JP5014867B2 - Width reduction method for billets - Google Patents

Width reduction method for billets Download PDF

Info

Publication number
JP5014867B2
JP5014867B2 JP2007103032A JP2007103032A JP5014867B2 JP 5014867 B2 JP5014867 B2 JP 5014867B2 JP 2007103032 A JP2007103032 A JP 2007103032A JP 2007103032 A JP2007103032 A JP 2007103032A JP 5014867 B2 JP5014867 B2 JP 5014867B2
Authority
JP
Japan
Prior art keywords
slab
width
width reduction
steel
steel slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007103032A
Other languages
Japanese (ja)
Other versions
JP2008260027A (en
Inventor
裕文 中島
肇 橋本
則之 金井
考範 清末
洋二 中村
昌光 若生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007103032A priority Critical patent/JP5014867B2/en
Publication of JP2008260027A publication Critical patent/JP2008260027A/en
Application granted granted Critical
Publication of JP5014867B2 publication Critical patent/JP5014867B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、高温状態の鋼片(例えば、スラブ)を幅圧下した後に、板厚方向に圧下する鋼片の幅圧下方法に関する。 The present invention relates to a method for reducing the width of a steel slab that is reduced in the thickness direction after the steel slab (for example, slab) in a high temperature state is reduced in width.

従来、異なる幅サイズを備える製品を製造するに際しては、連続鋳造機によりスラブ(鋼片の一例)を鋳造した後、このスラブを製品の幅サイズに応じて、例えば、圧延、プレス等により幅圧下している。
このように、スラブに対して幅圧下を行うと、スラブの幅方向両側角部(コーナー部ともいう)が局所的に変形し、引き続き行うスラブの板厚方向の水平圧下により、その変形した部分がスラブの上下面にそれぞれ倒れ込んで疵が発生する場合があった。
このため、現状では、操業条件の制約や疵処理に伴う製品の生産性の低下、製造コストの増加、歩留悪化、製造工期の長期化等の課題を有している。
そこで、これらの課題を解決するため、スラブ(以下、鋼材ともいう)の角部が変形する現象について検討した。
Conventionally, when manufacturing products with different width sizes, a slab (an example of a steel slab) is cast by a continuous casting machine, and then the slab is subjected to width reduction by rolling, pressing, etc. according to the width size of the product. is doing.
As described above, when the width reduction is performed on the slab, both side corners (also referred to as corner portions) of the slab in the width direction are locally deformed, and the deformed portion is caused by the subsequent horizontal reduction in the thickness direction of the slab. May fall into the upper and lower surfaces of the slab, causing wrinkles.
For this reason, at present, there are problems such as restrictions on operating conditions and a decrease in product productivity due to dredging, an increase in manufacturing cost, a deterioration in yield, and a prolonged manufacturing period.
Therefore, in order to solve these problems, a phenomenon in which a corner portion of a slab (hereinafter also referred to as a steel material) is deformed was examined.

一般的に、C≦0.765%の鋼材では、C量に応じてα−γ二相域(以下、単に二相域ともいう)に変態する温度域(図2中の逆転領域に相当)が存在する。なお、図2は、○:極低炭素(SULC:C=0.005質量%)の鋼材温度と、そのときの変形抵抗との関係を示している。
通常、鋼材の変形抵抗は、温度の低下に伴い増加(即ち、硬化)するが、上記した二相域では、変形抵抗が低下(即ち、軟化)し、特に、極低炭素と低炭素の鋼材では、その傾向が顕著である。
In general, in a steel material with C ≦ 0.765%, a temperature range that transforms into an α-γ two-phase region (hereinafter also simply referred to as a two-phase region) according to the amount of C (corresponding to the reverse region in FIG. 2). Exists. In addition, FIG. 2 has shown the relationship between the steel material temperature of (circle): extra-low carbon (SULC: C = 0.005 mass%), and the deformation resistance at that time.
Usually, the deformation resistance of steel materials increases (that is, hardens) as the temperature decreases, but in the two-phase region described above, the deformation resistance decreases (that is, softens). Then, the tendency is remarkable.

つまり、鋼材の幅圧下を行う際に、鋼材のコーナー部は他の部分に比べて放冷が著しいため、その冷却条件によっては、コーナー部の温度のみが上記した二相域に入り、周辺の材質と比べて軟化する場合がある。例えば、極低炭素の鋼材において、鋼材の温度を930℃程度に調整したとしても、コーナー部の温度が870〜880℃となって二相域の範囲内となる場合がある。
このような条件下で、鋼材の幅圧下を行った場合、図3に示すように、軟化したコーナー部が局所変形を起こし、その後の厚み方向の圧下によって、倒れ込み疵が発生する場合がある。
In other words, when performing the width reduction of the steel material, since the corner portion of the steel material is significantly cooled as compared with other portions, depending on the cooling conditions, only the temperature of the corner portion enters the above-described two-phase region, It may be softened compared to the material. For example, in an extremely low carbon steel material, even if the temperature of the steel material is adjusted to about 930 ° C., the temperature of the corner portion may be 870 to 880 ° C. and may be in the range of the two-phase region.
When the width of the steel material is reduced under such conditions, as shown in FIG. 3, the softened corner portion may be locally deformed, and collapse may occur due to the subsequent reduction in the thickness direction.

例えば、特許文献1には、プレスによる幅圧下工程の前後の少なくとも一方において、スラブの各コーナー部を、このコーナー部の断面がほぼ円弧状になるように成形する方法が開示されている。 For example, Patent Document 1 discloses a method of forming each corner portion of a slab so that the cross section of the corner portion is substantially arcuate at least before and after the width reduction step by pressing.

特開昭63−149001号公報JP-A 63-149001

しかしながら、特許文献1の方法では、スラブのコーナー部を円弧状に成形する時点で、コーナー部の温度がα−γ二相域温度にある場合、前記した倒れ込み疵が発生する問題を解消できない。 However, in the method of Patent Document 1, when the corner portion of the slab is formed into an arc shape, when the temperature of the corner portion is in the α-γ two-phase region temperature, the above-described problem of the collapse of the collapse cannot be solved.

本発明はかかる事情に鑑みてなされたもので、鋼片の角部での倒れ込み疵の発生を抑制、更には防止し、目的とする幅の鋼片を生産性よく経済的に製造可能な鋼片の幅圧下方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and suppresses and further prevents the occurrence of falling-down flaws at the corners of a steel slab, and allows the steel slab having a desired width to be manufactured economically with high productivity. An object is to provide a method for reducing the width of a piece.

本発明は上記課題を解決するためのものであり、その手段(1)は、高温状態の鋼片を幅圧下装置により幅圧下した後、該鋼片を板厚方向に圧下する鋼片の幅圧下方法において、
前記幅圧下装置により前記鋼片を幅圧下する際、該鋼片の幅方向両側角部である該角部の各頂点から10mm以上かつ50mm以下までの範囲を長手方向に渡って強制冷却し、該角部の温度をα−γ二相域温度未満とする。
The present invention is for solving the above-mentioned problem, and the means (1) is the width of a steel slab in which a steel slab in a high temperature state is subjected to width reduction by a width reduction device and then the steel slab is reduced in the thickness direction. In the reduction method,
When the steel slab is width-reduced by the width-reducing device, the steel slab is forcibly cooled in the longitudinal direction over a range of 10 mm or more and 50 mm or less from each apex of the corner that is both side corners in the width direction, The temperature of the corner is set to be less than the α-γ two-phase region temperature.

手段()は、手段(1)において、前記鋼片の前記角部の強制冷却後、前記幅圧下装置による前記鋼片の幅圧下を行うまでの時間を2分以内とする。
手段()は、手段(1)および手段()において、前記鋼片の前記角部の強制冷却は、水と空気からなる気水により行う。
Means (2) is Oite the means (1), after the forced cooling of the corners of the steel pieces, the time until the width reduction of the steel piece by the width reduction device to within 2 minutes.
In the means ( 3 ), in the means (1) and the means ( 2 ), the forced cooling of the corner portion of the steel slab is performed by air and water consisting of water and air.

本発明に係る鋼片の幅圧下方法は、鋼片の幅方向両側角部を強制冷却し、しかもその温度を鋼片が軟化する傾向にあるα−γ二相域温度未満とするので、角部の変形抵抗がその周辺部の変形抵抗と比較して極端に下がることを抑制できる。これにより、鋼片を幅圧下するに際して、角部での局所変形を抑制でき、鋼片の角部での倒れ込み疵の発生を抑制、更には防止し、目的とする幅の鋼片を生産性よく経済的に製造できる。
また、角部の所定範囲の領域を強制冷却するため、角部以外の部分が広範囲に渡って強制冷却されることを防止できるので、鋼片の変形抵抗を小さくでき、製品品質を高めた目的とする形状の鋼板を、生産性よく製造できる。
The width reduction method of the steel slab according to the present invention forcibly cools both corners in the width direction of the steel slab, and the temperature is less than the α-γ two-phase region temperature at which the steel slab tends to soften. It can suppress that the deformation resistance of a part falls extremely compared with the deformation resistance of the peripheral part. As a result, when the steel slab is reduced in width, local deformation at the corners can be suppressed, and the occurrence of falling-down wrinkles at the corners of the steel slabs can be further suppressed, and the steel slab having the desired width can be produced. Can be manufactured economically well.
In addition, because the area of the corner is forcibly cooled, it is possible to prevent the area other than the corner from being forcibly cooled over a wide range, so that the deformation resistance of the steel slab can be reduced and the product quality is improved. It is possible to manufacture a steel sheet having a shape with a high productivity.

そして、角部の強制冷却後、所定時間内に鋼片の幅圧下を行う場合には、他の部分の熱が角部へ伝達する前に幅圧下を実施できる。これにより、強制冷却してα−γ二相域温度未満に調整した角部が、再度この温度域に入る前に幅圧下できるので、鋼片を幅圧下するに際して、角部での局所変形を抑制、更には防止できる。
更に、角部の強制冷却を水と空気からなる気水により行う場合には、過剰に水を使用することなく強制冷却できるので、例えば、水垂れにより他の部分が強制冷却される恐れがなくなり、鋼片の幅圧下時の変形抵抗を小さくできる。
And when performing the width reduction of the steel piece within a predetermined time after the forced cooling of the corner portion, the width reduction can be performed before the heat of the other portion is transferred to the corner portion. As a result, the corner portion that has been forcibly cooled and adjusted to less than the α-γ two-phase region temperature can be reduced in width before entering the temperature range again, so that when the steel piece is reduced in width, local deformation at the corner portion is reduced. It can be suppressed and further prevented.
Furthermore, when forced cooling of the corners is performed with air and water consisting of water and air, forcible cooling can be performed without using excessive water, so there is no risk of other parts being forcibly cooled due to dripping water, for example. The deformation resistance at the time of width reduction of the steel piece can be reduced.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
ここで、図1は本発明の一実施の形態に係る鋼片の幅圧下方法の説明図である。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
Here, FIG. 1 is an explanatory view of a width reduction method of a steel piece according to an embodiment of the present invention.

図1に示すように、本発明の一実施の形態に係る鋼片の幅圧下方法は、高温状態のスラブ(鋼片の一例)10の幅方向両側に対向配置された一対の金型でプレス(またはロールで圧下)する幅圧下装置(図示しない)により、スラブ10を幅圧下した後、スラブ10の上下に配設したロールによってスラブ10を板厚方向に圧下する場合の幅圧下方法であり、幅圧下装置によりスラブ10を幅圧下するに際し、スラブ10の幅方向両側角部11〜14を、長手方向に渡って強制冷却している。以下、詳しく説明する。 As shown in FIG. 1, the method for reducing the width of a steel slab according to an embodiment of the present invention is performed by pressing a pair of molds disposed opposite to each other in the width direction of a slab (an example of a steel slab) 10 in a high temperature state. This is a width reduction method in the case where the slab 10 is reduced in the sheet thickness direction by rolls disposed on the upper and lower sides of the slab 10 after the slab 10 is reduced in width by a width reduction device (not shown) that performs reduction (or reduction with a roll). When the slab 10 is width-reduced by the width-reducing device, the widthwise corners 11 to 14 of the slab 10 are forcibly cooled in the longitudinal direction. This will be described in detail below.

幅圧下を行うスラブ10は、例えば、炭素濃度0.05質量%以下、長さ(搬送方向長さ、長手方向長さ)7〜30m程度、厚み120〜300mm程度、幅800〜1800mm程度の断面矩形状の低炭素鋼であり、例えば、900〜1150℃程度の高温状態になっている。
このスラブ10を幅圧下装置により幅圧下する前に、スラブ10の四隅の角部11〜14を強制冷却して、その温度をα−γ二相域温度未満とする。
ここで、α−γ二相域温度未満とは、図2に示すスラブが軟化する温度であり、例えば、炭素濃度0.005質量%以下の場合は865℃未満であるが、800℃以下にすることが好ましい。なお、下限温度については規定していないが、スラブの角部の温度を低くすればするほど、角部以外(幅方向中央部側、および板厚方向中央部側)の温度低下が大きくなって、熱エネルギーロスとなることから、700℃以上とすることが好ましい。
The slab 10 that performs width reduction has, for example, a carbon concentration of 0.05% by mass or less, a length (length in the conveyance direction, length in the longitudinal direction) of about 7 to 30 m, a thickness of about 120 to 300 mm, and a width of about 800 to 1800 mm. It is rectangular low carbon steel, for example, is in a high temperature state of about 900 to 1150 ° C.
Before the slab 10 is reduced by the width reduction device, the corners 11 to 14 at the four corners of the slab 10 are forcibly cooled so that the temperature is less than the α-γ two-phase region temperature.
Here, the α-γ two-phase region temperature is a temperature at which the slab shown in FIG. 2 is softened. For example, when the carbon concentration is 0.005% by mass or less, it is less than 865 ° C. It is preferable to do. Although the lower limit temperature is not specified, the lower the temperature at the corner of the slab, the greater the temperature drop except for the corner (width direction center and plate thickness direction center). In view of thermal energy loss, the temperature is preferably set to 700 ° C. or higher.

この強制冷却は、スラブ10の搬送ラインに配置された冷却水吹付けノズル15により行う。なお、冷却水吹付けノズル15の冷却水噴出口16は、スラブ10の四隅の角部11〜14にそれぞれ向けられている。
この冷却水吹付けノズル15は、スラブ10の搬送ラインに沿って複数箇所配置することができるが、1箇所でもよい。
これにより、冷却水吹付けノズル15から水と空気からなる気水を噴出し続けることで、この冷却水吹付けノズル15の前を通過するスラブ10の角部11〜14を、長手方向(搬送方向の先端部から後端部)に渡って冷却できる。
This forced cooling is performed by the cooling water spray nozzle 15 arranged in the transport line of the slab 10. In addition, the cooling water jet nozzle 16 of the cooling water spray nozzle 15 is respectively directed to the corner portions 11 to 14 of the four corners of the slab 10.
The cooling water spray nozzle 15 can be disposed at a plurality of locations along the conveyance line of the slab 10, but may be disposed at one location.
As a result, by continuing to blow out water and air from the cooling water spray nozzle 15, the corners 11 to 14 of the slab 10 passing in front of the cooling water spray nozzle 15 are moved in the longitudinal direction (conveyance). It can be cooled over the rear end) from the direction of the tip.

各冷却水吹付けノズル15の冷却水噴出口16からの気水の噴出角度(冷却水噴出口と角部との間隔)は、図1に示すように、スラブ10を断面(搬送方向と直交する面)視して、各角部11、12の頂点P1、P2からスラブ10の表面(上面)と側面にかけて、および各角部13、14の頂点P3、P4から裏面(下面)と側面にかけて、所定値までの範囲Rを強制冷却できるように設定されている。なお、所定値とは、10mm以上50mm以下の範囲内である。
ここで、所定値を10mm未満にした場合、強制冷却する範囲が狭くなり過ぎ、他の部分からの熱で、前記した二相域温度まで再度加熱される恐れがある。一方、所定値が50mmを超える場合、強制冷却する範囲が広くなり過ぎ、スラブ自体の変形抵抗が大きくなり、引き続き行う幅圧下を作業性よく実施できなくなる恐れがある。
As shown in FIG. 1, the jet angle of the steam water from the cooling water jet 16 of each cooling water spray nozzle 15 (interval between the cooling water jet and the corner) is a cross section of the slab 10 (perpendicular to the conveying direction). From the vertices P1 and P2 of the corners 11 and 12 to the surface (upper surface) and side surfaces of the slab 10, and from the vertices P3 and P4 of the corner portions 13 and 14 to the back surface (lower surface) and side surfaces. The range R up to a predetermined value is set so as to be forcibly cooled. The predetermined value is in the range of 10 mm to 50 mm.
Here, when the predetermined value is less than 10 mm, the range for forced cooling becomes too narrow, and there is a possibility that the heat is reheated to the above-described two-phase temperature with heat from other portions. On the other hand, if the predetermined value exceeds 50 mm, the range for forced cooling becomes too wide, the deformation resistance of the slab itself increases, and there is a possibility that the subsequent width reduction cannot be performed with good workability.

このため、頂点P1〜P4からそれぞれ10mm以上50mm以下までの範囲内としたが、下限値を20mmとすることが好ましく、上限値を35mmとすることが好ましい。
なお、強制冷却を行う範囲Rは、例えば、角部11の頂点P1から、スラブ10の表面と側面にかけて同一の範囲としたが、前記した所定値の範囲内であれば、異なってもよい。これは、他の各角部12〜14についても同様である。
また、角部の強制冷却は、水と空気からなる気水を使用することが好ましいが、冷却水を使用することもできる。なお、気水中の空気の体積は、幅圧下時の各角部の温度がスラブの材質から決まるα−γ二相域温度を下回る量となるように設定されており(冷却による温度降下、冷却後の複熱を考慮して水量を決定)、例えば、20体積%以上80体積%以下程度とする。
For this reason, although it was set as the range from 10 mm to 50 mm respectively from the vertices P1 to P4, the lower limit value is preferably 20 mm, and the upper limit value is preferably 35 mm.
The range R for forced cooling is, for example, the same range from the apex P1 of the corner portion 11 to the surface and side surface of the slab 10, but may be different as long as it is within the predetermined value range. The same applies to the other corners 12 to 14.
For forced cooling of the corners, it is preferable to use air and water consisting of water and air, but cooling water can also be used. The volume of air in the air is set so that the temperature at each corner during width reduction is less than the α-γ two-phase temperature determined by the material of the slab (temperature drop due to cooling, cooling The amount of water is determined in consideration of later double heat), for example, about 20% by volume to 80% by volume.

上記した方法により、各角部11〜14を強制冷却されたスラブ10を、幅圧下装置へ送る。このとき、スラブ10の各角部11〜14の強制冷却が終了してから、幅圧下装置によるスラブ10の幅圧下を行うまでの時間は、2分以内とすることが好ましい。
ここで、スラブ10の幅圧下を行うまでの時間が2分を超える場合、スラブ10の角部11〜14以外の部分は高温状態であるため、この熱が強制冷却した各角部11〜14へ伝達(複熱)し、各角部がα−γ二相域温度まで上昇する。
このため、スラブ10の幅圧下を行うまでの時間を2分以内としたが、好ましくは80秒以内、更には50秒以内とすることが好ましい。
The slab 10 in which the corners 11 to 14 are forcibly cooled by the above-described method is sent to the width reduction device. At this time, it is preferable that the time from the end of forced cooling of the corners 11 to 14 of the slab 10 to the width reduction of the slab 10 by the width reduction device is within 2 minutes.
Here, when the time until the width reduction of the slab 10 exceeds 2 minutes, the portions other than the corner portions 11 to 14 of the slab 10 are in a high temperature state, and thus each corner portion 11 to 14 forcibly cooled by this heat. (Double heat) and each corner rises to the α-γ two-phase region temperature.
For this reason, the time until the width reduction of the slab 10 is performed within 2 minutes, but preferably within 80 seconds, more preferably within 50 seconds.

そして、幅圧下装置により、強制冷却されたスラブ10の幅圧下を行う。
この幅圧下装置としては、例えば、従来公知のプレス装置がある。このプレス装置は、スラブ10の幅方向両側に対向配置された一対の金型を有しており、この金型をスラブ10に対して押し付けることで、スラブ10の幅を調整する装置である。また、他の幅圧下装置としては、スラブ10の幅方向両側に配設した竪ロール、またはカリバーロールからなるものを使用してもよい。
この幅圧下装置で、スラブ10の幅を圧下した後、水平ミルでスラブを板厚方向に圧下する。この水平ミルは、スラブ10の板厚方向にスラブ10を挟み込むように、スラブ10の幅方向に渡って水平に配置された上下の円柱状ロールで構成されている。
And the width reduction of the slab 10 forcedly cooled is performed by the width reduction apparatus.
As this width reduction device, for example, there is a conventionally known press device. This press apparatus has a pair of metal molds arranged opposite to each other in the width direction of the slab 10, and is an apparatus for adjusting the width of the slab 10 by pressing the metal mold against the slab 10. Moreover, as another width reduction apparatus, you may use what consists of the scissors roll arrange | positioned at the width direction both sides of the slab 10, or a caliber roll.
After reducing the width of the slab 10 with this width reduction device, the slab is reduced in the plate thickness direction with a horizontal mill. This horizontal mill is composed of upper and lower cylindrical rolls arranged horizontally across the width direction of the slab 10 so as to sandwich the slab 10 in the thickness direction of the slab 10.

次に、本発明の作用効果を確認するために行った実施例について説明する。
使用したスラブ(鋼)は、幅圧下する前の幅が1800mm、厚さが250mm、長さが20mのものであり、表1に示す2種類の成分元素を有するものを使用した。
Next, examples carried out for confirming the effects of the present invention will be described.
The used slab (steel) had a width of 1800 mm, a thickness of 250 mm, and a length of 20 m before width reduction, and had two kinds of component elements shown in Table 1.

Figure 0005014867
Figure 0005014867

これらのスラブを使用し、表2に示す冷却条件のもと、得られた結果を表3に示す。 Table 3 shows the results obtained using these slabs under the cooling conditions shown in Table 2.

Figure 0005014867
Figure 0005014867

Figure 0005014867
Figure 0005014867

表3に示す実施例1、3〜5、および参考例1は、幅圧下圧延直前のスラブ角部の温度を、いずれもα−γ二相域温度未満(鋼No.1:865℃未満、鋼No.2:727℃未満)とした結果であり、比較例6、7、9、10は、スラブ角部の温度をいずれもα−γ二相域温度以上とした結果である。なお、比較例8は、スラブ表面の全面の温度をα−γ二相域温度未満とした結果である。 In Examples 1 , 3 to 5 and Reference Example 1 shown in Table 3, the temperature of the slab corner immediately before the width reduction rolling is less than the α-γ two-phase region temperature (steel No. 1: less than 865 ° C, Steel No. 2: less than 727 ° C., and Comparative Examples 6, 7, 9, and 10 are results in which the temperatures of the slab corners are all equal to or higher than the α-γ two-phase region temperature. In addition, the comparative example 8 is the result of having made temperature of the whole surface of a slab surface less than (alpha) -gamma two-phase region temperature.

実施例1、3〜5、および参考例1から明らかなように、スラブ角部を強制冷却することで、角部の温度をα−γ二相域温度未満としたため、その結果、目視観察で倒れ込み疵が確認されなかった。一方、比較例6、7、9、10については、スラブ角部の温度がいずれもα−γ二相域温度であるため、その結果、目視観察で倒れ込み疵が確認された。
なお、比較例8は、スラブ表面の全面の温度をα−γ二相域温度未満としたため、倒れ込み疵は確認されなかったものの、スラブの幅圧下圧延荷重が圧延設備の荷重限界を超え、幅圧下できなかった。
また、参考例1は、実施例1、3〜5と比較し、角部の冷却範囲を広く設定した結果であり、また実施例4は、実施例13、5、および参考例1と比較し、幅圧下装置によるスラブの幅圧下を行うまでの時間が長くかかった場合の結果であり、更に実施例3、4は角部の冷却に水を使用した結果であるが、いずれの場合についても、疵の発生もなく、幅圧下も実施できた。
なお、実施例1、3〜5、および参考例1から明らかなように、幅圧下装置の種類による影響もない。
As is clear from Examples 1 and 3 to 5 and Reference Example 1 , the slab corners were forcedly cooled, so that the temperature of the corners was less than the α-γ two-phase region temperature. No fallen wrinkles were confirmed. On the other hand, in Comparative Examples 6, 7, 9, and 10, since the temperatures at the slab corners were both α-γ two-phase region temperatures, as a result, collapsed wrinkles were confirmed by visual observation.
In Comparative Example 8, the temperature of the entire surface of the slab was set to be less than the α-γ two-phase region temperature. Could not reduce.
Reference Example 1 is a result of setting the corner cooling range wider than Examples 1 and 3 to 5 , and Example 4 is the result of Examples 1 , 3 , 5 , and Reference Example 1 . In comparison, it is the result when it takes a long time to perform the width reduction of the slab by the width reduction device, and Examples 3 and 4 are the results of using water for cooling the corners. In addition, no wrinkle was produced and width reduction was possible.
As is clear from Examples 1 and 3 to 5 and Reference Example 1 , there is no influence of the type of the width reduction device.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部または全部を組合せて本発明の鋼片の幅圧下方法を構成する場合も本発明の権利範囲に含まれる。 The present invention has been described above with reference to the embodiments. However, the present invention is not limited to the configurations described in the above-described embodiments, and the matters described in the claims are not limited. Other embodiments and modifications conceivable within the scope are also included. For example, a case where the width reduction method for a steel slab of the present invention is configured by combining some or all of the above-described embodiments and modifications is also included in the scope of the present invention.

本発明の一実施の形態に係る鋼片の幅圧下方法の説明図である。It is explanatory drawing of the width reduction method of the steel piece which concerns on one embodiment of this invention. 鋼材の温度と変形抵抗との関係を示すグラフである。It is a graph which shows the relationship between the temperature of steel materials, and deformation resistance. 鋼材に対して幅圧下を行った後に厚み圧下を行った場合の形状変化を示す説明図である。It is explanatory drawing which shows the shape change at the time of performing thickness reduction after performing width reduction with respect to steel materials.

符号の説明Explanation of symbols

10:スラブ、11〜14:角部、15:冷却水吹付けノズル、16:冷却水噴出口 10: Slab, 11-14: Corner, 15: Cooling water spray nozzle, 16: Cooling water outlet

Claims (3)

高温状態の鋼片を幅圧下装置により幅圧下した後、該鋼片を板厚方向に圧下する鋼片の幅圧下方法において、
前記幅圧下装置により前記鋼片を幅圧下する際、該鋼片の幅方向両側角部である該角部の各頂点から10mm以上かつ50mm以下までの範囲を長手方向に渡って強制冷却し、該角部の温度をα−γ二相域温度未満とすることを特徴とする鋼片の幅圧下方法。
In the method of reducing the width of a steel slab, the steel slab in a high temperature state is subjected to width reduction by a width reduction device, and then the steel slab is reduced in the thickness direction.
When the steel slab is width-reduced by the width-reducing device, the steel slab is forcibly cooled in the longitudinal direction over a range of 10 mm or more and 50 mm or less from each apex of the corner that is both side corners in the width direction, A method for reducing the width of a steel slab, wherein the temperature of the corner is less than the α-γ two-phase region temperature.
請求項記載の鋼片の幅圧下方法において、前記鋼片の前記角部の強制冷却後、前記幅圧下装置による前記鋼片の幅圧下を行うまでの時間を2分以内とすることを特徴とする鋼片の幅圧下方法。 The width reduction method for a steel slab according to claim 1 , wherein the time until the width reduction of the steel slab by the width reduction device after forced cooling of the corner portion of the steel slab is within 2 minutes. The width reduction method of the steel piece 請求項1または2記載の鋼片の幅圧下方法において、前記鋼片の前記角部の強制冷却は、水と空気からなる気水により行うことを特徴とする鋼片の幅圧下方法。 3. A method for reducing the width of a steel slab according to claim 1 or 2 , wherein the forced cooling of the corner portion of the steel slab is performed by water vapor comprising water and air.
JP2007103032A 2007-04-10 2007-04-10 Width reduction method for billets Active JP5014867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007103032A JP5014867B2 (en) 2007-04-10 2007-04-10 Width reduction method for billets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007103032A JP5014867B2 (en) 2007-04-10 2007-04-10 Width reduction method for billets

Publications (2)

Publication Number Publication Date
JP2008260027A JP2008260027A (en) 2008-10-30
JP5014867B2 true JP5014867B2 (en) 2012-08-29

Family

ID=39982918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007103032A Active JP5014867B2 (en) 2007-04-10 2007-04-10 Width reduction method for billets

Country Status (1)

Country Link
JP (1) JP5014867B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7356016B2 (en) 2018-11-02 2023-10-04 日本製鉄株式会社 Method for rolling rectangular cross-section steel billets, continuous casting and rolling equipment, and rolling equipment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5684102A (en) * 1979-12-07 1981-07-09 Sumitomo Metal Ind Ltd Rough rolling method for billet
JPH06304601A (en) * 1993-04-23 1994-11-01 Sumitomo Metal Ind Ltd Method and device for suppressing camber at time of edging press
JPH10192903A (en) * 1997-01-10 1998-07-28 Sumitomo Metal Ind Ltd Method for edge drawing down of slab for hot rolling

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7356016B2 (en) 2018-11-02 2023-10-04 日本製鉄株式会社 Method for rolling rectangular cross-section steel billets, continuous casting and rolling equipment, and rolling equipment

Also Published As

Publication number Publication date
JP2008260027A (en) 2008-10-30

Similar Documents

Publication Publication Date Title
JP6252674B2 (en) Continuous casting method for slabs
JP2018144050A (en) Cooling method of steel plate, cooling device of steel plate and manufacturing method of steel plate
JP5014867B2 (en) Width reduction method for billets
JP2020196049A (en) Manufacturing method for hat-shaped steel sheet pile
JPH10192903A (en) Method for edge drawing down of slab for hot rolling
JP6269548B2 (en) Manufacturing method of hot-rolled steel sheet
JP6365626B2 (en) Slab shape adjustment method
JP2004058129A (en) Method for preventing surface flaw on cast slab, and its cast slab
JP6233614B2 (en) Production line for hot-rolled steel strip and method for producing hot-rolled steel strip
TWI535859B (en) Hot Rolling Method for High Carbon Steel
JP4556744B2 (en) Manufacturing method of unequal side unequal thickness angle steel
JP6888520B2 (en) Slab width reduction method and width reduction device
JP2002120001A (en) Die for pressing width of hot slab and hot rolling method
JP4016733B2 (en) Rolling method for narrow flange width H-section steel
JP4757708B2 (en) Steel plate manufacturing equipment
KR101220700B1 (en) Method for Reducing Edge Crack of Thick Rolled Medium Carbon Steel Plate of at Hot Rolling
JP2010075977A (en) Method of forming slab with sizing press
JP6988437B2 (en) Shard forming method
JP6085054B1 (en) Continuous casting and rolling method for steel
JP2008254034A (en) Method of edging metal slab
JP5861791B2 (en) Manufacturing method of hot-rolled steel sheet
JP2005342754A (en) Universal mill and method for manufacturing steel sheet using the same
JP2000079401A (en) Method for edging metal slab
JP3606249B2 (en) Rolling method of shape steel
JP2004025255A (en) Method for manufacturing hot rolled stainless steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120606

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5014867

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350