JP2003212903A - Manufacturing process for oxidized chitosan - Google Patents

Manufacturing process for oxidized chitosan

Info

Publication number
JP2003212903A
JP2003212903A JP2002016690A JP2002016690A JP2003212903A JP 2003212903 A JP2003212903 A JP 2003212903A JP 2002016690 A JP2002016690 A JP 2002016690A JP 2002016690 A JP2002016690 A JP 2002016690A JP 2003212903 A JP2003212903 A JP 2003212903A
Authority
JP
Japan
Prior art keywords
chitosan
oxidized
solution
oxidation
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002016690A
Other languages
Japanese (ja)
Inventor
Yumiko Kato
友美子 加藤
Ryukichi Matsuo
龍吉 松尾
Junichi Kaminaga
純一 神永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2002016690A priority Critical patent/JP2003212903A/en
Publication of JP2003212903A publication Critical patent/JP2003212903A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-purity oxidized chitosan provided with a high hydrophilicity and a water-solubility in a wide pH region, which are useful in various fields such as medical fields and cosmetic fields, and a manufacturing process which can produce the oxidized chitosan readily at low costs by a simple refining process. <P>SOLUTION: There is provided a manufacturing process for oxidized chitosan, which comprises dissolving or swelling chitosan in an aqueous acidic solution, neutralizing the resultant solution to obtain a chitosan solution, and oxidatively treating the chitosan solution to selectively oxidize carbon at 6-position in the pyranose ring of N-acetylglucosamine or glucosamine, which is a constituent monosaccharide of chitosan, to convert it to a carboxy group or a salt thereof. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、キトサンの酸化物
の製造方法に関するものである。特に水系で簡便な手法
にて、キトサンの分子内にカルボキシル基とアミノ基の
両方の官能基を有し容易に幅広いpH領域において水に
容易に膨潤または溶解する構造を有する酸化キトサンの
製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing an oxide of chitosan. Particularly, the present invention relates to a method for producing oxidized chitosan having a structure having both a carboxyl group and an amino group in the molecule of chitosan and easily swelling or dissolving in water in a wide pH range by a simple method in an aqueous system. It is a thing.

【0002】[0002]

【従来の技術】キチンはカニやエビなどの甲殻類、カブ
トムシやコオロギなどの昆虫類の骨格物質として、また
菌類や細胞壁にも存在し、N−アセチルD−グルコサミ
ン残基が多数、β−(1,4)−結合した多糖類であ
る。そして地球上でもっとも豊富な有機化合物であるセ
ルロ−スと類似の構造を有し、2位の炭素に結合してい
る水酸基の代わりにアセトアミド基が付加したアミノ多
糖類 (ムコ多糖類)である。キトサンはキチンを
脱アセチル化して得られる多糖類で、グルコサミン残基
またはN−アセチルグルコサミン残基がβ−(1,4)
−結合した多糖類であり、グルコサミン残基に由来する
カチオン性のアミノ基をもつ。キチン・キトサンはセル
ロースと構造が類似しておるが、一般に水不溶性である
上、適正な溶媒が少ないことにより有効な利用がなされ
ていない。
Chitin is a skeletal substance of crustaceans such as crabs and shrimps, insects such as beetles and crickets, and also present in fungi and cell walls, and contains many N-acetyl D-glucosamine residues, β- ( 1,4) -linked polysaccharide. It is an aminopolysaccharide (mucopolysaccharide) that has a structure similar to cellulose, which is the most abundant organic compound on the earth, and has an acetamide group added instead of the hydroxyl group bonded to the carbon at the 2-position. . Chitosan is a polysaccharide obtained by deacetylating chitin, in which glucosamine residue or N-acetylglucosamine residue is β- (1,4).
A linked polysaccharide, having a cationic amino group derived from a glucosamine residue. Although chitin and chitosan have a structure similar to that of cellulose, they are generally insoluble in water and have not been used effectively because they contain few proper solvents.

【0003】一方、近年これらの天然多糖類は、新しい
タイプの生分解性高分子材料として、また生体親和性材
料として注目され、その利用について多くの研究がなさ
れ、数々の知見が得られてきている。特にキチン・キト
サンは、この分野においての研究が盛んで、創傷治癒促
進効果、抗凝血作用、免疫賦活活性、静菌・抗菌活性な
どさまざまな生物活性効果が報告されている。更にま
た、細胞認識やそれに伴う情報伝達機構など生体機能発
現において、糖鎖が鍵物質として重要な役割を演じてい
ることも明らかになりつつある。
On the other hand, in recent years, these natural polysaccharides have attracted attention as a new type of biodegradable polymer material and as a biocompatible material, and many studies have been conducted on their use, and many findings have been obtained. There is. In particular, chitin and chitosan have been extensively studied in this field, and various biological activity effects such as a wound healing promoting effect, an anticoagulant effect, an immunostimulating activity, and a bacteriostatic / antibacterial activity have been reported. Furthermore, it is becoming clear that sugar chains play an important role as key substances in the expression of biological functions such as cell recognition and associated information transmission mechanism.

【0004】このような医用材料として利用する場合
も、取扱い上の利便性、各種化学薬品、薬剤との相溶
性、薬効の均一性、加工性等の観点から、広範なpH領
域に於いて水溶性であることが望ましい。キトサンは水
には難溶であることが知られている。キチン、キトサン
の水溶化の方法として、様々な誘導体化が知られている
が、その殆どは置換基分布もばらばらで、構造が均一で
はなく、また、誘導体化により導入した官能基が、生体
に影響を及ぼす可能性は高いという問題があった。
Even when it is used as such a medical material, it is water-soluble in a wide pH range from the viewpoints of handling convenience, compatibility with various chemicals and drugs, uniformity of drug effect, processability, etc. It is desirable to be sex. Chitosan is known to be sparingly soluble in water. Various derivatization methods are known as water-solubilizing methods for chitin and chitosan, but most of them have a different distribution of substituents and a non-uniform structure. There was a problem that it is likely to have an impact.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、医薬
分野あるいは化粧品分野等様々な分野において有用な、
高い親水性や幅広いpH領域での水溶性が付与された高
純度の酸化キトサンおよび、これらの酸化キトサンを簡
便な精製工程で容易かつ安価に得ることのできる製造方
法を提供することにある。本発明の他の目的は、キトサ
ンの構成単糖であるグルコサミンまたはN−アセチルグ
ルコサミン残基の1級水酸基が選択的に酸化されたウロ
ン酸残基を有する酸化キトサンおよびその製造方法を提
供することにある。本発明のさらに他の目的は、より安
全な試薬を用いて、温和な反応条件下で、前記の如くキ
トサンを均一かつ効率よく酸化でき、高い水溶性を付与
できる方法を提供することにある。
DISCLOSURE OF THE INVENTION The object of the present invention is useful in various fields such as the pharmaceutical field or the cosmetic field.
It is an object of the present invention to provide high-purity oxidized chitosan having high hydrophilicity and water solubility in a wide pH range, and a method for producing these oxidized chitosan easily and inexpensively by a simple purification step. Another object of the present invention is to provide an oxidized chitosan having a uronic acid residue in which a primary hydroxyl group of glucosamine or an N-acetylglucosamine residue, which is a constituent monosaccharide of chitosan, is selectively oxidized, and a method for producing the same. It is in. Still another object of the present invention is to provide a method capable of uniformly and efficiently oxidizing chitosan as described above under mild reaction conditions using a safer reagent and imparting high water solubility.

【0006】[0006]

【課題を解決するための手段】請求項1記載の発明は、
キトサンを酸性水溶液に溶解又は膨潤させた後、中和し
て得られるキトサン溶液を、酸化処理し、キトサンの構
成単糖であるN−アセチルグルコサミン、またはグルコ
サミンのピラノース環中、6位炭素を選択的に酸化しカ
ルボキシル基又はその塩類に変換することを特徴とする
酸化キトサンの製造方法である。
The invention according to claim 1 is
The chitosan solution obtained by dissolving or swelling chitosan in an acidic aqueous solution and then neutralizing is subjected to an oxidation treatment, and N-acetylglucosamine which is a constituent monosaccharide of chitosan, or the 6th carbon is selected from the pyranose ring of glucosamine. It is a method for producing oxidized chitosan, which comprises chemically oxidizing and converting to carboxyl groups or salts thereof.

【0007】請求項2記載の発明は、前記6位炭素を選
択的に酸化しカルボキシル基又はその塩類に変換する酸
化処理する方法が、N−オキシル化合物などの触媒の存
在下で処理することを特徴とする請求項1に記載の酸化
キトサンの製造方法である。
According to the second aspect of the present invention, the method for the oxidation treatment for selectively oxidizing the 6-position carbon to convert it to a carboxyl group or a salt thereof is carried out in the presence of a catalyst such as an N-oxyl compound. The method for producing oxidized chitosan according to claim 1, which is characterized in that.

【0008】請求項3記載の発明は、前記N−オキシル
化合物が、2,2,6,6−テトラメチル−1−ピペリ
ジン−N−オキシルであり、水中で臭化アルカリ金属ま
たはヨウ化アルカリ金属の存在下、次亜ハロゲン酸、亜
ハロゲン酸、過ハロゲン酸およびそれらの塩のうち少な
くとも1種の酸化剤を用いて、アルカリを添加してpH
を一定に保ちながら酸化することを特徴とする請求項1
又は2に記載の酸化キトサンの製造方法である。
According to a third aspect of the present invention, the N-oxyl compound is 2,2,6,6-tetramethyl-1-piperidine-N-oxyl and the alkali metal bromide or alkali metal iodide in water is used. In the presence of, at least one oxidizing agent selected from the group consisting of hypohalous acid, halogenous acid, perhalogenic acid and salts thereof, and adding an alkali to pH.
The oxidation is carried out while keeping a constant value.
Alternatively, it is the method for producing oxidized chitosan according to the item 2.

【0009】請求項4記載の発明は、前記キトサンの酸
化が、ハロゲン化アルカリ金属の添加量により酸化度を
制御できることを特徴とする請求項3に記載の酸化キト
サンの製造方法である。
The invention according to claim 4 is the method for producing chitosan oxide according to claim 3, characterized in that the degree of oxidation of the chitosan can be controlled by the amount of alkali metal halide added.

【0010】[0010]

【発明の実施の形態】以下、本発明の詳細を説明する。
本発明の原料となるキトサンは、特に限定するものでは
ないが、例えばキチンを脱アセチル化して得られるもの
がある。また、精製方法、重合度等については特に限定
されるものではない。また、粉末、フレーク、ゲル、繊
維、フィルム、不織布などキトサンの形状においても特
に限定されるものではない。
DETAILED DESCRIPTION OF THE INVENTION The details of the present invention will be described below.
The chitosan that is the raw material of the present invention is not particularly limited, but for example, it may be obtained by deacetylating chitin. Further, the purification method, the degree of polymerization, etc. are not particularly limited. Moreover, the shape of chitosan such as powder, flakes, gel, fiber, film, and non-woven fabric is not particularly limited.

【0011】一般的に、キチンは下記化学式(1)
(Y:NHCOCH3)で表されるものを構成単糖として
含む化合物である。キトサンは、一般的にキチンを脱ア
セチル化処理などを行い、下記化学式(1)中のYで示
される部分のNHCOCH3をNH2に変換して得られる
ものを構成単糖として含む化合物である。本発明のキト
サンは、脱アセチル化度が100%であるものだけで、
下記化学式(1)中のYで示される部分として、NHC
OCH3とNH2が混在しているものも含む。
Generally, chitin is represented by the following chemical formula (1)
It is a compound containing what is represented by (Y: NHCOCH 3 ) as a constituent monosaccharide. Chitosan is a compound containing as a constituent monosaccharide a compound obtained by converting NHCOCH 3 in a portion represented by Y in the following chemical formula (1) into NH 2 by generally deacetylating chitin. . The chitosan of the present invention only has a deacetylation degree of 100%,
As a portion represented by Y in the following chemical formula (1), NHC
It also includes a mixture of OCH 3 and NH 2 .

【0012】[0012]

【化1】 [Chemical 1]

【0013】本発明ではキトサンのN−アセチルグルコ
サミン、またはグルコサミンのピラノース環中6位炭素
の部分に、カルボキシル基を選択的に導入する前に、導
入されるカルボキシル基の分布をより均一なものにする
ために、酸で膨潤または溶解させ、水素結合などの分子
間力が崩壊したキトサンの溶液を中和し、生成した塩を
除くか或いはそのままの溶液を用いることを特徴として
いる。この場合、処理されたキトサンは、通常、乾燥す
ることなくそのまま酸化反応に供される。乾燥させる場
合は、凍結乾燥やアセトンなどで完全に水を置換した後
に乾燥させるなど、再び水素結合を形成するのを抑えた
状態で酸化に供するのが望ましい。
In the present invention, before the carboxyl group is selectively introduced into the N-acetylglucosamine of chitosan or the 6-position carbon portion of the pyranose ring of glucosamine, the distribution of the introduced carboxyl group is made more uniform. In order to do so, it is characterized by swelling or dissolving with an acid, neutralizing a solution of chitosan in which intermolecular forces such as hydrogen bonds have collapsed, removing the produced salt, or using the solution as it is. In this case, the treated chitosan is usually directly subjected to the oxidation reaction without being dried. In the case of drying, it is desirable that the product is subjected to oxidation in a state where formation of hydrogen bond is suppressed again, for example, by freeze-drying or completely substituting water with acetone or the like and then drying.

【0014】更に、本発明における酸化方法はN−オキ
シル化合物などの触媒の存在下で、水に溶解又は分散さ
せたキトサンを水系で処理することを特徴とする。
Further, the oxidation method of the present invention is characterized in that chitosan dissolved or dispersed in water is treated in an aqueous system in the presence of a catalyst such as an N-oxyl compound.

【0015】本発明の酸化キトサンは、N−オキシル化
合物(オキソアンモニウム塩)の存在下、酸化剤を用い
て、原料のキトサンを酸化することにより得ることがで
きる。N−オキシル化合物には、2,2,6,6−テト
ラメチル−1−ピペリジンN−オキシル(以下TEMP
Oと称する)、などが含まれる。この酸化方法では、酸
化の程度に応じて、カルボキシル基を均一かつ効率よく
導入できる。本酸化反応は、前記N−オキシル化合物
と、臭化物又はヨウ化物との共存下で行うのが有利であ
る。臭化物又はヨウ化物としては、水中で解離してイオ
ン化可能な化合物、例えば、臭化アルカリ金属やヨウ化
アルカリ金属などが使用できる。酸化剤としては、ハロ
ゲン、次亜ハロゲン酸,亜ハロゲン酸や過ハロゲン酸又
はそれらの塩、ハロゲン酸化物、窒素酸化物、過酸化物
など、目的の酸化反応を推進し得る酸化剤であれば、い
ずれの酸化剤も使用できる。
The oxidized chitosan of the present invention can be obtained by oxidizing the starting chitosan with an oxidizing agent in the presence of an N-oxyl compound (oxoammonium salt). N-oxyl compounds include 2,2,6,6-tetramethyl-1-piperidine N-oxyl (hereinafter TEMP.
Referred to as O), and the like. In this oxidation method, the carboxyl group can be introduced uniformly and efficiently depending on the degree of oxidation. It is advantageous to carry out the main oxidation reaction in the presence of the N-oxyl compound and bromide or iodide. As the bromide or iodide, a compound capable of dissociating in water to be ionized, such as alkali metal bromide or alkali metal iodide, can be used. As the oxidant, halogen, hypohalous acid, halohalous acid, perhalogenic acid or salts thereof, halogen oxides, nitrogen oxides, peroxides, and the like can be used as long as they can promote the desired oxidation reaction. Any oxidizing agent can be used.

【0016】本発明の酸化では、キトサンの構成単糖で
あるグルコサミンまたはN-アセチルグルコサミン残基の
6位の水酸基を選択的に酸化するものである。N−オキ
シル化合物は触媒量で済み、例えば、キトサンの構成単
糖のモル数に対し、10ppm〜5%あれば充分である
が、0.05%から3%が好ましい。
The oxidation of the present invention selectively oxidizes the hydroxyl group at the 6-position of glucosamine or N-acetylglucosamine residue, which is a constituent monosaccharide of chitosan. The N-oxyl compound may be used in a catalytic amount, for example, 10 ppm to 5% is sufficient with respect to the number of moles of the constituent monosaccharide of chitosan, but 0.05% to 3% is preferable.

【0017】本発明の酸化反応条件などは特に限定され
ず、原料の性状、使用する設備などによって最適化され
るべきであるが、臭化物やヨウ化物との共存下で酸化反
応を行うと、温和な条件下でも酸化反応を円滑に進行さ
せることができ、カルボキシル基の導入効率を大きく改
善できる。
The oxidation reaction conditions and the like of the present invention are not particularly limited and should be optimized depending on the properties of the raw materials and the equipment used, but when the oxidation reaction is carried out in the coexistence with bromide or iodide, it is mild. The oxidation reaction can proceed smoothly under various conditions, and the introduction efficiency of the carboxyl group can be greatly improved.

【0018】臭化物及び/又はヨウ化物の使用量は、酸
化反応を促進できる範囲で選択でき、例えば、キトサン
の構成単糖のモル数に対し0〜100%である。しか
し、反応効率の点から、10〜50%が好ましい。
The amount of bromide and / or iodide used can be selected within a range that can accelerate the oxidation reaction, and is, for example, 0 to 100% based on the number of moles of the monosaccharide constituting chitosan. However, from the viewpoint of reaction efficiency, 10 to 50% is preferable.

【0019】本発明における酸化キトサンの酸化反応系
は、N−オキシル化合物にはTEMPOを用い、臭化ナ
トリウムの存在下、酸化剤として次亜塩素酸ナトリウム
を用いるのが好ましい。
In the oxidation reaction system of chitosan oxide in the present invention, it is preferable to use TEMPO as the N-oxyl compound and sodium hypochlorite as an oxidizing agent in the presence of sodium bromide.

【0020】本発明における酸化キトサンの酸化反応で
は、C6位1級水酸基への酸化の選択性を上げ、副反応
を抑える目的で、反応温度は室温以下、より好ましくは
系内を5℃以下で反応させることが望ましい。
In the oxidation reaction of oxidized chitosan in the present invention, the reaction temperature is room temperature or lower, more preferably 5 ° C. or lower in the system for the purpose of increasing the selectivity of the oxidation to the C6-position primary hydroxyl group and suppressing side reactions. It is desirable to react.

【0021】また、本発明の酸化キトサンの製造方法で
は、その反応効率を上げる為に反応中は系内をアルカリ
性に保つことが好ましい。この時のpHは9〜13、よ
り好ましくはpH10〜11.5に保つとよい。更に、
本発明ではこのpHを一定に保つ際に添加されるアルカ
リの量により酸化度を制御できる事を特徴としている。
キトサンの構成単糖であるグルコサミンまたはN−アセ
チルグルコサミン残基1モルに対し、添加するアルカリ
が1モルとなるところが酸化度100%となり、全ての
グルコサミンまたはN−アセチルグルコサミン残基が酸
化され、C6位の一級水酸基がほぼ100%カルボキシ
ル基となる。
In the method for producing oxidized chitosan of the present invention, it is preferable to keep the system alkaline during the reaction in order to increase the reaction efficiency. At this time, the pH is preferably maintained at 9 to 13, more preferably 10 to 11.5. Furthermore,
The present invention is characterized in that the degree of oxidation can be controlled by the amount of alkali added when keeping the pH constant.
With respect to 1 mol of glucosamine or N-acetylglucosamine residue, which is a constituent monosaccharide of chitosan, the degree of oxidation becomes 100% when 1 mol of alkali is added, and all glucosamine or N-acetylglucosamine residues are oxidized to form C6. Almost 100% of the primary hydroxyl groups are carboxyl groups.

【0022】このように酸化された酸化キトサンは下記
化学式(2)に示されるような構造を構成単糖とし、非
常に高い選択性で1級水酸基と還元末端のみが酸化され
ており、2級水酸基やアミンの酸化は見られない。酸化
キトサンは、キトサンの構成単糖であるグルコサミンま
たはN−アセチルグルコサミン残基のC6位が酸化され
たウロン酸構造を有する為、1分子内、1ユニット内に
アニオン性とカチオン性の両方の官能基をもち、両性高
分子としての利用が期待できる。更に、酸化キトサンは
天然物由来の高分子で、生成したウロン酸も安全性が高
く、食品、化粧品などの分野はもちろん、生体材料など
として、医療・医薬分野での利用も期待できる。
The oxidized chitosan thus oxidized has a structure represented by the following chemical formula (2) as a constituent monosaccharide, and only the primary hydroxyl group and the reducing end are oxidized with a very high selectivity, and the secondary secondary No hydroxyl or amine oxidation is observed. Oxidized chitosan has a uronic acid structure in which the C6 position of glucosamine or N-acetylglucosamine residue, which is a constituent monosaccharide of chitosan, is oxidized, and therefore, both anionic and cationic functional groups are present in one molecule and one unit. It has a group and can be expected to be used as an amphoteric polymer. Furthermore, oxidized chitosan is a polymer derived from a natural product, and the produced uronic acid is also highly safe, and it can be expected to be used not only in the fields of foods, cosmetics, etc., but also in the medical and pharmaceutical fields as a biomaterial.

【0023】[0023]

【化2】 [Chemical 2]

【0024】(R:CH2OH又はCOOX(X:H又
はアルカリ金属又はアルカリ土類金属)、Y:NHCO
CH3又はNH2
(R: CH 2 OH or COOX (X: H or alkali metal or alkaline earth metal), Y: NHCO
CH 3 or NH 2 )

【0025】[0025]

【実施例】以下、本発明を実施例に基づいて具体的に説
明する。 <実施例1>原料となるキトサンにはフレーク状の市販
のキトサン(脱アセチル化度約75%)を用いた。キト
サンの2%塩酸塩水溶液を水酸化ナトリウムで中和し、
脱塩の為に水洗した後、5%キトサン懸濁液100g
(キトサン5g)に、TEMPO 0.1g、臭化ナト
リウム 1.25gを溶解させた水溶液を加え、キトサ
ンの固形重量の全体に対する濃度が約2wt%になるよ
う調製した。反応系を冷却し、次亜塩素酸ナトリウム水
溶液(Cl=5%)35gを添加し、酸化反応を開始し
た。反応温度は常に5℃以下に維持した。反応中は系内
のpHが低下するが、0.5N−NaOH水溶液を逐次
添加し、pH10.75に調整した。6位の1級水酸基
の全モル数に対し、30%のモル数に対応するアルカリ
添加量18.63mLに達した時点で、エタノールを添
加し、反応を停止させ、水:アルコール=2:8により
充分洗浄した後、アセトンで脱水し、40℃で乾燥さ
せ、酸化度30%の酸化キトサンを得た。
EXAMPLES The present invention will be specifically described below based on examples. Example 1 Flake-shaped commercially available chitosan (deacetylation degree: about 75%) was used as the raw material chitosan. Neutralize 2% aqueous chitosan hydrochloride with sodium hydroxide,
After washing with water for desalination, 100 g of 5% chitosan suspension
An aqueous solution in which 0.1 g of TEMPO and 1.25 g of sodium bromide were dissolved was added to (5 g of chitosan), and the concentration was adjusted to about 2 wt% of the total solid weight of chitosan. The reaction system was cooled, and 35 g of an aqueous solution of sodium hypochlorite (Cl = 5%) was added to start the oxidation reaction. The reaction temperature was always kept below 5 ° C. Although the pH in the system was lowered during the reaction, 0.5N-NaOH aqueous solution was sequentially added to adjust the pH to 10.75. Ethanol was added to stop the reaction when the amount of alkali added reached 18.63 mL corresponding to the number of moles of 30% with respect to the total number of moles of the primary hydroxyl group at the 6-position. Water: alcohol = 2: 8 After being sufficiently washed with, the product was dehydrated with acetone and dried at 40 ° C. to obtain chitosan oxide having an oxidation degree of 30%.

【0026】得られた酸化キトサンをKBr錠剤法によ
り赤外分光スペクトルを測定し、構造を解析した。その
結果、IRスペクトルからは、1620、1420cm
-1付近にカルボキシル基(ナトリウム塩)由来のピーク
が観測された。これらの結果より、キトサンの酸化によ
りカルボキシル基が導入されていることが確認され、酸
化キチンからの脱アセチル化反応によっても酸化キトサ
ンが得られる事が確認できた。また、得られた酸化キト
サンは完全に水に溶解した。この酸化キトサンを重水に
溶解し、13C−NMRを測定した。13C−NMRス
ペクトルから、1級水酸基をもつC6位のピークが減少
し、175−178ppmにキトサンの元々持つアセチ
ル基のカルボニルピークの他に、導入されたカルボキシ
ル基(ナトリウム塩)のカルボニルピーク(グルコサミ
ン残基についているものとN−アセチルグルコサミン残
基についているもの2本)が観測され、3位の酸化によ
るケトンの生成などは認められなかった。
The infrared spectrum of the obtained chitosan oxide was measured by the KBr tablet method, and the structure was analyzed. As a result, from the IR spectrum, 1620, 1420 cm
A peak derived from a carboxyl group (sodium salt) was observed near -1 . From these results, it was confirmed that the carboxyl group was introduced by the oxidation of chitosan, and it was also confirmed that the oxidized chitosan was obtained by the deacetylation reaction from the oxidized chitin. Further, the obtained chitosan oxide was completely dissolved in water. This oxidized chitosan was dissolved in heavy water and 13 C-NMR was measured. From the 13 C-NMR spectrum, the peak at the C6 position having a primary hydroxyl group decreases, and in addition to the carbonyl peak of the acetyl group originally possessed by chitosan at 175 to 178 ppm, the carbonyl peak of the introduced carboxyl group (sodium salt) (glucosamine). Those attached to the residue and those attached to the N-acetylglucosamine residue (2) were observed, and formation of a ketone due to oxidation at the 3-position was not observed.

【0027】<実施例2>原料となるキトサンにはフレ
ーク状の市販のキトサン(脱アセチル化度約75%)を
用いた。キトサンの2%塩酸塩水溶液を水酸化ナトリウ
ムで中和し、脱塩の為に水洗した後、5%キトサン懸濁
液100gに、TEMPO 0.1g、臭化ナトリウム
1.25gを溶解させた水溶液を加え、キトサンの固
形重量の全体に対する濃度が約2wt%になるよう調製
した。反応系を冷却し、次亜塩素酸ナトリウム水溶液
(Cl=5%)35gを添加し、酸化反応を開始した。
反応温度は常に5℃以下に維持した。反応中は系内のp
Hが低下するが、0.5N−NaOH水溶液を逐次添加
し、pH10.75に調整した。6位の1級水酸基の全
モル数に対し、100%のモル数に対応するアルカリ添
加量に達した時点で、エタノールを添加し、反応を停止
させ、水:アルコール=2:8により充分洗浄した後、
アセトンで脱水し、40℃で乾燥させ、粉末状の酸化度
100%の酸化キトサンを得た。
Example 2 Flake-shaped commercially available chitosan (deacetylation degree: about 75%) was used as the raw material chitosan. A 2% aqueous solution of chitosan hydrochloride was neutralized with sodium hydroxide, washed with water for desalting, and then an aqueous solution prepared by dissolving 0.1 g of TEMPO and 1.25 g of sodium bromide in 100 g of a 5% chitosan suspension. Was added so that the concentration of chitosan with respect to the total solid weight was adjusted to about 2 wt%. The reaction system was cooled, and 35 g of an aqueous solution of sodium hypochlorite (Cl = 5%) was added to start the oxidation reaction.
The reaction temperature was always kept below 5 ° C. P during the reaction
Although H decreased, 0.5N-NaOH aqueous solution was added successively to adjust the pH to 10.75. When the amount of alkali added corresponding to 100% of the total number of primary hydroxyl groups at the 6-position is reached, ethanol is added to stop the reaction, and the mixture is thoroughly washed with water: alcohol = 2: 8. After doing
It was dehydrated with acetone and dried at 40 ° C. to obtain powdery chitosan oxide having an oxidation degree of 100%.

【0028】得られた酸化キトサンをKBr錠剤法によ
り赤外分光スペクトルを測定し、構造を解析した。その
結果、IRスペクトルからは、1620、1420cm
-1付近にカルボキシル基(ナトリウム塩)由来のピーク
が観測された。これらの結果より、キトサンの酸化によ
りカルボキシル基が導入されていることが確認され、酸
化キチンからの脱アセチル化反応によっても酸化キトサ
ンが得られる事が確認できた。また、得られた酸化キト
サンは完全に水に溶解した。この酸化キトサンを重水に
溶解し、13C−NMRを測定した。13C−NMRス
ペクトルから、1級水酸基をもつC6位のピークが減少
し、175−178ppmにキトサンの元々持つアセチ
ル基のカルボニルピークの他に、導入されたカルボキシ
ル基(ナトリウム塩)のカルボニルピーク(グルコサミ
ン残基についているものとN−アセチルグルコサミン残
基についているもの2本)が観測され、3位の酸化によ
るケトンの生成などは認められなかった。
The infrared spectroscopy spectrum of the obtained chitosan oxide was measured by the KBr tablet method, and the structure was analyzed. As a result, from the IR spectrum, 1620, 1420 cm
A peak derived from a carboxyl group (sodium salt) was observed near -1 . From these results, it was confirmed that the carboxyl group was introduced by the oxidation of chitosan, and it was also confirmed that the oxidized chitosan was obtained by the deacetylation reaction from the oxidized chitin. Further, the obtained chitosan oxide was completely dissolved in water. This oxidized chitosan was dissolved in heavy water and 13 C-NMR was measured. From the 13 C-NMR spectrum, the peak at the C6 position having a primary hydroxyl group decreases, and in addition to the carbonyl peak of the acetyl group originally possessed by chitosan at 175 to 178 ppm, the carbonyl peak of the introduced carboxyl group (sodium salt) (glucosamine). Those attached to the residue and those attached to the N-acetylglucosamine residue (2) were observed, and formation of a ketone due to oxidation at the 3-position was not observed.

【0029】[0029]

【発明の効果】本発明によれば、温和な反応条件下で簡
便な方法により、キトサンを均一かつ効率よくその構成
単糖であるグルコサミンまたはN−アセチルグルコサミ
ンの2位や3位の炭素を酸化することなく、6位炭素の
みを酸化し、カルボキシル基に変換でき、医薬分野ある
いは化粧品分野など様々な分野において有用な、高い親
水性や幅広いpH領域での水溶性が付与された高純度の
酸化キトサンを得る事ができる。また、これらの、水溶
化した酸化キトサンは、含浸、塗工はもちろん、成形性
にも優れ、繊維、膜など任意の形状に加工できる。ま
た、本発明の酸化キトサンは分子内にカチオン性である
アミンとアニオン性であるカルボキシル基の両方の官能
基を有するため、両性高分子としての利用が期待でき
る。更に、酸化キトサンは天然物由来の高分子で、生成
したウロン酸も安全性が高く、食品、化粧品などの分野
はもちろん、生体材料などとして、医療・医薬分野での
利用も期待できる。
INDUSTRIAL APPLICABILITY According to the present invention, chitosan is uniformly and efficiently oxidized under mild reaction conditions at the 2- and 3-position carbons of its constituent monosaccharides, glucosamine or N-acetylglucosamine. High-purity oxidation with high hydrophilicity and water solubility in a wide pH range, which can oxidize only the 6-position carbon and convert it to a carboxyl group without being used, and is useful in various fields such as the pharmaceutical field or cosmetic field. You can get Chitosan. Further, these water-solubilized chitosan oxides are excellent not only in impregnation and coating but also in moldability, and can be processed into arbitrary shapes such as fibers and membranes. Moreover, since the oxidized chitosan of the present invention has both functional groups of a cationic amine and an anionic carboxyl group in the molecule, it can be expected to be used as an amphoteric polymer. Furthermore, oxidized chitosan is a polymer derived from a natural product, and the produced uronic acid is also highly safe, and it can be expected to be used not only in the fields of foods, cosmetics, etc., but also in the medical and pharmaceutical fields as a biomaterial.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4C090 AA05 BA47 BD04 CA06 CA34 DA23 DA26 4H039 CA65 CC30    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4C090 AA05 BA47 BD04 CA06 CA34                       DA23 DA26                 4H039 CA65 CC30

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】キトサンを酸性水溶液に溶解又は膨潤させ
た後、中和して得られるキトサン溶液を、酸化処理し、
キトサンの構成単糖であるN−アセチルグルコサミン、
またはグルコサミンのピラノース環中、6位炭素を選択
的に酸化しカルボキシル基又はその塩類に変換すること
を特徴とする酸化キトサンの製造方法。
1. A chitosan solution obtained by dissolving or swelling chitosan in an acidic aqueous solution and then neutralizing the solution, and oxidizing the solution.
N-acetylglucosamine, which is a constituent monosaccharide of chitosan,
Alternatively, a method for producing oxidized chitosan, which comprises selectively oxidizing the 6-position carbon in the pyranose ring of glucosamine and converting it into a carboxyl group or a salt thereof.
【請求項2】前記6位炭素を選択的に酸化しカルボキシ
ル基又はその塩類に変換する酸化処理する方法が、N−
オキシル化合物などの触媒の存在下で処理することを特
徴とする請求項1に記載の酸化キトサンの製造方法。
2. A method of oxidation treatment for selectively oxidizing the 6-position carbon to convert it to a carboxyl group or a salt thereof is N-
The method for producing oxidized chitosan according to claim 1, wherein the treatment is performed in the presence of a catalyst such as an oxyl compound.
【請求項3】前記N−オキシル化合物が、2,2,6,
6−テトラメチル−1−ピペリジン−N−オキシルであ
り、水中で臭化アルカリ金属またはヨウ化アルカリ金属
の存在下、次亜ハロゲン酸、亜ハロゲン酸、過ハロゲン
酸およびそれらの塩のうち少なくとも1種の酸化剤を用
いて、アルカリを添加してpHを一定に保ちながら酸化
することを特徴とする請求項1又は2に記載の酸化キト
サンの製造方法。
3. The N-oxyl compound is 2, 2, 6,
6-tetramethyl-1-piperidine-N-oxyl in the presence of an alkali metal bromide or an alkali metal iodide in water, at least one of hypohalous acid, halogenous acid, perhalogenic acid and salts thereof. The method for producing oxidized chitosan according to claim 1 or 2, wherein an alkali is added using a kind of oxidizing agent to perform oxidation while keeping the pH constant.
【請求項4】前記キトサンの酸化が、ハロゲン化アルカ
リ金属の添加量により酸化度を制御できることを特徴と
する請求項3に記載の酸化キトサンの製造方法。
4. The method for producing chitosan oxide according to claim 3, wherein the degree of oxidation of the chitosan can be controlled by the amount of alkali metal halide added.
JP2002016690A 2002-01-25 2002-01-25 Manufacturing process for oxidized chitosan Pending JP2003212903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002016690A JP2003212903A (en) 2002-01-25 2002-01-25 Manufacturing process for oxidized chitosan

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002016690A JP2003212903A (en) 2002-01-25 2002-01-25 Manufacturing process for oxidized chitosan

Publications (1)

Publication Number Publication Date
JP2003212903A true JP2003212903A (en) 2003-07-30

Family

ID=27652673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002016690A Pending JP2003212903A (en) 2002-01-25 2002-01-25 Manufacturing process for oxidized chitosan

Country Status (1)

Country Link
JP (1) JP2003212903A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210115137A (en) * 2020-03-12 2021-09-27 한국화학연구원 Chitosan nanofiber-based bioadhesive composition and preparation method thereof
CN114213719A (en) * 2021-11-10 2022-03-22 河北科技师范学院 Preparation method and application of sulfonated graphene oxide-chitosan composite material
CN114213718A (en) * 2021-11-10 2022-03-22 河北科技师范学院 Preparation method and application of chitosan oxide-graphene oxide composite material
CN115572397A (en) * 2022-09-05 2023-01-06 临沂金锣文瑞食品有限公司 Epsilon-polylysine modified chitosan membrane and application thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210115137A (en) * 2020-03-12 2021-09-27 한국화학연구원 Chitosan nanofiber-based bioadhesive composition and preparation method thereof
KR102366564B1 (en) 2020-03-12 2022-02-23 한국화학연구원 Chitosan nanofiber-based bioadhesive composition and preparation method thereof
CN114213719A (en) * 2021-11-10 2022-03-22 河北科技师范学院 Preparation method and application of sulfonated graphene oxide-chitosan composite material
CN114213718A (en) * 2021-11-10 2022-03-22 河北科技师范学院 Preparation method and application of chitosan oxide-graphene oxide composite material
CN115572397A (en) * 2022-09-05 2023-01-06 临沂金锣文瑞食品有限公司 Epsilon-polylysine modified chitosan membrane and application thereof
CN115572397B (en) * 2022-09-05 2023-09-05 临沂金锣文瑞食品有限公司 Epsilon-polylysine modified chitosan membrane and application thereof

Similar Documents

Publication Publication Date Title
Somorin et al. Studies on chitin. II. Preparation of benzyl and benzoylchitins
JPH02235905A (en) Preparation of activated chitosan and use of activated chitosan for preparing chitosan derivative
JP4984417B2 (en) Method for producing water-soluble polyuronic acid
JP4356289B2 (en) Polysaccharide complex and method for producing the same
Muslim et al. Chitosan and carboxymethyl chitosan from fish scales of Labeo rohita
JP2003321398A (en) Polysaccharide complex and its production method
JP4470410B2 (en) Polysaccharide complex
JP2009068014A (en) Water-soluble oxidized chitin and its producing method
JP5343302B2 (en) Method for producing inclusion complex
JP2003212903A (en) Manufacturing process for oxidized chitosan
JP4254120B2 (en) Method for producing oxidized chitosan
JP5110046B2 (en) Polysaccharide complex and method for producing the same
JP2004002586A (en) Polysaccharide complex and method for producing the same
JP2005015680A (en) Polyglucuronic acid
JP4277473B2 (en) Method for producing oxidized chitosan
JP4254142B2 (en) Method for producing chitin oxide
JP5387554B2 (en) Method for producing composite molded body
JP4411847B2 (en) Method for producing polyuronic acid
JP4221925B2 (en) Method for producing chitin oxide
JP4395573B2 (en) Oxidized chitosan compound
JP5205686B2 (en) Polyglucuronic acid and process for producing the same
JP2003026703A (en) Chintin oxide or chitosan oxide and preparation method thereof
KR19990057607A (en) Chitosan Derivative Manufacturing Method
JP2800984B2 (en) Method for producing cationic cellulose derivative
JP4882082B2 (en) Chitin / chitosan molecularization method