JP6362941B2 - Charged particle beam equipment - Google Patents

Charged particle beam equipment Download PDF

Info

Publication number
JP6362941B2
JP6362941B2 JP2014139272A JP2014139272A JP6362941B2 JP 6362941 B2 JP6362941 B2 JP 6362941B2 JP 2014139272 A JP2014139272 A JP 2014139272A JP 2014139272 A JP2014139272 A JP 2014139272A JP 6362941 B2 JP6362941 B2 JP 6362941B2
Authority
JP
Japan
Prior art keywords
support member
charged particle
particle beam
sample
lens barrel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014139272A
Other languages
Japanese (ja)
Other versions
JP2016018621A (en
Inventor
英輔 上出
英輔 上出
清水 利彦
利彦 清水
祐二 葛西
祐二 葛西
譲 望月
譲 望月
博文 本白水
博文 本白水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2014139272A priority Critical patent/JP6362941B2/en
Publication of JP2016018621A publication Critical patent/JP2016018621A/en
Application granted granted Critical
Publication of JP6362941B2 publication Critical patent/JP6362941B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は荷電粒子線装置に係わり、特に、荷電粒子線装置のビームカラム内を真空排気するためのポンプを備えた荷電粒子線装置に関する。   The present invention relates to a charged particle beam apparatus, and more particularly to a charged particle beam apparatus including a pump for evacuating a beam column of the charged particle beam apparatus.

走査型電子顕微鏡、透過型電子顕微鏡、半導体計測・検査装置等の荷電粒子線装置では、超高真空環境下の鏡筒内で発生させた荷電粒子線(電子線)を試料に照射し、試料から放出された二次電子、反射電子、または透過電子を検出することによって試料の観察画像を取得している。鏡筒が振動すると、電子線の照射位置が本来の位置から変動し、画像の歪みが生じ、観察画像が不鮮明になる場合がある。   In charged particle beam devices such as scanning electron microscopes, transmission electron microscopes, and semiconductor measurement / inspection devices, the sample is irradiated with a charged particle beam (electron beam) generated in a lens barrel in an ultra-high vacuum environment. An observation image of the sample is acquired by detecting secondary electrons, reflected electrons, or transmitted electrons emitted from the sample. When the lens barrel vibrates, the irradiation position of the electron beam fluctuates from the original position, image distortion may occur, and the observed image may become unclear.

一方、荷電粒子線装置は、そのビーム源(電子源やイオン源)近傍の雰囲気を、高真空状態にする必要がある。そのためにイオンポンプ等の真空排気装置を、カラム近傍に設置する必要があるが、このイオンポンプがカラムを振動させる加振源となる可能性がある。   On the other hand, in the charged particle beam apparatus, the atmosphere near the beam source (electron source or ion source) needs to be in a high vacuum state. For this purpose, an evacuation device such as an ion pump needs to be installed in the vicinity of the column, but this ion pump may be an excitation source for vibrating the column.

特許文献1では、排気系を支持する支柱の固有振動数とほぼ同一の固有振動数を有する動吸振器を用いた鏡筒の振動抑制技術を開示している。特許文献2では、粘弾性体を具備したフレームでイオンポンプを支持することで、イオンポンプの振動を短時間で減衰させる技術が開示されている。粘弾性体と金属板から成る積層構造体を具備した制振装置を用いて、鏡筒の振動低減を実現する技術が特許文献3で開示されている。   Patent Document 1 discloses a technique for suppressing vibration of a lens barrel using a dynamic vibration absorber having a natural frequency that is substantially the same as the natural frequency of a column that supports an exhaust system. Patent Document 2 discloses a technique for attenuating vibration of an ion pump in a short time by supporting the ion pump with a frame having a viscoelastic body. Patent Document 3 discloses a technique for realizing vibration reduction of a lens barrel using a vibration damping device including a laminated structure including a viscoelastic body and a metal plate.

特開2001−76660号公報JP 2001-76660 A 特開2011−003414号公報(対応米国特許USP8,629,410)JP 2011-003414 A (corresponding US Pat. No. 8,629,410) WO2011/043391(対応米国特許USP8,729,476)WO2011 / 043391 (corresponding US patent USP8,729,476)

鏡筒やイオンポンプの振動は、観察画像の劣化を招く。これらの振動を低減するために、鏡筒やイオンポンプに制振装置を取り付けるのは効果的であるが、それぞれの振動に対応するように鏡筒とイオンポンプに個別に制振装置を取り付けると、装置が複雑になる上、コストの増加や作業性の悪化が懸念される。   The vibration of the lens barrel or the ion pump causes the observation image to deteriorate. In order to reduce these vibrations, it is effective to attach a vibration damping device to the lens barrel and ion pump. However, if a vibration damping device is attached to the lens barrel and ion pump separately to accommodate each vibration, In addition to the complexity of the device, there is a concern about cost increase and workability deterioration.

特許文献1に記載されている動吸振器を用いた場合、抑制できる固有振動数や振動の方向は一つであり、複数の振動モードに対応するためには、動吸振器を複数設置する必要があり、装置重量の増加や複雑化を伴う。また、特許文献1、2、3で開示されている技術では、鏡筒とイオンポンプの振動を同時に低減しようとすると、それぞれに対して制振装置を取り付ける必要があり、コスト増加し、作業性が低下する。   When the dynamic vibration absorber described in Patent Document 1 is used, there is only one natural frequency and vibration direction that can be suppressed, and in order to support a plurality of vibration modes, it is necessary to install a plurality of dynamic vibration absorbers. With increased equipment weight and complexity. Further, in the techniques disclosed in Patent Documents 1, 2, and 3, if it is attempted to reduce vibrations of the lens barrel and the ion pump at the same time, it is necessary to attach a vibration damping device to each of them, which increases costs and improves workability Decreases.

特許文献2のように、粘弾性体を金属板で挟んだ積層構造体を、イオンポンプとイオンポンプの一端と対向する位置に固定されたフレームに取付けることで、イオンポンプの振動に対して効果的に減衰を付与することができる。これは、粘弾性体に対してイオンポンプが面内方向に振動することで、効率良く粘弾性体をせん断変形させるためである。これに対して、鏡筒の振動は現在配置されている粘弾性体の面外方向に振動する成分が大きく、鏡筒の振動低減効果が見込めない。   As in Patent Document 2, a laminated structure in which a viscoelastic body is sandwiched between metal plates is attached to a frame fixed at a position opposite to one end of the ion pump and the ion pump. Can be attenuated. This is because the ion pump vibrates in the in-plane direction with respect to the viscoelastic body, thereby efficiently shearing and deforming the viscoelastic body. On the other hand, the vibration of the lens barrel has a large component that vibrates in the out-of-plane direction of the currently arranged viscoelastic body, and the effect of reducing the vibration of the lens barrel cannot be expected.

以下に、比較的簡単な構成でカラム近傍に取り付けられた真空排気装置の存在に起因する荷電粒子線装置鏡筒の振動を低減することを目的とする荷電粒子線装置について説明する。   Hereinafter, a charged particle beam apparatus that aims to reduce vibration of a charged particle beam apparatus barrel caused by the presence of an evacuation apparatus attached in the vicinity of a column with a relatively simple configuration will be described.

上記目的を解決するための一態様として、試料を内部に配置する試料室と、前記試料を搭載するステージと、荷電粒子線を前記試料に照射するための鏡筒と、前記鏡筒の内部を真空排気するポンプと、当該ポンプを支持する支持部材を備える荷電粒子線装置であって、前記支持部材は、当該支持部材の傾斜を許容する傾斜許容部を備えていることを特徴とする荷電粒子線装置を提案する。   As an aspect for solving the above-described object, a sample chamber in which a sample is placed, a stage on which the sample is mounted, a lens barrel for irradiating the sample with a charged particle beam, and an interior of the lens barrel are provided. A charged particle beam apparatus comprising a pump for evacuating and a support member for supporting the pump, wherein the support member includes an inclination allowing portion for allowing an inclination of the support member. Propose a wire system.

上記構成によれば、比較的簡単な構成で、イオンポンプ等の真空排気装置に起因する荷電粒子線装置鏡筒の振動を低減させることが可能となる。   According to the above configuration, it is possible to reduce the vibration of the charged particle beam apparatus barrel caused by a vacuum exhaust device such as an ion pump with a relatively simple configuration.

イオンポンプを支持する支持部材の傾斜を許容する傾斜許容部材が設けられた荷電粒子線装置の一例を示す図である。It is a figure which shows an example of the charged particle beam apparatus provided with the inclination permission member which accept | permits the inclination of the support member which supports an ion pump. イオンポンプと鏡筒の固有振動モードを示す図である。It is a figure which shows the natural vibration mode of an ion pump and a lens-barrel. 傾斜許容部材を持たないイオンポンプの支持部材を備えた荷電粒子線装置の一例を示す図である。It is a figure which shows an example of the charged particle beam apparatus provided with the supporting member of the ion pump which does not have an inclination permission member. 傾斜許容部材を持たないイオンポンプの支持部材を備えた荷電粒子線装置の鏡筒がy方向に振動するときの変形を示す図である。It is a figure which shows a deformation | transformation when the lens-barrel of the charged particle beam apparatus provided with the supporting member of the ion pump which does not have an inclination permission member vibrates in ay direction. 傾斜許容部材を持たないイオンポンプの支持部材を備えた荷電粒子線装置の鏡筒がx方向に振動するときの変形を示す図である。It is a figure which shows a deformation | transformation when the lens-barrel of the charged particle beam apparatus provided with the supporting member of the ion pump which does not have an inclination permission member vibrates to ax direction. 回転支持部材の一例を示す図である。It is a figure which shows an example of a rotation support member. 回転支持部材の一例を示す図である。It is a figure which shows an example of a rotation support member. 変形支持部材の一例を示す図である。It is a figure which shows an example of a deformation | transformation support member. 傾斜許容部材の有用性を示すFEM解析結果の一例である。It is an example of the FEM analysis result which shows the usefulness of an inclination tolerance member. 傾斜許容部材を備えた荷電粒子線装置の一例を示す図である。It is a figure which shows an example of the charged particle beam apparatus provided with the inclination permission member. 傾斜許容部材を備えた荷電粒子線装置の一例を示す図である。It is a figure which shows an example of the charged particle beam apparatus provided with the inclination permission member. 傾斜許容部材を備えた荷電粒子線装置の一例を示す図である。It is a figure which shows an example of the charged particle beam apparatus provided with the inclination permission member. 傾斜許容部材を備えた荷電粒子線装置の一例を示す図である。It is a figure which shows an example of the charged particle beam apparatus provided with the inclination permission member.

以下に、イオンポンプに取付けられる制振装置を用いて、鏡筒の振動低減効果を高め、高分解能かつ高スループットの測定や検査を可能とする荷電粒子線装置について説明する。   Hereinafter, a charged particle beam apparatus that enhances the vibration reduction effect of the lens barrel and enables high-resolution and high-throughput measurement and inspection using a vibration damping device attached to the ion pump will be described.

以下の実施例では主に、試料を内部に配置する試料室と、前記試料を搭載するステージと、荷電粒子線を前記試料に照射するための鏡筒と、前記鏡筒の内部を真空排気するイオンポンプ(真空排気装置)と、粘弾性体を介して前記イオンポンプを支持する支持部材を備えた荷電粒子線装置であって、前記支持部材は、前記鏡筒が傾斜したときに、前記鏡筒と平行を維持しながら、前記鏡筒と同じ方向に傾斜することのできる屈曲部分(傾斜許容部材)を備えた荷電粒子線装置について説明する。   In the following embodiments, a sample chamber in which a sample is arranged, a stage on which the sample is mounted, a lens barrel for irradiating the sample with a charged particle beam, and the inside of the lens tube are evacuated. A charged particle beam device comprising an ion pump (evacuation device) and a support member that supports the ion pump via a viscoelastic body, wherein the support member is configured to move the mirror when the lens barrel is inclined. A charged particle beam apparatus including a bent portion (tilt allowing member) that can be tilted in the same direction as the lens barrel while maintaining parallel to the tube will be described.

以上のような構成によれば、鏡筒に高価な制振装置を取付けることなく、イオンポンプの制振装置を用いてイオンポンプと鏡筒の振動を短時間で減衰させることができるので、高分解能の観察画像を高速に取得することができる。   According to the above configuration, the vibration of the ion pump and the lens barrel can be attenuated in a short time by using the vibration damping device of the ion pump without attaching an expensive vibration damping device to the lens barrel. A resolution observation image can be acquired at high speed.

半導体計測・検査装置においては、半導体デバイスの微細化により、高分解能化への要求が高まる一方で、試料の大口径化、高スループット化が進んでおり、装置の大型化に伴う剛性低下や高スループット化に伴うステージ反力の増大が予測される。これらはいずれも荷電粒子線装置によって得られる観察画像の画質の低下を招く要因となる。   In semiconductor measurement / inspection equipment, the demand for higher resolution is increasing due to the miniaturization of semiconductor devices, while the diameter of specimens and high throughput are increasing. It is predicted that the stage reaction force will increase with increasing throughput. All of these are factors that cause deterioration in the image quality of the observation image obtained by the charged particle beam apparatus.

荷電粒子線装置の鏡筒内を超高真空に保つ装置(以下、排気系と呼ぶ)としては、可動部分がなく、モータ等の駆動力を必要としないことから、振動を発生しないイオンポンプが代表的である。電子線を放出するチップ周辺を超高真空に保つためには、イオンポンプを鏡筒上部の電子銃に設置する必要がある。そのため、イオンポンプは鏡筒の重心位置を高くし、鏡筒の固有振動数を低下させる方向に働く。また、イオンポンプはモータ等の加振源は備えていないが、床振動や環境騒音、ステージ反力等の外乱が作用した場合には、イオンポンプ自体が振動し、鏡筒を振動させる加振源と成り得る。そのため、高分解能化、高スループット化等を進める上で、イオンポンプの振動低減は必須となる。   As an apparatus that keeps the inside of a lens barrel of a charged particle beam apparatus in an ultra-high vacuum (hereinafter referred to as an exhaust system), there is no moving part and no driving force such as a motor is required. Representative. In order to keep the periphery of the chip emitting the electron beam in an ultrahigh vacuum, it is necessary to install an ion pump in the electron gun at the top of the lens barrel. Therefore, the ion pump increases the position of the center of gravity of the lens barrel and works in the direction of decreasing the natural frequency of the lens barrel. The ion pump is not equipped with a vibration source such as a motor. However, when a disturbance such as floor vibration, environmental noise, or stage reaction force is applied, the ion pump itself vibrates and vibrates the lens barrel. Can be a source. Therefore, vibration reduction of the ion pump is indispensable for increasing resolution and throughput.

以下に、イオンポンプの存在に起因する振動の影響を抑制することが可能な荷電粒子線装置について、図面を用いて説明する。   Hereinafter, a charged particle beam apparatus capable of suppressing the influence of vibration caused by the presence of an ion pump will be described with reference to the drawings.

図1は、荷電粒子線装置の概要を示す図である。ここでは、荷電粒子線装置として測長SEM(Critical Dimension Scanning Electron Microscope)を例に説明する。測長SEMは、荷電粒子源1を内部に備えた鏡筒2と鏡筒2を高真空に排気するためのイオンポンプ8Aと内部に観察対象物である試料4を載せるステージ5を備えた試料室3から成る。イオンポンプ8Aは直方体の本体部分と円筒の配管から構成され、円筒配管の一端が鏡筒2に結合されている。鏡筒2は試料室3の上部に取り付けられており、試料室3は除振マウント6によって架台7に固定されている。   FIG. 1 is a diagram showing an outline of a charged particle beam apparatus. Here, a length measurement SEM (Critical Dimension Scanning Electron Microscope) will be described as an example of the charged particle beam apparatus. The length measuring SEM includes a barrel 2 having a charged particle source 1 therein, an ion pump 8A for evacuating the barrel 2 to a high vacuum, and a stage 5 on which a sample 4 to be observed is placed. It consists of chamber 3. The ion pump 8 </ b> A includes a rectangular parallelepiped main body portion and a cylindrical pipe, and one end of the cylindrical pipe is coupled to the lens barrel 2. The lens barrel 2 is attached to the upper part of the sample chamber 3, and the sample chamber 3 is fixed to the gantry 7 by a vibration isolation mount 6.

イオンポンプ8Aの振動を抑制するための制振装置(以下、イオンポンプ制振装置と呼ぶ)は、粘弾性体11Aを支持板10Aと支持板12Aで挟んで固定した積層構造体と試料室3上にヒンジ16Aで支持されたフレーム13とで構成され、支持板10Aはイオンポンプ8Aに、支持板12Aはフレーム13にそれぞれ固定されている。フレーム13は、試料室3とイオンポンプ8A間に介在するものであって、イオンポンプ8Aを所定高さに支持する支持部材として機能する。また、ヒンジ16Aは、ヒンジの可動方向へのフレーム13の移動を許容すると共に、それ以外の方向への移動を制限するよう機能する。   A vibration damping device for suppressing vibration of the ion pump 8A (hereinafter referred to as an ion pump vibration damping device) includes a laminated structure in which a viscoelastic body 11A is fixed between a support plate 10A and a support plate 12A, and a sample chamber 3. The support plate 10A is fixed to the ion pump 8A, and the support plate 12A is fixed to the frame 13, respectively. The frame 13 is interposed between the sample chamber 3 and the ion pump 8A, and functions as a support member that supports the ion pump 8A at a predetermined height. In addition, the hinge 16A functions to allow the frame 13 to move in the movable direction of the hinge and limit the movement in other directions.

粘弾性体11Aは、引張、圧縮変形よりもせん断変形の方がより高い減衰能を得ることができる。イオンポンプ制振装置はフレーム13の下端にヒンジ16Aを有することで、x−z面内での回転変形が容易となる。そのため、鏡筒2が傾斜した場合でも、支持板10Aと支持板12Aが平行を維持したまま支持板の面内方向に相対変位を生じさせることができ、粘弾性体11Aがせん断変形することで高い減衰能を得ることができる。   The viscoelastic body 11A can obtain a higher damping capacity in shear deformation than in tensile and compression deformation. Since the ion pump damping device has the hinge 16A at the lower end of the frame 13, rotational deformation in the xz plane is facilitated. Therefore, even when the lens barrel 2 is inclined, relative displacement can be generated in the in-plane direction of the support plate while maintaining the support plate 10A and the support plate 12A in parallel, and the viscoelastic body 11A is shear-deformed. High damping ability can be obtained.

一般に、荷電粒子線装置は、荷電粒子源1から発生する荷電粒子線9を観察対象物に照射することにより得られる二次電子強度から観察像を得ている。荷電粒子線9は、鏡筒2上部の荷電粒子源1から鏡筒2の内部を通過して真空に保たれた試料室3内のステージ5に固定された試料4に照射される。試料4から検出された二次電子の強度は照射位置の座標とその座標における二次電子強度に対応した濃淡として画像化されて表示される。そのため、荷電粒子線装置に何らかの振動が作用し、鏡筒2やステージ5が振動すると、本来照射されるべき位置に荷電粒子線9が照射されず、観察像が揺れて見える(以下、像揺れと呼ぶ)ことで像質や測定精度の低下を招く。   In general, the charged particle beam apparatus obtains an observation image from secondary electron intensity obtained by irradiating an observation object with a charged particle beam 9 generated from the charged particle source 1. The charged particle beam 9 is irradiated from the charged particle source 1 on the upper part of the lens barrel 2 to the sample 4 fixed to the stage 5 in the sample chamber 3 that passes through the inside of the lens barrel 2 and is kept in a vacuum. The intensity of the secondary electrons detected from the sample 4 is imaged and displayed as the coordinates of the irradiation position and the shade corresponding to the secondary electron intensity at the coordinates. Therefore, when some vibration is applied to the charged particle beam apparatus and the lens barrel 2 and the stage 5 are vibrated, the charged particle beam 9 is not irradiated at the position where the original irradiation should be performed, and the observation image appears to be shaken (hereinafter, image shake). This causes a decrease in image quality and measurement accuracy.

鏡筒2やステージ5に作用する加振力には、床振動14や環境音15による入力と、ステージ5が移動、停止動作を行う際の入力がある。これらの入力によりイオンポンプ8Aの振動が励起されると、鏡筒2やステージ5を振動させる加振源となる。イオンポンプ8A自体の減衰は小さく、ステージ5が移動、停止した後の残留振動が減衰するまでに多くの時間を要する。   The excitation force acting on the lens barrel 2 and the stage 5 includes an input by the floor vibration 14 and the environmental sound 15 and an input when the stage 5 moves and stops. When the vibration of the ion pump 8A is excited by these inputs, it becomes a vibration source for vibrating the lens barrel 2 and the stage 5. The attenuation of the ion pump 8A itself is small, and a long time is required until the residual vibration after the stage 5 moves and stops is attenuated.

図2はイオンポンプ8Aと鏡筒2の固有振動モードを示す図である。図2の直交座標系は、鏡筒2と平行な方向をz方向、鏡筒2に垂直でイオンポンプ8Aの円筒配管と平行な方向をx方向、x−z面に垂直な方向をy方向(ビームの理想光軸(ビームを偏向しないときのビーム軌道)方向)と定義する。また、x、y、z各軸回りの回転をθx、θy、θzと定義する。イオンポンプ8Aの主要な固有振動モードは、円筒配管と本体との接合部を支点に、各軸回りに回転するモードである。これらの固有振動モードは、回転変位が微小だとすれば、いずれもy−z面内で振動していることになる。これに対して、鏡筒2の主要な固有振動モードは鏡筒2と試料室3の結合部を支点にx、y方向に鏡筒2が倒れ込むモードである。イオンポンプ8Aを制振するためには、粘弾性体11Aをy−z面内に配置する必要があり、ヒンジ16Aがないと、鏡筒2のx方向の倒れ込みに対して制振効果を期待できない。   FIG. 2 is a diagram showing natural vibration modes of the ion pump 8A and the lens barrel 2. As shown in FIG. In the orthogonal coordinate system of FIG. 2, the direction parallel to the barrel 2 is the z direction, the direction perpendicular to the barrel 2 and parallel to the cylindrical pipe of the ion pump 8A is the x direction, and the direction perpendicular to the xz plane is the y direction. (Ideal optical axis (beam trajectory when the beam is not deflected)). Further, rotations about the x, y, and z axes are defined as θx, θy, and θz. The main natural vibration mode of the ion pump 8 </ b> A is a mode that rotates around each axis about a joint portion between the cylindrical pipe and the main body as a fulcrum. These natural vibration modes vibrate in the yz plane if the rotational displacement is very small. On the other hand, the main natural vibration mode of the lens barrel 2 is a mode in which the lens barrel 2 is tilted in the x and y directions with the joint portion of the lens barrel 2 and the sample chamber 3 as a fulcrum. In order to control the ion pump 8A, it is necessary to arrange the viscoelastic body 11A in the yz plane, and if there is no hinge 16A, a damping effect is expected against the tilting of the lens barrel 2 in the x direction. Can not.

図3はヒンジ16Aがないイオンポンプ制振装置を示す図である。図3に例示するイオンポンプ制振装置は、支持板12Aに固定されるフレーム17が試料室3上にボルト等により強固に固定された構成となっている。図4は、ヒンジ16Aがないイオンポンプ制振装置を備えた荷電粒子線装置の鏡筒2がy方向に倒れ込むときの変形を示す図である。鏡筒2がy方向に倒れ込む場合、イオンポンプ8A及びイオンポンプ制振装置は、鏡筒2の変形に倣って鏡筒2の方向を向くため、粘弾性体11Aをせん断変形させるのは困難である。   FIG. 3 is a view showing an ion pump vibration control device without the hinge 16A. The ion pump vibration control device illustrated in FIG. 3 has a configuration in which a frame 17 fixed to the support plate 12A is firmly fixed on the sample chamber 3 with a bolt or the like. FIG. 4 is a diagram showing a deformation when the lens barrel 2 of the charged particle beam apparatus provided with the ion pump damping device without the hinge 16A falls in the y direction. When the lens barrel 2 falls in the y direction, the ion pump 8A and the ion pump vibration control device face the direction of the lens barrel 2 following the deformation of the lens barrel 2, so it is difficult to shear the viscoelastic body 11A. is there.

図5は、ヒンジ16Aがないイオンポンプ制振装置を備えた荷電粒子線装置の鏡筒2がx方向に倒れ込むときの変形を示す図である。鏡筒2がx方向に倒れ込む場合、粘弾性体11Aの板厚方向の引張、圧縮変形やフレーム17の変形が大きくなり、効果的に減衰を得ることができない。鏡筒2の傾斜に伴い回転もしくは曲げ変形が可能な支持部材でフレーム17を支持することができれば、粘弾性体11Aの板厚方向の引張、圧縮変形を抑制し、効率良くせん断方向に変形させることが可能となる。   FIG. 5 is a view showing a deformation when the lens barrel 2 of the charged particle beam apparatus having the ion pump vibration control apparatus without the hinge 16A falls in the x direction. When the lens barrel 2 falls in the x direction, the viscoelastic body 11A is increased in tensile and compressive deformation in the thickness direction and deformation of the frame 17 and cannot be effectively attenuated. If the frame 17 can be supported by a support member that can be rotated or bent along with the inclination of the lens barrel 2, the tensile and compressive deformation in the plate thickness direction of the viscoelastic body 11 </ b> A is suppressed, and the frame 17 is efficiently deformed in the shear direction. It becomes possible.

図6は、フレーム13をy軸回りに回転可能なヒンジ16A、16Bで支持した構成を示している。ヒンジの幅や個数は問わないが、x軸回りの回転剛性の低下を避けるため、フレーム13のy方向にある程度の幅を持たせて支持することが望ましい。回転もしくは曲げ変形を有する支持部材は、図7、図8に示す構成であっても良い。   FIG. 6 shows a configuration in which the frame 13 is supported by hinges 16A and 16B that can rotate about the y-axis. Although the width and number of hinges are not limited, it is desirable to support the frame 13 with a certain width in the y direction in order to avoid a decrease in rotational rigidity around the x axis. The support member having rotation or bending deformation may have the configuration shown in FIGS.

図7は、フレーム13をy軸回りに回転可能な軸受けとシャフトで支持した構成を示している。試料室3に固定された軸受け18A、18Bとフレームに設けられた軸受け孔20A、20Bにシャフト19A、19Bをそれぞれ通した構成とすることで、フレーム13はy軸回りに傾斜することが可能となる。また、フレーム13が鏡筒2の傾斜に追従して傾斜すれば良いことを考えれば、変形の形態は回転変形だけではなく、曲げ変形であっても良い。図8に示すように、フレーム13よりも板厚が小さく剛性の低い支持部材21A、21Bを取付けることで、支持部材21A、21Bがx方向に曲げ変形し、フレーム13のx方向への傾斜が可能となる。   FIG. 7 shows a configuration in which the frame 13 is supported by a bearing and a shaft that can rotate about the y-axis. By making the shafts 19A and 19B pass through the bearings 18A and 18B fixed to the sample chamber 3 and the bearing holes 20A and 20B provided in the frame, the frame 13 can be inclined around the y-axis. Become. Further, considering that the frame 13 may be tilted following the tilt of the lens barrel 2, the form of deformation may be not only rotational deformation but also bending deformation. As shown in FIG. 8, by attaching support members 21A and 21B having a smaller thickness and lower rigidity than the frame 13, the support members 21A and 21B are bent and deformed in the x direction, and the frame 13 is inclined in the x direction. It becomes possible.

図9は、ヒンジや回転機構等の傾斜許容部材の有用性を示すFEM解析結果の一例である。傾斜許容部材のないイオンポンプ制振装置を用いたときのモード減衰比を基準として、イオンポンプ及び鏡筒の固有振動モードにおけるモード減衰比をプロットしている。イオンポンプ制振装置のフレームを高剛性化することで、イオンポンプの固有振動モードにおけるモード減衰比は大幅に上昇しているが、鏡筒の固有振動モードにおいてはモード減衰比が減少している。それに対して、フレームを回転支持した提案構造では、イオンポンプの固有振動モードにおけるモード減衰比は維持したまま、鏡筒の固有振動モードにおけるモード減衰比が2倍近くまで上昇しており、傾斜許容部材の有用性が確認できる。   FIG. 9 is an example of an FEM analysis result showing the usefulness of the tilt allowing member such as a hinge or a rotation mechanism. The mode damping ratio in the natural vibration mode of the ion pump and the lens barrel is plotted on the basis of the mode damping ratio when the ion pump damping device without the tilt allowing member is used. By making the frame of the ion pump damping device highly rigid, the mode damping ratio in the natural vibration mode of the ion pump has increased significantly, but in the natural vibration mode of the lens barrel, the mode damping ratio has decreased. . On the other hand, in the proposed structure that supports the rotation of the frame, the mode damping ratio in the natural vibration mode of the lens barrel has increased to nearly double while maintaining the mode damping ratio in the natural vibration mode of the ion pump, and the tilt is allowed. The usefulness of the member can be confirmed.

図10は、傾斜許容機構を備えた荷電粒子線装置の他の例を示す図である。フレーム22は一端が支持板12Aに結合され、もう一端が試料室3に固定される。フレーム22はz方向の一部に板厚が小さいスリット形状を有しており、曲げ剛性の低くなるスリット位置で曲げ変形が大きくなる。鏡筒2がx方向に傾斜したときの粘弾性体11Aの引張、圧縮方向の変形量とせん断方向の変形量は、スリット位置によって変化する。スリット位置は粘弾性体11Aのせん断変形が最も大きくなるに配置するのが良い。前述のようなフレーム自体の剛性を局所的に低くすることでフレームの傾斜を容易にする構成例として、図11が考えられる。フレーム23は一端が支持板12Aに結合され、もう一端が試料室3に固定される。フレーム23は、板厚が一様なフレームの一部が局所的に折れ曲がった形状をしている。フレーム22のたわみ量は折れ曲がり部から大きくなり、折れ曲がり部がない場合に比べて鏡筒2のx方向への傾斜に対する追従性が増す。   FIG. 10 is a diagram illustrating another example of the charged particle beam apparatus including the tilt allowing mechanism. One end of the frame 22 is coupled to the support plate 12 </ b> A, and the other end is fixed to the sample chamber 3. The frame 22 has a slit shape with a small plate thickness in a part in the z direction, and the bending deformation increases at the slit position where the bending rigidity decreases. When the lens barrel 2 is tilted in the x direction, the amount of deformation of the viscoelastic body 11A, the amount of deformation in the compression direction, and the amount of deformation in the shear direction vary depending on the slit position. The slit position is preferably arranged so that the shear deformation of the viscoelastic body 11A is maximized. FIG. 11 can be considered as a configuration example that facilitates the inclination of the frame by locally reducing the rigidity of the frame itself as described above. One end of the frame 23 is coupled to the support plate 12 </ b> A, and the other end is fixed to the sample chamber 3. The frame 23 has a shape in which a part of the frame having a uniform thickness is locally bent. The amount of deflection of the frame 22 increases from the bent portion, and the followability to the inclination of the lens barrel 2 in the x direction is increased as compared with the case where there is no bent portion.

図12は、傾斜許容機構を備えた荷電粒子線装置の更に他の例を示す図である。本実施例では、複数の支持部材(複数のフレーム)と、複数の傾斜許容部(鏡筒の高さ方向の異なる位置に配置されるヒンジ)を設けた例について説明する。下段フレーム25はヒンジ16A、16Bを介して試料室3に回転支持され、下段フレーム25の上端と上段フレーム24の下端がヒンジ26A、26Bによって回転支持され、上段フレーム24の上端が支持板12Aに結合された構成となる。回転支持位置がz方向に2つあることで、上段フレーム24の変形自由度が増す。これにより、回転及び曲げ支持部材がz方向に1つのときに比べて、粘弾性体11Aの板厚方向の変形量を抑えながらせん断方向に変形させることが可能である。図12に示す支持部材はヒンジ構造であるが、前述の回転支持部材、曲げ支持部材及び局所的に形状の異なるフレーム部材を自由に組み合わせて構成しても良い。また、上段フレーム24を用いずに、ヒンジ26A、26Bを直接、支持板12Aに取付けても良い。フレームと支持部材の個数に制約はなく、z方向に複数個設置しても良い。   FIG. 12 is a diagram showing still another example of the charged particle beam apparatus including the tilt allowing mechanism. In the present embodiment, an example will be described in which a plurality of support members (a plurality of frames) and a plurality of tilt allowing portions (hinges arranged at different positions in the height direction of the lens barrel) are provided. The lower frame 25 is rotatably supported by the sample chamber 3 via hinges 16A and 16B, the upper end of the lower frame 25 and the lower end of the upper frame 24 are rotatably supported by hinges 26A and 26B, and the upper end of the upper frame 24 is supported by the support plate 12A. It becomes a combined configuration. Since there are two rotation support positions in the z direction, the degree of freedom of deformation of the upper frame 24 is increased. Accordingly, it is possible to deform the viscoelastic body 11A in the shear direction while suppressing the deformation amount in the thickness direction of the viscoelastic body 11A as compared with the case where there is one rotation and bending support member in the z direction. Although the support member shown in FIG. 12 has a hinge structure, the above-described rotation support member, bending support member, and locally different frame members may be freely combined. Further, the hinges 26A and 26B may be directly attached to the support plate 12A without using the upper frame 24. There are no restrictions on the number of frames and support members, and a plurality of frames and support members may be installed in the z direction.

図13は、傾斜許容機構を備えた荷電粒子線装置の更に他の例を示す図である。イオンポンプ8A、8Bが試料室3からのz方向の距離を異にして、それぞれ鏡筒2のx方向に取付けられている。下段フレーム28はヒンジ16A、16Bを介して試料室3に回転支持され、下段フレーム28の上面の+x側に上段フレーム27の下端が曲げ支持部材29B、29Cで支持され、上段フレーム27の上端が支持板12Aに結合されている。支持板12Bは下段フレーム28の上面の−x側に曲げ支持部材29Aを介して結合されている。下段フレーム28のように、イオンポンプ8A、8Bのそれぞれに対応するフレームを共通化することで、部品点数を削減することができる。フレームを共通化せずに、それぞれのイオンポンプに対応したフレームを取付けても良い。   FIG. 13 is a diagram illustrating still another example of the charged particle beam apparatus including the tilt allowing mechanism. The ion pumps 8 </ b> A and 8 </ b> B are attached in the x direction of the lens barrel 2 at different distances from the sample chamber 3 in the z direction. The lower frame 28 is rotatably supported by the sample chamber 3 via hinges 16A and 16B, the lower end of the upper frame 27 is supported by bending support members 29B and 29C on the + x side of the upper surface of the lower frame 28, and the upper end of the upper frame 27 is It is coupled to the support plate 12A. The support plate 12B is coupled to the −x side of the upper surface of the lower frame 28 via a bending support member 29A. By using a common frame corresponding to each of the ion pumps 8A and 8B as in the lower frame 28, the number of parts can be reduced. You may attach the flame | frame corresponding to each ion pump, without making a flame | frame common.

1 荷電粒子源
2 鏡筒
3 試料室
4 試料
5 ステージ
6 除振マウント
7 架台
8A、8B イオンポンプ
9 荷電粒子線
10A、10B 支持板
11A、11B 粘弾性体
12A、12B 支持板
13 フレーム
14 床振動
15 環境音
16A、16B ヒンジ
17 フレーム
18A、18B 軸受
19A、19B シャフト
20A、20B 軸受け孔
21A、21B 曲げ支持部材
22 スリット付きフレーム
23 曲げフレーム
24 上段フレーム
25 下段フレーム
26A、26B ヒンジ
27 上段フレーム
28 下段フレーム
29A、29B、29C 曲げ支持部材
1 charged particle source 2 lens barrel 3 sample chamber 4 sample 5 stage 6 vibration isolation mount 7 mount 8A, 8B ion pump 9 charged particle beam 10A, 10B support plate 11A, 11B viscoelastic body 12A, 12B support plate 13 frame 14 floor vibration 15 Ambient sound 16A, 16B Hinge 17 Frame 18A, 18B Bearing 19A, 19B Shaft 20A, 20B Bearing hole 21A, 21B Bending support member 22 Frame with slit 23 Bending frame 24 Upper frame 25 Lower frame 26A, 26B Hinge 27 Upper frame 28 Lower Frame 29A, 29B, 29C Bending support member

Claims (9)

試料を内部に配置する試料室と、前記試料を搭載するステージと、荷電粒子線を前記試料に照射するための鏡筒と、前記鏡筒の内部を真空排気するポンプと、当該ポンプを指示する支持部材を備えた荷電粒子線装置であって、
記支持部材の傾斜を許容する傾斜許容部を備え、前記支持部材は前記傾斜許容部より上方で前記ポンプを支持することを特徴とする荷電粒子線装置。
A sample chamber in which the sample is placed, a stage on which the sample is mounted, a lens barrel for irradiating the sample with a charged particle beam, a pump for evacuating the interior of the lens barrel, and the pump A charged particle beam apparatus including a support member,
Before an inclined allowance portion for permitting the inclination of Ki支 support member, the support member is a charged particle beam apparatus characterized that you support the pump above said inclined allowable unit.
試料を内部に配置する試料室と、前記試料を搭載するステージと、荷電粒子線を前記試料に照射するための鏡筒と、前記鏡筒の内部を真空排気するポンプと、当該ポンプを指示する支持部材を備えた荷電粒子線装置であって、
前記支持部材は、前記鏡筒の傾斜方向と同じ方向へ、前記支持部材を選択的に傾斜させる部材を有することを特徴とする荷電粒子線装置。
A sample chamber in which the sample is placed, a stage on which the sample is mounted, a lens barrel for irradiating the sample with a charged particle beam, a pump for evacuating the interior of the lens barrel, and the pump A charged particle beam apparatus including a support member,
Wherein the support member, the same direction as the inclination direction of the lens barrel, a charged particle beam apparatus characterized in that it comprises a member for selectively tilting the support member.
試料を内部に配置する試料室と、前記試料を搭載するステージと、荷電粒子線を前記試料に照射するための鏡筒と、前記鏡筒の内部を真空排気するポンプと、当該ポンプを指示する支持部材を備えた荷電粒子線装置であって、
前記支持部材は、前記鏡筒が傾斜したときに、前記鏡筒と同じ方向に傾斜することのできる屈曲部を有することを特徴とする荷電粒子線装置。
A sample chamber in which the sample is placed, a stage on which the sample is mounted, a lens barrel for irradiating the sample with a charged particle beam, a pump for evacuating the interior of the lens barrel, and the pump A charged particle beam apparatus including a support member,
The charged particle beam device according to claim 1, wherein the support member has a bent portion that can be tilted in the same direction as the lens barrel when the lens barrel is tilted.
試料を内部に配置する試料室と、前記試料を搭載するステージと、荷電粒子線を前記試料に照射するための鏡筒と、前記鏡筒の内部を真空排気するポンプと、当該ポンプを指示する支持部材を備えた荷電粒子線装置であって、
前記支持部材は、当該支持部材の他部分より剛性が低く、前記鏡筒の傾斜に伴い前記支持部材を屈曲させる変形部を有することを特徴とする荷電粒子線装置。
A sample chamber in which the sample is placed, a stage on which the sample is mounted, a lens barrel for irradiating the sample with a charged particle beam, a pump for evacuating the interior of the lens barrel, and the pump A charged particle beam apparatus including a support member,
The charged particle beam device according to claim 1, wherein the support member has a lower rigidity than other portions of the support member, and has a deforming portion that bends the support member as the lens barrel is inclined.
試料を内部に配置する試料室と、前記試料を搭載するステージと、荷電粒子線を前記試料に照射するための鏡筒と、前記鏡筒の内部を真空排気するポンプと、当該ポンプを指示する支持部材を備えた荷電粒子線装置であって、
前記支持部材は、回転可能で、前記鏡筒の傾斜に伴い前記支持部材を屈曲させる回転部を有することを特徴とする荷電粒子線装置。
A sample chamber in which the sample is placed, a stage on which the sample is mounted, a lens barrel for irradiating the sample with a charged particle beam, a pump for evacuating the interior of the lens barrel, and the pump A charged particle beam apparatus including a support member,
The charged particle beam device according to claim 1, wherein the support member is rotatable and includes a rotating portion that bends the support member as the lens barrel is inclined.
試料を内部に配置する試料室と、前記試料を搭載するステージと、荷電粒子線を前記試料に照射するための鏡筒と、前記鏡筒の内部を真空排気するポンプと、当該ポンプを指示する支持部材を備えた荷電粒子線装置であって、
前記支持部材は、少なくとも第1の分割支持部材と第2の分割支持部材によって構成されると共に、当該第1の支持部材の前記試料室にたいする傾斜を許容する第1の傾斜許容部と、前記第2の支持部材と前記第1の支持部材に対する傾斜を許容する第2の傾斜許容部を備えたことを特徴とする荷電粒子線装置。
A sample chamber in which the sample is placed, a stage on which the sample is mounted, a lens barrel for irradiating the sample with a charged particle beam, a pump for evacuating the interior of the lens barrel, and the pump A charged particle beam apparatus including a support member,
The support member includes a first inclined tolerance portion that allows at least a first divided support member and is configured by the second split support member Rutotomoni, inclined relative to the sample chamber of the first support member, said first 2. A charged particle beam apparatus comprising: a second support member and a second tilt allowing portion that allows tilt with respect to the first support member.
請求項6において、
前記第1の分割支持部材と前記第2の分割支持部材を、前記鏡筒の異なる高さ位置に配置したことを特徴とする荷電粒子線装置。
In claim 6,
The charged particle beam apparatus, wherein the first divided support member and the second divided support member are arranged at different height positions of the lens barrel.
試料を内部に配置する試料室と、前記試料を搭載するステージと、荷電粒子線を前記試料に照射するための鏡筒と、前記鏡筒の内部を真空排気するポンプと、当該ポンプを指示する支持部材を備えた荷電粒子線装置であって、
前記ポンプを複数備え、当該ポンプごとに前記支持部材の傾斜を許容する傾斜許容部を設けたことを特徴とする荷電粒子線装置。
A sample chamber in which the sample is placed, a stage on which the sample is mounted, a lens barrel for irradiating the sample with a charged particle beam, a pump for evacuating the interior of the lens barrel, and the pump A charged particle beam apparatus including a support member,
A charged particle beam apparatus comprising a plurality of the pumps and provided with an inclination allowing portion for allowing the support member to be inclined for each of the pumps.
請求項8において、
前記ポンプごとに設けられた傾斜許容部を支持する下段支持部材と、当該下段支持部材を、傾斜可能に支持する下段支持部材用傾斜許容部を備えたことを特徴とする荷電粒子線装置。
In claim 8,
A charged particle beam apparatus comprising: a lower support member that supports an inclination permission portion provided for each of the pumps; and a lower support member inclination permission portion that supports the lower support member so as to be tiltable.
JP2014139272A 2014-07-07 2014-07-07 Charged particle beam equipment Active JP6362941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014139272A JP6362941B2 (en) 2014-07-07 2014-07-07 Charged particle beam equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014139272A JP6362941B2 (en) 2014-07-07 2014-07-07 Charged particle beam equipment

Publications (2)

Publication Number Publication Date
JP2016018621A JP2016018621A (en) 2016-02-01
JP6362941B2 true JP6362941B2 (en) 2018-07-25

Family

ID=55233721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014139272A Active JP6362941B2 (en) 2014-07-07 2014-07-07 Charged particle beam equipment

Country Status (1)

Country Link
JP (1) JP6362941B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6676407B2 (en) * 2016-02-26 2020-04-08 株式会社日立ハイテク Charged particle beam device and vibration damper for charged particle beam device
CN112146967A (en) * 2019-06-28 2020-12-29 Fei 公司 System and method for preparing and delivering biological samples for charged particle analysis
WO2021234817A1 (en) * 2020-05-19 2021-11-25 株式会社日立ハイテク Charged particle beam device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58120554U (en) * 1982-02-10 1983-08-17 日本電子株式会社 Exhaust system for electron microscopes, etc.

Also Published As

Publication number Publication date
JP2016018621A (en) 2016-02-01

Similar Documents

Publication Publication Date Title
JP5524229B2 (en) Charged particle beam equipment
JP6362941B2 (en) Charged particle beam equipment
JP6676407B2 (en) Charged particle beam device and vibration damper for charged particle beam device
JPH10172484A (en) Charged particle device having tilt column
JP5364462B2 (en) Charged particle beam equipment
JP2008052947A (en) Charged particle beam device
JP4750090B2 (en) Stage equipment
JP2019129210A (en) Stage device and processing device
US9431208B2 (en) Charged-particle beam drawing apparatus and vibration damping mechanism
WO2011158739A1 (en) Charged particle device
JP2016051535A (en) Charged particle beam device
US20230139507A1 (en) Charged particle beam device
JP2014196693A (en) Vacuum pump connecting device connecting vacuum pump to lens barrel of electronic beam application device and method for installing vacuum pump connecting device
JP3721850B2 (en) Electron microscope and sample stage
JP6491890B2 (en) Charged particle beam equipment
TWI773054B (en) Charged particle beam device and vibration suppression mechanism
JP2020057680A (en) Charged particle beam device
JP4262047B2 (en) Charged particle beam equipment
WO2015053209A1 (en) Charged particle device
JP2009016284A (en) Charged particle beam device and its supporting method
TW202145297A (en) Vibration damping and resonance reduction for ion pump
JP2011124145A (en) Charged particle beam device
JP2001332206A (en) Electron-beam utilizing apparatus
JP2014216207A (en) Charged particle beam device
JP2014164992A (en) Charged particle device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170117

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170124

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170623

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170803

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180627

R150 Certificate of patent or registration of utility model

Ref document number: 6362941

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350