JP2004027077A - Oxidized chitin or oxidized chitosan - Google Patents

Oxidized chitin or oxidized chitosan Download PDF

Info

Publication number
JP2004027077A
JP2004027077A JP2002187314A JP2002187314A JP2004027077A JP 2004027077 A JP2004027077 A JP 2004027077A JP 2002187314 A JP2002187314 A JP 2002187314A JP 2002187314 A JP2002187314 A JP 2002187314A JP 2004027077 A JP2004027077 A JP 2004027077A
Authority
JP
Japan
Prior art keywords
chitin
chitosan
oxidized
oxide
viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002187314A
Other languages
Japanese (ja)
Other versions
JP4254142B2 (en
Inventor
Yumiko Kato
加藤 友美子
Ryukichi Matsuo
松尾 龍吉
Junichi Kaminaga
神永 純一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2002187314A priority Critical patent/JP4254142B2/en
Publication of JP2004027077A publication Critical patent/JP2004027077A/en
Application granted granted Critical
Publication of JP4254142B2 publication Critical patent/JP4254142B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a high-purity oxidized chitin or oxidized chitosan which is provided with high hydrophilicity and water solubility in broad pH regions, which has a low viscosity even in high concentration regions, which is good in handling nature and processability, which excels in biocompatibility and biodegradability, and which can be manufactured by a simple and safe method. <P>SOLUTION: The oxidized chitin or oxidized chitosan has a structure in which the 6th carbon in the pyranose ring of N-acetylglucosamine or glucosamine which is a constituting monosaccharide of chitin or chitosan is selectively oxidized to convert into a carboxy group or a salt thereof, and the oxidized chitin or oxidized chitosan satisfies, regarding the relation of its concentration X (wt%) and viscosity Y (mPa s) in an aqueous solution, formula (1): Y≤7.92×e<SP>0.145X</SP>(Y>0). <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、天然物由来のキチン又はキトサンの酸化物に関するものであり、特に生体適合性、加工適性、生分解性の良い酸化キチン又は酸化キトサンに関するものである。
【0002】
【従来の技術】
従来、セルロースやデンプンなどの多糖類材料は、生体適合性、生分解特性が高く、医療、食用など様々な分野で用いられてきた。しかし、一般的に多糖類材料、特にセルロースやキトサンは水不溶性であり、加工適性が良くないものもあった。水溶性の多糖類材料でもその水溶液は、一般に粘度が高い。特に分子量が10000以上になると、高濃度に溶解させることは困難であり、溶解するものでも高濃度域ではかなり高粘度になってしまう。そのため、食品の増粘剤などに用いるのには向いているが、高い粘度が障害となり、素材として利用する際の操作性が悪く、またさらに加工して用いたりするのにも適していなかった。かなりの低濃度域では粘度が低くなるものもあるが、含まれる多糖類も少ないため適用範囲が限定される。
【0003】
多糖類の中でも、キチン又はキトサンは、創傷治癒促進効果、抗凝血作用、免疫賦活活性、静菌・抗菌活性などさまざまな生物活性効果が期待されている。
キチンはカニやエビなどの甲殻類、カブトムシやコオロギなどの昆虫類の骨格物質として、また菌類や細胞壁にも存在し、N−アセチルD−グルコサミン残基が多数、β−(1、4)−結合した多糖類である。そして地球上でもっとも豊富な有機化合物であるセルロ−スと類似の構造を有し、2位の炭素に結合している水酸基の代わりにアセトアミド基が付加したアミノ多糖類(ムコ多糖類)である。
【0004】
また、キチンは一般的に水には不溶であり、キトサンはキチンの脱アセチル化合物でグルコサミンのβ−(1、4)−結合した多糖類であり、中性域の水には不溶であるが、酸性の水には塩を形成し溶解することが知られている。しかし、中性からアルカリ性では沈殿してしまう。
そのため、天然のキチン、キトサンは、そのままで用いることは難しく、またさらに加工するのにも向いておらず、用途が限られていた。
【0005】
キチン又はキトサンの水溶化の方法として、カルボキシメチル化など、様々な誘導体化が知られているが、そのほとんどは置換基分布もばらばらで、得られた化合物の構造が均一ではなく、その後の加工適性や様々な用途への応用にも限定がある。また、誘導化の方法が、環境汚染、危険を伴うものであったり、誘導体化により導入した官能基が、生体に悪い影響を及ぼす可能性もある。
【0006】
また、キチンなどの多糖類の水溶化の手法として、2,2,6,6−テトラメチル−1−ピペリジン−N−オキシルを用いた酸化法が知られているが、用途などを想定した実用性ある材料としての記載はない。
【0007】
このように、多糖類の中でも幅広い用途が期待されるキチン、キトサンにおいて、安全で簡便な手法により、生体適合性、生分解性、加工適性の良いキチン、キトサン材料が望まれていた。
【0008】
【発明が解決しようとする課題】
本発明の目的は、高い親水性や幅広いpH領域での水溶性が付与され、かつ高い濃度域でも粘度が低く、取り扱い性、加工適性が良く、生体適合性、生分解性に優れ、簡便で安全な方法により製造できる、高純度の酸化キチン又は酸化キトサンを得ることにある。
【0009】
【課題を解決するための手段】
請求項1の発明は、キチン又はキトサンの構成単糖であるN−アセチルグルコサミン、またはグルコサミンのピラノース環中、6位炭素を選択的に酸化しカルボキシル基又はその塩に変換した構造を有することを特徴とする酸化キチン又は酸化キトサンであって、25℃の水に溶かし、水溶液にしたときの濃度X(wt%)と粘度Y(mPas)の関係が下記式(1)を満たすことを特徴とする酸化キチン又は酸化キトサンである。
【0010】
Y≦ 7.92×e 0.145X (Y>0) (1)
【0011】
請求項2の発明は、重量平均分子量(Mw)が10000以上であることを特徴とする請求項1記載の酸化キチン又は酸化キトサンである。
【0012】
【発明の実施の形態】
以下、本発明の詳細を説明する。
キチンは、下記化学式(3)で表わされるように、構成単糖であるN−アセチルグルコサミンがβ−1、4グリコシド結合した多糖のことをいう。また、キトサンは、キチンの脱アセチル化物と定義されている。一般的には、キチンの80%以上を脱アセチル化したものをキトサンと称する場合もあるが、自然界では下記化学式(3)のYで示される官能基の全てが、NHCOCH又はNHになっているわけではなく、純粋な意味でキチン、キトサンは存在しないといわれている。こうした意味から、キチンとその脱アセチル化物をすべてキチン・キトサンと表現されることが多い。本発明では、キチンは基本的にN−アセチルグルコサミンがβ−1、4グリコシド結合した多糖のことをいうが、多少脱アセチル化していても構わない。また本発明ではキトサンは大部分がキチンを脱アセチル化したものであり、脱アセチル化されていない部分が混在していても構わない。また、無水酢酸などによるキトサンのアミノ基のN−アセチル化反応によりN−アセチルグルコサミンを構成単糖に持つキチン、キトサンを用いることもできる。
【0013】
【化1】

Figure 2004027077
【0014】
(Y:NHCOCH又はNH、nは自然数)
【0015】
本発明の酸化キチン、酸化キトサンは、下記化学式(4)に示されるように、キチン又はキトサンの構成単糖であるN−アセチルグルコサミン、またはグルコサミンのピラノース環中2位や3位の炭素を酸化することなく、6位炭素を選択的に酸化しカルボキシル基に変換した構造を有し、25℃の水に溶かし、水溶液にしたときの濃度X(wt%)と粘度Y(mPas)の関係が下記式(1)を満たすことを特徴とする。
【0016】
【化2】
Figure 2004027077
【0017】
(R:COOX、X:H又はアルカリ金属又はアルカリ土類金属、Y:NHCOCH又はNH、nは自然数)
【0018】
Y≦ 7.92×e 0.145X (Y>0) (1)
【0019】
この範囲内であると、1wt%、さらには2wt%を超える高濃度域であっても低粘度を保つことができ、工業材料として用いる際の操作性、取り扱い性が良く、また他の材料と組み合わせて複合材料化する際にも、水系で簡便で均一に合成できる。また濃度を高くしても粘度が低いため、多くのキチン、キトサンを含んだ材料を調製することができる。
実測値では、本発明の酸化キチン、酸化キトサンの水溶液の粘度と濃度の関係式において、濃度が0に近いところでは、水の粘度1に近い値を示すが、本発明の酸化キチン、酸化キトサンは特に高濃度に溶解することができ、水溶液の粘度が低い。なお、大抵の水溶性多糖類は、およそ濃度1wt%以下の低粘度においては、低い粘度となるものもあるが、本発明の酸化キチン、酸化キトサンは高濃度域でも下記式(1)を満たすため、中、高濃度域でも加工適性、取り扱い性などに優れている。
また、式(1)の範囲内であり、かつ式(2)の範囲内であると、さらに高濃度域でも低粘度を保つことができ、好ましい。
【0020】
Y≦1.35×e0.20X (Y>0) (2)
【0021】
前記式(1)、式(2)をグラフ化したものを図2に示す。
【0022】
この範囲であれば、特にキチン、キトサンユニットをたくさん含んでおり、使用可能性の高い、濃度X(wt%)が2以上の領域での取り扱い性、加工適性が良いものである。濃度が2wt%のときの粘度が10、好ましくは5mPas以下、濃度が5wt%のときの粘度が16.5、好ましくは5mPas以下であると、好適である。
また、本発明の酸化キチン、酸化キトサンは、25℃の水100gに対して、10g以上、さらには30g以上溶解することができる。
【0023】
また、重量平均分子量(Mw)が10000以上で、上記式(1)を満たすことが好ましい。一般的に分子量が大きい物質は、膜や繊維にしたときに強度が強くなることが知られている。しかし分子量が大きくなると、粘度も高くなる。分子量、濃度、粘度がこの範囲内であると、酸化キチン、酸化キトサンをそのまま膜や繊維として用いた場合や、他の材料と複合化して用いる場合に、強度が強く、多くのキチン、キトサンユニットを含んだものとなり、好ましい。
【0024】
次に本発明の酸化キチン、酸化キトサンの製法を説明する。
本発明の原料となるキチンは、N−アセチルD−グルコサミンがβ−(1,4)−結合した多糖類で、蟹やエビ、さらには菌類などのキチンを含む共存物質から、脱灰、除タンパク、脂質および色素の除去などの工程を経て精製される。原料や精製方法、重合度等については特に限定されるものではない。
【0025】
キチンを原料とする場合、キチンの高い結晶性が酸化反応を阻害し、グリコシド結合の分解等の副反応を起こす可能性が高い。この副反応を抑えるためにも、予めアルカリなどにより結晶性を下げた後、酸化反応を行うのが好ましい。
【0026】
前処理の方法については、キチンを様々な溶媒に溶解した後、再生させる方法、キチンを水に膨潤させ、凍結、解凍を繰り返す方法、爆砕等が挙げられるが、最も簡便かつ確実な方法として、アルカリにより膨潤または溶解処理したキチンを用いる方法が挙げられる。
【0027】
アルカリ処理には、例えば、キチンに対してアルカリ水溶液を散布したり湿潤させる方法、アルカリ水溶液にキチンを浸漬又は懸濁する方法により行なうことができる。なお、浸漬物や懸濁液を撹拌又は振盪することにより処理効率を高めることもできる。アルカリとしては、通常、アルカリ金属成分、例えば、アルカリ金属水酸化物(水酸化ナトリウム,水酸化カリウム,水酸化リチウムなど)、アルカリ金属炭酸塩(炭酸ナトリウム,炭酸カリウムなど)、アルカリ金属炭酸水素塩(炭酸水素ナトリウム、炭酸水素カリウムなど)などが使用できる。これらのアルカリ金属化合物は単独で又は二種以上混合して使用してもよい。
【0028】
生成物の医療・医薬分野への利用など、その後の利用も考え、試薬も安全で、かつ安価で、処理の簡便な水酸化ナトリウムによるアルカリ処理がより好ましい。
しかし、キチンのアセチル基は濃アルカリにより脱離する。この脱アセチル化を防ぐ為には低温で速やかに処理する事が望ましい。
【0029】
アルカリ水溶液の濃度は、特に制限されず、広い範囲(例えば、5〜45重量%程度)から選択できる。
アルカリの使用量は、キチンのN−アセチルグルコサミン単位に対して、例えば、1〜200倍モル(例えば、1.2〜170倍モル)、好ましくは1.5〜150倍モル、さらに好ましくは2〜100倍モル程度の範囲から選択できる。
【0030】
アルカリ処理の温度は、特に限定されず、例えば、−5〜50℃程度の範囲である場合が多いが、キチンの場合、脱アセチル化反応を抑える為や、結晶構造を緩める効率を考慮して、系の周りを氷冷するなど、できるだけ低温で反応させた方がよい。
アルカリ処理時間は、結晶性、重合度、表面積などの原料キチンの性状によって異なり、特に限定されないが、通常、10分〜6時間、好ましくは30分〜3時間、特に1〜2時間程度である。
上記のようなアルカリ処理条件でキチンを湿潤または浸漬、懸濁させるだけで結晶性を下げる目的では充分であるが、よりキチンの結晶内部までアルカリ処理を行う為には、脱気や、凍結、氷を添加しながら攪拌することで溶解まで至らせる方法などを併用すると、なお後の酸化反応がスムーズに進む。
【0031】
アルカリ処理終了後、適当な酸成分(塩酸,硫酸,硝酸など)でアルカリを中和し、キチンを分離し水洗した後、引き続き酸化反応に供される。中和の際は中和熱の影響を少なくする為に冷却しながら中和するのが望ましい。また、アルカリ処理されたキチンは、通常、乾燥することなくそのまま酸化反応に供される。乾燥させる場合は、凍結乾燥やアセトンなどで完全に水を置換した後に乾燥させるなど、再び水素結合を形成するのを抑えた状態で酸化に供するのが望ましい。
【0032】
キトサンを原料とする場合、前記キチンの脱アセチル化したものを用いることができる。また、脱アセチル化の程度は特に限定されるものではない。
また、酸化反応により、導入されるカルボキシル基の分布をより均一なものにするために、予め、酸で膨潤または溶解させ、水素結合などの分子間力が崩壊したキトサンの溶液を中和し、生成した塩を除くか或いはそのままの溶液を用いることが好ましい。この場合、処理されたキトサンは、通常、乾燥することなくそのまま酸化反応に供される。乾燥させる場合は、凍結乾燥やアセトンなどで完全に水を置換した後に乾燥させるなど、再び水素結合を形成するのを抑えた状態で酸化に供するのが望ましい。
【0033】
次に本発明で用いる酸化方法について説明する。
本発明における酸化方法はN−オキシル化合物などの触媒の存在下で、水に溶解又は分散させたキチンやキトサンを水系で処理することができる。またこの方法は、非常に高い収率で酸化キチン、酸化キトサンを得ることができる。
【0034】
本発明の酸化キチン又は酸化キトサンは、N−オキシル化合物(オキソアンモニウム塩)の存在下、酸化剤を用いて、原料のキチン又はキトサンを酸化することにより得ることができる。N−オキシル化合物には、2,2,6,6−テトラメチル−1−ピペリジン−N−オキシル(以下TEMPOと称する)、などが含まれる。この酸化方法では、酸化の程度に応じて、カルボキシル基を均一かつ効率よく導入できる。本酸化反応は、前記N−オキシル化合物と、臭化物又はヨウ化物との共存下で行うのが有利である。臭化物又はヨウ化物としては、水中で解離してイオン化可能な化合物、例えば、臭化アルカリ金属やヨウ化アルカリ金属などが使用できる。酸化剤としては、ハロゲン、次亜ハロゲン酸,亜ハロゲン酸や過ハロゲン酸又はそれらの塩、ハロゲン酸化物、窒素酸化物、過酸化物など、目的の酸化反応を推進し得る酸化剤であれば、いずれの酸化剤も使用できる。
【0035】
本発明の酸化では、グルコサミン骨格中の6位の炭素を選択的に酸化するものである。N−オキシル化合物は触媒量で済み、例えば、キチンやキトサンの構成単糖のモル数に対し、10ppm〜4%あれば充分であるが、0.05%から2%が好ましい。
【0036】
本発明の酸化反応条件などは特に限定されず、原料の性状、使用する設備などによって最適化されるべきであるが、臭化物やヨウ化物との共存下で酸化反応を行うと、温和な条件下でも酸化反応を円滑に進行させることができ、カルボキシル基の導入効率を大きく改善できる。
【0037】
臭化物及び/又はヨウ化物の使用量は、酸化反応を促進できる範囲で選択でき、例えば、キチンやキトサンの構成単糖のモル数に対し0〜100%である。しかし、反応効率の点から、1〜50%が好ましい。
【0038】
本発明におけるキチン又はキトサンの酸化反応は、例えばN−オキシル化合物にはTEMPOを用い、臭化ナトリウムの存在下、酸化剤として次亜塩素酸ナトリウムを用いて行うのが好ましい。
【0039】
本発明における酸化キチン又は酸化キトサンの酸化反応では、グルコサミン残基の1級水酸基への酸化の選択性を上げ、副反応を抑える目的で、反応温度は室温以下、より好ましくは系内を5℃以下で反応させることが望ましい。
【0040】
また、本発明の酸化キチン又は酸化キトサンの製造方法では、その反応効率の為に反応中は系内をアルカリ性に保つことが好ましい。この時のpHは9〜13、より好ましくはpH10〜11.5に保つとよい。更に、本発明はこのpHを一定値に保つ際に添加されるアルカリの量により酸化度を制御できることを特徴としている。グルコサミン残基1モルに対し、添加するアルカリが1モルであると、全てのグルコサミン残基が酸化され、ピラノース環中の6位の炭素が、カルボキシル基となる。
【0041】
また、前記酸化度は、60%以上であると生体適合性がよく、水との親和性も高まるので好ましい。また、90%以上であると、高い水溶性を付与でき、粘度もさらに低いものとなるため特に好ましい。
【0042】
また、本発明の酸化キトサンは前記した方法により得られた酸化キチンを脱アセチル化することにより製造しても良い。
【0043】
このように酸化された酸化キチン又は酸化キトサンは、非常に高い選択性でキチン又はキトサンの構成単糖であるN−アセチルグルコサミン、またはグルコサミンのピラノース環中の6位炭素を酸化し、2位や3位の炭素を酸化することがほとんどない。
【0044】
酸化キチンは、構成単糖であるN−アセチルグルコサミン、またはグルコサミンのピラノース環中の6位炭素が、カルボキシル基に変換されたウロン酸構造を有しており、保湿剤をはじめ広く利用されているヒアルロン酸とよく似た構造となる。
酸化キトサンはN−アセチルグルコサミン、またはグルコサミンのピラノース環中の6位炭素が酸化されたウロン酸構造を有する為、1分子内、1ユニット内にアニオン性とカチオン性の両方の官能基をもち、両性高分子としての利用が期待できる。
【0045】
このように得られた酸化キチン、酸化キトサンは、非常に生体親和性が高く、高濃度域でも粘度が低いため、取り扱い性、加工適性が良く、また安全で簡便な方法で製造できる。
更に、酸化キチン又は酸化キトサンは天然物由来の高分子で、生成したウロン酸も安全性が高く、食品、化粧品などの分野ではもちろん、生体材料などとして、医療・医薬分野での利用も期待できる。
【0046】
【実施例】
以下、本発明を実施例に基づいて具体的に説明する。
<実施例1>
キチン(和光純薬工業(株)製)を10g、45%水酸化ナトリウム水溶液100gに浸漬し、室温以下で2時間攪拌した。これに、砕いた氷を350g、周りを氷水などで冷やし、攪拌しながら添加した。このアルカリ処理によりキチンはほぼ溶解する。塩酸で中和し、十分に水洗した後、乾燥させないものを実施例1のキチンの原料とした。収率は約95%であった。
【0047】
前記前処理したキチン原料の5%キチン懸濁液100gに、TEMPO 0.08g、臭化ナトリウム 1.25gを溶解させた水溶液を加え、キチンの固形重量の全体に対する濃度が約2wt%になるよう調製した。反応系を冷却し、11%次亜塩素酸ナトリウム水溶液40gを添加し、酸化反応を開始する。反応温度は常に5℃以下に維持した。反応中は系内のpHが低下するが、0.5N−NaOH水溶液を逐次添加し、pH10.8付近に調整した。N−アセチルグルコサミン、またはグルコサミンのピラノース環中の6位炭素の全モル数に対し、100%のモル数に対応するアルカリ添加量に達した時点、約2時間後では系内全体が完全に透明になった。エタノールを添加し、反応を停止させ、水:アルコール=2:8により充分洗浄した後、アセトンで脱水し、40℃で乾燥させ、白い粉末状の酸化度100%の酸化キチンを得た。収率は約89%であった。
【0048】
<実施例2>
11%次亜塩素酸ナトリウム水溶液の添加量を24gとする以外は実施例1と同様の処理を繰り返し、反応を開始した。アルカリの添加量が60%に達した時点で反応を停止させ、酸化度60%の酸化キチンを得た。
【0049】
<実施例3>
原料となるキトサンにはフレーク状の市販のキトサン(脱アセチル化度約75%)を用いた。キトサンの2%塩酸塩水溶液を水酸化ナトリウムで中和し、脱塩の為に水洗した後、5%キトサン懸濁液100g(キトサン5g)に、TEMPO 0.08g、臭化ナトリウム 1.25gを溶解させた水溶液を加え、キトサンの固形重量の全体に対する濃度が約2wt%になるよう調製した。反応系を冷却し、11%次亜塩素酸ナトリウム水溶液45gを添加し、酸化反応を開始した。反応温度は常に5℃以下に維持した。反応中は系内のpHが低下するが、0.5N−NaOH水溶液を逐次添加し、pH10.75に調整した。N−アセチルグルコサミン、またはグルコサミンのピラノース環中の6位炭素の全モル数に対し、90%のモル数に対応するアルカリ添加量55.9mLに達した時点で、エタノールを添加し、反応を停止させ、水:アルコール=2:8により充分洗浄した後、アセトンで脱水し、40℃で乾燥させ、酸化度90%の酸化キトサンを得た。
【0050】
<比較例1>
実施例1で原料として用いたキチンを比較例1のキチンとした。なお、酸化などの処理はしていないものである。
【0051】
<比較例2>
市販の脱アセチル化度100%のキトサン5gを10%酢酸95gに溶解し、メタノール500gで希釈し、攪拌しながら無水酢酸1.59gを加え、室温で15時間攪拌した。2N?NaOH水溶液を加えて中和するとフレークが析出するので、これを濾過し、メタノール及び水:アセトン=1:7よりなる溶液により充分に洗浄した後、アセトンで脱水し、40℃で減圧乾燥させて、フレーク状のN?アセチル化度50%のキトサンを得、比較例2のキトサンとした。
【0052】
<測定>
(NMR)
実施例1のサンプルを重水に溶解させ、13C−NMRを測定し、その結果を図1に示す。
(粘度、分子量)
実施例1〜4、比較例のサンプルの各濃度の水溶液を調整し、B型粘度計により25℃の粘度を測定した。結果を表1、図3に示す。
またそれぞれのサンプルの重量平均分子量(Mw)を、GPC法により測定した。カラムはTSK−gelG6000PWXL、TSK−gelG3000PWXLを用い、0.1M−NaClを溶離液とし、RI検出器を用い測定し、分子量既知の標準プルランから分子量を換算した。結果を表1に示す。
【0053】
【表1】
Figure 2004027077
【0054】
図1に示した通り、酸化キチン(B)では、酸化前のキチン(A)のピラノース環炭素6位の水酸基をもつ炭素に由来するピークが消え、カルボキシル基に変換していることが分かる。2位、3位の炭素に由来するピークは変化せず、ケトンなどのピークは確認されなかった。即ちNアセチルグルコサミンのピラノース環中、6位炭素のみを酸化し、カルボキシル基に変換したことが確認できた。
【0055】
表1、図3に示した通り、本発明の実施例1〜3の酸化キチン、酸化キトサンは、高濃度域でも低粘度を保つことができる。それに対し、比較例1のキチンは水に不溶で、比較例2のキトサンは粘度が高く、また高濃度域では水に不溶となり、取り扱い性、加工適性があまり良くないものとなった。
【0056】
【発明の効果】
本発明によれば、高い親水性や幅広いpH領域での水溶性が付与され、かつ高い濃度域でも粘度が低く、取り扱い性、加工適性の良い酸化キチン、酸化キトサンが得られる。そのため、そのまま食品、化粧品、医薬品など様々な分野での利用が適しており、かつさらなる加工にも適しているものである。また、本発明の酸化キチン、酸化キトサンは、ウロン酸構造を有し、そのため生体適合性が非常に高い。またキチン・キトサンは生分解適性が高く、得られた本発明の酸化キチン、酸化キトサンも高い生分解性を有する。また本発明によれば、安全で簡便で、かつ高純度の酸化キチン、酸化キトサンを得ることができる。
【0057】
【図面の簡単な説明】
【図1】本発明の実施例1で合成したサンプルの13C−NMRの測定結果を示すグラフである。
【図2】本発明の酸化キチン、酸化キトサンの濃度−粘度の関係式と実施例1の濃度−粘度を示したグラフである。
【図3】本発明の酸化キチン、酸化キトサンの濃度−粘度の関係式と実施例、比較例の関係を示したグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a chitin or chitosan oxide derived from a natural product, and more particularly to an oxidized chitin or chitosan oxide having good biocompatibility, processability, and biodegradability.
[0002]
[Prior art]
BACKGROUND ART Conventionally, polysaccharide materials such as cellulose and starch have high biocompatibility and biodegradability, and have been used in various fields such as medicine and food. However, in general, polysaccharide materials, particularly cellulose and chitosan, are water-insoluble, and some of them have poor workability. An aqueous solution of a water-soluble polysaccharide material generally has a high viscosity. In particular, when the molecular weight is 10,000 or more, it is difficult to dissolve it at a high concentration, and even if it dissolves, the viscosity becomes considerably high in a high concentration range. Therefore, it is suitable for use as a thickener for foods, but high viscosity is an obstacle, poor operability when used as a material, and it is not suitable for further processing and use. . In some cases, the viscosity is low in a very low concentration range, but the range of application is limited due to the low polysaccharide content.
[0003]
Among the polysaccharides, chitin or chitosan is expected to have various biologically active effects such as a wound healing promoting effect, an anticoagulant effect, an immunostimulating activity, a bacteriostatic and antibacterial activity.
Chitin is present as a skeletal substance in crustaceans such as crabs and shrimp, and insects such as beetles and crickets, and also in fungi and cell walls, and has a large number of N-acetyl D-glucosamine residues, β- (1,4)- A linked polysaccharide. It is an aminopolysaccharide (mucopolysaccharide) that has a structure similar to cellulose, the most abundant organic compound on earth, and has an acetamide group added in place of the hydroxyl group bonded to the 2-position carbon. .
[0004]
Chitin is generally insoluble in water, and chitosan is a deacetylated compound of chitin, a β- (1,4) -linked polysaccharide of glucosamine, and is insoluble in water in a neutral region. It is known to form and dissolve salts in acidic water. However, precipitation occurs from neutral to alkaline.
For this reason, natural chitin and chitosan are difficult to use as they are, and are not suitable for further processing, and their uses are limited.
[0005]
Various derivatization methods, such as carboxymethylation, are known as a method for solubilizing chitin or chitosan.However, most of them have different distribution of substituents, and the structure of the obtained compound is not uniform. There are also limitations on suitability and application to various uses. In addition, the derivatization method may involve environmental pollution and danger, and the functional group introduced by derivatization may have a bad effect on the living body.
[0006]
In addition, as a method for making polysaccharides such as chitin soluble in water, an oxidation method using 2,2,6,6-tetramethyl-1-piperidine-N-oxyl is known, but a practical method supposing its use is considered. There is no description as a potential material.
[0007]
As described above, chitin and chitosan, which are expected to have a wide range of uses among polysaccharides, are desired to have a biocompatibility, a biodegradability, and a processability, which are excellent in biocompatibility, biodegradability, and processability.
[0008]
[Problems to be solved by the invention]
An object of the present invention is to impart high hydrophilicity and water solubility in a wide pH range, and also have a low viscosity even in a high concentration range, good handleability, good workability, excellent biocompatibility, excellent biodegradability, and easy to use. It is to obtain high-purity chitin oxide or chitosan oxide which can be produced by a safe method.
[0009]
[Means for Solving the Problems]
The invention of claim 1 has a structure in which N-acetylglucosamine, which is a constituent monosaccharide of chitin or chitosan, or a structure in which the carbon at position 6 in the pyranose ring of glucosamine is selectively oxidized and converted to a carboxyl group or a salt thereof. A chitin oxide or chitosan oxide, wherein the relationship between the concentration X (wt%) and the viscosity Y (mPas) when dissolved in water at 25 ° C. to form an aqueous solution satisfies the following formula (1). Oxidized chitin or oxidized chitosan.
[0010]
Y ≦ 7.92 × e 0.145X (Y> 0) (1)
[0011]
The invention of claim 2 is the chitin oxide or chitosan oxide according to claim 1, wherein the weight average molecular weight (Mw) is 10,000 or more.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, details of the present invention will be described.
Chitin, as represented by the following chemical formula (3), refers to a polysaccharide in which N-acetylglucosamine, a constituent monosaccharide, is β-1,4 glycoside-linked. Chitosan is defined as a deacetylated product of chitin. Generally, chitin obtained by deacetylating 80% or more of chitin is sometimes referred to as chitosan. In nature, all of the functional groups represented by Y in the following chemical formula (3) are NHCOCH 3 or NH 2 . It is not said that chitin and chitosan do not exist in a pure sense. In this sense, chitin and its deacetylated product are often expressed as chitin / chitosan. In the present invention, chitin basically refers to a polysaccharide in which N-acetylglucosamine has β-1,4 glycosidic bonds, but may be somewhat deacetylated. In the present invention, chitosan is mostly deacetylated chitin, and a portion that is not deacetylated may be present. Chitin and chitosan having N-acetylglucosamine as a constituent monosaccharide by N-acetylation reaction of amino group of chitosan with acetic anhydride or the like can also be used.
[0013]
Embedded image
Figure 2004027077
[0014]
(Y: NHCOCH 3 or NH 2 , n is a natural number)
[0015]
As shown in the following chemical formula (4), the oxidized chitin and oxidized chitosan of the present invention oxidize the N-acetylglucosamine which is a constituent monosaccharide of chitin or chitosan, or oxidize the carbon at the 2nd or 3rd position in the pyranose ring of glucosamine. Without oxidizing the carbon at the 6-position and converting it to a carboxyl group. The relationship between the concentration X (wt%) and the viscosity Y (mPas) when dissolved in water at 25 ° C. to form an aqueous solution. It is characterized by satisfying the following expression (1).
[0016]
Embedded image
Figure 2004027077
[0017]
(R: COOX, X: H or alkali metal or alkaline earth metal, Y: NHCOCH 3 or NH 2 , n is a natural number)
[0018]
Y ≦ 7.92 × e 0.145X (Y> 0) (1)
[0019]
Within this range, a low viscosity can be maintained even in a high concentration range exceeding 1 wt%, and even 2 wt%, so that the operability and handleability when used as an industrial material are good, and it is difficult to use other materials. When combined into a composite material, it can be easily and uniformly synthesized in an aqueous system. In addition, since the viscosity is low even when the concentration is increased, a material containing a large amount of chitin and chitosan can be prepared.
According to the measured values, in the relational expression between the viscosity and the concentration of the aqueous solution of chitin oxide and chitosan oxide of the present invention, where the concentration is close to 0, the viscosity of water shows a value close to 1, but the chitin oxide and chitosan oxide of the present invention show Can be dissolved in a particularly high concentration, and the viscosity of the aqueous solution is low. Most of the water-soluble polysaccharides have a low viscosity at a low viscosity of about 1 wt% or less, but the chitin oxide and chitosan oxide of the present invention satisfy the following formula (1) even in a high concentration region. Therefore, it is excellent in workability and handling properties even in the middle and high concentration regions.
Further, it is preferable that the viscosity is within the range of the formula (1) and the range of the formula (2) because the low viscosity can be maintained even in a higher concentration range.
[0020]
Y ≦ 1.35 × e 0.20X (Y> 0) (2)
[0021]
FIG. 2 shows a graph of Equations (1) and (2).
[0022]
In this range, particularly, a large amount of chitin and chitosan units are contained, and the handleability and processability in a region where the concentration X (wt%) is 2 or more, which is highly usable, are good. It is preferable that the viscosity at a concentration of 2 wt% is 10, preferably 5 mPas or less, and the viscosity at a concentration of 5 wt% is 16.5, preferably 5 mPas or less.
Further, the oxidized chitin and oxidized chitosan of the present invention can be dissolved in 100 g of water at 25 ° C. in an amount of 10 g or more, and more preferably 30 g or more.
[0023]
Further, it is preferable that the weight average molecular weight (Mw) is 10,000 or more and the above formula (1) is satisfied. In general, it is known that a substance having a large molecular weight has a high strength when formed into a film or a fiber. However, as the molecular weight increases, so does the viscosity. When the molecular weight, concentration, and viscosity are within these ranges, when chitin oxide or chitosan is used as it is as a membrane or fiber, or when it is used in combination with other materials, the strength is strong, and many chitin and chitosan units are used. Which is preferable.
[0024]
Next, the method for producing chitin oxide and chitosan oxide of the present invention will be described.
Chitin, which is a raw material of the present invention, is a polysaccharide in which N-acetyl D-glucosamine is β- (1,4) -linked, and is demineralized and removed from coexisting substances containing chitin such as crab, shrimp, and fungi. It is purified through steps such as removal of proteins, lipids and pigments. The raw materials, the purification method, the degree of polymerization and the like are not particularly limited.
[0025]
When chitin is used as a raw material, the high crystallinity of chitin inhibits an oxidation reaction, and there is a high possibility of causing a side reaction such as decomposition of a glycosidic bond. In order to suppress this side reaction, it is preferable to carry out an oxidation reaction after reducing the crystallinity in advance with an alkali or the like.
[0026]
For the pre-treatment method, after dissolving chitin in various solvents, a method of regenerating, a method of swelling chitin in water, freezing, a method of repeating thawing, explosion, etc., are the most simple and reliable methods. A method using chitin swelled or dissolved by an alkali may be used.
[0027]
The alkali treatment can be performed by, for example, a method of spraying or wetting an aqueous alkaline solution on chitin, or a method of dipping or suspending chitin in an aqueous alkaline solution. The treatment efficiency can be increased by stirring or shaking the immersion or suspension. Examples of the alkali include alkali metal components such as alkali metal hydroxides (such as sodium hydroxide, potassium hydroxide and lithium hydroxide), alkali metal carbonates (such as sodium carbonate and potassium carbonate) and alkali metal bicarbonates. (E.g., sodium bicarbonate and potassium bicarbonate) can be used. These alkali metal compounds may be used alone or in combination of two or more.
[0028]
Considering the subsequent use such as the use of the product in the medical and pharmaceutical fields, alkali treatment with sodium hydroxide, which is safe, inexpensive, and easy to use, is more preferable.
However, the acetyl group of chitin is eliminated by concentrated alkali. In order to prevent this deacetylation, it is desirable to perform the treatment promptly at a low temperature.
[0029]
The concentration of the alkaline aqueous solution is not particularly limited, and can be selected from a wide range (for example, about 5 to 45% by weight).
The amount of the alkali used is, for example, 1 to 200-fold mol (for example, 1.2 to 170-fold mol), preferably 1.5 to 150-fold mol, and more preferably 2 to 1-fold mol with respect to the N-acetylglucosamine unit of chitin. It can be selected from the range of about 100 to about 100 moles.
[0030]
The temperature of the alkali treatment is not particularly limited, and is, for example, often in the range of about −5 to 50 ° C., but in the case of chitin, in order to suppress the deacetylation reaction and to consider the efficiency of loosening the crystal structure. It is better to react at as low a temperature as possible, such as cooling the system around with ice.
The alkali treatment time varies depending on the properties of the raw material chitin such as crystallinity, degree of polymerization, and surface area and is not particularly limited, but is usually about 10 minutes to 6 hours, preferably about 30 minutes to 3 hours, and particularly about 1 to 2 hours. .
Wet or immersed chitin under the above alkali treatment conditions, but it is sufficient for the purpose of lowering the crystallinity just by suspending, but in order to perform alkali treatment further inside the crystal of chitin, deaeration, freezing, If a method such that melting is achieved by stirring while adding ice is used in combination, the subsequent oxidation reaction proceeds smoothly.
[0031]
After completion of the alkali treatment, the alkali is neutralized with a suitable acid component (hydrochloric acid, sulfuric acid, nitric acid, etc.), chitin is separated, washed with water, and then subjected to an oxidation reaction. At the time of neutralization, it is desirable to neutralize while cooling in order to reduce the influence of the heat of neutralization. In addition, chitin that has been subjected to alkali treatment is usually subjected to an oxidation reaction without drying. In the case of drying, it is desirable to subject to oxidation in a state where formation of hydrogen bonds is suppressed again, for example, by drying after freeze-drying or completely replacing water with acetone or the like.
[0032]
When chitosan is used as a raw material, the deacetylated chitin can be used. The degree of deacetylation is not particularly limited.
In addition, in order to make the distribution of the carboxyl group introduced by the oxidation reaction more uniform, it is swollen or dissolved with an acid in advance to neutralize the solution of chitosan in which intermolecular forces such as hydrogen bonds have collapsed, It is preferable to remove the generated salt or use the solution as it is. In this case, the treated chitosan is usually subjected to the oxidation reaction without drying. In the case of drying, it is desirable to subject to oxidation in a state where formation of hydrogen bonds is suppressed again, for example, by drying after freeze-drying or completely replacing water with acetone or the like.
[0033]
Next, the oxidation method used in the present invention will be described.
In the oxidation method of the present invention, chitin or chitosan dissolved or dispersed in water can be treated in an aqueous system in the presence of a catalyst such as an N-oxyl compound. In addition, this method can obtain chitin oxide and chitosan oxide in a very high yield.
[0034]
The chitin oxide or chitosan oxide of the present invention can be obtained by oxidizing chitin or chitosan as a raw material using an oxidizing agent in the presence of an N-oxyl compound (oxoammonium salt). N-oxyl compounds include 2,2,6,6-tetramethyl-1-piperidine-N-oxyl (hereinafter referred to as TEMPO) and the like. In this oxidation method, a carboxyl group can be uniformly and efficiently introduced according to the degree of oxidation. This oxidation reaction is advantageously performed in the presence of the N-oxyl compound and a bromide or iodide. As the bromide or iodide, a compound that can be dissociated and ionized in water, for example, an alkali metal bromide or an alkali metal iodide can be used. As the oxidizing agent, any oxidizing agent capable of promoting the intended oxidation reaction, such as halogen, hypohalous acid, halogenous acid or perhalic acid or a salt thereof, halogen oxide, nitrogen oxide, or peroxide can be used. Any oxidizing agent can be used.
[0035]
In the oxidation of the present invention, the carbon at position 6 in the glucosamine skeleton is selectively oxidized. The N-oxyl compound may be used in a catalytic amount. For example, 10 ppm to 4% is sufficient for the number of moles of the constituent monosaccharide of chitin or chitosan, but 0.05% to 2% is preferable.
[0036]
The oxidation reaction conditions and the like of the present invention are not particularly limited, and should be optimized depending on the properties of the raw materials, the equipment used, and the like.However, when the oxidation reaction is performed in the presence of bromide or iodide, mild conditions are used. However, the oxidation reaction can proceed smoothly, and the introduction efficiency of the carboxyl group can be greatly improved.
[0037]
The amount of bromide and / or iodide used can be selected within a range that can promote the oxidation reaction, and is, for example, 0 to 100% based on the number of moles of the constituent monosaccharides of chitin and chitosan. However, from the viewpoint of reaction efficiency, 1 to 50% is preferable.
[0038]
The oxidation reaction of chitin or chitosan in the present invention is preferably performed, for example, by using TEMPO for the N-oxyl compound and using sodium hypochlorite as the oxidizing agent in the presence of sodium bromide.
[0039]
In the oxidation reaction of chitin oxide or chitosan oxide in the present invention, the reaction temperature is lower than room temperature, more preferably 5 ° C. in order to increase the selectivity of oxidation of glucosamine residue to primary hydroxyl group and suppress side reactions. It is desirable to react in the following.
[0040]
In the method for producing chitin oxide or chitosan oxide of the present invention, it is preferable to keep the inside of the system alkaline during the reaction in order to increase the reaction efficiency. At this time, the pH is preferably maintained at 9 to 13, more preferably 10 to 11.5. Further, the present invention is characterized in that the degree of oxidation can be controlled by the amount of alkali added when maintaining the pH at a constant value. If 1 mol of alkali is added to 1 mol of glucosamine residue, all glucosamine residues are oxidized, and carbon at the 6-position in the pyranose ring becomes a carboxyl group.
[0041]
In addition, it is preferable that the degree of oxidation is 60% or more because the biocompatibility is good and the affinity with water is increased. In addition, when the content is 90% or more, high water solubility can be imparted and the viscosity is further reduced, which is particularly preferable.
[0042]
The oxidized chitosan of the present invention may be produced by deacetylating oxidized chitin obtained by the above-described method.
[0043]
The oxidized chitin or oxidized chitosan oxidized in this way oxidizes the carbon at position 6 in the pyranose ring of N-acetylglucosamine or glucosamine, which is a constituent monosaccharide of chitin or chitosan, with very high selectivity, and It hardly oxidizes the carbon at the 3-position.
[0044]
Oxidized chitin has a uronic acid structure in which the 6-position carbon in the pyranose ring of N-acetylglucosamine or glucosamine, which is a constituent monosaccharide, is converted to a carboxyl group, and is widely used as a humectant. It has a structure very similar to hyaluronic acid.
Since oxidized chitosan has a uronic acid structure in which carbon at the 6-position in the pyranose ring of N-acetylglucosamine or glucosamine is oxidized, it has both anionic and cationic functional groups in one molecule and one unit. It can be expected to be used as an amphoteric polymer.
[0045]
The oxidized chitin and oxidized chitosan thus obtained have very high biocompatibility and low viscosity even in a high concentration range, so that they are easy to handle and process, and can be manufactured by a safe and simple method.
Furthermore, oxidized chitin or oxidized chitosan is a polymer derived from a natural product, and the generated uronic acid is also highly safe, and can be expected to be used in the medical and pharmaceutical fields as a biomaterial as well as in fields such as food and cosmetics. .
[0046]
【Example】
Hereinafter, the present invention will be specifically described based on examples.
<Example 1>
10 g of chitin (manufactured by Wako Pure Chemical Industries, Ltd.) was immersed in 100 g of a 45% aqueous sodium hydroxide solution and stirred at room temperature or lower for 2 hours. To this, 350 g of crushed ice, the surroundings were cooled with ice water or the like, and added with stirring. Chitin is substantially dissolved by this alkali treatment. A material which was neutralized with hydrochloric acid, washed sufficiently with water, and not dried was used as a raw material for chitin of Example 1. The yield was about 95%.
[0047]
An aqueous solution in which 0.08 g of TEMPO and 1.25 g of sodium bromide are dissolved is added to 100 g of a 5% chitin suspension of the pretreated chitin raw material so that the concentration of the chitin to the total solid weight is about 2 wt%. Prepared. The reaction system is cooled, and 40 g of an 11% aqueous solution of sodium hypochlorite is added to start the oxidation reaction. The reaction temperature was always kept below 5 ° C. During the reaction, the pH in the system decreases, but a 0.5N-NaOH aqueous solution is successively added to adjust the pH to around 10.8. When the alkali addition amount corresponding to 100% of the mole number of the 6-position carbon in the pyranose ring of N-acetylglucosamine or glucosamine is reached, the entire system is completely transparent after about 2 hours. Became. Ethanol was added to stop the reaction, and the mixture was sufficiently washed with water: alcohol = 2: 8, dehydrated with acetone, and dried at 40 ° C. to obtain white powdery chitin oxide having an oxidation degree of 100%. The yield was about 89%.
[0048]
<Example 2>
The same treatment as in Example 1 was repeated except that the amount of the 11% aqueous sodium hypochlorite solution added was 24 g, and the reaction was started. When the amount of alkali added reached 60%, the reaction was stopped to obtain chitin oxide having an oxidation degree of 60%.
[0049]
<Example 3>
Commercially available flake-form chitosan (degree of deacetylation: about 75%) was used as chitosan as a raw material. A 2% aqueous solution of chitosan hydrochloride is neutralized with sodium hydroxide, washed with water for desalting, and then 0.08 g of TEMPO and 1.25 g of sodium bromide are added to 100 g of 5% chitosan suspension (5 g of chitosan). A dissolved aqueous solution was added to adjust the concentration of chitosan to about 2 wt% based on the total solid weight. The reaction system was cooled, and 45 g of 11% aqueous sodium hypochlorite solution was added to start the oxidation reaction. The reaction temperature was always kept below 5 ° C. During the reaction, the pH in the system was lowered, but the pH was adjusted to 10.75 by sequentially adding a 0.5N-NaOH aqueous solution. When the amount of alkali added reached 55.9 mL corresponding to 90% of the total number of moles of 6-position carbon in the pyranose ring of N-acetylglucosamine or glucosamine, ethanol was added to stop the reaction. After sufficiently washing with water: alcohol = 2: 8, dehydration with acetone and drying at 40 ° C. were performed to obtain chitosan oxide having an oxidation degree of 90%.
[0050]
<Comparative Example 1>
The chitin used as a raw material in Example 1 was used as the chitin of Comparative Example 1. Note that no treatment such as oxidation was performed.
[0051]
<Comparative Example 2>
5 g of commercially available chitosan having a degree of deacetylation of 100% was dissolved in 95 g of 10% acetic acid, diluted with 500 g of methanol, added with 1.59 g of acetic anhydride with stirring, and stirred at room temperature for 15 hours. 2N? When neutralized by adding an aqueous NaOH solution, flakes are precipitated. The flakes are filtered, sufficiently washed with a solution of methanol and water: acetone = 1: 7, dehydrated with acetone, and dried at 40 ° C. under reduced pressure. , Flaky N? Chitosan having a degree of acetylation of 50% was obtained, and was used as chitosan of Comparative Example 2.
[0052]
<Measurement>
(NMR)
The sample of Example 1 was dissolved in heavy water, and 13 C-NMR was measured. The result is shown in FIG.
(Viscosity, molecular weight)
Aqueous solutions of each concentration of the samples of Examples 1 to 4 and Comparative Example were adjusted, and the viscosity at 25 ° C. was measured with a B-type viscometer. The results are shown in Table 1 and FIG.
The weight average molecular weight (Mw) of each sample was measured by GPC. The column was measured using TSK-gelG6000PWXL and TSK-gelG3000PWXL using 0.1M-NaCl as an eluent using an RI detector, and the molecular weight was converted from the standard pullulan having a known molecular weight. Table 1 shows the results.
[0053]
[Table 1]
Figure 2004027077
[0054]
As shown in FIG. 1, in the chitin oxide (B), the peak derived from the carbon having a hydroxyl group at the 6-position of the pyranose ring carbon of the chitin (A) before oxidation disappears, indicating that the chitin oxide has been converted to a carboxyl group. The peaks derived from the carbons at the 2- and 3-positions did not change, and no peaks such as ketones were observed. That is, it was confirmed that only the carbon at position 6 in the pyranose ring of N-acetylglucosamine was oxidized and converted to a carboxyl group.
[0055]
As shown in Table 1 and FIG. 3, the chitin oxide and chitosan oxide of Examples 1 to 3 of the present invention can maintain low viscosity even in a high concentration range. On the other hand, the chitin of Comparative Example 1 was insoluble in water, and the chitosan of Comparative Example 2 was high in viscosity and insoluble in water in a high concentration range, resulting in poor handling and processing suitability.
[0056]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, high hydrophilicity and water solubility in a wide pH range are provided, and even in a high concentration range, viscosity is low, and chitin oxide and chitosan oxide having good handleability and processability can be obtained. Therefore, it is suitable for use in various fields such as food, cosmetics, and pharmaceuticals as it is, and is also suitable for further processing. Moreover, the oxidized chitin and oxidized chitosan of the present invention have a uronic acid structure, and therefore have extremely high biocompatibility. Chitin / chitosan has high biodegradability, and the obtained oxidized chitin and oxidized chitosan of the present invention also have high biodegradability. Further, according to the present invention, safe, simple and high-purity chitin oxide and chitosan oxide can be obtained.
[0057]
[Brief description of the drawings]
FIG. 1 is a graph showing 13 C-NMR measurement results of a sample synthesized in Example 1 of the present invention.
FIG. 2 is a graph showing the relational expression of concentration-viscosity of oxidized chitin and oxidized chitosan of the present invention and the concentration-viscosity of Example 1.
FIG. 3 is a graph showing the relationship between the concentration-viscosity relations of oxidized chitin and oxidized chitosan of the present invention, and examples and comparative examples.

Claims (2)

キチン又はキトサンの構成単糖であるN−アセチルグルコサミン、またはグルコサミンのピラノース環中、6位炭素を選択的に酸化しカルボキシル基又はその塩に変換した構造を有することを特徴とする酸化キチン又は酸化キトサンであって、25℃の水に溶かし、水溶液にしたときの濃度X(wt%)と粘度Y(mPas)の関係が下記式(1)を満たすことを特徴とする酸化キチン又は酸化キトサン。
Y≦7.92×e0.145X (Y>0) (1)
N-acetylglucosamine, which is a constituent monosaccharide of chitin or chitosan, or chitin oxide having a structure in which the carbon at position 6 in the pyranose ring of glucosamine is selectively oxidized and converted to a carboxyl group or a salt thereof. A chitosan or chitosan oxide, wherein the relationship between the concentration X (wt%) and the viscosity Y (mPas) when dissolved in water at 25 ° C. to form an aqueous solution satisfies the following formula (1).
Y ≦ 7.92 × e 0.145X (Y> 0) (1)
重量平均分子量(Mw)が10000以上であることを特徴とする請求項1記載の酸化キチン又は酸化キトサン。The weight average molecular weight (Mw) is 10,000 or more, The chitin oxide or chitosan oxide of Claim 1 characterized by the above-mentioned.
JP2002187314A 2002-06-27 2002-06-27 Method for producing chitin oxide Expired - Fee Related JP4254142B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002187314A JP4254142B2 (en) 2002-06-27 2002-06-27 Method for producing chitin oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002187314A JP4254142B2 (en) 2002-06-27 2002-06-27 Method for producing chitin oxide

Publications (2)

Publication Number Publication Date
JP2004027077A true JP2004027077A (en) 2004-01-29
JP4254142B2 JP4254142B2 (en) 2009-04-15

Family

ID=31182388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002187314A Expired - Fee Related JP4254142B2 (en) 2002-06-27 2002-06-27 Method for producing chitin oxide

Country Status (1)

Country Link
JP (1) JP4254142B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007169413A (en) * 2005-12-21 2007-07-05 Toppan Printing Co Ltd Inclusion carrier
WO2008156109A1 (en) * 2007-06-19 2008-12-24 Cluster Technology Co., Ltd. Chitin slurry and method for producing the same
CN114000350A (en) * 2021-12-17 2022-02-01 安徽农业大学 Water-soluble oxidized chitosan and textile finishing method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007169413A (en) * 2005-12-21 2007-07-05 Toppan Printing Co Ltd Inclusion carrier
WO2008156109A1 (en) * 2007-06-19 2008-12-24 Cluster Technology Co., Ltd. Chitin slurry and method for producing the same
JPWO2008156109A1 (en) * 2007-06-19 2010-08-26 クラスターテクノロジー株式会社 Chitin slurry and manufacturing method thereof
JP4566274B2 (en) * 2007-06-19 2010-10-20 クラスターテクノロジー株式会社 Chitin slurry and manufacturing method thereof
CN114000350A (en) * 2021-12-17 2022-02-01 安徽农业大学 Water-soluble oxidized chitosan and textile finishing method thereof
CN114000350B (en) * 2021-12-17 2023-06-27 安徽农业大学 Water-soluble oxidized chitosan and method for finishing fabric by using same

Also Published As

Publication number Publication date
JP4254142B2 (en) 2009-04-15

Similar Documents

Publication Publication Date Title
Sharma et al. Dissolution of α-chitin in deep eutectic solvents
JPH0558002B2 (en)
Muslim et al. Chitosan and carboxymethyl chitosan from fish scales of Labeo rohita
JP4984417B2 (en) Method for producing water-soluble polyuronic acid
JP4356289B2 (en) Polysaccharide complex and method for producing the same
CN113549166A (en) Method for producing low endotoxin chitosan
JP4470410B2 (en) Polysaccharide complex
CN111518296A (en) Preparation method of chitosan membrane material
EP1250359A1 (en) Chitosan condensation products, their preparation and their uses
JP2009068014A (en) Water-soluble oxidized chitin and its producing method
JP4254142B2 (en) Method for producing chitin oxide
Singh et al. Structure and solubility of polysaccharides
Arshad et al. Miscibility, properties, and biodegradability of chitin and chitosan
CN112920291A (en) Squid sector bone beta-chitosan and preparation method and application thereof
US6800754B1 (en) Method for producing cellulose sulfoacetate derivatives and products and mixtures thereof
JP2901176B2 (en) Low viscosity chitosan and method for producing the same
JP5110046B2 (en) Polysaccharide complex and method for producing the same
JP4277473B2 (en) Method for producing oxidized chitosan
JP4254120B2 (en) Method for producing oxidized chitosan
JP4395573B2 (en) Oxidized chitosan compound
JP2010106068A (en) New chemical modification method for polysaccharide
JP4221925B2 (en) Method for producing chitin oxide
JP2003212903A (en) Manufacturing process for oxidized chitosan
JP2754162B2 (en) Manufacturing method of chitin sponge, chitin paper and chitin film
Prabu et al. Bioprospecting of shells of crustaceans

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4254142

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees