JP2007167937A - Steel sheet for welding - Google Patents

Steel sheet for welding Download PDF

Info

Publication number
JP2007167937A
JP2007167937A JP2005372617A JP2005372617A JP2007167937A JP 2007167937 A JP2007167937 A JP 2007167937A JP 2005372617 A JP2005372617 A JP 2005372617A JP 2005372617 A JP2005372617 A JP 2005372617A JP 2007167937 A JP2007167937 A JP 2007167937A
Authority
JP
Japan
Prior art keywords
welding
residual stress
steel plate
width direction
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005372617A
Other languages
Japanese (ja)
Other versions
JP4315951B2 (en
Inventor
Toru Yamashita
徹 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005372617A priority Critical patent/JP4315951B2/en
Priority to CN2006800404117A priority patent/CN101300087B/en
Priority to KR1020087015423A priority patent/KR101033745B1/en
Priority to PCT/JP2006/325877 priority patent/WO2007074809A1/en
Publication of JP2007167937A publication Critical patent/JP2007167937A/en
Application granted granted Critical
Publication of JP4315951B2 publication Critical patent/JP4315951B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K33/00Specially-profiled edge portions of workpieces for making soldering or welding connections; Filling the seams formed thereby
    • B23K33/004Filling of continuous seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
    • B23K31/022Making profiled bars with soldered or welded seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/235Preliminary treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/18Sheet panels

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel sheet for welding almost free from shape change even after welding. <P>SOLUTION: Compressive residual stress is applied to the inside in the width direction of a steel sheet 1 to be subjected to welding, and tensile residual stress is applied to both the edge parts in the width direction. Microscopically, compressive residual stress is preapplied to the vicinity of the part to be subjected to welding. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、溶接用鋼板に関する。   The present invention relates to a steel plate for welding.

周知の如く、橋梁や船舶等の構造材としては、通常、厚鋼板と呼ばれる鋼板が用いられている。
かかる厚鋼板を製造する際には、熱間圧延機で所定寸法に圧延後、引き続いて、加速冷却装置での水冷による冷却処理を施す。しかしながら、熱間圧延時の温度や水冷開始温度の不均一、さらには、加速冷却装置の水冷ムラに起因する冷却不均一が発生し、それらを原因として冷却後の厚鋼板に残留応力が発生して、曲がりや波打ち等の形状不良になることがあった。
As is well known, steel plates called thick steel plates are usually used as structural materials for bridges and ships.
When manufacturing such a thick steel plate, it is rolled to a predetermined size with a hot rolling mill and subsequently subjected to a cooling process by water cooling with an accelerated cooling device. However, the temperature at the time of hot rolling and the water cooling start temperature are non-uniform, and further, non-uniform cooling due to non-uniform cooling of the accelerating cooling device occurs, which causes residual stress in the thick steel plate after cooling. In some cases, the shape is poor, such as bending or undulation.

残留応力が存在する厚鋼板であると、後加工により多数の条に切断して使用に供するような場合、厚鋼板内に不均一に分布した残留応力が切断によって開放され、条切断された鋼材が曲がってしまう「条曲がり(キャンバ)」という問題が起きていた。
このような「厚鋼板に発生した残留応力」をなくす技術としては、レベラにより、厚鋼板に曲げ歪を与える方法が採用されていた。熱間レベラは形状を矯正する能力は高く、冷間レベラは不均一な残留応力を除去する能力が高いため、矯正する必要のある厚鋼板の状況に応じて、熱間レベラ又は冷間レベラを選択し鋼板矯正を行っていた。
In the case of a thick steel plate with residual stress, when it is used after being cut into a number of strips by post-processing, the residual stress unevenly distributed in the thick steel plate is released by cutting, and the strip is cut. The problem of “curving” (cambering) that would be bent occurred.
As a technique for eliminating such “residual stress generated in a thick steel plate”, a method of applying a bending strain to the thick steel plate by a leveler has been adopted. The hot leveler has a high ability to correct the shape, and the cold leveler has a high ability to remove non-uniform residual stress, so the hot leveler or the cold leveler can be used depending on the situation of the thick steel plate that needs to be corrected. Selected and straightened the steel plate.

一方、レベラ矯正を行った厚鋼板であっても、それらを橋梁や船舶等の溶接用の構造材(溶接用鋼板)として用いた場合には、溶接に伴う材料収縮が当該溶接用鋼板に発生し、その形状が大きく変形することが当業者の間では広く知られていた。
図16には、その変形の状況が示されている。例えば、特許文献1などの技術を採用して製造され鋼板長手方向の残留応力が板幅方向にほぼ0となっている溶接用鋼板を、橋梁や船舶等の構造材として用いることを想定し、その幅方向内部に対し長手方向(図の上下方向)にリブ取り付けの溶接を行うことを考える。
On the other hand, even if they are leveled steel plates, when they are used as welding structural materials (steel plates for welding) such as bridges and ships, material shrinkage due to welding occurs in the welding steel plates. However, it has been widely known among those skilled in the art that the shape is greatly deformed.
FIG. 16 shows the state of the deformation. For example, assuming that a steel plate for welding, which is manufactured by adopting a technique such as Patent Document 1 and the residual stress in the longitudinal direction of the steel plate is approximately 0 in the plate width direction, is used as a structural material such as a bridge or a ship, Consider performing rib attachment welding in the longitudinal direction (vertical direction in the figure) with respect to the inside in the width direction.

その結果、図16(b)に示すように、溶接前には長方形であった溶接用鋼板が、3条の溶接後には、幅方向端部より中央部が長手方向に大きく収縮し、溶接用鋼板の上下辺が凹状に変形する。その理由は、溶接された部分に関しては、溶接時に一旦材料が溶融しその後再度凝固するが、その際に凝固部には材料収縮が発生して縮もうとするからである。
すなわち、条切断後の変形を抑制するために残留応力を略0とした厚鋼板であっても、それを溶接用鋼板として採用した場合、材料収縮に起因する変形が生じることがあり、非常に大きな問題となっていた。
As a result, as shown in FIG. 16 (b), the welding steel plate, which was rectangular before welding, contracted greatly in the longitudinal direction in the longitudinal direction from the end in the width direction after the three strips were welded. The upper and lower sides of the steel plate are deformed into a concave shape. The reason for this is that, regarding the welded portion, the material once melts at the time of welding and then solidifies again, but at that time, the material shrinkage occurs in the solidified portion and tries to shrink.
That is, even if it is a thick steel plate with a residual stress of approximately 0 in order to suppress deformation after cutting, if it is used as a steel plate for welding, deformation due to material shrinkage may occur. It was a big problem.

従来、このような変形を回避するために、当該変形を見越した寸法取りが行われているが、溶着するリブやフランジの形状により、溶接用鋼板の変形量は様々であって、予測が非常に難しかった。加えて、変形量が予測できたとしても、長方形から大きく変形した溶接用鋼板を互いに水平又は直角に付き合わせて溶接する場合、両鋼板間には大きな隙間(例えば3mm以上)が生じ溶接作業が困難となって、鋼板の切り直しを行う必要性が生じていた。特に、板厚が25mm以下の溶接用鋼板については、溶接に伴う材料収縮が大きく、切り直し加工がほとんどの場合必要とされていた。   Conventionally, in order to avoid such deformation, dimensions have been taken in anticipation of such deformation, but depending on the shape of the welded rib or flange, the deformation amount of the steel plate for welding varies, and prediction is extremely difficult. It was difficult. In addition, even if the amount of deformation can be predicted, when welding steel plates greatly deformed from a rectangle are welded horizontally or perpendicularly to each other, a large gap (for example, 3 mm or more) is generated between the two steel plates, resulting in a welding operation. It became difficult, and the necessity to re-cut a steel plate had arisen. In particular, for a steel plate for welding having a plate thickness of 25 mm or less, material shrinkage due to welding is large, and re-cutting is required in most cases.

特許文献1には、上述した溶接時の変形に着目した技術が開示されている。この技術は、熱間レベラにより熱間矯正された厚鋼板の表面の温度分布を温度計により測定し、コンピュータにより厚鋼板の温度分布から残留応力分布等を演算し、この残留応力分布から溶接時の変形量のばらつきを表す所定のパラメータを演算するものとなっている。さらに、ユーザーの溶接条件等に応じてあらかじめ設定されている許容値とパラメータとを比較し、パラメータが許容範囲内にないときは、レベラや熱処理炉を用いて残留応力を低減させるものである。
特開2001−316757号公報
Patent Document 1 discloses a technique that focuses on the above-described deformation during welding. In this technology, the temperature distribution on the surface of a thick steel plate hot-corrected by a hot leveler is measured with a thermometer, and the residual stress distribution is calculated from the temperature distribution of the thick steel plate by a computer. A predetermined parameter representing the variation of the deformation amount is calculated. Further, the allowable value set in advance according to the welding conditions of the user and the parameter are compared, and if the parameter is not within the allowable range, the residual stress is reduced using a leveler or a heat treatment furnace.
JP 2001-316757 A

しかしながら、特許文献1は、溶接したときの変形量のバラツキが一定範囲内となるようにする技術であって、溶接に伴う変形量をゼロ若しくは最小にするためのものとはなっていない。仮に変形量のバラツキを一定範囲内とできたとしても、前述した如く、溶接後の変形が生じた鋼板を互いに付き合わせて溶接する場合、両者間に隙間が生じてしまえば、切り直し等の必要性が生じることは否めない。   However, Patent Document 1 is a technique for causing variation in deformation amount when welding is within a certain range, and is not intended to minimize or minimize the deformation amount associated with welding. Even if the variation in the amount of deformation can be within a certain range, as described above, when welding steel plates that have undergone deformation after welding, if there is a gap between them, re-cutting etc. There is no denying the need arises.

そこで、上記問題点を鑑み、本発明は、溶接後も矩形形状変化がほとんど生じない技術を明らかとし、その技術を適用した溶接用鋼板を提供することを目的とする。   Therefore, in view of the above problems, an object of the present invention is to clarify a technique in which a rectangular shape change hardly occurs after welding, and to provide a welding steel plate to which the technique is applied.

前記目的を達成するため、本発明においては以下の技術的手段を講じた。
すなわち、本発明にかかる溶接用鋼板は、幅方向内部に長手方向を向く溶接が施される溶接用鋼板であって、前記幅方向内部に対しては予め圧縮の残留応力が付与され、幅方向両端部に対しては予め引張の残留応力が付与されていることを特徴とする。
本願発明者らは、溶接後も矩形形状変化がほとんど無い溶接用鋼板(以下、鋼板と呼ぶこともある)を開発すべく、実験・研究を行い、溶接に起因する変形は、溶接が施される鋼板の内側に存在する残留応力が関係していると考えるに至った。
In order to achieve the above object, the present invention takes the following technical means.
That is, the steel plate for welding according to the present invention is a steel plate for welding that is welded in the width direction inside in the longitudinal direction, and is provided with a compressive residual stress in the width direction inside in advance. A tensile residual stress is applied to both ends in advance.
The inventors of the present application conducted experiments and research in order to develop a steel plate for welding (hereinafter sometimes referred to as a steel plate) that hardly changes in rectangular shape even after welding, and the deformation caused by welding is subjected to welding. It came to be thought that the residual stress existing inside the steel plate is related.

そこで、まず、鋼板内の残留応力を熱的な方法で低減したり、熱間レベラや冷間レベラを用いてほぼ0まで均一化した鋼板を準備し、図1(b)のような条跡で溶接実験を行った。
その実験により、
(i)ほとんどの鋼板がその端部に比して、中央部の方が長手方向の収縮量が大きくなる、
(ii)鋼板間での収縮量のバラツキは、残留応力を低減した鋼板の方が一様に小さい、
との結果を得た。
Therefore, first, the residual stress in the steel sheet is reduced by a thermal method, or a steel sheet that is made uniform to almost zero using a hot leveler or a cold leveler is prepared, and the trace as shown in FIG. A welding experiment was conducted.
From that experiment,
(i) Most steel sheets have a greater amount of contraction in the longitudinal direction at the center than at their edges,
(ii) The variation in the amount of shrinkage between the steel plates is uniformly smaller in the steel plates with reduced residual stress,
And got the result.

この結果より、本願発明者らは「溶接に伴う収縮量に対して、残留応力が何らかの関係で影響している」ことを突き止めるに至った。
次に、本願発明者らは、溶接後の鋼板の非変形度合い(溶接前に長方形状であったものが、溶接後もその形状を維持するか否か)という観点から溶接実験を行ってみた。その結果、残留応力を制御していない鋼板の幾つかは、残留応力を略0にコントロールした鋼板より、非変形度合いが優れていた。その好ましい性質を有する鋼板の残留応力分布を調査した結果、図1(a)の如く「鋼板の幅方向両端部に引張応力、幅方向内部に圧縮応力が残存している」であった。
From this result, the present inventors have come to ascertain that “the residual stress has some influence on the amount of shrinkage accompanying welding”.
Next, the inventors of the present application conducted a welding experiment from the viewpoint of the degree of non-deformation of the steel sheet after welding (whether the shape was rectangular before welding but does not maintain its shape after welding). . As a result, some of the steel sheets whose residual stress was not controlled were more excellent in non-deformation than the steel sheets whose residual stress was controlled to approximately zero. As a result of investigating the residual stress distribution of the steel sheet having the desirable properties, as shown in FIG. 1 (a), "the tensile stress remains at both ends in the width direction of the steel sheet and the compressive stress remains inside the width direction".

この結果に基づき、本発明にかかる溶接用鋼板を、溶接が施される幅方向内部に圧縮の残留応力が付与され、幅方向両端部に引張の残留応力が付与されているものとしている。この鋼板は溶接後も形状変化がほとんど生じず矩形形状を維持する。
かかる残留応力分布は、鋼板に対してマクロ視的なものであるため、本願発明者らは、ミクロ視的な観点から検討を重ねた。その結果、リブやフランジ取り付けの溶接を行った際には、ガス炎やアーク放電により溶融した材料部分が冷えて再び凝固する際に収縮し、その収縮に起因する引張応力が発生し、鋼板の長手方向の変形が生じるというメカニズムを明らかにした。
Based on this result, the steel sheet for welding according to the present invention is such that compressive residual stress is applied to the inside in the width direction where welding is performed, and tensile residual stress is applied to both ends in the width direction. This steel plate maintains a rectangular shape with little change in shape after welding.
Since the residual stress distribution is macroscopic with respect to the steel sheet, the inventors of the present application have repeatedly studied from a microscopic viewpoint. As a result, when the rib or flange is welded, the material part melted by the gas flame or arc discharge is cooled and solidified again, and tensile stress resulting from the shrinkage is generated. Clarified the mechanism of longitudinal deformation.

そこで、図2に示すように、溶接が施される部位の近傍に、前記引張応力に抗する圧縮の残留応力が予め付与されておれば良いとの考えに達し、このような残留応力分布を有する溶接用鋼板であれば、溶接後は、収縮変形は生じるものの矩形からの変形度が少ない(矩形形状を維持している)ことを明らかにした。
この考えに基づき、本発明にかかる溶接用鋼板を、溶接が施される部位の近傍に予め圧縮の残留応力が付与されているものとしている。この鋼板は溶接後も形状変化がほとんど生じない。
Therefore, as shown in FIG. 2, the inventors have reached the idea that a compressive residual stress against the tensile stress should be provided in the vicinity of a portion to be welded, and such residual stress distribution is expressed as follows. It has been clarified that the welded steel sheet has a small degree of deformation from the rectangle (maintains the rectangular shape) after the welding, although shrinkage deformation occurs.
Based on this idea, the steel sheet for welding according to the present invention is preliminarily provided with compressive residual stress in the vicinity of the portion to be welded. This steel plate hardly changes in shape after welding.

なお、本願発明者らはコンピュータシミュレーション実験などを通して、前記溶接が施される部位が、幅方向端部から100mm以上離れた場所に位置する場合、当該溶接が施される部位の幅方向両側であって50mm〜100mmの領域に予め圧縮の残留応力が付与されていて、前記圧縮の残留応力の値が0MPa〜50MPaとするとよいことを明らかにしている。   In addition, the inventors of the present application, through computer simulation experiments, and the like, when the site to be welded is located at a location 100 mm or more away from the end in the width direction, both sides in the width direction of the site to be welded. It is clear that compressive residual stress is applied in advance to the region of 50 mm to 100 mm, and the value of the compressive residual stress is preferably 0 MPa to 50 MPa.

また、前記溶接が施される部位が、幅方向端部から50mm以内の場所に位置する場合、当該溶接が施される部位の幅方向内部側であって50mm〜100mmの領域に予め圧縮の残留応力が付与されていて、前記圧縮の残留応力の値が0MPa〜50MPaとするとよいことを明らかにしている。
また、前記溶接が施される部位が、幅方向端部から50mm〜100mmの場所に位置する場合、当該溶接が施される部位の幅方向内部側であって50mm〜100mmの領域及び溶接が施される部位の幅方向端部側であって50mm以上の領域に予め圧縮の残留応力が付与されていて、前記圧縮の残留応力の値が0MPa〜50MPaとするとよいことを明らかにしている。
Moreover, when the site | part to which the said welding is performed is located in the place within 50 mm from the width direction edge part, it is a compression inside in the area | region of 50 mm-100 mm inside the width direction of the site | part to which the said welding is performed. It is clarified that stress is applied and the value of the residual stress of compression is preferably 0 MPa to 50 MPa.
In addition, when the part to be welded is located at a position of 50 mm to 100 mm from the end in the width direction, the region on the inner side in the width direction of the part to be welded and a region of 50 mm to 100 mm and welding are performed. It has been clarified that compressive residual stress is applied in advance to a region of 50 mm or more on the width direction end portion side of the portion to be formed, and the value of the compressive residual stress is 0 MPa to 50 MPa.

なお好ましくは、前記圧縮の残留応力のバラツキが±10MPa以下とするとよい。   Preferably, the variation in the residual stress of the compression is ± 10 MPa or less.

本発明の溶接用鋼板を用いることで、溶接後の材料収縮を当該鋼板の板幅方向に沿って略均一にすることができる。   By using the steel plate for welding of the present invention, material shrinkage after welding can be made substantially uniform along the plate width direction of the steel plate.

以下、本発明にかかる溶接用鋼板を、図を基に以下説明する。
図1,図2には、本発明にかかる溶接用鋼板1が示されている。
図1(a)に示すように、溶接用鋼板1(以下、単に鋼板と呼ぶこともある)は、幅方向断面の残留応力を計測した場合、幅方向内部に圧縮の残留応力が付与され、幅方向両側部に引張の残留応力が付与されているものである。その応力分布曲線は下に凸の台形状となっている。
Hereinafter, the steel sheet for welding concerning this invention is demonstrated below based on a figure.
1 and 2 show a steel plate 1 for welding according to the present invention.
As shown in FIG. 1 (a), the welding steel plate 1 (hereinafter sometimes simply referred to as a steel plate) is provided with compressive residual stress in the width direction when the residual stress in the cross section in the width direction is measured. Tensile residual stress is applied to both sides in the width direction. The stress distribution curve has a downward trapezoidal shape.

この鋼板1で規定される残留応力は、板厚方向の平均値であって、板厚方向の残留応力分布は如何様であってもかまわない。また、引張残留応力の積算値と圧縮残留応力の積算値とはほぼ等しく、鋼板1全体での残留応力値は略ゼロとなっている。
図2(a)には、このような残留応力分布を備える鋼板1の幅方向内部に対し、その長手方向(鋼板圧延方向)にリブ2を溶接した状況を示している。
The residual stress defined by the steel plate 1 is an average value in the plate thickness direction, and the residual stress distribution in the plate thickness direction may be anything. Further, the integrated value of the tensile residual stress and the integrated value of the compressive residual stress are substantially equal, and the residual stress value in the entire steel sheet 1 is substantially zero.
FIG. 2A shows a situation in which the rib 2 is welded in the longitudinal direction (steel plate rolling direction) with respect to the inside in the width direction of the steel plate 1 having such residual stress distribution.

この状況をミクロ視したもの(溶接部W近傍のみを見たもの)が、図2(b)である。この図からわかるように、溶接部Wは、ガス炎やアークにより一旦溶融し、当初からあった圧縮残留応力がキャンセルされる。その後、溶融部Wが凝固するにつれ材料収縮が発生するが、かかる溶接部Wはその周囲の鋼板により拘束されているため、引張の残留応力が残存する部位となり、この材料収縮や残留する引張応力に起因して、鋼板の長手方向の変形が生じる。   FIG. 2B shows a microscopic view of this situation (only the vicinity of the weld W is seen). As can be seen from this figure, the weld W is once melted by a gas flame or an arc, and the compressive residual stress from the beginning is canceled. Thereafter, as the melted portion W solidifies, material shrinkage occurs. However, since the welded portion W is constrained by the surrounding steel plate, it becomes a portion where residual tensile stress remains, and this material shrinkage and residual tensile stress remain. Due to the above, deformation in the longitudinal direction of the steel sheet occurs.

ところが、溶接部W(収縮部)の幅方向外側には、予め圧縮残留応力が付与されていて、前記材料収縮を起こさせない状況となっている。ゆえに、鋼板1全体としても長手方向の収縮は起こっていない。
[シミュレーション実験および結果]
次に、本実施形態の鋼板1に予め付与される圧縮残留応力の具体的な値について説明する。
However, a compressive residual stress is applied in advance to the outer side in the width direction of the welded portion W (shrinkage portion), and the material shrinkage is not caused. Therefore, contraction in the longitudinal direction does not occur in the steel plate 1 as a whole.
[Simulation experiments and results]
Next, the specific value of the compressive residual stress given beforehand to the steel plate 1 of this embodiment is demonstrated.

本願発明人らは、溶接時に変形の少ない鋼板を得るべく、熱弾塑性3次元FEMモデルを用いて、リブ溶接した際の鋼板1の変形挙動を詳細に調べてみた。
図3に示すように、モデル実験で用いた鋼板1のサイズは、厚さ16mm、幅2000mm、長さ500mmである。取り付けたリブ2の形状は、厚さ15mm、幅(高さ)150mm、長さ500mmであり、取り付けリブ数を1〜5本の範囲で可変とした。
The inventors of the present application examined in detail the deformation behavior of the steel sheet 1 when rib-welded using a thermoelastic-plastic three-dimensional FEM model in order to obtain a steel sheet with little deformation during welding.
As shown in FIG. 3, the steel plate 1 used in the model experiment has a thickness of 16 mm, a width of 2000 mm, and a length of 500 mm. The shape of the attached rib 2 was 15 mm in thickness, 150 mm in width (height), and 500 mm in length, and the number of attachment ribs was variable in the range of 1 to 5.

溶接が施される鋼板1として、(i)通常鋼(残留応力制御無し)、(ii)残留応力低減鋼(幅方向内部の残留応力値が5MPa)、(iii)無残留応力鋼(全く残留応力が存在しない理想的な鋼板)の3つを用いた。
リブ溶接の条件として、溶接による入熱量を1.7kJ/mm(320A×32V×24cm/min.)、溶接脚長(ウィービング幅)を8mmの一般的なものとした。この溶接条件は、鋼板の厚さやリブ2の厚みが変化してもほとんど同じである。
As steel plate 1 to be welded, (i) normal steel (no residual stress control), (ii) residual stress reduced steel (residual stress value in the width direction is 5 MPa), (iii) no residual stress steel (no residual stress) Three ideal steel plates without stress) were used.
As conditions for rib welding, the heat input by welding was set to 1.7 kJ / mm (320 A × 32 V × 24 cm / min.), And the welding leg length (weaving width) was set to 8 mm. This welding condition is almost the same even if the thickness of the steel plate and the thickness of the rib 2 are changed.

この条件の下、リブ2を溶接した際に発生する残留応力の値や、リブ溶接後における溶接部Wの周囲への影響等を確認した。
その結果、
(i) リブ溶接によって、溶接部Wには約300MPaの引張残留応力が発生する
(ii) リブ溶接によって、初期残留応力が変化する領域(熱影響領域)はリブ溶接位置の両側±50mm
(iii) 溶接部Wの材料収縮が周囲に与える影響は圧縮応力の増加であり、リブ本数により、その影響度は変化する(6MPa/本)
以上のことを鑑み、本願発明者らは、溶接後に形状変化の少ない鋼板を得るための条件を、実験条件を変えてシミュレーションを行った。
Under these conditions, the value of residual stress generated when the rib 2 was welded, the influence on the periphery of the weld W after the rib welding, and the like were confirmed.
as a result,
(i) A tensile residual stress of about 300 MPa is generated in the weld W by rib welding.
(ii) The area where the initial residual stress changes due to rib welding (heat affected area) is ± 50 mm on both sides of the rib welding position.
(iii) The effect of material shrinkage of the welded portion W on the surroundings is an increase in compressive stress, and the degree of influence varies depending on the number of ribs (6 MPa / piece).
In view of the above, the inventors of the present invention performed a simulation by changing the experimental conditions to obtain a steel sheet with little shape change after welding.

その結果、リブ溶接の位置が鋼板1の端部から100mm以上の内側(幅方向内部側)の場合、リブ溶接の位置を基準として、−100〜−50mm及び50〜100mmの領域(溶接部Wの両側50〜100mmの領域)において、予め圧縮の残留応力が付与され、その値が0MPa〜50MPaの範囲にあればよいことを突き止めるに至った。
ゆえに、図4(a)に示すような初期残留応力分布を有する鋼板であれば、リブ溶接後に上記条件を満たすことになり、溶接後に形状変化が少ない鋼板となる。また、溶接部Wは、一旦溶融状態となり、残留応力がキャンセルされるため、図4(b)に示すように、リブ溶接位置の初期残留応力が−50MPa以下(例えば−70MPa)であっても構わない。しかしながら、リブ2が取り付けられる位置は厳密に定まっている訳ではないので、図4(a)の残留応力分布とすることが好ましい。
As a result, when the position of the rib welding is 100 mm or more inside (width direction inner side) from the end of the steel plate 1, regions of −100 to −50 mm and 50 to 100 mm (welded portion W) with respect to the position of the rib welding. In the region of 50 to 100 mm on both sides), a compressive residual stress was previously applied, and it was found that the value should be in the range of 0 MPa to 50 MPa.
Therefore, if it is a steel plate which has an initial residual stress distribution as shown to Fig.4 (a), it will satisfy | fill the said conditions after rib welding, and will become a steel plate with few shape changes after welding. Further, since the welded portion W is once melted and the residual stress is canceled, as shown in FIG. 4B, even if the initial residual stress at the rib welding position is −50 MPa or less (for example, −70 MPa). I do not care. However, since the position to which the rib 2 is attached is not strictly determined, it is preferable that the residual stress distribution shown in FIG.

リブ溶接の位置が、鋼板1の端部から50mm以内の場合、リブ溶接の位置より内部側(幅方向内部側)50〜100mmの領域に、予め圧縮の残留応力が付与されており、その値が0MPa〜50MPaの範囲にあればよいことを突き止めた。ゆえに、図4(c)に示す実線や破線のような初期残留応力分布を有する鋼板であれば、リブ溶接後に上記条件を満たすことになり、溶接後に形状変化が少ない鋼板となる。   When the position of rib welding is within 50 mm from the end of the steel plate 1, compressive residual stress is applied in advance to the region 50 to 100 mm on the inner side (inner side in the width direction) from the position of rib welding. Has been found to be in the range of 0 MPa to 50 MPa. Therefore, if the steel sheet has an initial residual stress distribution as shown by a solid line or a broken line in FIG. 4 (c), the above condition is satisfied after rib welding, and the steel sheet has little shape change after welding.

また、リブ2の取り付け位置が、鋼板1の端部から50mm〜100mmの範囲にある場合、リブ2の取り付け位置より内部側(幅方向内部側)50〜100mmの領域に予め0MPa〜50MPaの範囲の圧縮の残留応力が付与されており、同時に、リブ2の取り付け位置より鋼板外側(幅方向端部側)50mm以上の領域に0MPa〜50MPaの圧縮の残留応力が予め付与されているとよいことを突き止めるに至った。ゆえに、図4(d)に示す実線や破線のような初期残留応力分布を有する鋼板であれば、溶接後に上記条件を満たすことになり、溶接後に形状変化が少ない鋼板となる。   Moreover, when the attachment position of the rib 2 exists in the range of 50 mm-100 mm from the edge part of the steel plate 1, it is the range of 0-50 MPa beforehand in the area | region of 50-100 mm inside (width direction inner side) from the attachment position of the rib 2. The compressive residual stress of 0 MPa to 50 MPa is preferably applied in advance to a region of 50 mm or more outside the steel plate (width direction end side) from the attachment position of the rib 2. I came to find out. Therefore, if the steel sheet has an initial residual stress distribution such as a solid line or a broken line shown in FIG. 4 (d), the above condition is satisfied after welding, and the steel sheet has little shape change after welding.

なお、溶接部Wは、一旦溶融状態となり、初期の残留応力がキャンセルされるため、図4(d)の実線の如く、リブ溶接位置の初期残留応力が−50MPa以下(例えば−70MPa)であっても構わない。
本願発明者らは、圧縮の残留応力のバラツキが±10MPa以下であると非常に良好な結果(溶接の後の変形が少ない)を得ることができることを明らかにしている。
Since the welded portion W is once melted and the initial residual stress is canceled, the initial residual stress at the rib welding position is −50 MPa or less (for example, −70 MPa) as shown by the solid line in FIG. It doesn't matter.
The inventors of the present application have revealed that very good results (less deformation after welding) can be obtained when the variation in compressive residual stress is ± 10 MPa or less.

以上述べた図4は、変形の少ない鋼板に初期に付与された残留応力分布をミクロ視したものであるが、図5には、初期残留応力分布をマクロ視したもの(鋼板の幅方向全体での分布)を記している。図1(a)も同様に初期残留応力分布をマクロ視したものである。
本願発明にかかる鋼板は、溶接が施される部位の近傍に予め圧縮の残留応力が付与され、図5(a)〜図5(c)に示すように、リブ2取り付け位置に対応して前述した条件を満たす圧縮応力(溶接部Wの両側50〜100mmの領域で0MPa〜50MPaの初期残留圧縮応力)が付与されている。加えて、鋼板1全体として残留応力の値が略0であるため、圧縮の残留応力を打ち消す引張の残留応力も付与されている。ゆえに、残留応力分布は幅方向に凸凹状となっている。
FIG. 4 described above is a microscopic view of the residual stress distribution initially applied to a steel plate with little deformation, but FIG. 5 is a macro view of the initial residual stress distribution (in the entire width direction of the steel plate). Distribution). FIG. 1A also shows the macroscopic view of the initial residual stress distribution.
The steel sheet according to the present invention is preliminarily provided with compressive residual stress in the vicinity of the portion to be welded, and corresponds to the attachment position of the rib 2 as shown in FIGS. 5 (a) to 5 (c). Compressive stress satisfying the above conditions (initial residual compressive stress of 0 MPa to 50 MPa in the region of 50 to 100 mm on both sides of the weld W) is applied. In addition, since the residual stress value of the steel plate 1 as a whole is substantially 0, a tensile residual stress that cancels the compressive residual stress is also applied. Therefore, the residual stress distribution is uneven in the width direction.

しかしながら、鋼板1のどの位置にリブ溶接が施されるかは、本発明にかかる鋼板1を製造する時点では厳密にはわからないことが多い。これは、ユーザーで鋼板1のトリミング切断を実施する場合が大多数であり、工場出荷ままをそのまま部材として使用するケースは少ない等の事情によるためである。したがって、リブ2取り付け位置に対応して前述した条件を満たす圧縮応力が付与されていると共に、図1(a)のように、長手方向を向く溶接が施される幅方向内部に対しては圧縮の残留応力、幅方向両端部に対しては引張の残留応力となっている応力分布を備える鋼板1であることが非常に好ましい。なお、鋼板1の幅方向内部とは、リブ溶接が行われる部位のことであり、前述の如く鋼板1の端部から100mm以上の内側であってもよいが、鋼板1の端部から200mm以上の内側としても何ら問題はない。   However, it is often not exactly known at which point of the steel plate 1 the rib welding is performed at the time of manufacturing the steel plate 1 according to the present invention. This is because the majority of cases where the user performs trimming cutting of the steel sheet 1 and there are few cases where the factory shipment is used as it is as a member. Accordingly, a compressive stress that satisfies the above-described conditions is applied corresponding to the attachment position of the rib 2, and as shown in FIG. It is very preferable that the steel sheet 1 has a residual stress and a stress distribution that is a tensile residual stress at both ends in the width direction. The inside in the width direction of the steel plate 1 is a portion where rib welding is performed, and may be inside 100 mm or more from the end of the steel plate 1 as described above, but 200 mm or more from the end of the steel plate 1. There is no problem even inside.

[残留応力測定の方法]
なお、鋼板1の残留応力を計測するにあたり、その測定方法は数々採用することが可能である。例えば、(i)対象とする鋼板に穴を穿ち、その部位に直接歪ゲージを貼り付け、この歪ゲージにより残留応力値を測定する方法(穿孔法)、(ii)熱間矯正が完了した時点における鋼板の表面温度分布と、冷間レベラによる押し込み量等とを基に、残留応力の板厚方向の平均値を求める方法などがある。
本実施形態では、穿孔法を用いて初期の残留応力を計測するようにしている。具体的には、対象鋼板の幅方向両端部から100mmピッチで分割試験片(条片)を考え、当該分割試験片の中心線上且つ長手方向の端部から、「鋼板を矯正した冷間レベラのロール中心間距離+100mm」の位置に歪ゲージを貼り付けるようにしている。
[実験例]
図6〜図10には、前述した条件を満たす残留応力分布が付与された鋼板1(本発明鋼1と呼ぶこともある)に対し、その長手方向に5条のリブ2を溶接で取りつけ、その時の板長手方向の矩形変形度δを求めた実験結果が示されている。なお、図6〜図10中の◆は穿孔法用いて実測した残留応力値であり、実線は鋼板1の温度分布や矯正条件を考慮して算出した計算残留応力値を示す。
[Method of measuring residual stress]
In measuring the residual stress of the steel sheet 1, a number of measuring methods can be employed. For example, (i) a method of drilling holes in a target steel plate, attaching a strain gauge directly to the part, and measuring the residual stress value with this strain gauge (drilling method), (ii) when hot straightening is completed There is a method for obtaining an average value of residual stress in the thickness direction based on the surface temperature distribution of the steel plate and the amount of indentation by a cold leveler.
In the present embodiment, the initial residual stress is measured using a drilling method. Specifically, considering split test pieces (strips) at 100 mm pitches from both ends in the width direction of the target steel plate, from the end in the longitudinal direction on the center line of the split test piece, A strain gauge is affixed at a position “roll center distance + 100 mm”.
[Experimental example]
In FIGS. 6 to 10, five ribs 2 are attached by welding in the longitudinal direction to a steel sheet 1 (sometimes referred to as the present invention steel 1) provided with a residual stress distribution that satisfies the above-described conditions. The experimental results of obtaining the rectangular deformation degree δ in the plate longitudinal direction at that time are shown. 6 to 10 are residual stress values actually measured using the drilling method, and a solid line indicates a calculated residual stress value calculated in consideration of the temperature distribution of the steel sheet 1 and the correction conditions.

本発明鋼1は、各図(d)のようであって、幅方向両端部から100mm以上内側の残留応力値が、0MPa〜ー50MPaとなっている。比較例として、従来鋼(通常鋼であって残留応力の制御無し、各図(a))と、残留応力低減鋼(各図(b))と、通常矯正鋼(従来鋼をレベラー等で矯正した鋼、各図(c))にリブ溶接を施している。
リブ2を溶接した鋼板1は5種類あり、その板厚は12,16,22,28,34mmであって、幅は2000mm、長さ9000mmである。取り付けたリブ2の形状はシミュレーション実験と同様で、厚さ15mm、幅(高さ)150mm、長さ9000mmであった。
The steel 1 of the present invention is as shown in each figure (d), and the residual stress value 100 mm or more inside from both ends in the width direction is 0 MPa to −50 MPa. As comparative examples, conventional steel (regular steel with no residual stress control, each figure (a)), residual stress reduced steel (each figure (b)), and regular straightened steel (conventional steel is straightened with a leveler, etc.) Steel, each figure (c)) is rib welded.
There are five types of steel plates 1 to which the ribs 2 are welded. The plate thicknesses are 12, 16, 22, 28, 34 mm, the width is 2000 mm, and the length is 9000 mm. The shape of the attached rib 2 was the same as in the simulation experiment, and was 15 mm thick, 150 mm wide (height), and 9000 mm long.

鋼板1の矩形変形度δは、例えば、図1(b)の鋼板1において、上下(圧延方向)どちらか一方の縁部の収縮量を左右(幅方向)どちらかの一方の端面を基準として測定し、長さ10m当りの値に換算したものとする。本実験例では、矩形変形度δの上限値を1.2mmとする。なぜならば、溶接が可能な鋼板ギャップは約3mm(鋼板一枚あたりでは約1.5mm)ということが現場の実績より明らかとなっているからである。   The rectangular deformation degree δ of the steel plate 1 is, for example, in the steel plate 1 of FIG. 1B, with the shrinkage amount of either one of the upper and lower (rolling direction) edges as the reference on either the left or right (width direction) end surface. Measured and converted to a value per 10 m length. In this experimental example, the upper limit value of the rectangular deformation degree δ is 1.2 mm. This is because it is clear from the actual results of the field that the steel plate gap that can be welded is about 3 mm (about 1.5 mm per one steel plate).

図6〜図10の結果からわかるように、全ての板厚において、本発明鋼1は、矩形変形度δが1.2mm以下となっていることがわかる。
幅方向中心部と両端部に圧縮応力が残存し、前記中心部と両端部との間の領域に引張応力が残存する従来鋼では、全ての板厚において1.5mm以上の矩形変形度δが生じ、溶接用としては不適切であることが明らかとなった。
As can be seen from the results of FIGS. 6 to 10, it can be understood that the rectangular deformation degree δ of the steel 1 of the present invention is 1.2 mm or less at all plate thicknesses.
In the conventional steel in which compressive stress remains in the center and both ends in the width direction and tensile stress remains in the region between the center and both ends, a rectangular deformation δ of 1.5 mm or more is obtained in all plate thicknesses. It was revealed that it was inappropriate for welding.

板幅方向において50MPa以下の残留引張応力が存在する残留応力低減鋼や通常矯正鋼では、矩形変形度δが1mm〜3mmとなり長手方向の収縮量が大きく、溶接用としては不適切である。
また、従来鋼等においては、幅方向内部の収縮量が両端部に比して非常に大きいものとなっている。一方、本発明鋼1では、幅方向での矩形変形度δは略同じ値であって矩形形状を維持しているため、当該本発明鋼1を付き合わせて溶接を行う場合に、付き合わせた鋼板1,1間の隙間が幅方向の位置によって異なるといった不都合が生じにくく、溶接が非常に行いやすい。
Residual stress-reduced steel or normal straightened steel having a residual tensile stress of 50 MPa or less in the plate width direction has a rectangular deformation degree δ of 1 mm to 3 mm and a large amount of shrinkage in the longitudinal direction, which is inappropriate for welding.
Further, in the conventional steel or the like, the amount of contraction inside the width direction is very large compared to both end portions. On the other hand, in the steel 1 of the present invention, the rectangular deformation degree δ in the width direction is substantially the same value and maintains the rectangular shape. Inconvenience that the gap between the steel plates 1 and 1 differs depending on the position in the width direction hardly occurs, and welding is very easy to perform.

本願発明者らは、以上の実験に加え、様々な板厚の本発明鋼1や、残留応力の分布形状は略同一であるものの応力値が異なる本発明鋼1に対して、長手方向に5条のリブ2を溶接で取りつけ矩形変形度δを求めた。その結果を、図11,図12に示している。
図11からわかるように、実用上問題ない矩形変形度δ(<1.2mm)となるためには、鋼板1の幅方向内部に付与された圧縮の残留応力が0MPa〜70MPa、好ましくは0MPa〜50MPaであるとよい。かかる点はコンピュータシミュレーションの結果と一致するものである。
In addition to the above experiments, the inventors of the present invention have 5 in the longitudinal direction for the steel 1 of the present invention having various thicknesses and the steel 1 of the invention in which the residual stress distribution shape is substantially the same but the stress value is different. The rib 2 of the strip was attached by welding to obtain a rectangular deformation degree δ. The results are shown in FIGS.
As can be seen from FIG. 11, in order to achieve a rectangular deformation degree δ (<1.2 mm) that is not problematic in practice, the compressive residual stress applied to the inside in the width direction of the steel plate 1 is 0 MPa to 70 MPa, preferably 0 MPa to It is good that it is 50 MPa. This is consistent with the results of computer simulation.

図12は、溶接実験の複数の結果を、平均残留応力が(i)−40〜−20MPa、(ii)−20〜0MPa、(iii)0〜20MPa、(iv)20〜40MPaの4種類に区分けして、その板厚と矩形変形度δとの関係を示した図である。この図から明らかなように、本発明鋼1に属する鋼板(幅方向内部の残留応力値が−50MPa〜0MPa、すなわち(i),(ii))であって板厚10mm以上であれば、確実に矩形変形度δが1.2mm以下となり、溶接に適する鋼板となる。   FIG. 12 shows a plurality of results of welding experiments, in which the average residual stress is (i) −40 to −20 MPa, (ii) −20 to 0 MPa, (iii) 0 to 20 MPa, and (iv) 20 to 40 MPa. FIG. 6 is a diagram showing the relationship between the plate thickness and the rectangular deformation degree δ. As is clear from this figure, a steel sheet belonging to the steel 1 of the present invention (with a residual stress value in the width direction of −50 MPa to 0 MPa, that is, (i), (ii)) and a thickness of 10 mm or more is reliable. Further, the degree of rectangular deformation δ is 1.2 mm or less, and the steel sheet is suitable for welding.

加えて、幅方向内部の残留応力値が0〜20MPaであっても、板厚が25mm以上であったり、幅方向内部の残留応力値が20〜40MPaであっても、板厚が35mm以上であれば、確実に矩形変形度δが1.2mm以下となり、溶接に適する鋼板となることがわかった。
図13,図14は、本実施例の鋼板1、従来鋼、残留応力低減鋼と、通常矯正鋼の各々に2,3,5,7条(本)のリブ2を溶接で取りつけ、その時の板長手方向の矩形変形度δを求めた結果が示されている。
溶接で取り付けるリブ2の条数が増えるほど、全ての鋼板で矩形変形度δが増加しているが、本発明鋼1はその増加度合いが小さく、リブ2が7条以内であれば矩形変形度δが1.2mmを越えることはない。
In addition, even if the residual stress value in the width direction is 0 to 20 MPa, the plate thickness is 25 mm or more, or even if the residual stress value in the width direction is 20 to 40 MPa, the plate thickness is 35 mm or more. If it exists, it turned out that rectangular deformation degree (delta) becomes 1.2 mm or less, and becomes a steel plate suitable for welding.
FIGS. 13 and 14 show the steel plate 1, the conventional steel, the residual stress-reducing steel, and the normal straightened steel according to the present embodiment, with 2, 3, 5, and 7 (main) ribs 2 attached by welding. The result of obtaining the rectangular deformation degree δ in the plate longitudinal direction is shown.
As the number of ribs 2 attached by welding increases, the degree of rectangular deformation δ increases in all the steel plates. However, the degree of increase in the steel 1 of the present invention is small, and the degree of rectangular deformation is less if the rib 2 is within 7 threads. δ does not exceed 1.2 mm.

[鋼板の製造設備]
図15には、本発明にかかる溶接用鋼板1(厚鋼板)の圧延装置3の概略が示されている。この圧延装置3の上流側にはスラブ4を加熱する加熱炉5が備えられ、加熱炉5の下流側には一対のワークロール6,6と一対のバックアップロール7,7とを備える粗圧延機8が備えられている。さらに、粗圧延機8の下流側には、一対のワークロール9,9と一対のバックアップロール10,10とを有する仕上げ圧延機11が備えられている。
[Steel plate manufacturing equipment]
FIG. 15 shows an outline of a rolling device 3 for a welding steel plate 1 (thick steel plate) according to the present invention. A roughing mill provided with a heating furnace 5 for heating the slab 4 on the upstream side of the rolling apparatus 3 and provided with a pair of work rolls 6 and 6 and a pair of backup rolls 7 and 7 on the downstream side of the heating furnace 5. 8 is provided. Further, a finish rolling mill 11 having a pair of work rolls 9 and 9 and a pair of backup rolls 10 and 10 is provided on the downstream side of the rough rolling mill 8.

仕上げ圧延機11の下流側には、仕上げ圧延機11で圧延が終了した鋼板1を冷却する加速冷却装置12(冷却装置)が設けられている。加速冷却装置12は、鋼板1に冷却水を吹き付けることで鋼板1を強制的に冷却し、所定の板温度を実現する。
加速冷却装置12の出側近傍には、放射温度計やサーモビュアなどの出側板温度計13が設置されており、鋼板表面の温度分布を計測可能となっている。これにより、冷却直後の鋼板1の表面温度分布を知ることができる。表面温度分布と鋼板1内の残留応力分布とは、所定の関係を有していることが過去の実績より明らかとなっているため、この計測結果より、鋼板1内の残留応力分布を推定できる。
On the downstream side of the finish rolling mill 11, an accelerated cooling device 12 (cooling device) for cooling the steel sheet 1 that has been rolled by the finish rolling mill 11 is provided. The accelerated cooling device 12 forcibly cools the steel plate 1 by spraying cooling water onto the steel plate 1 to achieve a predetermined plate temperature.
An exit side plate thermometer 13 such as a radiation thermometer or a thermoviewer is installed in the vicinity of the exit side of the accelerated cooling device 12 so that the temperature distribution on the surface of the steel plate can be measured. Thereby, the surface temperature distribution of the steel plate 1 immediately after cooling can be known. Since it is clear from the past results that the surface temperature distribution and the residual stress distribution in the steel plate 1 have a predetermined relationship, the residual stress distribution in the steel plate 1 can be estimated from this measurement result. .

加速冷却装置12の下流側には、熱間レベラ14が設けられている。この熱間レベラ14は、上下に千鳥に配置された複数のレベリングロール15,15,・・・を備えている。
加えて、本圧延ラインとはオフラインの位置に、多機能レベラ16が設けられている。この多機能レベラ16は、上下に千鳥に配置された複数のレベリングロール17,17,・・・を備える構成であって、各レベリングロール17には、当該レベリングロール17をバックアップするバックアップロール18が配備されている。このバックアップロール18は、分割バックアップロール(図示せず)が軸心方向に複数(例えば3〜5つ)連なることで構成されており、圧下調整装置(図示せず)により、各分割バックアップロールを独立して圧下可能となっている。ゆえに、レベリングロール17の一部分のみを鋼板1側に押しつけ、鋼板1の一部形状を修正したり、鋼板1に幅方向の残留応力を付与したりできる。
A hot leveler 14 is provided on the downstream side of the acceleration cooling device 12. This hot leveler 14 is provided with a plurality of leveling rolls 15, 15,.
In addition, a multifunctional leveler 16 is provided at a position that is off-line from the main rolling line. The multi-function leveler 16 includes a plurality of leveling rolls 17, 17,... Arranged in a staggered manner in the top and bottom, and each leveling roll 17 has a backup roll 18 that backs up the leveling roll 17. Has been deployed. The backup roll 18 is constituted by a plurality of (for example, 3 to 5) continuous backup rolls (not shown) connected in the axial direction, and each of the backup backup rolls is moved by a reduction adjusting device (not shown). It can be independently reduced. Therefore, only a part of the leveling roll 17 can be pressed against the steel plate 1 to correct a partial shape of the steel plate 1 or to apply a residual stress in the width direction to the steel plate 1.

以上述べた圧延装置3を用いて、本発明に係る溶接用鋼板1を製造する手順を述べる。
まず、加熱炉5により、所定の温度(1200℃程度)に加熱されたスラブ4は、粗圧延機8を経て仕上げ圧延機11へと導入され、予め設定されたパススケジュールに則ってリバース圧延される。仕上げ圧延後の鋼板1は加速冷却装置12に導入され、例えば、冷却速度一定の条件下のもと、目標板温度まで冷却される。
A procedure for manufacturing the welding steel plate 1 according to the present invention using the rolling apparatus 3 described above will be described.
First, the slab 4 heated to a predetermined temperature (about 1200 ° C.) by the heating furnace 5 is introduced into the finishing mill 11 through the roughing mill 8, and reverse-rolled according to a preset pass schedule. The The steel plate 1 after the finish rolling is introduced into the accelerated cooling device 12, and is cooled to the target plate temperature, for example, under the condition of a constant cooling rate.

冷却された鋼板1は、出側板温度計13により表面温度を計測され、その結果から、鋼板1に残存する残留応力分布が算出される。
通常、鋼板1に残留応力が存在した場合、製品の後加工(条切り)を行うと、変形が発生するため、熱間レベラ14や、多機能レベラ16を冷間レベラとして機能させ、圧延後の鋼板1を長手方向に順に曲げおよび曲げ戻しの変形を繰り返して加えることにより、鋼板内の応力状態を修正し、残留応力がほぼ0となるようにする。合わせて、鋼板1の形状を修正し、圧延後発生していた中波や耳波を無くすようにする。
The cooled steel plate 1 is measured for the surface temperature by the outlet plate thermometer 13, and the residual stress distribution remaining on the steel plate 1 is calculated from the result.
Usually, when residual stress is present in the steel plate 1, deformation occurs when post-processing (strip cutting) of the product. Therefore, the hot leveler 14 and the multifunctional leveler 16 function as a cold leveler, and after rolling. The steel plate 1 is subjected to repeated bending and unbending deformations in the longitudinal direction in order to correct the stress state in the steel plate so that the residual stress becomes substantially zero. At the same time, the shape of the steel plate 1 is corrected so as to eliminate medium waves and ear waves generated after rolling.

その後、鋼板1を本発明にかかる溶接用鋼板とするために、鋼板1を再度多機能レベラ16に導入するようにする。
詳しくは、多機能レベラ16の各分割バックアップロールの圧下量を個別に設定し、板幅方向の残留応力分布を図1(a)のように調整する。例えば、幅方向に5つの分割バックアップロールからなる場合、中央の1つ乃至3つの分割バックアップロールの圧下量を増やし、レベリングロール17による鋼板1中央の曲げ量が増えるようにする。かかる設定下の多機能レベラ16に鋼板1を通すことで、幅方向内部に圧縮の残留応力を付加できる。
Then, in order to make the steel plate 1 into the welding steel plate according to the present invention, the steel plate 1 is again introduced into the multifunctional leveler 16.
Specifically, the reduction amount of each divided backup roll of the multi-function leveler 16 is individually set, and the residual stress distribution in the plate width direction is adjusted as shown in FIG. For example, in the case of five divided backup rolls in the width direction, the amount of reduction of the central one to three divided backup rolls is increased so that the bending amount at the center of the steel sheet 1 by the leveling roll 17 is increased. By passing the steel plate 1 through the multi-function leveler 16 under such setting, compressive residual stress can be applied to the inside in the width direction.

なお、図5(a)〜(c)に示されているような応力分布を付与する場合は、バックアップロールを10個程度の分割バックアップロールから構成し、圧縮応力を付与する位置に対応する分割バックアップロールのみを圧下させ、鋼板1に圧縮残留応力を付与するとよい。
なお、本発明は、上記実施の形態に限定されるものではない。
When applying the stress distribution as shown in FIGS. 5A to 5C, the backup roll is composed of about 10 divided backup rolls, and the division corresponding to the position to apply the compressive stress is performed. It is preferable to compress only the backup roll and to apply a compressive residual stress to the steel sheet 1.
The present invention is not limited to the above embodiment.

すなわち、長手方向を向く溶接が施される部位の近傍に予め圧縮の残留応力を付与し、溶接用鋼板の長手方向の収縮(板縮み)を抑制又は均一化するといった技術的思想を有するものは、本願発明に属する。   That is, those having the technical idea of pre-applying compressive residual stress in the vicinity of the part to be welded facing in the longitudinal direction to suppress or equalize longitudinal contraction (sheet shrinkage) of the steel sheet for welding Belongs to the present invention.

本発明にかかる溶接用鋼板の残留応力分布ならびに溶接後の収縮状態を示す概念図である(マクロ視)。It is a conceptual diagram which shows the residual stress distribution of the steel plate for welding concerning this invention, and the shrinkage | contraction state after welding (macro view). 本発明にかかる溶接用鋼板の残留応力分布を示す概念図である(ミクロ視)。It is a conceptual diagram which shows the residual stress distribution of the steel plate for welding concerning this invention (micro view). シミュレーション実験における対象モデルを示す図である。It is a figure which shows the object model in a simulation experiment. シミュレーション実験で得られた結果を示す図である。It is a figure which shows the result obtained by the simulation experiment. 本発明にかかる溶接用鋼板の残留応力分布を示す概念図である(別実施形態)。It is a conceptual diagram which shows the residual stress distribution of the steel plate for welding concerning this invention (another embodiment). 溶接を施した鋼板の矩形変形量を示した図である(板厚12mm)。It is the figure which showed the rectangular deformation amount of the steel plate which gave welding (plate | board thickness 12mm). 溶接を施した鋼板の矩形変形量を示した図である(板厚16mm)。It is the figure which showed the rectangular deformation amount of the steel plate which gave welding (plate thickness of 16 mm). 溶接を施した鋼板の矩形変形量を示した図である(板厚22mm)。It is the figure which showed the rectangular deformation amount of the steel plate which gave welding (plate | board thickness 22mm). 溶接を施した鋼板の矩形変形量を示した図である(板厚28mm)。It is the figure which showed the rectangular deformation amount of the steel plate which gave welding (plate | board thickness 28mm). 溶接用鋼板の矩形変形量を示した図である(板厚34mm)。It is the figure which showed the rectangular deformation amount of the steel plate for welding (plate thickness 34mm). 平均残留応力値と矩形変形度との関係を示した図である。It is the figure which showed the relationship between an average residual stress value and a rectangular deformation degree. 板厚と矩形変形度との関係を示した図である。It is the figure which showed the relationship between plate | board thickness and a rectangular deformation degree. リブ条数と矩形変形度との関係を示した図である。It is the figure which showed the relationship between the number of rib strips, and a rectangular deformation degree. 本発明の溶接用鋼板におけるリブ条数と矩形変形度との関係を示した図である。It is the figure which showed the relationship between the rib strip number and the rectangular deformation degree in the steel plate for welding of this invention. 圧延装置の概略図である。It is the schematic of a rolling apparatus. 従来例にかかる鋼板の残留応力分布ならびに溶接後の収縮状態を示す概念図である。It is a conceptual diagram which shows the residual stress distribution of the steel plate concerning a prior art example, and the shrinkage state after welding.

符号の説明Explanation of symbols

1 溶接用鋼板
2 リブ
3 圧延装置
8 粗圧延機
11 仕上げ圧延機
12 加速冷却装置
16 多機能レベラ
17 レベリングロール(多機能レベラ)
18 バックアップロール(多機能レベラ)
W 溶接部
DESCRIPTION OF SYMBOLS 1 Steel plate for welding 2 Rib 3 Rolling device 8 Coarse rolling mill 11 Finishing rolling mill 12 Accelerated cooling device 16 Multifunctional leveler 17 Leveling roll (multifunctional leveler)
18 Backup roll (multi-function leveler)
W weld

Claims (6)

溶接が施される部位の近傍に予め圧縮の残留応力が付与されていることを特徴とする溶接用鋼板。   A steel sheet for welding, wherein a compressive residual stress is preliminarily applied in the vicinity of a portion to be welded. 幅方向内部に長手方向を向く溶接が施される溶接用鋼板であって、
前記幅方向内部に対しては予め圧縮の残留応力が付与され、幅方向両端部に対しては予め引張の残留応力が付与されていることを特徴とする溶接用鋼板。
A steel plate for welding that is welded facing in the longitudinal direction inside the width direction,
A welding steel sheet, wherein compressive residual stress is applied in advance to the inside in the width direction, and tensile residual stress is applied in advance to both ends in the width direction.
前記溶接が施される部位が、幅方向端部から100mm以上離れた場所に位置する場合、
当該溶接が施される部位の幅方向両側であって50mm〜100mmの領域に予め圧縮の残留応力が付与されていて、前記圧縮の残留応力の値が0MPa〜50MPaであることを特徴とする請求項1又は2に記載の溶接用鋼板。
When the site to be welded is located at a location 100 mm or more away from the end in the width direction,
A compressive residual stress is preliminarily applied to a region of 50 mm to 100 mm on both sides in the width direction of a portion to be welded, and the value of the compressive residual stress is 0 MPa to 50 MPa. Item 3. A steel sheet for welding according to item 1 or 2.
前記溶接が施される部位が、幅方向端部から50mm以内の場所に位置する場合、
当該溶接が施される部位の幅方向内部側であって50mm〜100mmの領域に予め圧縮の残留応力が付与されていて、前記圧縮の残留応力の値が0MPa〜50MPaであることを特徴とする請求項1又は2に記載の溶接用鋼板。
When the part to be welded is located at a location within 50 mm from the end in the width direction,
A compressive residual stress is preliminarily applied to an area of 50 mm to 100 mm on the inner side in the width direction of the portion to be welded, and the value of the compressive residual stress is 0 MPa to 50 MPa. The steel plate for welding according to claim 1 or 2.
前記溶接が施される部位が、幅方向端部から50mm〜100mmの場所に位置する場合、
当該溶接が施される部位の幅方向内部側であって50mm〜100mmの領域及び溶接が施される部位の幅方向端部側であって50mm以上の領域に予め圧縮の残留応力が付与されていて、前記圧縮の残留応力の値が0MPa〜50MPaであることを特徴とする請求項1又は2に記載の溶接用鋼板。
When the site to be welded is located at a location 50 mm to 100 mm from the end in the width direction,
Compressive residual stress is applied in advance to the region on the inner side in the width direction of the part to be welded and 50 mm to 100 mm and to the region on the end in the width direction of the part to be welded and 50 mm or more. The steel sheet for welding according to claim 1 or 2, wherein a value of the compressive residual stress is 0 MPa to 50 MPa.
前記圧縮の残留応力のバラツキが±10MPa以下であることを特徴とする請求項3〜5のいずれかに記載の溶接用鋼板。   The welding steel plate according to any one of claims 3 to 5, wherein a variation in the compressive residual stress is ± 10 MPa or less.
JP2005372617A 2005-12-26 2005-12-26 Steel plate for welding Active JP4315951B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005372617A JP4315951B2 (en) 2005-12-26 2005-12-26 Steel plate for welding
CN2006800404117A CN101300087B (en) 2005-12-26 2006-12-26 Steel plate for welding
KR1020087015423A KR101033745B1 (en) 2005-12-26 2006-12-26 Steel plate for welding
PCT/JP2006/325877 WO2007074809A1 (en) 2005-12-26 2006-12-26 Steel plate for welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005372617A JP4315951B2 (en) 2005-12-26 2005-12-26 Steel plate for welding

Publications (2)

Publication Number Publication Date
JP2007167937A true JP2007167937A (en) 2007-07-05
JP4315951B2 JP4315951B2 (en) 2009-08-19

Family

ID=38218029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005372617A Active JP4315951B2 (en) 2005-12-26 2005-12-26 Steel plate for welding

Country Status (4)

Country Link
JP (1) JP4315951B2 (en)
KR (1) KR101033745B1 (en)
CN (1) CN101300087B (en)
WO (1) WO2007074809A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014160008A (en) * 2013-02-19 2014-09-04 Jsol Corp Calculation system and calculation program of welding deformation

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6610607B2 (en) * 2017-04-25 2019-11-27 Jfeスチール株式会社 Method for evaluating delayed fracture characteristics of high strength steel sheets
KR102200238B1 (en) * 2019-12-11 2021-01-07 주식회사 포스코 Pre-stressed steel sheet and method of manufacturing the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4119000A1 (en) * 1991-06-08 1992-12-10 Klaus Dr Ing Dehlke Reducing failure risk of welded construction - by using transversely stressed double-fillet weld seams which are welded in succession, useful for transport or storage of hazardous materials
JPH09111409A (en) * 1995-10-13 1997-04-28 Kobe Steel Ltd Hot rolled steel plate
JP3302914B2 (en) * 1997-12-10 2002-07-15 株式会社神戸製鋼所 Method and apparatus for manufacturing hot-rolled steel sheet
US6926970B2 (en) * 2001-11-02 2005-08-09 The Boeing Company Apparatus and method for forming weld joints having compressive residual stress patterns
DE10163070A1 (en) * 2001-12-20 2003-07-03 Sms Demag Ag Method and device for the controlled straightening and cooling of wide metal strip, in particular steel strip or sheet metal, emerging from a hot strip rolling mill
CN1233501C (en) * 2002-05-22 2005-12-28 中国科学院金属研究所 Method of eliminating welding residual stress by low temperature compression deformation treatment
CN1173797C (en) * 2002-11-22 2004-11-03 铁道部电气化工程局宝鸡器材厂 Manifold welding process
JP4289480B2 (en) * 2003-03-24 2009-07-01 株式会社神戸製鋼所 Straightening method to obtain steel plate with good shape with little variation in residual stress

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014160008A (en) * 2013-02-19 2014-09-04 Jsol Corp Calculation system and calculation program of welding deformation

Also Published As

Publication number Publication date
KR101033745B1 (en) 2011-05-09
KR20080072937A (en) 2008-08-07
CN101300087A (en) 2008-11-05
WO2007074809A1 (en) 2007-07-05
JP4315951B2 (en) 2009-08-19
CN101300087B (en) 2012-11-28

Similar Documents

Publication Publication Date Title
EP3251763B1 (en) Strip profile control method of hot finishing tandem rolling mill and hot finishing tandem rolling mill
JP6720894B2 (en) Steel sheet cooling method, steel sheet cooling device, and steel sheet manufacturing method
EP1195205A2 (en) Sixth order actuator and mill set-up system for rolling mill profile and flatness control
KR20170070217A (en) Method for manufacturing metal plates and quenching device
JP6521193B1 (en) Steel plate manufacturing equipment and steel plate manufacturing method
JP4315951B2 (en) Steel plate for welding
TWI586458B (en) Continuously cast slab, method for manufacturing the same and apparatus manufacturing the same, and method for manufacturing steel plate and apparatus manfacturing the same
EP3257597B1 (en) H-shaped steel production method
JP5910541B2 (en) Cold rolling equipment and cold rolling method
JP4669376B2 (en) Manufacturing method of thick steel plate with high flatness
JP2006239727A (en) Method for rolling hot-rolled steel sheet
JP2005021960A (en) Manufacturing method and manufacturing apparatus for steel plate
JP6089795B2 (en) Apparatus and method for manufacturing a differential thickness steel plate having a taper thickness difference in the plate width direction
JP7356016B2 (en) Method for rolling rectangular cross-section steel billets, continuous casting and rolling equipment, and rolling equipment
KR100941848B1 (en) Method of roughing mill for slab&#39; gap
JP7151513B2 (en) Roller straightening method
JP5163417B2 (en) Rolling method for section steel with flange
JP5014867B2 (en) Width reduction method for billets
KR101736598B1 (en) Method for correcting of metal plate
KR101460285B1 (en) Device and method for levelling strip
JP3496531B2 (en) Manufacturing method of channel steel
KR100660222B1 (en) Anvil for width reduction in sizing press
JP2001137923A (en) Skinpass line and method of manufacturing steel strip
JP2008055512A (en) Continuously cast slab, and method for producing steel sheet using the same
JP2011140056A (en) Method of preventing buckling in width press of hot slab

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090519

R150 Certificate of patent or registration of utility model

Ref document number: 4315951

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140529

Year of fee payment: 5