusion carrier is utilized in the fields of the food, the cosmetic, the medicine, the ink, the agrochemical, etc. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、食品、化粧品、医薬品、インキ、農薬等の有効成分を包接することで食品、化粧品、医薬品、インキ、農薬等の分野で利用可能な包接担体に関するものである。   The present invention relates to an inclusion carrier that can be used in the fields of foods, cosmetics, pharmaceuticals, inks, agricultural chemicals and the like by including active ingredients such as foods, cosmetics, pharmaceuticals, inks and agricultural chemicals.

包接複合体については、従来から様々な研究、開発がなされ、工業的にも様々な応用分野が確立されてきている。食品分野における味や香料のマスキング、油脂や液体、揮発成分その他の物質の粉末化、溶解性の向上、薬学、化学分野における分離や精製、規則性の高い化合物の合成、インキや、農薬、活性の高い薬剤などの安定化および無害化、徐放など、或いは分子レベルで構造を制御できることを利用したナノ材料の形成など様々な分野で応用が検討されている。   Regarding the inclusion complex, various researches and developments have been made so far, and various application fields have been established industrially. Flavor and flavor masking in the food field, powdering of oils and liquids, volatile components and other substances, improved solubility, separation and purification in pharmacy and chemistry, synthesis of highly regular compounds, inks, pesticides, activity Applications are being studied in various fields such as stabilization and detoxification of high-drug drugs, sustained release, and the formation of nanomaterials utilizing the ability to control the structure at the molecular level.

包接のホスト物質としては、尿素などの低分子化合物からシクロデキストリン、クラウンエーテル系などが挙げられ、高分子物質では、無機層状鉱物や澱粉(アミロース)、セルロースもその包接能が利用されている。特に分子量の高い多糖類は、分子量の大きいゲスト物質例えばたんぱく質、核酸等の包接にも効果的である。   Examples of the host material for inclusion include low molecular weight compounds such as urea, cyclodextrin, crown ether, and the like. In the case of high molecular weight substances, inorganic layered minerals, starch (amylose), and cellulose are also used for inclusion. Yes. In particular, polysaccharides having a high molecular weight are also effective for inclusion of guest substances having a high molecular weight, such as proteins and nucleic acids.

一方、多糖類は古くから、食料、燃料、衣料、捺染など、様々な用途で用いられており、また、近年では、天然多糖類は新しいタイプの生分解性高分子材料として、また生体親和材料として注目され、その利用について多くの研究がなされている。   On the other hand, polysaccharides have been used for various purposes such as food, fuel, clothing, and textile printing since ancient times. In recent years, natural polysaccharides have become a new type of biodegradable polymer materials and biocompatible materials. As a result, much research has been done on its use.

中でも、澱粉はD−グルコースがα−1,4−グリコシド結合で連なった直鎖状のアミロースとα−1,6で分岐した構造を持つアミロペクチンからなり、アミロースの巻く螺旋構造の間に様々な物質を包接する。包接能を向上あるいは変化させるため、或いは老化と呼ばれる不溶化現象を抑えるために、様々な官能基をつけるなどの改質を行い、親水性を付与させるといった改質が行われている。また、セルロースやキチンは、水や一般的なその他の溶媒にほとんど溶解せず、機能性材料といった面では、合成高分子と比べ、従来その利用が限られていたが、様々な誘導体化が発明され、アセトンやクロロホルムなどの有機溶媒、さらには水にも溶解するような手法が開発されてきた。しかし、これらの誘導体はその置換基の分布が均一でないことや、合成された誘導体は天然には存在しない単糖から構成されるため導入された置換基が環境や生体に影響を及ぼす恐れがあるなどの問題があった。   Among them, starch is composed of linear amylose in which D-glucose is linked by α-1,4-glycosidic bonds and amylopectin having a structure branched by α-1,6, and there are various types of amylose wound between spiral structures. Include the substance. In order to improve or change the inclusion ability, or to suppress an insolubilization phenomenon called aging, modification such as adding various functional groups is performed to impart hydrophilicity. Cellulose and chitin are hardly soluble in water and other common solvents, and in terms of functional materials, their use has been limited compared to synthetic polymers, but various derivatizations have been invented. In addition, methods have been developed that dissolve in organic solvents such as acetone and chloroform, and even in water. However, these derivatives have a non-uniform distribution of substituents, and the synthesized derivatives are composed of monosaccharides that do not exist in nature, so the introduced substituents may affect the environment and the living body. There were problems such as.

そこで、最近になって、多糖類をN−オキシル化合物の触媒存在下で酸化反応を行い、水溶性のポリウロン酸を得る手法が発明された。この酸化方法は、多糖類の水分散または溶解系で2、2、6、6−テトラメチル−1−ピペリジニルオキシラジカル(TEMPO)などのN−オキシル化合物と次亜塩素酸ナトリウムなどの共酸化剤を用いて系内でオキソアンモニウム塩を順次生成しながら多糖類を酸化する。澱粉やプルランなどの水溶性多糖類からセルロース、キチンなど様々な多糖類に適用されている。こうして、酸化された多糖類はその一級水酸基のみが高い選択性で酸化され、カルボキシル基またはその塩に変換されたポリウロン酸型の構造を有する。この合成ポリウロン酸は、天然に存在する糖類からなる均一な構造を有し、高い水溶性を有するため、その有効性について様々な報告がなされている。   Therefore, recently, a technique has been invented in which a polysaccharide is oxidized in the presence of an N-oxyl compound catalyst to obtain water-soluble polyuronic acid. This oxidation method is a system in which a polysaccharide is dispersed in water or dissolved in an aqueous system such as 2,2,6,6-tetramethyl-1-piperidinyloxy radical (TEMPO) and sodium hypochlorite. The polysaccharide is oxidized while sequentially producing oxoammonium salts in the system using an oxidizing agent. It is applied to various polysaccharides such as cellulose and chitin from water-soluble polysaccharides such as starch and pullulan. Thus, the oxidized polysaccharide has a polyuronic acid type structure in which only the primary hydroxyl group is oxidized with high selectivity and converted to a carboxyl group or a salt thereof. Since this synthetic polyuronic acid has a uniform structure composed of naturally occurring sugars and has high water solubility, various reports have been made on its effectiveness.

このN−オキシル化合物を触媒に用いた多糖類の酸化は水系の反応液中、TEMPOなどのN−オキシル化合物のほかに臭化ナトリウムなどの触媒を用いるなどして、次亜塩素酸ナトリウムなどの共酸化剤により酸化が進行する。酸化が進行して、カルボキシル基(
ナトリウム塩)が増加するに従い、澱粉などの水溶性多糖類はもちろん、セルロースやキチンなどの難溶性の多糖類も親水性が付与され、酸化が進んだものは水に可溶化する。
Oxidation of polysaccharides using this N-oxyl compound as a catalyst involves using a catalyst such as sodium bromide in addition to an N-oxyl compound such as TEMPO in an aqueous reaction solution, such as sodium hypochlorite. Oxidation proceeds with the co-oxidant. Oxidation proceeds and carboxyl groups (
As the sodium salt increases, hydrophilicity is imparted to water-soluble polysaccharides such as starch as well as poorly soluble polysaccharides such as cellulose and chitin, and those that have undergone oxidation are solubilized in water.

本発明は、上記の技術的背景を考慮してなされたもので、環境や人体への悪影響が少ないという多糖類本来の利点を生かしつつ、高い親水性を付与し、包接能を改質した水溶性多糖類からなる包接担体を提供することを目的とする。本発明の包接担体に、食品、化粧品、医薬品、インキ、農薬等の有効成分を包接させた包接複合体は、食品、化粧品、医薬品、インキ、農薬等の分野で利用可能となるものである。   The present invention has been made in consideration of the above technical background, and imparted high hydrophilicity and improved inclusion ability while taking advantage of the inherent advantage of polysaccharides with less adverse effects on the environment and the human body. It is an object to provide an inclusion carrier comprising a water-soluble polysaccharide. The inclusion complex in which an active ingredient such as food, cosmetics, pharmaceuticals, inks and agricultural chemicals is included in the inclusion carrier of the present invention can be used in the fields of foods, cosmetics, pharmaceuticals, inks, agricultural chemicals, etc. It is.

上記の目的を達成するために、すなわち、請求項1に記載の発明は、多糖類を構成する単糖の一級水酸基を選択的に酸化することにより、カルボキシル基またはカルボキシル基の各種塩類を導入した水溶性多糖類からなることを特徴とする包接担体である。   In order to achieve the above object, that is, the invention described in claim 1 introduces a carboxyl group or various salts of a carboxyl group by selectively oxidizing a primary hydroxyl group of a monosaccharide constituting a polysaccharide. An inclusion carrier comprising a water-soluble polysaccharide.

請求項2に記載の発明は、前記多糖類が、澱粉、デキストリン、プルラン、アミロース、アミロペクチンおよびこれらの誘導体であることを特徴とする請求項1記載の包接担体。   The inclusion carrier according to claim 2, wherein the polysaccharide is starch, dextrin, pullulan, amylose, amylopectin, and derivatives thereof.

請求項3に記載の発明は、前記多糖類を水系で分散または溶解させ、N−オキシル化合物の存在下、共酸化剤を用いて単糖の一級水酸基が選択的に酸化されてなることを特徴とする請求項1または2記載の包接担体である。   The invention according to claim 3 is characterized in that the polysaccharide is dispersed or dissolved in an aqueous system, and a primary hydroxyl group of a monosaccharide is selectively oxidized using a co-oxidant in the presence of an N-oxyl compound. The inclusion carrier according to claim 1 or 2.

請求項4に記載の発明は、前記酸化によりカルボキシル基またはカルボキシル基の各種塩類を導入した水溶性多糖類の分子量が10,000〜200,000の範囲であることを特徴とする請求項1〜3のいずれか1項に記載の包接担体である。   The invention according to claim 4 is characterized in that the molecular weight of the water-soluble polysaccharide into which carboxyl groups or various salts of carboxyl groups are introduced by oxidation is in the range of 10,000 to 200,000. 4. The inclusion carrier according to any one of 3 above.

請求項5に記載の発明は、前記水溶性多糖類が水溶性ポリウロン酸であることを特徴とする請求項1〜4のいずれか1項に記載の包接担体である。   The invention according to claim 5 is the inclusion carrier according to any one of claims 1 to 4, wherein the water-soluble polysaccharide is water-soluble polyuronic acid.

本発明により、酸化によりカルボキシル基を導入し、親水性を付与すべく改質した多糖類を包接担体とし、各種有効成分を包接させることにより形成した包接複合体を得ることが可能となった。また、構造の制御されたウロン酸残基をもつ天然多糖類由来の包接担体を用いていることから、抗菌性物質、殺虫剤、農薬、食品添加物、香料、臭気物質、油脂、インキ、染料、顔料、たんぱく質、核酸等の有効成分を包接させた包接複合体は、工業用汎用用途としての利用の他、化学、薬学、農業、医療用材料、食品、衛生用品、化粧品等の分野で利用することができる。   According to the present invention, it is possible to obtain an inclusion complex formed by inclusion of various active ingredients by using a polysaccharide modified by introducing a carboxyl group by oxidation and imparting hydrophilicity as an inclusion carrier. became. In addition, since the inclusion carrier derived from a natural polysaccharide having a uronic acid residue with a controlled structure is used, antibacterial substances, insecticides, agricultural chemicals, food additives, fragrances, odorous substances, fats and oils, inks, Inclusion complexes containing active ingredients such as dyes, pigments, proteins, and nucleic acids are used for general industrial purposes, as well as chemical, pharmaceutical, agricultural, medical materials, food, hygiene products, cosmetics, etc. Can be used in the field.

以下、本発明の一実施形態について詳細に説明する。本発明の包接担体に用いられる親水性を付与させた多糖類は多糖類の酸化により得られる。酸化される前の多糖類には、澱粉やプルラン、デキストリン、アミロース、ヒアルロン酸などの水溶性多糖類、さらにはセルロースやキチン等を用いることができる。原料の調達、コスト、期待される機能、また、構造をほとんど変えずに水溶化することができるといった利点を考えると、澱粉、セルロース、キチンが好ましい。更に、澱粉の特にアミロース部分の螺旋構造には物質を包接する能力が高いことから、澱粉やアミロース、アミロペクチン、デキストリンを酸化原料に用いることが好ましい。   Hereinafter, an embodiment of the present invention will be described in detail. The polysaccharide imparted with hydrophilicity used in the inclusion carrier of the present invention can be obtained by oxidation of the polysaccharide. As the polysaccharide before being oxidized, water-soluble polysaccharides such as starch, pullulan, dextrin, amylose and hyaluronic acid, and cellulose and chitin can be used. Starch, cellulose, and chitin are preferred in view of the advantages of raw material procurement, cost, expected function, and water solubility with little change in structure. Furthermore, starch, amylose, amylopectin, and dextrin are preferably used as the oxidation raw material because the helical structure of the amylose portion of starch has a high ability to include substances.

セルロースやキチンなど結晶性の高い多糖類を原料とする場合は、前処理として再生処理などの結晶性を低下させるための処理を行うことが好ましい。セルロースの再生処理としては、キュプラアンモニウム法、ビスコース法等の公知の再生処理法を利用することができる。また、キチンの再生処理としても、再生後キチンの結晶性が低下していれば、その処理は限定されるものではないが、その後の利用等を考えると、再生処理により分子の切断などが起こることは好ましくない。そこで、例えばアルカリ再生処理が挙げられる。キチンを高濃度のアルカリに浸漬後、氷を加えながら低温下で希釈していくことにより、粘調な液体となる。ここに塩酸を加えて中和すると、フレーク状のキチンが析出する。この得られたキチンはほぼ非晶質化しており、これを十分に水洗して乾燥させずにまたは凍結乾燥した後に、酸化反応に供することにより、分子量低下を極力抑え、ほぼ全てのピラノース環6位の一級水酸基のみをカルボキシル基にまで酸化することができる。   When a highly crystalline polysaccharide such as cellulose or chitin is used as a raw material, it is preferable to perform a treatment for reducing crystallinity such as a regeneration treatment as a pretreatment. As the regeneration treatment of cellulose, a known regeneration treatment method such as a cupra ammonium method or a viscose method can be used. In addition, the chitin regeneration treatment is not limited as long as the crystallinity of the chitin after regeneration is reduced. However, in consideration of subsequent use, etc., molecular regeneration occurs due to the regeneration treatment. That is not preferable. Thus, for example, alkali regeneration treatment can be mentioned. After dipping chitin in a high-concentration alkali, it becomes a viscous liquid by diluting under low temperature while adding ice. When neutralized by adding hydrochloric acid thereto, flaky chitin precipitates. The obtained chitin is almost amorphous, and it is washed thoroughly with water and not dried or freeze-dried, and then subjected to an oxidation reaction to suppress molecular weight reduction as much as possible, and almost all pyranose rings 6 Only primary hydroxyl groups can be oxidized to carboxyl groups.

また、キチンの脱アセチル化物であるキトサンを原料に、均一反応下でN−アセチル化した材料を酸化反応に供してもよい。例えば、キトサンを酢酸に溶解し、メタノールで希釈後、キトサン中のアミノ基量に対して1.5〜3倍モル量の無水酢酸を添加することで、容易にN−アセチル化して、再びキチンの化学構造に戻すことができる。この操作を経て、十分に水洗したものを乾燥させずに、あるいは凍結乾燥して、酸化反応に供することにより、アルカリ再生キチン同様に6位の一級水酸基のみ選択性高く酸化される。   Alternatively, chitosan which is a deacetylated product of chitin may be used as a raw material, and a material that is N-acetylated under a uniform reaction may be subjected to an oxidation reaction. For example, after dissolving chitosan in acetic acid and diluting with methanol, it is easily N-acetylated by adding 1.5 to 3 times the molar amount of acetic anhydride relative to the amount of amino groups in the chitosan, and again chitin The chemical structure can be restored. By passing through this operation, the well-washed water is not dried or freeze-dried and subjected to an oxidation reaction, so that only the primary hydroxyl group at the 6-position is oxidized with high selectivity as in the case of alkali-regenerated chitin.

さらにこの場合には、無水酢酸の添加量により酸化原料のN−アセチル化度をコントロールすることも可能である。   Furthermore, in this case, it is also possible to control the degree of N-acetylation of the oxidation raw material by the amount of acetic anhydride added.

このような多糖類の酸化によりポリウロン酸を得る酸化方法としては、一級水酸基の酸化に対する選択性が高く、できるだけ均一構造のものを得られる酸化方法をとるべきであり、N−オキシル化合物の存在下、共酸化剤を用いた手法が好ましい。   As an oxidation method for obtaining polyuronic acid by oxidation of such a polysaccharide, an oxidation method should be employed which has a high selectivity to oxidation of primary hydroxyl groups and can obtain a uniform structure as much as possible, in the presence of an N-oxyl compound. A method using a co-oxidant is preferable.

この選択的酸化手法は、酸化度の制御が可能で、かつピラノース環の2位や3位を酸化することなく、ほとんど全てのピラノース環6位をカルボキシル基まで酸化することができる。また水系で酸化反応を行うことが可能である。   This selective oxidation method can control the degree of oxidation, and can oxidize almost all the 6-positions of the pyranose ring to a carboxyl group without oxidizing the 2-position or 3-position of the pyranose ring. Moreover, it is possible to perform an oxidation reaction in an aqueous system.

上記N−オキシル化合物としては、2、2、6、6−テトラメチル−1−ピペリジン−N−オキシル(以下、TEMPO)などが好ましく用いられる。また、上記酸化剤としては、ハロゲン、次亜ハロゲン酸、亜ハロゲン酸や過ハロゲン酸、またはそれらの塩、ハロゲン酸化物、窒素酸化物、過酸化物など、目的の酸化反応を推進し得る酸化剤であれば、いずれの酸化剤も使用できる。さらに、臭化物やヨウ化物の共存下で酸化反応を行うと、温和な条件下でも酸化反応を円滑に進行させ、カルボキシル基の導入効率を大きく改善できるため、より好ましい。N−オキシル化合物にはTEMPOを用い、臭化ナトリウムの存在下、酸化剤として次亜塩素酸ナトリウムを用いて酸化反応を行うことが特に好ましい。   As the N-oxyl compound, 2,2,6,6-tetramethyl-1-piperidine-N-oxyl (hereinafter, TEMPO) is preferably used. Examples of the oxidizing agent include halogens, hypohalous acids, halous acids and perhalogen acids, or salts thereof, halogen oxides, nitrogen oxides, peroxides and the like that can promote the target oxidation reaction. Any oxidizing agent can be used as long as it is an agent. Furthermore, it is more preferable to carry out the oxidation reaction in the presence of bromide or iodide because the oxidation reaction can proceed smoothly even under mild conditions and the introduction efficiency of carboxyl groups can be greatly improved. It is particularly preferable that TEMPO is used for the N-oxyl compound and the oxidation reaction is performed using sodium hypochlorite as an oxidizing agent in the presence of sodium bromide.

ここで、N−オキシル化合物は触媒としての量で済み、例えば、多糖類の構成単糖のモル数に対し、10ppm〜5%(ppc)あれば十分であるが、0.05〜3%がより好ましい。また、臭化物またはヨウ化物の使用量は、酸化反応を促進できる範囲で選択することができ、例えば、多糖類の構成単糖のモル数に対し0〜100%、より好ましくは1〜50%である。   Here, the amount of the N-oxyl compound is sufficient as a catalyst. For example, 10 ppm to 5% (ppc) is sufficient with respect to the number of moles of the constituent monosaccharide of the polysaccharide, but 0.05 to 3% is sufficient. More preferred. The amount of bromide or iodide used can be selected within a range that can promote the oxidation reaction. For example, it is 0 to 100%, more preferably 1 to 50%, based on the number of moles of the constituent monosaccharide of the polysaccharide. is there.

また、構成単糖の一級水酸基への酸化の選択性を向上させ、副反応を抑える目的で、反応温度は室温以下、より好ましくは系内を5℃以下で反応させることが望ましい。さらに、反応中は系内をアルカリ性に保つことが好ましい。このときのpHは9〜12、より好ましくはpH10〜11に保つとよい。   In addition, for the purpose of improving the selectivity of oxidation of the constituent monosaccharides to primary hydroxyl groups and suppressing side reactions, it is desirable that the reaction temperature is room temperature or lower, more preferably 5 ° C. or lower. Furthermore, it is preferable to keep the inside of the system alkaline during the reaction. At this time, the pH is preferably 9 to 12, more preferably 10 to 11.

さらに、この酸化方法は、酸化剤の量およびpHを一定に保つ際に添加されるアルカリの量により酸化度を制御することができる。例えば、アルカリが糖残基と等モル量添加されれば、ほぼ全てのピラノース環6位の一級水酸基がカルボキシル基にまで酸化され、水溶性のポリウロン酸が得られる。   Furthermore, in this oxidation method, the degree of oxidation can be controlled by the amount of oxidant and the amount of alkali added when the pH is kept constant. For example, when an alkali is added in an equimolar amount with a sugar residue, almost all primary hydroxyl groups at the 6-position of the pyranose ring are oxidized to carboxyl groups, and water-soluble polyuronic acid is obtained.

本発明の包接担体における酸化度に関しては、特に制限されるものはなく、用途と親水性の程度などにより、自由に選択することができる。しかし、水中での包接複合体形成の為の親水性の高さ、構造の均一さなどの観点からは、100%に近い酸化を行ったポリウロン酸が好ましく用いられる。   The degree of oxidation in the inclusion carrier of the present invention is not particularly limited, and can be freely selected depending on the application and the degree of hydrophilicity. However, from the viewpoints of high hydrophilicity for formation of the inclusion complex in water and the uniformity of the structure, polyuronic acid that has been oxidized close to 100% is preferably used.

例えば、澱粉から得たポリウロン酸は、α−1、4−グルコピラノースおよびα−1、4−グルクロン酸を構成単糖とし、セルロースから得たポリウロン酸はβ−1、4−グルコピラノースおよびβ−1、4−グルクロン酸を構成単糖とし、キチンから得たポリウロン酸はβ−1、4−グルコサミンおよびβ−1、4−N−アセチルグルコサミンおよびβ−1、4−グルコサミヌロン酸およびβ−1、4−N−アセチルグルコサミヌロン酸を構成単糖に有している。以後、これらのポリウロン酸を順に、アミノウロン酸、セロウロン酸、キトウロン酸と称する。   For example, polyuronic acid obtained from starch has α-1,4-glucopyranose and α-1,4-glucuronic acid as constituent monosaccharides, and polyuronic acid obtained from cellulose is β-1,4-glucopyranose and β -1,4-glucuronic acid as a constituent monosaccharide, and polyuronic acid obtained from chitin is β-1,4-glucosamine and β-1,4-N-acetylglucosamine and β-1,4-glucosamineuronic acid and β- It has 1,4-N-acetylglucosaminuronic acid as a constituent monosaccharide. Hereinafter, these polyuronic acids are referred to as aminouronic acid, cellouronic acid, and chitouronic acid in this order.

このように、例えば、臭化ナトリウムとTEMPOが触媒量存在する水溶液中で、次亜塩素酸ナトリウムを共酸化剤として用い、水酸化ナトリウムを用いてpH調整を行い、アルカリ系で酸化処理されて得られるポリウロン酸は、カルボキシル基のナトリウム塩として水に溶解している。   Thus, for example, in an aqueous solution containing a catalytic amount of sodium bromide and TEMPO, sodium hypochlorite is used as a co-oxidant, pH is adjusted using sodium hydroxide, and an oxidation treatment is performed in an alkaline system. The resulting polyuronic acid is dissolved in water as a sodium salt of a carboxyl group.

反応終了後は、一般的に反応水溶液をエタノールなどの貧溶媒に滴下し、水溶化した酸化多糖類を析出させる。単離後は、反応の過程で生成する食塩やその他の試薬を除去するために、水を含んだ有機溶媒で洗浄を繰り返し、最後はアセトンで脱水した後、乾燥させる、或いは反応水溶液を透析にかけ試薬や不純物を除去し、精製する方法、或いはカルシウム塩などにより不溶化した後、水洗いするなどの単離法がとられる。   After completion of the reaction, the reaction aqueous solution is generally dropped into a poor solvent such as ethanol to precipitate the water-soluble oxidized polysaccharide. After isolation, in order to remove salt and other reagents generated during the reaction, washing with an organic solvent containing water is repeated, and finally, after dehydration with acetone, drying is performed, or the reaction aqueous solution is subjected to dialysis. A method of purifying by removing reagents and impurities, or an isolation method such as washing with water after insolubilization with a calcium salt or the like is employed.

更に、酸化多糖類のカルボキシル基を塩型でなく、遊離のカルボキシル基とする事も可能である。この脱塩の手法としては酸化多糖類の水溶液或いは、水分散液に脱塩に十分なほど塩酸を添加し、再度精製することで、脱塩されたカルボキシル基を有する酸化多糖類を得ることができる。また、或いは、酸化多糖類の水溶液或いは水分散液を陽イオン交換樹脂で処理することによっても、容易に、脱塩されたカルボキシル基を有する酸化多糖類を得ることができる。   Furthermore, the carboxyl group of the oxidized polysaccharide may be a free carboxyl group instead of a salt form. As the desalting method, an oxidized polysaccharide having a desalted carboxyl group can be obtained by adding hydrochloric acid to the aqueous solution or dispersion of the oxidized polysaccharide to a sufficient extent for desalting and purifying again. it can. Alternatively, the oxidized polysaccharide having a desalted carboxyl group can be easily obtained by treating an aqueous solution or dispersion of the oxidized polysaccharide with a cation exchange resin.

これらの脱塩されたカルボキシル基は水酸基などと比べ反応性も高く、高い水溶性或いは親水性を有するため、二次修飾の反応原料としても非常に有効であり、更に酸化前後に誘導体化を行った多糖類も包接担体として用いることができる。   These desalted carboxyl groups are more reactive than hydroxyl groups and have high water solubility or hydrophilicity, so they are very effective as reaction materials for secondary modification, and are derivatized before and after oxidation. Polysaccharides can also be used as an inclusion carrier.

また、特に、前記したキトウロン酸やアミロウロン酸は、COOH型でも水溶性を示し、pH1〜14の広いpH域で高い水溶性を示す。包接のゲスト物質によっては、酸化多糖類中のカルボキシル基が、COOH型である方が障害が少なくなることに加え、高い親水性とともに有機溶媒への親和性を有する両親和性物質となりうるため、より多くの物質を取り込む場合がある。   In particular, the above-mentioned chitouronic acid and amylouronic acid are water-soluble even in the COOH type, and are highly water-soluble in a wide pH range of pH 1-14. Depending on the guest substance included in the inclusion, the carboxyl group in the oxidized polysaccharide can be a bi-affinity substance having high hydrophilicity and affinity for organic solvents, in addition to being less hindered when it is COOH type. , May take up more material.

このように、元々包接化合物として利用されうる多糖類に、酸化によりカルボキシル基などの極性の高い官能基が導入されることにより、ゲスト物質との吸着性が向上する。また、親水性が増し、水系での包接処理が容易になる、よりたくさんのゲスト物質を取り込
めるなどの利点を与える。
As described above, by introducing a highly polar functional group such as a carboxyl group into the polysaccharide that can be originally used as an inclusion compound by oxidation, the adsorptivity with the guest substance is improved. In addition, the hydrophilicity is increased, and the inclusion treatment in an aqueous system is facilitated, and more guest substances can be taken in.

特に、澱粉を上述の手法により酸化した生成物は、澱粉に元々存在するアミロペクチン由来のα−1,6−の分岐が切断され、ほぼ直鎖状のα−1,4−グルクロン酸からなるポリウロン酸であるアミロウロン酸が得られる。アミロウロン酸はそのアミロースの骨格に由来する包接能に加え、均一に親水性官能基であるカルボキシル基をおそらく分子鎖の外側に有している。従って、油脂やなどの疎水性のゲスト物質にアミロウロン酸が絡み、アミロウロン酸の高い水溶性を以って水溶化することができる。   In particular, the product obtained by oxidizing starch by the above-described method is a polyuron composed of α-1,4-glucuronic acid having a substantially linear shape, in which α-1,6-branches derived from amylopectin originally present in starch are cleaved. Amilouronic acid, an acid, is obtained. In addition to the inclusion ability derived from the amylose skeleton, amyloulonic acid has a carboxyl group, which is a uniformly hydrophilic functional group, possibly outside the molecular chain. Therefore, amylouronic acid is entangled with hydrophobic guest substances such as fats and oils, and water can be solubilized with high water solubility of amylouronic acid.

また、前述のように、アミロウロン酸は非常に幅広いpH領域で水溶性である。アルギン酸や、セロウロン酸は中性からアルカリ領域のカルボキシル基がナトリウムやカリウムなどのアルカリ金属塩と塩を形成している領域では高い水溶性を示すが、カルボキシル基が遊離型の酸性領域では析出してしまう。それに対し、アミロウロン酸はpH2以下の酸性領域でも高い水溶性を示し、そのカルボキシル基が遊離型であっても高い水溶性を示す。従って、幅広いpH領域で疎水性の有効物質を水溶化することが可能となるのである。   As described above, amylouronic acid is water-soluble in a very wide pH range. Alginic acid and ceurouronic acid are neutral to alkaline regions where the carboxyl group forms a salt with an alkali metal salt such as sodium or potassium, but the carboxyl group is precipitated in the free acidic region. End up. In contrast, amylouronic acid exhibits high water solubility even in an acidic region of pH 2 or lower, and exhibits high water solubility even if its carboxyl group is free. Therefore, it becomes possible to solubilize hydrophobic active substances in a wide pH range.

また、本発明における包接のゲスト物質となる各種有効成分においては、抗菌性物質、殺虫剤、農薬、食品添加物、香料、臭気物質、油脂、インキ、染料、顔料、たんぱく質、核酸、医薬系薬剤など様々なものの中から選択することができる。特に、本発明の多糖類は高分子であるため、選択性や取り込む強度、維持能力がシクロデキストリンなどと比べると弱いことがあるが、何種類かの物質を同時に取り込んだり、高分子のものも含め、様々なゲスト物質を取り込むことができる。また、ゲスト物質の機能を妨害するようなことが少ない。   In addition, in the various active ingredients serving as the inclusion guest substances in the present invention, antibacterial substances, insecticides, agricultural chemicals, food additives, fragrances, odorous substances, fats and oils, inks, dyes, pigments, proteins, nucleic acids, pharmaceuticals You can choose from a variety of medicines. In particular, since the polysaccharide of the present invention is a polymer, its selectivity, strength, and maintenance ability may be weak compared to cyclodextrins and the like. Various guest substances can be incorporated, including In addition, there is little that interferes with the function of the guest material.

一方、各種包接複合体作製の方法としては、飽和水溶液法、混練法、カプセル化法などの手法が挙げられるが、特に限定されるものではない。親水性を付与したメリットを最大限に引き出すためには、本発明の包接担体である多糖類と、各種有効成分を水の存在下で混合し、包接複合体を得ることが好ましい。例えば、酸化多糖類を水に溶解させる。前述のようなポリウロン酸類を用いるときの固形分濃度は高いレベルに保つことができ、10%程度では、問題なく溶解することができる。この水溶液に、有効物質を混合する。有効物質は溶媒に溶解或いは分散させても構わない。また、分散剤などを用いて、有効物質と有機溶媒や水、酸化多糖類などの分散を良くすることは、酸化多糖類へゲスト物質の包接に有効であることが多い。   On the other hand, methods for preparing various inclusion complexes include techniques such as a saturated aqueous solution method, a kneading method, and an encapsulation method, but are not particularly limited. In order to maximize the merits of imparting hydrophilicity, it is preferable to mix the polysaccharide which is the inclusion carrier of the present invention and various active ingredients in the presence of water to obtain an inclusion complex. For example, oxidized polysaccharide is dissolved in water. When the polyuronic acids as described above are used, the solid content concentration can be kept at a high level, and when it is about 10%, it can be dissolved without any problem. The active substance is mixed in this aqueous solution. The active substance may be dissolved or dispersed in a solvent. In addition, it is often effective for inclusion of a guest substance to an oxidized polysaccharide to improve the dispersion of the active substance, an organic solvent, water, and the oxidized polysaccharide using a dispersant or the like.

こうして、水の存在する系でこれらの物質を接触させることにより、酸化多糖類は、ゲスト物質を取り込む。その後の使用形態によっては、乾燥させて粉末状、フィルム状、シート状、繊維状、カプセル状などに成形することも可能であることは、本発明の包接複合体がポリマーである酸化多糖類からなることによる特徴の一つである。   Thus, by bringing these substances into contact with each other in a system where water is present, the oxidized polysaccharide takes in the guest substance. Depending on the form of use thereafter, it can be dried and formed into powder, film, sheet, fiber, capsule, etc. The oxidized polysaccharide in which the inclusion complex of the present invention is a polymer It is one of the features by comprising.

また、乾燥前の液をコーティング剤として紙やフィルム、繊維などの基材に塗布し、コーティング膜を形成したり、練り込むことも可能である。また、本発明の包接複合体には、バインダー、増量剤などのような、他の基材、或いは可塑剤などの添加剤を混ぜて用いても構わない。   It is also possible to apply the liquid before drying as a coating agent to a substrate such as paper, film or fiber to form a coating film or knead. Moreover, you may mix and use additives, such as another base material, such as a binder and a bulking agent, or a plasticizer, in the inclusion complex of this invention.

まず、後に説明する実施例、比較例に用いる原料となるポリウロン酸の製造方法の一例について説明する。   First, an example of a method for producing polyuronic acid as a raw material used in Examples and Comparative Examples described later will be described.

<製造例1>
(アミロウロン酸の調製)
コンスターチ10gを蒸留水400gに加熱溶解させ冷却した。この溶液に、蒸留水1
00gにTEMPOを0.18g、臭化ナトリウム2.5gを溶解した溶液を加え、11%濃度の次亜塩素酸ナトリウム水溶液104gを滴下により添加し、酸化反応を開始した。反応温度は常に5℃以下に維持した。反応中は系内のpHが低下するが、0.5N−NaOH水溶液を逐次添加し、pH10.75に調整した。そして、6位の一級水酸基の全モル数に対し、100%のモル数に対応するアルカリ添加量に達した時点で、エタノールを添加し、反応を停止さた。あらかじめ100gの水に11gの塩化カルシウムを溶解させた水溶液を系内に添加すると、白色の沈殿が生じた。この沈殿物を蒸留水で繰り返し洗浄し、アミロウロン酸カルシウム塩を得た。
<Production Example 1>
(Preparation of amylouronic acid)
10 g of starch was dissolved by heating in 400 g of distilled water and cooled. In this solution, distilled water 1
A solution in which 0.18 g of TEMPO and 2.5 g of sodium bromide were dissolved in 00 g was added, and 104 g of an aqueous 11% sodium hypochlorite solution was added dropwise to initiate the oxidation reaction. The reaction temperature was always kept below 5 ° C. During the reaction, the pH in the system was lowered, but a 0.5 N NaOH aqueous solution was sequentially added to adjust the pH to 10.75. Then, when the amount of alkali added corresponding to 100% of the number of moles of the primary hydroxyl group at the 6-position was reached, ethanol was added to stop the reaction. When an aqueous solution in which 11 g of calcium chloride was previously dissolved in 100 g of water was added to the system, a white precipitate was formed. This precipitate was repeatedly washed with distilled water to obtain calcium amylouronate.

<製造例2>
製造例1で調製したアミロウロン酸カルシウム塩を100gの水に懸濁させ、H型に再生処理したイオン交換樹脂(オルガノ株式会社:アンバーライトIR120)70mLをつめたカラムに通し、脱塩処理を行った。このアミロウロン酸水溶液を凍結乾燥し、白色粉末のアミロウロン酸8.7gを得た。
<Production Example 2>
The calcium salt of amylouronate prepared in Production Example 1 was suspended in 100 g of water and passed through a column filled with 70 mL of an ion exchange resin (organo Corporation: Amberlite IR120) regenerated into H-type for desalting treatment. It was. This aqueous solution of amylouronic acid was lyophilized to obtain 8.7 g of white powder of amylouronic acid.

<製造例3>
可溶性澱粉10gを水200mLに加熱溶解させた。この水溶液を5℃に冷却し、予め水50gに溶解させておいたTEMPO0.2g、臭化ナトリウム2.5g、を加え、11%次亜塩素酸ナトリウム水溶液を104g滴下し、反応を開始した。反応温度は5℃、pHは10.5に維持した。pHが低下しなくなったら、エタノールを添加し、過剰の酸化剤を失活させる。エタノール2L中に撹拌しながらこの水溶液を添加し、酸化多糖類を析出させ、ろ過により単離する。水とアセトンの混合溶液で数回洗浄し、不純物を取り除く。アセトンによる脱水の後、40℃で減圧乾燥し、白色のアミロウロン酸ナトリウム塩を得た。
<Production Example 3>
10 g of soluble starch was dissolved by heating in 200 mL of water. This aqueous solution was cooled to 5 ° C., 0.2 g of TEMPO and 2.5 g of sodium bromide previously dissolved in 50 g of water were added, and 104 g of an 11% aqueous sodium hypochlorite solution was added dropwise to initiate the reaction. The reaction temperature was maintained at 5 ° C. and the pH at 10.5. When the pH no longer drops, ethanol is added to deactivate excess oxidant. This aqueous solution is added to 2 L of ethanol while stirring to precipitate the oxidized polysaccharide, which is isolated by filtration. Wash several times with a mixed solution of water and acetone to remove impurities. After dehydration with acetone, it was dried under reduced pressure at 40 ° C. to obtain white amylouronate sodium salt.

<製造例4>
製造例2と同様に、製造例3のアミロウロン酸ナトリウム塩を処理し、製造例4のアミロウロン酸を得た。
<Production Example 4>
In the same manner as in Production Example 2, the amyloulonic acid sodium salt of Production Example 3 was treated to obtain amyloulonic acid of Production Example 4.

<製造例5>
製造例3の原料を可溶性澱粉からアミロースに変え、同様に酸化多糖類のナトリウム塩を得た。
<Production Example 5>
The raw material of Production Example 3 was changed from soluble starch to amylose to obtain a sodium salt of oxidized polysaccharide in the same manner.

<製造例6>
再生セルロースとして旭化成工業(株)製ベンリーゼを用い、再生セルロース10gを蒸留水400gに懸濁し、蒸留水100gにTEMPOを0.18g、臭化ナトリウム2.5gを溶解した溶液を加え、5℃以下まで冷却した。ここに11%濃度の次亜塩素酸ナトリウム水溶液104gを滴下により添加し、酸化反応を開始した。反応温度は常に5℃以下に維持した。反応中は系内のpHが低下するが、0.5N−NaOH水溶液を逐次添加し、pH10.75に調整した。そして6位の一級水酸基の全モル数に対し、100%のモル数に対応するアルカリ添加量に達した時点で、エタノールを添加し、反応を停止させた。1Lのエタノール中に反応液を投入して生成物を析出させ、水:アセトン=1:7よりなる溶液により充分洗浄した後、アセトンで脱水し、40℃で減圧乾燥させ、白い粉末状のセロウロン酸ナトリウム塩を得た。
<Production Example 6>
As the regenerated cellulose, Benise manufactured by Asahi Kasei Kogyo Co., Ltd. was used. 10 g of regenerated cellulose was suspended in 400 g of distilled water. Until cooled. To this, 104 g of an aqueous 11% sodium hypochlorite solution was added dropwise to initiate the oxidation reaction. The reaction temperature was always kept below 5 ° C. During the reaction, the pH in the system was lowered, but a 0.5 N NaOH aqueous solution was sequentially added to adjust the pH to 10.75. Then, when the alkali addition amount corresponding to 100% of the number of moles of the primary hydroxyl group at the 6-position was reached, ethanol was added to stop the reaction. The reaction solution is poured into 1 L of ethanol to precipitate the product, thoroughly washed with a solution of water: acetone = 1: 7, dehydrated with acetone, and dried under reduced pressure at 40 ° C. The acid sodium salt was obtained.

<製造例7>
和光純薬工業(株)製キチン10gを、45%水酸化ナトリウム水溶液150gに浸漬し、室温以下で2時間攪拌した。これに周りを氷水などで冷やし、攪拌しながら砕いた氷850gを添加した。このアルカリ処理によりキチンはほぼ溶解する。塩酸で中和し、十分に水洗した後、乾燥しないものを酸化原料とした。
<Production Example 7>
10 g of chitin manufactured by Wako Pure Chemical Industries, Ltd. was immersed in 150 g of 45% aqueous sodium hydroxide solution and stirred at room temperature or lower for 2 hours. The surroundings were cooled with ice water or the like, and 850 g of crushed ice was added with stirring. Chitin is almost dissolved by this alkali treatment. After neutralizing with hydrochloric acid, washing thoroughly with water and not drying, the raw material for oxidation was used.

この再生キチン2.5%濃度の懸濁液200gに、蒸留水50gにTEMPO0.08g、臭化ナトリウム1.0gを溶解した溶液を加え、5℃以下まで冷却した。ここに11%濃度の次亜塩素酸ナトリウム水溶液35gを滴下により添加し、酸化反応を開始した。反応温度は常に5℃以下に維持した。反応中は系内のpHが低下するが、0.5N−NaOH水溶液を逐次添加し、pH10.75に調整した。そして6位の1級水酸基の全モル数に対し、80%のモル数に対応するアルカリ添加量に達した時点で、エタノールを添加し、反応を停止させ、1Lのエタノール中に反応液を投入して生成物を析出させ、水:アセトン=1:7よりなる溶液により充分洗浄した後、アセトンで脱水し、40℃で減圧乾燥させ、白い粉末状の酸化度80%のキトウロン酸ナトリウム塩5.2gを得た。   A solution prepared by dissolving 0.08 g of TEMPO and 1.0 g of sodium bromide in 50 g of distilled water was added to 200 g of the suspension having a regenerated chitin concentration of 2.5% and cooled to 5 ° C. or lower. An 11% sodium hypochlorite aqueous solution (35 g) was added dropwise thereto to initiate the oxidation reaction. The reaction temperature was always kept below 5 ° C. During the reaction, the pH in the system was lowered, but a 0.5 N NaOH aqueous solution was sequentially added to adjust the pH to 10.75. When the amount of alkali added corresponding to 80% of the total number of moles of the primary hydroxyl group at the 6th position is reached, ethanol is added to stop the reaction, and the reaction solution is put into 1 L of ethanol. Then, the product was precipitated, washed thoroughly with a solution of water: acetone = 1: 7, dehydrated with acetone, dried under reduced pressure at 40 ° C., and white powdery sodium chitouronic acid salt having an oxidation degree of 80% 5 0.2 g was obtained.

製造例3、5、6、7で調製されたウロン酸について下記の分子量測定に基づいて分子量を求めた。その結果を表1に示す。   The molecular weights of uronic acids prepared in Production Examples 3, 5, 6, and 7 were determined based on the following molecular weight measurement. The results are shown in Table 1.

<分子量測定>
製造例3、5、6、7の酸化多糖類を0.2%濃度で0.1%塩化ナトリウム水溶液に溶解させ、TSKgelG6000PWXLおよびTSKgelG3000PWXLの2本のカラムを用いて、標準プルラン換算で平均分子量を求めた。
<Molecular weight measurement>
The oxidized polysaccharides of Production Examples 3, 5, 6, and 7 were dissolved in 0.1% sodium chloride aqueous solution at a concentration of 0.2%, and the average molecular weight was calculated in terms of standard pullulan using two columns of TSKgel G6000PWXL and TSKgel G3000PWXL. Asked.

Figure 2007169413
Figure 2007169413

以下、具体的な実施例を挙げて本発明を説明する   Hereinafter, the present invention will be described with specific examples.

上記製造例1〜7で調製された得られたウロン酸を固形分濃度5%となるよう溶解させた水溶液20gにリモネン(関東化学株式会社製)0.2gを分散させる。それぞれの水溶液を凍結乾燥させ、各々のリモネン包接パウダーを作製した。この粉末固形物を0.5g採取し、ヘキサン5mLに分散させ、リモネンを抽出した。ヘキサンの上澄みのガスクロマトグラフィー分析により包接されたリモネンの定量を行った。一方、比較例として、酸化前の可溶性澱粉、アミロース、αシクロデキストリン、βシクロデキストリンをそれぞれを固形分濃度5%となるよう溶解させた水溶液20gにリモネン(関東化学株式会社製)0.2gを分散させる。それぞれの水溶液を凍結乾燥させ、各々のリモネン包接パウダーを作製した。この粉末固形物を0.5g採取し、ヘキサン5mLに分散させ、リモネンを抽出した。ヘキサンの上澄みのガスクロマトグラフィー分析により包接されたリモネンの定量を下記のリモネンの定量測定に基づいて行った。その結果を表2に示す。   0.2 g of limonene (manufactured by Kanto Chemical Co., Inc.) is dispersed in 20 g of an aqueous solution in which the obtained uronic acid prepared in Production Examples 1 to 7 is dissolved to a solid content concentration of 5%. Each aqueous solution was freeze-dried to prepare each limonene inclusion powder. 0.5 g of this powder solid was collected and dispersed in 5 mL of hexane to extract limonene. The amount of limonene included was determined by gas chromatography analysis of the hexane supernatant. On the other hand, as a comparative example, 0.2 g of limonene (manufactured by Kanto Chemical Co., Inc.) was added to 20 g of an aqueous solution in which soluble starch, amylose, α-cyclodextrin, and β-cyclodextrin before oxidation were dissolved to a solid content concentration of 5%. Disperse. Each aqueous solution was freeze-dried to prepare each limonene inclusion powder. 0.5 g of this powder solid was collected and dispersed in 5 mL of hexane to extract limonene. The amount of limonene included by gas chromatography analysis of the hexane supernatant was determined based on the following quantitative determination of limonene. The results are shown in Table 2.

<リモネンの定量測定>
ガスクロマトグラフィー/質量分析計(GC/MS)Agilent Technologies製6890/5973使用。リモネンのヘキサン溶液1μLをGC/MSに注入し、検出されたリモネンのトータルイオンクロマトグラムピーク面積を求め、検量線から試料中のリモネン濃度を算出した。
<Quantitative measurement of limonene>
Gas chromatography / mass spectrometer (GC / MS) 6890/5973 manufactured by Agilent Technologies. 1 μL of limonene in hexane was injected into the GC / MS, the total ion chromatogram peak area of the detected limonene was determined, and the concentration of limonene in the sample was calculated from the calibration curve.

実施例1で作製した各々のリモネン包接パウダーを開放容器に入れ、48時間50℃のオーブンで加熱した。その後、この粉末固形物を0.5g採取し、ヘキサンに分散させ、リモネンを抽出した。ヘキサンの上澄みのガスクロマトグラフィー分析により包接されたリモネンの定量を実施例1と同様のリモネンの定量測定に基づいて行った。その結果を表3に示す。なお、表3には、実施例1で算出したリモネン濃度と実施例2で算出したリモネン濃度との比(実施例2で算出したリモネン濃度/実施例1で算出したリモネン濃度)を求めて示してある。   Each limonene inclusion powder produced in Example 1 was placed in an open container and heated in an oven at 50 ° C. for 48 hours. Thereafter, 0.5 g of this powder solid was collected and dispersed in hexane to extract limonene. The amount of limonene included by gas chromatography analysis of the hexane supernatant was determined based on the same quantitative determination of limonene as in Example 1. The results are shown in Table 3. In Table 3, the ratio of the limonene concentration calculated in Example 1 to the limonene concentration calculated in Example 2 (limonene concentration calculated in Example 2 / limonene concentration calculated in Example 1) was obtained and shown. It is.

Figure 2007169413
Figure 2007169413

Figure 2007169413
Figure 2007169413

表2の結果より、各々製造例1、3、4、5で調製されたウロン酸のリモネンの包接含有量は、比較例3、4のシクロデキストリン程大きくないものの、比較例1,2の酸化前の澱粉やアミロースと同様あるいはそれ以上の値となり、十分に包接担体として利用できるレベルであることがわかった。また、表3の結果より、各々製造例2、3、4、5の加熱試験後のリモネンの包接含有量は、比較例1、2の未酸化の多糖類より大きく、加熱前のリモネン包接含有量との比は、シクロデキストリンと同レベルであり包接したゲスト物質をしっかりと保持していることが示唆された。   From the results of Table 2, the inclusion content of limonene of uronic acid prepared in Production Examples 1, 3, 4, and 5 was not as great as that of Cyclodextrin in Comparative Examples 3 and 4, respectively. The value was the same as or higher than that of starch and amylose before oxidation, and it was found that the level was sufficient for use as an inclusion carrier. Moreover, from the results of Table 3, the inclusion content of limonene after the heating test in each of Production Examples 2, 3, 4 and 5 was larger than the unoxidized polysaccharides of Comparative Examples 1 and 2, and the limonene packaging before heating It was suggested that the ratio of the contact content was the same as that of cyclodextrin, and the included guest substance was firmly held.

各々製造例2、製造例3、製造例6の酸化多糖類の10wt%水溶液を調製した。ヒノキチオールの5%(w/v)アセトン溶液を調製した。多糖類水溶液9部にヒノキチオールのアセトン溶液2部を加えた。密閉した容器内で50℃1時間程度撹拌した。凍結乾燥により十分に乾燥させ、粉末のヒノキチオール含有パウダーを作製した。比較例5として、β−シクロデキストリンの10wt%水溶液を調製した。溶液調整の際にはシクロデキストリンが溶解しないため、加熱することで水溶液を調製した。実施例3の酸化多糖類水溶液の代わりに、β−シクロデキストリン水溶液を用いて、実施例の方法を繰り返し、粉末のヒノキチオール含有パウダーを作製した。下記の溶解性評価方法およびヒノキチオール含有率測定方法に基づいて溶解性とヒノキチオール含有率について評価した。その結果を表4に示す。   10 wt% aqueous solutions of the oxidized polysaccharides of Production Example 2, Production Example 3, and Production Example 6 were prepared. A 5% (w / v) acetone solution of hinokitiol was prepared. To 9 parts of the polysaccharide aqueous solution, 2 parts of an acetone solution of hinokitiol was added. The mixture was stirred for 1 hour at 50 ° C. in a sealed container. The powder was sufficiently dried by lyophilization to prepare a powder containing hinokitiol. As Comparative Example 5, a 10 wt% aqueous solution of β-cyclodextrin was prepared. Since cyclodextrin does not dissolve during the preparation of the solution, an aqueous solution was prepared by heating. Instead of the oxidized polysaccharide aqueous solution of Example 3, a β-cyclodextrin aqueous solution was used to repeat the method of Example to prepare a powdered hinokitiol-containing powder. The solubility and hinokitiol content were evaluated based on the following solubility evaluation method and hinokitiol content measurement method. The results are shown in Table 4.

<溶解性評価方法>
製造例2、製造例3、製造例6と比較例5の包接化合物の15℃の蒸留水に1wt%濃度で溶解させたときの溶解性と、50℃に加熱したときの溶解性を評価した。
<Solubility evaluation method>
Evaluation of the solubility when the inclusion compounds of Production Example 2, Production Example 3, Production Example 6 and Comparative Example 5 were dissolved in distilled water at 15 ° C. at a concentration of 1 wt% and when heated to 50 ° C. did.

<ヒノキチオール含有率測定方法>
ヒノキチオールの含有率をそれぞれの水溶液のUV吸収スペクトルの241nmのピーク強度から検量線を用いて求めた。含有率は包接化合物中のヒノキチオールの含有百分率で求めた。
<Method for measuring hinokitiol content>
The content of hinokitiol was determined using a calibration curve from the peak intensity at 241 nm of the UV absorption spectrum of each aqueous solution. The content was determined by the content percentage of hinokitiol in the inclusion compound.

Figure 2007169413
Figure 2007169413

表4の結果より、ヒノキチオールの含有量に関しては、一般的に広く用いられるシクロデキストリンと同程度あるいはそれ以上のヒノキチオールを包接することが可能であった。更に、水への溶解性に関しては、各々製造例2、製造例3、製造例6の酸化多糖類は10wt%程度までなら、何ら問題なく溶解することができるということがわかった。これに対して、比較例5のβ−シクロデキストリンは、包接後、さらに溶解し難くなる。   From the results shown in Table 4, regarding the content of hinokitiol, it was possible to include hinokitiol at the same level or higher than that of cyclodextrins that are widely used. Furthermore, regarding the solubility in water, it has been found that the oxidized polysaccharides of Production Example 2, Production Example 3, and Production Example 6 can be dissolved without any problem up to about 10 wt%. On the other hand, the β-cyclodextrin of Comparative Example 5 becomes more difficult to dissolve after inclusion.

また、下記の成膜性試験方法に基づき成膜性について評価した。その結果、各々製造例2、製造例3、製造例6の酸化多糖類および比較例5のβ−シクロデキストリンは比較的良好な成膜性を有するが、ヒノキチオールは膜にはならず、ぽろぽろとPET基材から剥がれ落ちた。また、比較例5は比較例1〜4のように均一に広がるが、膜は白濁し、密着性も悪く、指で擦るとぽろぽろと剥がれ落ちた。   Further, the film forming property was evaluated based on the following film forming property test method. As a result, the oxidized polysaccharides of Production Example 2, Production Example 3, and Production Example 6 and β-cyclodextrin of Comparative Example 5 have relatively good film-forming properties, but hinokitiol does not form a film, It peeled off from the PET substrate. Moreover, although the comparative example 5 spreads uniformly like the comparative examples 1-4, the film | membrane became cloudy and the adhesiveness was also bad, and when it rubbed with the finger, it peeled off.

<成膜性試験方法>
ヒノキチオールをアセトンに10%濃度で溶解させ、これに水を加え、ヒノキチオール
の1%水溶液を調製した。また、実施例1から4、および比較例1の包接化合物の1%水溶液を調製した。この水溶液を25μm厚の片面親水性処理したPETの上にバーコーターで塗布し、120℃30分乾燥させることで、フィルム化を試みた。
<Filmability test method>
Hinokitiol was dissolved in acetone at a concentration of 10%, and water was added thereto to prepare a 1% aqueous solution of hinokitiol. In addition, 1% aqueous solutions of the clathrate compounds of Examples 1 to 4 and Comparative Example 1 were prepared. This aqueous solution was applied onto a 25 μm-thick single-sided hydrophilic PET by a bar coater and dried at 120 ° C. for 30 minutes to attempt film formation.

Claims (5)

多糖類を構成する単糖の一級水酸基を選択的に酸化することにより、カルボキシル基またはカルボキシル基の各種塩類を導入した水溶性多糖類からなることを特徴とする包接担体。   An inclusion carrier comprising a water-soluble polysaccharide into which a carboxyl group or various salts of a carboxyl group are introduced by selectively oxidizing a primary hydroxyl group of a monosaccharide constituting the polysaccharide. 前記多糖類が、澱粉、デキストリン、プルラン、アミロース、アミロペクチンおよびこれらの誘導体であることを特徴とする請求項1記載の包接担体。   The inclusion carrier according to claim 1, wherein the polysaccharide is starch, dextrin, pullulan, amylose, amylopectin, and derivatives thereof. 前記多糖類を水系で分散または溶解させ、N−オキシル化合物の存在下、共酸化剤を用いて単糖の一級水酸基が選択的に酸化されてなることを特徴とする請求項1または2記載の包接担体。   3. The polysaccharide according to claim 1, wherein the polysaccharide is dispersed or dissolved in an aqueous system, and a primary hydroxyl group of a monosaccharide is selectively oxidized using a co-oxidant in the presence of an N-oxyl compound. Inclusion carrier. 前記酸化によりカルボキシル基またはカルボキシル基の各種塩類を導入した水溶性多糖類の分子量が10,000〜200,000の範囲であることを特徴とする請求項1〜3のいずれか1項に記載の包接担体。   The molecular weight of the water-soluble polysaccharide into which carboxyl groups or various salts of carboxyl groups are introduced by the oxidation is in the range of 10,000 to 200,000, according to any one of claims 1 to 3. Inclusion carrier. 前記水溶性多糖類が水溶性ポリウロン酸であることを特徴とする請求項1〜4のいずれか1項に記載の包接担体。   The inclusion carrier according to any one of claims 1 to 4, wherein the water-soluble polysaccharide is water-soluble polyuronic acid.
JP2005367687A 2005-12-21 2005-12-21 Method for producing inclusion complex Active JP5343302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005367687A JP5343302B2 (en) 2005-12-21 2005-12-21 Method for producing inclusion complex

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005367687A JP5343302B2 (en) 2005-12-21 2005-12-21 Method for producing inclusion complex

Publications (2)

Publication Number Publication Date
JP2007169413A true JP2007169413A (en) 2007-07-05
JP5343302B2 JP5343302B2 (en) 2013-11-13

Family

ID=38296411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005367687A Active JP5343302B2 (en) 2005-12-21 2005-12-21 Method for producing inclusion complex

Country Status (1)

Country Link
JP (1) JP5343302B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009161893A (en) * 2007-12-11 2009-07-23 Kao Corp Method for producing cellulose dispersion
JP2010037199A (en) * 2008-07-31 2010-02-18 Dai Ichi Kogyo Seiyaku Co Ltd Cosmetic composition
JP2015086172A (en) * 2013-10-31 2015-05-07 花王株式会社 Cosmetic composition
US9248090B2 (en) 2010-01-22 2016-02-02 Dai-Ichi Kogyo Seiyaku Co., Ltd. Viscous composition
CN112807487A (en) * 2019-11-15 2021-05-18 宝龄富锦生技股份有限公司 Nano polysaccharide complex and its preparation method and use

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003180812A (en) * 2001-12-17 2003-07-02 Toppan Printing Co Ltd Material coated or impregnated with oxidized polysaccharides material and biocompatible material
JP2003183302A (en) * 2001-12-17 2003-07-03 Toppan Printing Co Ltd Manufacturing method of oxidized polysaccharide material and oxidized polysaccharide material
JP2003321398A (en) * 2002-04-25 2003-11-11 Toppan Printing Co Ltd Polysaccharide complex and its production method
JP2004002586A (en) * 2002-03-26 2004-01-08 Toppan Printing Co Ltd Polysaccharide complex and method for producing the same
JP2004027077A (en) * 2002-06-27 2004-01-29 Toppan Printing Co Ltd Oxidized chitin or oxidized chitosan
JP2004059618A (en) * 2002-07-25 2004-02-26 Toppan Printing Co Ltd Polysaccharide complex and its production method
JP2004189923A (en) * 2002-12-12 2004-07-08 Toppan Printing Co Ltd Polyuronic acid
JP2004189924A (en) * 2002-12-12 2004-07-08 Toppan Printing Co Ltd Water-soluble polyuronic acid
JP2005015680A (en) * 2003-06-27 2005-01-20 Toppan Printing Co Ltd Polyglucuronic acid
JP2005023281A (en) * 2003-07-04 2005-01-27 Toppan Printing Co Ltd Polysaccharide complex
JP2007091618A (en) * 2005-09-28 2007-04-12 Toppan Printing Co Ltd Clathrate vehicle, method for producing the same, clathrate using clathrate vehicle, antimicrobial agent and method for imparting water solubility

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003180812A (en) * 2001-12-17 2003-07-02 Toppan Printing Co Ltd Material coated or impregnated with oxidized polysaccharides material and biocompatible material
JP2003183302A (en) * 2001-12-17 2003-07-03 Toppan Printing Co Ltd Manufacturing method of oxidized polysaccharide material and oxidized polysaccharide material
JP2004002586A (en) * 2002-03-26 2004-01-08 Toppan Printing Co Ltd Polysaccharide complex and method for producing the same
JP2003321398A (en) * 2002-04-25 2003-11-11 Toppan Printing Co Ltd Polysaccharide complex and its production method
JP2004027077A (en) * 2002-06-27 2004-01-29 Toppan Printing Co Ltd Oxidized chitin or oxidized chitosan
JP2004059618A (en) * 2002-07-25 2004-02-26 Toppan Printing Co Ltd Polysaccharide complex and its production method
JP2004189923A (en) * 2002-12-12 2004-07-08 Toppan Printing Co Ltd Polyuronic acid
JP2004189924A (en) * 2002-12-12 2004-07-08 Toppan Printing Co Ltd Water-soluble polyuronic acid
JP2005015680A (en) * 2003-06-27 2005-01-20 Toppan Printing Co Ltd Polyglucuronic acid
JP2005023281A (en) * 2003-07-04 2005-01-27 Toppan Printing Co Ltd Polysaccharide complex
JP2007091618A (en) * 2005-09-28 2007-04-12 Toppan Printing Co Ltd Clathrate vehicle, method for producing the same, clathrate using clathrate vehicle, antimicrobial agent and method for imparting water solubility

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6011062769; Carbohydrate Research Vol.329, 2000, p.913-922 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009161893A (en) * 2007-12-11 2009-07-23 Kao Corp Method for producing cellulose dispersion
JP2010037199A (en) * 2008-07-31 2010-02-18 Dai Ichi Kogyo Seiyaku Co Ltd Cosmetic composition
US9248090B2 (en) 2010-01-22 2016-02-02 Dai-Ichi Kogyo Seiyaku Co., Ltd. Viscous composition
US9801802B2 (en) 2010-01-22 2017-10-31 Dai-Ichi Kogyo Seiyaku Co., Ltd. Viscous composition
US9901527B2 (en) 2010-01-22 2018-02-27 Dai-Ichi Kogyo Seiyaku Co., Ltd. Viscous composition
JP2015086172A (en) * 2013-10-31 2015-05-07 花王株式会社 Cosmetic composition
CN112807487A (en) * 2019-11-15 2021-05-18 宝龄富锦生技股份有限公司 Nano polysaccharide complex and its preparation method and use

Also Published As

Publication number Publication date
JP5343302B2 (en) 2013-11-13

Similar Documents

Publication Publication Date Title
Mushi et al. Nanostructured membranes based on native chitin nanofibers prepared by mild process
KR100378241B1 (en) Superabsorbents and preparation methods thereof
JP5343302B2 (en) Method for producing inclusion complex
JP4356289B2 (en) Polysaccharide complex and method for producing the same
JP4984417B2 (en) Method for producing water-soluble polyuronic acid
JP5183860B2 (en) COMPOSITE MOLDED ARTICLE AND METHOD FOR IMMOBILIZING ACTIVE SUBSTANCES
JP5024262B2 (en) Material and biocompatible material coated or impregnated with oxidized polysaccharide material
Sharma et al. Application, synthesis, and characterization of cationic galactomannan from ruderal species as a wet strength additive and flocculating agent
JP4846147B2 (en) Method for producing material coated or impregnated with oxidized polysaccharide material
Wu et al. Novel pH-responsive granules with tunable volumes from oxidized corn starches
JP4997733B2 (en) Inclusion carrier and method for producing the same, and inclusion body, antibacterial agent and method for imparting water solubility using inclusion carrier
Falsafi et al. Dialdehyde carbohydrates–Advanced functional materials for biomedical applications
JP4470410B2 (en) Polysaccharide complex
CN103467622A (en) Phenylalanine modified chitosan derivative, and preparation method and application thereof
JP5109266B2 (en) Antibacterial antifungal agent
JP5387554B2 (en) Method for producing composite molded body
JP5110046B2 (en) Polysaccharide complex and method for producing the same
JP4310967B2 (en) Method for producing polysaccharide complex
JP2005015680A (en) Polyglucuronic acid
JP4929581B2 (en) Method for producing water-soluble polyuronic acid
Tarique et al. A Comprehensive Review Based on Chitin and Chitosan Composites
JP5205686B2 (en) Polyglucuronic acid and process for producing the same
JP4759997B2 (en) Polyuronic acid molded article and method for producing the same
JP2009068014A (en) Water-soluble oxidized chitin and its producing method
JP4411847B2 (en) Method for producing polyuronic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130729

R150 Certificate of patent or registration of utility model

Ref document number: 5343302

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250