JP2007165232A - Charged particle beam device - Google Patents

Charged particle beam device Download PDF

Info

Publication number
JP2007165232A
JP2007165232A JP2005363206A JP2005363206A JP2007165232A JP 2007165232 A JP2007165232 A JP 2007165232A JP 2005363206 A JP2005363206 A JP 2005363206A JP 2005363206 A JP2005363206 A JP 2005363206A JP 2007165232 A JP2007165232 A JP 2007165232A
Authority
JP
Japan
Prior art keywords
charged particle
particle beam
vacuum
exhaust system
suction path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005363206A
Other languages
Japanese (ja)
Inventor
Takashi Onishi
崇 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2005363206A priority Critical patent/JP2007165232A/en
Publication of JP2007165232A publication Critical patent/JP2007165232A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Electron Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a charged particle beam device in which variation of atmospheric pressure does not affect accuracy of the device and which has a vacuum exhaustion system structure in which vibration of a pump is not transmitted to a charged particle beam device main body, and provide a vacuum suction passage for the charged particle beam device. <P>SOLUTION: The charged particle beam device or the vacuum suction passage of the charged particle beam device is composed of a charged particle beam device main body including an electrooptical system which irradiates electron beams or ion beams on a target, a vacuum exhaustion system provided with a suction pump which makes vacuum inside the charged particle beam device main body, a suction passage communicating the charged particle beam device main body with the vacuum exhaustion system, a vibration preventing part intercalated in the suction passage, and a flexible passage member fixed in the vibration preventing part. A shrinkage preventing means is provided for preventing the flexible passage member from shrinking by suction of the vacuum exhaustion system in a direction where the charged particle beam device main body and the vacuum exhaustion system are pulled from each other. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電子線を用いて回路パターン等を半導体ウェハ等に描画する電子線描画装置、および電子線を用いて物体の拡大像を得る電子顕微鏡、ならびにイオンビームを用いて物体の拡大像を得たり、また対象物の加工を行うイオンビーム装置に関する。   The present invention relates to an electron beam drawing apparatus that draws a circuit pattern or the like on a semiconductor wafer using an electron beam, an electron microscope that obtains an enlarged image of an object using an electron beam, and an enlarged image of an object using an ion beam. The present invention relates to an ion beam apparatus for obtaining or processing an object.

真空排気装置は、内部に電子線またはイオンビームの発生機構を備え、電磁レンズ等を用いて細く絞って標的に照射する電子線描画装置、電子顕微鏡等の荷電粒子線装置の設計上の要点の一つである。なお、電子線描画装置は、例えば、特開2000−357484号公報(特許文献1)に示されている。   The vacuum evacuation device is equipped with an electron beam or ion beam generating mechanism inside, and is a key point in the design of charged particle beam devices such as an electron beam drawing device, an electron microscope, etc. One. An electron beam drawing apparatus is disclosed in, for example, Japanese Patent Laid-Open No. 2000-357484 (Patent Document 1).

高エネルギーの電子線またはイオンビームが大気分子と衝突して運動エネルギーを失ったり軌道を曲げられたりしないよう、荷電粒子線装置本体の荷電粒子線が通過する部分は高真空に保たれなければならない。   The charged particle beam part of the charged particle beam system must be kept in a high vacuum so that the high energy electron beam or ion beam will not collide with atmospheric molecules and lose kinetic energy or bend the orbit. .

このために必要な到達真空度の要請から、真空排気装置として、ターボ分子ポンプ、イオンポンプが主に用いられる。これらの真空ポンプは、Oリング、ガスケット等で気密を保った管(真空配管)で荷電粒子装置本体と接続され、稼動中の荷電粒子装置本体内を高真空に保つ。   For this purpose, turbo molecular pumps and ion pumps are mainly used as vacuum exhaust devices because of the demand for the ultimate vacuum required. These vacuum pumps are connected to the charged particle device main body by a tube (vacuum piping) kept airtight with an O-ring, a gasket, or the like, and keep the charged particle device main body in operation at a high vacuum.

ターボ分子ポンプはタービン状の羽根を回転させ空気の分子をはじき出す真空ポンプである。荷電粒子装置の真空装置としてターボ分子ポンプを採用した場合、イオンポンプに比べ排気速度が著しく高いため、装置を高真空領域まで排気するためにかかる時間が短くて済む。メンテナンス等で装置内を大気圧に戻した後などの復帰が早く、装置の稼働時間が長く取れるため、経済的である。ところが、ターボ分子ポンプは、タービンが機械的に回転する構造上、ポンプ作動時に振動が発生する弱点がある。ポンプで生じた振動は、荷電粒子線装置本体に伝わり、精度に悪影響を与える。   The turbo molecular pump is a vacuum pump that rotates turbine blades to eject air molecules. When a turbo molecular pump is employed as the vacuum device of the charged particle device, the exhaust speed is remarkably higher than that of the ion pump, so that it takes a short time to exhaust the device to a high vacuum region. It is economical because it can be quickly restored after the inside of the apparatus is returned to the atmospheric pressure for maintenance or the like, and the apparatus can be operated for a long time. However, the turbo molecular pump has a weak point in which vibration is generated when the pump is operated due to the structure in which the turbine mechanically rotates. The vibration generated by the pump is transmitted to the charged particle beam apparatus main body, which adversely affects accuracy.

このため、ターボ分子ポンプを採用する荷電粒子線装置では、多く、ターボ分子ポンプを防振ゴム等の上に設置して振動を緩和する措置が取られている。この際、ターボ分子ポンプと荷電粒子線本体の間の真空配管は、ベローズ等の可動部分を持つフランジ等を用いて接続しなければならない。これは、通常の鋼管などの真空ダクトで接続した場合、ダクトを通じてポンプの振動が本体に伝わってしまうからである。   For this reason, many charged particle beam apparatuses employing a turbo molecular pump take measures to reduce vibration by installing the turbo molecular pump on a vibration-proof rubber or the like. At this time, the vacuum pipe between the turbo molecular pump and the charged particle beam main body must be connected using a flange having a movable part such as a bellows. This is because, when connected by a vacuum duct such as a normal steel pipe, the vibration of the pump is transmitted to the main body through the duct.

ところが、ベローズを用いたポンプ−本体真空排気系は、装置のまわりの大気圧の変動に対して影響を受ける弱点がある。通常、大気の圧力によって、ベローズ部を備える真空配管には、ベローズを収縮させる向きに力が働く。この力に抗してベローズを支えるため、ベローズの収縮を防ぐ支持棒等をベローズ周囲に設置する場合が多いが、荷電粒子線装置の場合、安易に支持棒を追加することができない。支持棒が新たな振動伝達路となり、ポンプの振動を本体に伝えてしまうからである。このため、ポンプと本体の間に働く力は、装置本体やポンプを固定するやぐらの剛性によって支えられることになる。通常、大気圧は1気圧(約1013ヘクトパスカル)で、断面積100平方センチメートルのベローズの場合、約103キログラム重(約1013ニュートン)の力が、常時ベローズを収縮させる力として働いていることになる。
ここで、低気圧等の影響による、装置周囲の大気圧の変動を考える。大気圧は天候により、最大で10パーセント程度変動するが、ベローズを収縮させる力は、この大気圧に比例するので、収縮力も10パーセント程度変動する。上のベローズの場合、約10キログラム重(約101ニュートン)の変動となる。もともとこの収縮力は、荷電粒子線装置本体やポンプを載せるやぐら等の剛性によって支えられているものだから、収縮力が変化することにより、荷電粒子線装置本体とやぐらの間に働いていた力が変動し、両者が変形を受けることになる。特に荷電粒子線装置本体は、荷電粒子ビームの光学系を形作る部分であるため、本体の変形が、荷電粒子ビームの軌道を変動させ、ビーム照射位置を悪化させてしまう。これは、装置の精度悪化の原因となる。
However, the pump-body evacuation system using the bellows has a weak point that is affected by fluctuations in atmospheric pressure around the device. Normally, a force acts in a direction in which the bellows is contracted in the vacuum pipe having the bellows portion due to atmospheric pressure. In order to support the bellows against this force, a support rod or the like that prevents the bellows from contracting is often installed around the bellows, but in the case of a charged particle beam device, the support rod cannot be easily added. This is because the support rod becomes a new vibration transmission path and transmits the vibration of the pump to the main body. For this reason, the force acting between the pump and the main body is supported by the rigidity of the tower that fixes the apparatus main body and the pump. Normally, the atmospheric pressure is 1 atm (about 1013 hectopascals), and in the case of a bellows having a cross-sectional area of 100 square centimeters, a force of about 103 kilogram weight (about 1013 newtons) always acts as a force for contracting the bellows.
Here, the fluctuation of the atmospheric pressure around the apparatus due to the influence of a low atmospheric pressure or the like is considered. Although the atmospheric pressure fluctuates by about 10 percent at the maximum depending on the weather, the contracting force varies by about 10 percent because the force to contract the bellows is proportional to the atmospheric pressure. In the case of the upper bellows, the variation is about 10 kilogram weight (about 101 newtons). Originally, this contraction force is supported by the rigidity of the charged particle beam device main body and the tower where the pump is mounted. Therefore, the force acting between the charged particle beam device main body and the tower is changed by the contraction force changing. It will fluctuate and both will be deformed. In particular, since the charged particle beam apparatus main body is a part that forms the optical system of the charged particle beam, the deformation of the main body fluctuates the trajectory of the charged particle beam and deteriorates the beam irradiation position. This causes the accuracy of the apparatus to deteriorate.

特開2000−357484号公報JP 2000-357484 A

本発明は、上記の問題に鑑み、大気圧の変動が装置精度に影響せず、かつポンプの振動が荷電粒子装置本体に伝わらない真空排気系構造を備えた荷電粒子装置、および荷電粒子線装置の真空吸引径路を提供することを目的とする。   In view of the above problems, the present invention provides a charged particle apparatus and a charged particle beam apparatus having a vacuum exhaust system structure in which fluctuations in atmospheric pressure do not affect apparatus accuracy and vibrations of the pump are not transmitted to the charged particle apparatus main body. It is an object of the present invention to provide a vacuum suction path.

本発明は、標的に電子線またはイオンビームを照射する電子光学系を含む荷電粒子線装置本体と、荷電粒子線装置本体内を真空にする吸引ポンプが備わる真空排気系と、荷電粒子線装置本体と真空排気系を連通する吸引路と、吸引路に介在される防振部と、防振部に設けられる可撓性通路部材とを有する荷電粒子線装置または荷電粒子線装置の真空吸引径路において、真空排気系の吸引により、荷電粒子線装置本体と真空排気系が引き合う方向に可撓性通路部材が収縮するのを抑える収縮阻止手段を設けたことを特徴とする。   The present invention relates to a charged particle beam apparatus main body including an electron optical system that irradiates a target with an electron beam or an ion beam, a vacuum exhaust system provided with a suction pump for evacuating the charged particle beam apparatus main body, and a charged particle beam apparatus main body. A charged particle beam device or a vacuum suction path of a charged particle beam device having a suction path communicating with the vacuum exhaust system, a vibration isolating portion interposed in the suction path, and a flexible passage member provided in the vibration isolating portion Further, the present invention is characterized in that a contraction preventing means for suppressing contraction of the flexible passage member in a direction in which the charged particle beam apparatus main body and the vacuum exhaust system are attracted by suction of the vacuum exhaust system is provided.

本発明によれば、真空ポンプの振動が遮断され、かつ大気圧変動によるビーム照射位置精度が悪化しない荷電粒子線装置、および荷電粒子線装置の真空吸引径路を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the vibration of a vacuum pump is interrupted | blocked, and the charged particle beam apparatus by which the beam irradiation position precision by atmospheric pressure fluctuation does not deteriorate, and the vacuum suction path | route of a charged particle beam apparatus can be provided.

図1は、本発明の実施形態を示すための公知例の一例として、荷電粒子線装置の一種である電子線描画装置の概略構成を表す縦断面図である。   FIG. 1 is a longitudinal sectional view showing a schematic configuration of an electron beam lithography apparatus which is a kind of a charged particle beam apparatus as an example of a known example for illustrating an embodiment of the present invention.

図1において、電子線描画装置本体1、真空排気系2は、ベローズ108を有する真空吸引径路の吸引路で連通している。   In FIG. 1, the electron beam drawing apparatus main body 1 and the vacuum exhaust system 2 communicate with each other through a vacuum suction path having a bellows 108.

電子線描画装置本体1は、電子線を生成、収束させる機能を持つ電子光学系を内置する鏡体102、標的室106を有する。鏡体102は、標的室106の上部に載置され、ボルトを含む連結手段で堅牢に、かつ気密を保って締結される。   The electron beam drawing apparatus main body 1 includes a mirror body 102 and a target chamber 106 in which an electron optical system having a function to generate and converge an electron beam is placed. The mirror body 102 is placed on the upper part of the target chamber 106, and is fastened firmly and tightly by a connecting means including a bolt.

鏡体102に内置される電子銃101によって生成された電子線105は、陽極との電位差によってエネルギー数十キロ電子ボルトに加速され、絞り103および電磁レンズ104によって成形、縮小投影され、標的107上に回路パターン等を描画する。   The electron beam 105 generated by the electron gun 101 placed in the mirror body 102 is accelerated to an energy of several tens of kilovolts by the potential difference from the anode, and is shaped, reduced and projected by the diaphragm 103 and the electromagnetic lens 104, and then on the target 107. Draw a circuit pattern or the like.

真空排気系2は、真空ポンプであるターボ分子ポンプ111を有する。鏡体102と真空排気系2を連通する真空吸引径路の吸引路には、真空ポンプのターボ分子ポンプ111より生じる振動を伝えない目的のベローズ108が介在するように備わる。   The vacuum exhaust system 2 has a turbo molecular pump 111 that is a vacuum pump. The suction path of the vacuum suction path that communicates the mirror body 102 and the vacuum exhaust system 2 is provided with a target bellows 108 that does not transmit vibration generated by the turbo molecular pump 111 of the vacuum pump.

真空排気系2を支持するやぐら110は、真空配管109、ターボ分子ポンプ111、防振装置112を備えている。やぐら110の下方内部に備わる防振装置112は、ターボ分子ポンプ111を防振支持している。   The tower 110 that supports the vacuum exhaust system 2 includes a vacuum pipe 109, a turbo molecular pump 111, and a vibration isolator 112. An anti-vibration device 112 provided below the tower 110 supports the turbo molecular pump 111 in an anti-vibration manner.

鏡体102の真空は、ターボ分子ポンプ111、回転ポンプ113の吸引により真空度が高めるように維持される。   The vacuum of the mirror body 102 is maintained so that the degree of vacuum is increased by the suction of the turbo molecular pump 111 and the rotary pump 113.

図3は、本発明と比較するための参考図で、電子線描画装置本体の鏡体301の一部と真空吸引径路を示す。   FIG. 3 is a reference diagram for comparison with the present invention, and shows a part of the mirror body 301 and the vacuum suction path of the electron beam drawing apparatus main body.

電子ビームは、矢印308で示すように鏡体301を通過する。真空ポンプ(図示せず)は、ダクト304を通じて真空排気を表す矢印314の先に設置されている。このダクト304を含む真空吸引径路の吸引路には、防振部が介在される。   The electron beam passes through the mirror body 301 as indicated by an arrow 308. A vacuum pump (not shown) is installed at the end of an arrow 314 representing vacuum exhaust through the duct 304. A vibration isolator is interposed in the suction path of the vacuum suction path including the duct 304.

防振部は、可撓性通路部材である柔軟なベローズ303、硬質のフランジ302,305、気密用のOリング313を有する。   The vibration isolator has a flexible bellows 303, which is a flexible passage member, hard flanges 302 and 305, and an airtight O-ring 313.

真空ポンプの吸引により、大気圧変動が起きると、電子線描画装置本体の鏡体301がダクト304の方向に押されるようにわずかに変形する。これは、真空と大気圧の差圧によりベローズ303が鏡体301と真空排気系2を引き合うように収縮し、その収縮力が鏡体301に作用するからである。   When atmospheric pressure changes due to suction by the vacuum pump, the mirror body 301 of the electron beam drawing apparatus body is slightly deformed so as to be pushed in the direction of the duct 304. This is because the bellows 303 contracts by attracting the mirror body 301 and the vacuum exhaust system 2 by the differential pressure between the vacuum and the atmospheric pressure, and the contraction force acts on the mirror body 301.

本発明は、その収縮力を生じないようにして、鏡体301の変形を抑えたものである。   In the present invention, the deformation of the mirror body 301 is suppressed without generating the contraction force.

図2に示す実施例について説明する。   The embodiment shown in FIG. 2 will be described.

電子線描画装置本体の鏡体201は、真空吸引径路の吸引路のダクト204を介して真空排気系の真空ポンプ側214に連通している。更に吸引路には防振部が設けられる。防振部は、可撓性通路部材である柔軟なベローズ203、硬質のフランジ202,205、気密用のOリング213を有する。   The mirror body 201 of the electron beam drawing apparatus main body communicates with the vacuum pump side 214 of the evacuation system via the suction passage duct 204 of the vacuum suction path. Furthermore, a vibration isolator is provided in the suction path. The vibration isolator has a flexible bellows 203 that is a flexible passage member, hard flanges 202 and 205, and an airtight O-ring 213.

防振部は、ボルトを含む連結手段で堅牢に、かつ気密を保って鏡体201とダクト204に締結される。鏡体201にはフランジ202が締結され、ダクト204にはフランジ205が締結される。   The vibration isolator is fastened to the mirror body 201 and the duct 204 in a robust and airtight manner by connecting means including bolts. A flange 202 is fastened to the mirror body 201, and a flange 205 is fastened to the duct 204.

そして、鏡体201には、防振部を含む吸引路の反対側に収縮阻止器体(収縮阻止手段)が設けられる。この収縮阻止手段により、可撓性通路部材である柔軟なベローズ203の収縮を抑えることができる。   The mirror body 201 is provided with a shrinkage prevention body (shrinkage prevention means) on the opposite side of the suction path including the vibration isolator. By this contraction prevention means, contraction of the flexible bellows 203 which is a flexible passage member can be suppressed.

収縮阻止器体は、可撓性部材である柔軟なベローズ210、硬質のフランジ209,211、気密用のOリング213、閉鎖用の蓋212を有する。   The anti-shrinkage body includes a flexible bellows 210 that is a flexible member, rigid flanges 209 and 211, an airtight O-ring 213, and a closure lid 212.

防振部は、ボルトを含む連結手段で堅牢に、かつ気密を保って鏡体201に締結される。鏡体201にはフランジ209が締結され、フランジ211には蓋212が締結される。   The vibration isolator is fastened to the mirror body 201 in a robust and airtight manner by a connecting means including a bolt. A flange 209 is fastened to the mirror body 201, and a lid 212 is fastened to the flange 211.

そして、鏡体201を貫いて防振部のフランジ205と、収縮阻止器体のフランジ211との間に突っ張るように支杆206が置かれる。支杆206の一端はフランジ205に、他端はフランジ211に螺合されるので、支杆206はフランジ205、211に脱落することなく、取り付けられる。   Then, a support 206 is placed so as to extend through the mirror body 201 and between the flange 205 of the vibration isolator and the flange 211 of the shrinkage prevention body. Since one end of the support 206 is screwed to the flange 205 and the other end is screwed to the flange 211, the support 206 is attached to the flanges 205 and 211 without falling off.

調整機構207は、支杆206の途中に設けられる。この調整機構207で、支杆206の長さが調整されるので、フランジ205、211に対する張り力を調整できる。   The adjustment mechanism 207 is provided in the middle of the support 206. The adjustment mechanism 207 adjusts the length of the support 206 so that the tension on the flanges 205 and 211 can be adjusted.

この支杆206、調整機構207、ダクト204およびフランジ205、211は、電子線描画装置本体の鏡体201には接触しておらず、ベローズ203,210の可動可能範囲で自由に動かすことができる。   The support 206, the adjusting mechanism 207, the duct 204, and the flanges 205 and 211 are not in contact with the mirror body 201 of the electron beam drawing apparatus main body, and can be freely moved within the movable range of the bellows 203 and 210. .

真空ポンプの吸引により、大気圧の変動が起こっても、支杆206が防振部のフランジ205と収縮阻止器体のフランジ211との間に突っ張るように置かれているので、鏡体201と真空排気系が引き合う方向に可撓性通路部材のベローズ203の収縮が抑えられる。   Even if the atmospheric pressure fluctuates due to the suction of the vacuum pump, the support 206 is placed so as to stretch between the flange 205 of the vibration isolator and the flange 211 of the anti-shrinkage body. The contraction of the bellows 203 of the flexible passage member is suppressed in the direction in which the vacuum exhaust system is attracted.

すなわち、鏡体201内の気圧が真空になると、ベローズ203は鏡体201と真空排気系が引き合う方向に収縮するように作用する。同時に収縮阻止器体のベローズ210にも収縮する力が作用する。ベローズ203とベローズ210に作用する力は、強さが同じで向きが反対であるので、支杆206を介して打ち消し合い、ベローズ203の収縮が阻止される。このため、大気圧変動が電子線描画装置の描画精度に影響しない。   That is, when the atmospheric pressure in the mirror body 201 becomes a vacuum, the bellows 203 acts so as to contract in the direction in which the mirror body 201 and the vacuum exhaust system are attracted. At the same time, a contracting force acts on the bellows 210 of the contraction inhibitor body. Since the forces acting on the bellows 203 and the bellows 210 have the same strength and opposite directions, they cancel each other through the support rod 206 and the contraction of the bellows 203 is prevented. For this reason, the atmospheric pressure fluctuation does not affect the drawing accuracy of the electron beam drawing apparatus.

図5に示す他の実施例について説明する。   Another embodiment shown in FIG. 5 will be described.

この実施例は、電子ビームの通過が支障なく良く行われるようにしたものである。   In this embodiment, the passage of the electron beam is performed well without any trouble.

先の実施例(図2に示した実施例)では、支杆206が電子ビーム208の近くに存在するので、電子ビームの通過を損ねる恐れがあり、その問題を解決したものである。   In the previous embodiment (the embodiment shown in FIG. 2), since the support 206 is present near the electron beam 208, there is a possibility that the passage of the electron beam may be impaired, and this problem is solved.

図5に示すように、電子線描画装置本体の鏡体501は、真空吸引径路の吸引路のダクト514を介して真空排気系の真空ポンプ側514に連通している。更に吸引路には防振部が設けられる。   As shown in FIG. 5, the mirror body 501 of the electron beam drawing apparatus main body communicates with the vacuum pump side 514 of the vacuum exhaust system via the duct 514 of the suction path of the vacuum suction path. Furthermore, a vibration isolator is provided in the suction path.

防振部は、可撓性通路部材である柔軟なベローズ503、硬質のフランジ502,505、気密用のOリング513を有する。   The vibration isolator has a flexible bellows 503 that is a flexible passage member, hard flanges 502 and 505, and an airtight O-ring 513.

防振部は、ボルトを含む連結手段で堅牢に、かつ気密を保って鏡体501とダクト504に締結される。鏡体501にはフランジ502が締結され、ダクト514にはフランジ205が締結される。   The vibration isolator is fastened to the mirror body 501 and the duct 504 in a robust and airtight manner by a connecting means including a bolt. A flange 502 is fastened to the mirror body 501, and a flange 205 is fastened to the duct 514.

そして、鏡体501には、防振部を含む吸引路が位置するところから120°位置を移動したところに収縮阻止器体(収縮阻止手段)が設けられる。この収縮阻止器体は、防振部を含む吸引路を挟んで両側に設けられる。   The mirror body 501 is provided with a shrinkage prevention body (shrinkage prevention means) at a position moved 120 ° from where the suction path including the vibration isolator is located. This shrinkage prevention body is provided on both sides of the suction path including the vibration isolator.

この収縮阻止手段により、可撓性通路部材である柔軟なベローズ510の収縮を抑えることができる。   By this contraction prevention means, contraction of the flexible bellows 510 that is the flexible passage member can be suppressed.

収縮阻止器体は、可撓性部材である柔軟なベローズ510、硬質のフランジ509,511、気密用のOリング513、閉鎖用の蓋512を有する。   The shrinkage prevention body includes a flexible bellows 510 that is a flexible member, rigid flanges 509 and 511, an airtight O-ring 513, and a closing lid 512.

防振部は、ボルトを含む連結手段で堅牢に、かつ気密を保って鏡体501に締結される。鏡体501にはフランジ509が締結され、フランジ511には蓋512が締結される。   The vibration isolator is fastened to the mirror body 501 in a robust and airtight manner by connecting means including a bolt. A flange 509 is fastened to the mirror body 501, and a lid 512 is fastened to the flange 511.

そして、鏡体501を貫いて防振部のフランジ505と、収縮阻止器体のフランジ511との間に突っ張るように支杆506が置かれる。支杆506の一端はフランジ505に、他端はフランジ511に螺合されるので、支杆506はフランジ505、511に脱落することなく、取り付けられる。   A support 506 is placed so as to extend through the mirror body 501 between the flange 505 of the vibration isolator and the flange 511 of the anti-shrinkage body. Since one end of the support 506 is screwed to the flange 505 and the other end is screwed to the flange 511, the support 506 is attached to the flanges 505 and 511 without falling off.

また、支杆506は、両収縮阻止器体の間にも設けられる。防振部と両収縮阻止器体には、それぞれが二本の支杆506が突っ張るように設けられる。このため、3本の支杆506は、電子ビーム508が通過する鏡体501の中心から離れた位置に存在する。これにより、電子ビーム508の通過が支杆506で妨げられることがなく、描画は損なわれずに行われる。   Moreover, the support 506 is also provided between both contraction inhibitor bodies. Each of the vibration isolator and the both anti-shrinkage body is provided so that two supports 506 are stretched. For this reason, the three supports 506 are present at positions away from the center of the mirror body 501 through which the electron beam 508 passes. Thereby, the passage of the electron beam 508 is not hindered by the support 506, and the drawing is performed without being impaired.

調整機構507は、支杆506の途中に設けられる。一つの支杆506に二つの調整機構507を設けることにより、支杆506を曲げることなく、直線の支杆206を用いることができるので、製作がし易い。   The adjustment mechanism 507 is provided in the middle of the support 506. By providing the two adjusting mechanisms 507 on one support 506, the straight support 206 can be used without bending the support 506, so that the manufacture is easy.

図4に示す他の実施例について説明する。   Another embodiment shown in FIG. 4 will be described.

この実施例は、鏡体を貫くことなく、短い支杆が使用できるものである。   In this embodiment, a short support can be used without penetrating the mirror body.

図2、図5に示す先の実施例では、支杆が鏡体内を貫通するので、構成が複雑、かつ組立て性が良くなく、しかも長い支杆を必要とする不具合があり、その問題を解決したものである。   In the previous embodiment shown in FIGS. 2 and 5, since the support penetrates through the lens body, there is a problem that the structure is complicated, the assembly is not good, and a long support is required. It is a thing.

図4に示すように、電子線描画装置本体の鏡体401は、真空吸引径路の吸引路のダクト415、416を介して真空排気系の真空ポンプ側414に連通している。更に吸引路には防振部が設けられる。吸引路の途中には、真空ポンプの振動の伝達を断つ防振部が設けられる。   As shown in FIG. 4, the mirror body 401 of the electron beam drawing apparatus main body communicates with the vacuum pump side 414 of the vacuum exhaust system via the ducts 415 and 416 of the suction path of the vacuum suction path. Furthermore, a vibration isolator is provided in the suction path. In the middle of the suction path, a vibration isolator that cuts off the transmission of the vibration of the vacuum pump is provided.

防振部は、吸引路の真空排気系側が連通するように接続される中央基体404と、この中央基体404の一端に設けられ、かつ鏡体401側に連通するように接続される可撓性通路部材のベローズ403と、このベローズ403の反対側になる中央基体404の他端に設ける収縮阻止用の可撓性部材のベローズ410を有する。   The vibration isolator is connected to the central base body 404 connected so that the vacuum exhaust system side of the suction path communicates with the flexible body, provided at one end of the central base body 404, and connected to the mirror body 401 side. It has a bellows 403 as a passage member and a bellows 410 as a flexible member for preventing shrinkage provided at the other end of the central base body 404 opposite to the bellows 403.

また、中央基体404の中央には、連通するダクト416が一体に形成される。ダクト416は、ベローズ403,410の取り付け方向とは交差する向きに設けられる。   A duct 416 that communicates with the center base 404 is integrally formed. The duct 416 is provided in a direction intersecting with the mounting direction of the bellows 403 and 410.

可撓性通路部材のベローズ403は、両端側に硬質のフランジ402,405、気密用のOリング413を有する。   The bellows 403 of the flexible passage member has hard flanges 402 and 405 and an airtight O-ring 413 on both ends.

可撓性部材のベローズ410は、両端側に硬質のフランジ409,411、気密用のOリング413を有する。   The bellows 410, which is a flexible member, has hard flanges 409 and 411 and airtight O-rings 413 on both ends.

可撓性通路部材のベローズ403のフランジ405は、中央基体404にボルトを含む連結手段で堅牢に、かつ気密を保って締結される。ベローズ403の別のフランジ405は、鏡体401側に設けられるダクト415にボルトを含む連結手段で堅牢に、かつ気密を保って締結される。ダクト415の反対側は、鏡体401にボルトを含む連結手段で堅牢に、かつ気密を保って締結される。   The flange 405 of the bellows 403 of the flexible passage member is fastened to the central base body 404 by a connecting means including a bolt in a robust and airtight manner. Another flange 405 of the bellows 403 is fastened firmly to the duct 415 provided on the side of the mirror body 401 by connecting means including bolts in a robust and airtight manner. The opposite side of the duct 415 is fastened to the mirror body 401 with connection means including bolts in a robust and airtight manner.

可撓性部材のベローズ410のフランジ409は、中央基体404にボルトを含む連結手段で堅牢に、かつ気密を保って締結される。ベローズ410の別のフランジ411には、閉鎖用の蓋412がボルトを含む連結手段で堅牢に、かつ気密を保って締結される。   The flange 409 of the bellows 410 of the flexible member is fastened to the central base body 404 with a connection means including a bolt in a robust and airtight manner. A closing lid 412 is fastened to another flange 411 of the bellows 410 with a connecting means including a bolt in a robust and airtight manner.

支杆406は、可撓性通路部材のベローズ403のフランジ402と、可撓性部材のベローズ410のフランジ411との間に突っ張るように置かれる。   The support 406 is placed so as to stretch between the flange 402 of the bellows 403 of the flexible passage member and the flange 411 of the bellows 410 of the flexible member.

このような構成を有する防振部は、支杆406を鏡体401内に貫通させないので、図2、図5に示す実施例に比べ、支杆406の長さを短くできる。また、鏡体401内に支杆406を貫通させないので、構成が簡単で組み立て易い。   Since the vibration isolator having such a configuration does not allow the support rod 406 to penetrate the mirror body 401, the length of the support rod 406 can be shortened as compared with the embodiments shown in FIGS. Further, since the support rod 406 is not penetrated into the mirror body 401, the configuration is simple and easy to assemble.

また、鏡体401内に支杆406を貫通させないので、鏡体401内を通過する電子ビーム408の妨げにならない。   Further, since the support 406 is not penetrated into the mirror body 401, the electron beam 408 passing through the mirror body 401 is not hindered.

上記の本実施例によれば、電子線描画装置などの電子線またはイオンビーム装置において、高速のターボ分子ポンプを排気装置として用いつつ、荷電粒子装置本体に振動を伝えず、また大気圧変動による精度の悪化のない、安価で高精度な荷電粒子装置を提供することができる。   According to the above-described embodiment, in an electron beam or ion beam device such as an electron beam drawing device, a high-speed turbo molecular pump is used as an exhaust device, vibration is not transmitted to the charged particle device body, and due to atmospheric pressure fluctuations An inexpensive and highly accurate charged particle device without deterioration in accuracy can be provided.

図6は、図4に対応する他の実施例で、収縮阻止手段の支杆606を中央基体604の外側に離して配置した構成を有する。この実施例は、支杆606が外側であるので、取り付けの面では有利である。   FIG. 6 is another embodiment corresponding to FIG. 4, and has a configuration in which the support 606 of the shrinkage prevention means is arranged apart from the central base body 604. This embodiment is advantageous in terms of mounting because the support 606 is outside.

なお、鏡体601、真空吸引径路の吸引路のダクト615,616、真空排気系の真空ポンプ側614、鏡体601、可撓性通路部材のベローズ603、可撓性部材のベローズ610、フランジ602,605、Oリング613は、図4の実施例と共通である。また、フランジ609,611、電子ビーム608、閉鎖用の蓋612も図4の実施例と共通である。   In addition, the mirror body 601, the suction path ducts 615 and 616 of the vacuum suction path, the vacuum pump side 614 of the vacuum exhaust system, the mirror body 601, the flexible passage member bellows 603, the flexible member bellows 610, and the flange 602 605 and the O-ring 613 are common to the embodiment of FIG. Further, the flanges 609 and 611, the electron beam 608, and the closing lid 612 are also common to the embodiment of FIG.

図7は、図2に対応する他の実施例で、収縮阻止手段の支杆706を鏡体702の外側に離して配置した構成を有する。この実施例は、支杆706が外側であるので、取り付けんの面では有利である。支杆706は湾曲しているので、強度を上げる必要がある。   FIG. 7 shows another embodiment corresponding to FIG. 2, and has a configuration in which a support 706 of the anti-shrinkage means is arranged apart from the mirror body 702. This embodiment is advantageous in terms of mounting because the support 706 is outside. Since the support 706 is curved, it is necessary to increase the strength.

なお、ダクト704、真空ポンプ側714、ベローズ703、フランジ702,705、Oリング713、ベローズ710、フランジ709,711、蓋712、調整機構707は、図2の実施例と共通である。   The duct 704, the vacuum pump side 714, the bellows 703, the flanges 702 and 705, the O-ring 713, the bellows 710, the flanges 709 and 711, the lid 712, and the adjusting mechanism 707 are the same as those in the embodiment of FIG.

本発明の実施例に係わるもので、電子線描画装置の概要を示す縦断面図である。It is a longitudinal cross-sectional view which concerns on the Example of this invention, and shows the outline | summary of an electron beam drawing apparatus. 本発明の実施例に係わるもので、要部拡大断面図である。It is a principal part expanded sectional view concerning the Example of this invention. 本発明と比較する参考図である。It is a reference figure compared with this invention. 本発明の他の実施例に係わるもので、要部拡大断面図である。It is a principal part expanded sectional view concerning the other Example of this invention. 本発明の他の実施例に係わるもので、要部拡大断面図である。It is a principal part expanded sectional view concerning the other Example of this invention. 本発明の他の実施例に係わるもので、図4に示す支杆を中央基体の外側に移した要部拡大断面図である。FIG. 5 is an enlarged cross-sectional view of a main part in which the support shown in FIG. 本発明の他の実施例に係わるもので、図2に示す支杆を鏡体の外側に移した要部拡大断面図である。FIG. 4 is an enlarged cross-sectional view of a main part in which the support shown in FIG.

符号の説明Explanation of symbols

107…標的、208…電子ビーム(電子線)、1…電子光学系を含む荷電粒子線装置本体、111…ターボ分子ポンプ(吸引ポンプ)、204…ダクト(吸引路)、203…ベローズ(防振部.可撓性通路部材)、206…支杆(収縮阻止手段)、210…ベローズ(収縮阻止手段)。   DESCRIPTION OF SYMBOLS 107 ... Target, 208 ... Electron beam (electron beam), 1 ... Charged particle beam apparatus main body containing an electron optical system, 111 ... Turbo molecular pump (suction pump), 204 ... Duct (suction path), 203 ... Bellows (vibration isolation) Part: flexible passage member), 206: support (shrinkage prevention means), 210 ... bellows (shrinkage prevention means).

Claims (12)

標的に電子線またはイオンビームを照射する電磁光学系を含む荷電粒子線装置本体と、
前記荷電粒子線装置本体内を真空にする吸引ポンプが備わる真空排気系と、
前記荷電粒子線装置本体と前記真空排気系を連通する吸引路と、
前記吸引路に介在される防振部と、
前記防振部に設けられる可撓性通路部材とを有する荷電粒子線装置において、
前記真空排気系の吸引により、前記荷電粒子線装置本体と前記真空排気系が引き合う方向に前記可撓性通路部材が収縮するのを抑える収縮阻止手段を設けたことを特徴とする荷電粒子線装置。
A charged particle beam apparatus body including an electromagnetic optical system for irradiating a target with an electron beam or an ion beam;
An evacuation system equipped with a suction pump for evacuating the charged particle beam apparatus body;
A suction path communicating the charged particle beam device main body and the vacuum exhaust system;
A vibration isolator interposed in the suction path;
In the charged particle beam device having a flexible passage member provided in the vibration isolator,
A charged particle beam apparatus comprising: a contraction preventing unit that suppresses contraction of the flexible passage member in a direction in which the charged particle beam apparatus main body and the vacuum exhaust system are attracted by suction of the vacuum exhaust system. .
標的が置かれる標的室と、
前記標的室の上部に設けられ、前記標的に電子線またはイオンビームを照射する電子光学系が備わる鏡体と、
ターボ分子ポンプを含む真空ポンプや真空配管等を備える真空排気系のやぐらと、
前記真空排気系内と前記鏡体内とを連通する吸引路と、
前記吸引路に介在される防振部と、
前記防振部に設けられる可撓性通路部材と、
前記真空排気系の吸引により、前記鏡体と前記真空排気系が引き合う方向に前記可撓性通路部材が収縮するのを抑える収縮阻止器体とを有することを特徴とする荷電粒子線装置。
A target room where the target is placed,
A mirror provided in an upper part of the target chamber and provided with an electron optical system for irradiating the target with an electron beam or an ion beam;
A vacuum exhaust system tower equipped with a vacuum pump including a turbo molecular pump and vacuum piping,
A suction path communicating the inside of the evacuation system and the body;
A vibration isolator interposed in the suction path;
A flexible passage member provided in the vibration isolator;
A charged particle beam apparatus comprising: a contraction preventer body that suppresses contraction of the flexible passage member in a direction in which the mirror body and the vacuum exhaust system are attracted by suction of the vacuum exhaust system.
標的が置かれる標的室と、
前記標的室の上部に設けられ、前記標的に電子線またはイオンビームを照射する電子光学系が備わる鏡体と、
ターボ分子ポンプを含む真空ポンプや真空配管等を備える真空排気系のやぐらと、
前記真空排気系内と前記鏡体内とを連通する吸引路と、
前記吸引路に介在される防振部と、
前記防振部に含まれる可撓性通路部材、および硬質のフランジと、
前記真空排気系の吸引により、前記鏡体と前記真空排気系が引き合う方向に前記可撓性通路部材が収縮するのを抑える収縮阻止器体と、
前記収縮阻止器体に含まれる可撓性部材、および硬質のフランジと、
前記防振部のフランジと、前記収縮阻止器体のフランジとの間に突っ張るように置く支杆とを有することを特徴とする荷電粒子線装置。
A target room where the target is placed,
A mirror provided in an upper part of the target chamber and provided with an electron optical system for irradiating the target with an electron beam or an ion beam;
A vacuum exhaust system tower equipped with a vacuum pump including a turbo molecular pump and vacuum piping,
A suction path communicating the inside of the evacuation system and the body;
A vibration isolator interposed in the suction path;
A flexible passage member included in the vibration isolator, and a rigid flange;
A contraction preventer body that suppresses contraction of the flexible passage member in a direction in which the mirror body and the vacuum exhaust system are attracted by suction of the vacuum exhaust system;
A flexible member included in the anti-shrinkage body, and a rigid flange;
A charged particle beam device comprising: a support member placed so as to be stretched between a flange of the vibration isolator and a flange of the shrinkage prevention body.
請求項3記載の荷電粒子線装置において、
前記可撓性通路部材と前記可撓性部材は、柔軟なベローズの筒体で形成されていることを特徴とする荷電粒子線装置。
The charged particle beam device according to claim 3.
The charged particle beam apparatus, wherein the flexible passage member and the flexible member are formed of a flexible bellows cylinder.
請求項3記載の荷電粒子線装置において、
前記収縮阻止器体は前記防振部の反対側に配置されることを特徴とする荷電粒子線装置。
The charged particle beam device according to claim 3.
The charged particle beam device according to claim 1, wherein the shrinkage prevention body is disposed on the opposite side of the vibration isolator.
請求項3記載の荷電粒子線装置において、
一つの前記防振部と、二つの前記収縮阻止器体を前記鏡体にほぼ等間隔で配置し、
隣り合う前記収縮阻止器体のフランジの間に突っ張るように置く支杆を有することを特徴とする荷電粒子線装置。
The charged particle beam device according to claim 3.
One vibration isolator and two anti-shrinkage bodies are arranged in the mirror body at approximately equal intervals;
A charged particle beam apparatus comprising a support placed so as to be stretched between the flanges of the adjacent shrinkage prevention bodies.
請求項3から6のいずれに記載された荷電粒子線装置において、
前記支杆の長さを調整する調整機構を有することを特徴とする荷電粒子線装置。
In the charged particle beam device according to any one of claims 3 to 6,
A charged particle beam apparatus comprising an adjustment mechanism for adjusting a length of the support.
請求項3から6のいずれに記載された荷電粒子線装置において、
前記収縮阻止器体のフランジに着脱自在なる閉鎖用の蓋を備えたことを特徴とする荷電粒子線装置。
In the charged particle beam device according to any one of claims 3 to 6,
A charged particle beam apparatus comprising a closing lid that is detachably attached to a flange of the shrinkage prevention body.
標的が置かれる標的室と、
前記標的室の上部に設けられ、前記標的に電子線またはイオンビームを照射する電子光学系が備わる鏡体と、
ターボ分子ポンプを含む真空ポンプや真空配管等を備える真空排気系のやぐらと、
前記真空排気系内と前記鏡体内とを連通する吸引路と、
前記吸引路の途中に設けられた振動の伝達を断つ防振部とを有し、
前記防振部は、前記吸引路の真空排気系側が連通するように接続される中央基体と、この中央基体の一端に設けられ、かつ前記鏡体側に連通するように接続される可撓性通路部材と、この可撓性通路部材の反対側になる中央基体の他端に設ける収縮阻止用の可撓性部材と、前記真空排気系の吸引により、前記可撓性通路部材と、前記可撓性部材とが互いに引き合う方向に収縮するのを阻止する支杆を有することを特徴とする荷電粒子線装置。
A target room where the target is placed,
A mirror provided in an upper part of the target chamber and provided with an electron optical system for irradiating the target with an electron beam or an ion beam;
A vacuum exhaust system tower equipped with a vacuum pump including a turbo molecular pump and vacuum piping,
A suction path communicating the inside of the evacuation system and the body;
A vibration isolator that interrupts transmission of vibration provided in the middle of the suction path;
The vibration isolator is a central base connected to communicate with the vacuum exhaust system side of the suction path, and a flexible passage provided at one end of the central base and connected to the mirror side A member, a flexible member for preventing contraction provided at the other end of the central base opposite to the flexible passage member, the flexible passage member by the suction of the vacuum exhaust system, and the flexible member A charged particle beam device characterized by having a support for preventing contraction in the direction of attracting each other.
請求項9記載の荷電粒子線装置において、
前記可撓性部材の外側端部側に設けられた硬質のフランジに着脱自在なる閉鎖用の蓋を備えたことを特徴とする荷電粒子線装置。
The charged particle beam apparatus according to claim 9, wherein
A charged particle beam apparatus comprising a closure lid that is detachably attached to a hard flange provided on an outer end side of the flexible member.
標的に電子線またはイオンビームを照射する電子光学系を含む荷電粒子線装置本体と、
前記荷電粒子線装置本体内を真空にする吸引ポンプが備わる真空排気系と、
前記荷電粒子線装置本体と前記真空排気系を連通する吸引路と、
前記吸引路に介在される防振部と、
前記防振部に設けられる可撓性通路部材とを有する荷電粒子線装置の真空吸引径路において、
前記真空排気系の吸引により、前記荷電粒子線装置本体と前記真空排気系が引き合う方向に前記可撓性通路部材が収縮するのを抑える収縮阻止手段を設けたことを特徴とする荷電粒子線装置の真空吸引径路。
A charged particle beam apparatus main body including an electron optical system for irradiating a target with an electron beam or an ion beam;
An evacuation system equipped with a suction pump for evacuating the charged particle beam apparatus body;
A suction path communicating the charged particle beam device main body and the vacuum exhaust system;
A vibration isolator interposed in the suction path;
In a vacuum suction path of a charged particle beam device having a flexible passage member provided in the vibration isolator,
A charged particle beam apparatus comprising: a contraction preventing unit that suppresses contraction of the flexible passage member in a direction in which the charged particle beam apparatus main body and the vacuum exhaust system are attracted by suction of the vacuum exhaust system. Vacuum suction path.
標的が置かれる標的室と、
前記標的室の上部に設けられ、前記標的に電子線またはイオンビームを照射する電子光学系が備わる鏡体と、
ターボ分子ポンプを含む真空ポンプや真空配管等を備える真空排気系のやぐらと、
前記真空排気系内と前記鏡体内とを連通する吸引路と、
前記吸引路の途中に設けられた振動の伝達を断つ防振部とを有し、
前記防振部は、前記吸引路の真空排気系側が連通するように接続される中央基体と、この中央基体の一端に設けられ、かつ前記鏡体側に連通するように接続される可撓性通路部材と、この可撓性通路部材の反対側になる中央基体の他端に設ける収縮阻止用の可撓性部材と、前記真空排気系の吸引により、前記可撓性通路部材と、前記可撓性部材とが互いに引き合う方向に収縮するのを阻止する支杆を有することを特徴とする荷電粒子線装置の真空吸引径路。
A target room where the target is placed,
A mirror provided in an upper part of the target chamber and provided with an electron optical system for irradiating the target with an electron beam or an ion beam;
A vacuum exhaust system tower equipped with a vacuum pump including a turbo molecular pump and vacuum piping,
A suction path communicating the inside of the evacuation system and the body;
A vibration isolator that interrupts transmission of vibration provided in the middle of the suction path;
The vibration isolator is a central base connected to communicate with the vacuum exhaust system side of the suction path, and a flexible passage provided at one end of the central base and connected to the mirror side A member, a flexible member for preventing contraction provided at the other end of the central base opposite to the flexible passage member, the flexible passage member by the suction of the vacuum exhaust system, and the flexible member A vacuum suction path for a charged particle beam apparatus, comprising a support for preventing the conductive member from contracting in a direction of attracting each other.
JP2005363206A 2005-12-16 2005-12-16 Charged particle beam device Pending JP2007165232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005363206A JP2007165232A (en) 2005-12-16 2005-12-16 Charged particle beam device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005363206A JP2007165232A (en) 2005-12-16 2005-12-16 Charged particle beam device

Publications (1)

Publication Number Publication Date
JP2007165232A true JP2007165232A (en) 2007-06-28

Family

ID=38247897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005363206A Pending JP2007165232A (en) 2005-12-16 2005-12-16 Charged particle beam device

Country Status (1)

Country Link
JP (1) JP2007165232A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100901148B1 (en) 2007-09-20 2009-06-04 재단법인 한국원자력의학원 Mechanical wobbling system for mass production of radio-isotope
US7879149B2 (en) * 2003-03-11 2011-02-01 Sharp Kabushiki Kaisha Vacuum processing apparatus
KR101327357B1 (en) * 2012-04-12 2013-11-11 (주)펨트론 Electron Beam Irradiator Provided With Structure For Reducing Vibration
JP2013544031A (en) * 2010-11-13 2013-12-09 マッパー・リソグラフィー・アイピー・ビー.ブイ. Charged particle lithography system with intermediate chamber
JP2014196693A (en) * 2013-03-29 2014-10-16 株式会社荏原製作所 Vacuum pump connecting device connecting vacuum pump to lens barrel of electronic beam application device and method for installing vacuum pump connecting device
US8961106B2 (en) 2010-11-22 2015-02-24 Jeol Ltd. Turbomolecular pump and connector device therefor
CN104678717A (en) * 2015-03-03 2015-06-03 合肥芯硕半导体有限公司 Vacuum cup pipeline structure capable of realizing two-degree-of-freedom movement
JP2021034147A (en) * 2019-08-20 2021-03-01 株式会社ニューフレアテクノロジー Electric charge particle beam device and piping for vacuum
GB2598762A (en) * 2020-09-11 2022-03-16 Thermo Fisher Scient Bremen Gmbh Coupling for connecting analytical systems with vibrational isolation

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7879149B2 (en) * 2003-03-11 2011-02-01 Sharp Kabushiki Kaisha Vacuum processing apparatus
KR100901148B1 (en) 2007-09-20 2009-06-04 재단법인 한국원자력의학원 Mechanical wobbling system for mass production of radio-isotope
JP2013544031A (en) * 2010-11-13 2013-12-09 マッパー・リソグラフィー・アイピー・ビー.ブイ. Charged particle lithography system with intermediate chamber
US8961106B2 (en) 2010-11-22 2015-02-24 Jeol Ltd. Turbomolecular pump and connector device therefor
KR101327357B1 (en) * 2012-04-12 2013-11-11 (주)펨트론 Electron Beam Irradiator Provided With Structure For Reducing Vibration
US9970459B2 (en) 2013-03-29 2018-05-15 Ebara Corporation Vacuum pump connecting apparatus and method for installing vacuum pump connecting apparatus
JP2014196693A (en) * 2013-03-29 2014-10-16 株式会社荏原製作所 Vacuum pump connecting device connecting vacuum pump to lens barrel of electronic beam application device and method for installing vacuum pump connecting device
CN104678717A (en) * 2015-03-03 2015-06-03 合肥芯硕半导体有限公司 Vacuum cup pipeline structure capable of realizing two-degree-of-freedom movement
JP2021034147A (en) * 2019-08-20 2021-03-01 株式会社ニューフレアテクノロジー Electric charge particle beam device and piping for vacuum
JP7257915B2 (en) 2019-08-20 2023-04-14 株式会社ニューフレアテクノロジー Charged particle beam equipment and vacuum piping
GB2598762A (en) * 2020-09-11 2022-03-16 Thermo Fisher Scient Bremen Gmbh Coupling for connecting analytical systems with vibrational isolation
US11699582B2 (en) 2020-09-11 2023-07-11 Fei Company Coupling for connecting analytical systems with vibrational isolation
GB2598762B (en) * 2020-09-11 2024-01-31 Thermo Fisher Scient Bremen Gmbh Coupling for connecting analytical systems with vibrational isolation

Similar Documents

Publication Publication Date Title
JP2007165232A (en) Charged particle beam device
US20010023522A1 (en) Flexibly interconnected vacuum chambers comprising load-canceling device therebetween, and process apparatus comprising same
WO1998026444A1 (en) Vacuum compatible linear motion device
US9952519B2 (en) Vacuum linear feed-through and vacuum system having said vacuum linear feed-through
WO2010146790A1 (en) Charged particle radiation device
US20070199201A1 (en) Vacuum Device, Operation Method For Vacuum Device, Exposure System, And Operation Method For Exposure System
JP2014086524A (en) Processing unit, and manufacturing method for article using the same
US11545335B2 (en) Vacuum connection mechanism and electron optical device
JP2002329471A (en) Lens member for electronic beam lens barrel
JP2018109714A (en) Optical device, and vibration resisting method
US12038695B2 (en) Protection device for lines in a projection printing installation for semiconductor lithography
US6794665B2 (en) Electron beam drawing apparatus
US20040169832A1 (en) Vacuum chamber having instrument-mounting bulkhead exhibiting reduced deformation in response to pressure differential, and energy-beam systems comprising same
US9970459B2 (en) Vacuum pump connecting apparatus and method for installing vacuum pump connecting apparatus
CN109449072B (en) Floating target mechanism for ray source
JP3657836B2 (en) Vibration isolator
JP6362941B2 (en) Charged particle beam equipment
US20030043357A1 (en) Vacuum chamber having instrument- mounting bulkhead exhibiting reduced deformation in response to pressure differential, and energy-beam systems comprising same
US20030178579A1 (en) Stage devices exhibiting reduced deformation, and microlithography systems comprising same
KR20200033957A (en) Electron beam inspection device stage positioning
JP2007309361A (en) Vibration damping device
TWI409898B (en) Sealing between vacuum chambers
US10607810B2 (en) Vibration control system and optical equipment equipped therewith
JP2005106166A (en) Active vibration cancellation device and exposing device
CN102722020B (en) Microscope focusing device for plasma diagnosis and application thereof