JP2007165117A - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
JP2007165117A
JP2007165117A JP2005359854A JP2005359854A JP2007165117A JP 2007165117 A JP2007165117 A JP 2007165117A JP 2005359854 A JP2005359854 A JP 2005359854A JP 2005359854 A JP2005359854 A JP 2005359854A JP 2007165117 A JP2007165117 A JP 2007165117A
Authority
JP
Japan
Prior art keywords
current collecting
group
lead
electrode group
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005359854A
Other languages
Japanese (ja)
Other versions
JP4934318B2 (en
Inventor
Katsutoshi Kurihara
克利 栗原
Takenori Ishizu
竹規 石津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vehicle Energy Japan Inc
Original Assignee
Hitachi Vehicle Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Vehicle Energy Ltd filed Critical Hitachi Vehicle Energy Ltd
Priority to JP2005359854A priority Critical patent/JP4934318B2/en
Publication of JP2007165117A publication Critical patent/JP2007165117A/en
Application granted granted Critical
Publication of JP4934318B2 publication Critical patent/JP4934318B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a secondary battery which prevents the damage of current collector leads involved in rewinding of an electrode group. <P>SOLUTION: The lithium ion secondary battery has a winding group 6 into which a cathode plate and an anode plate are wound on an axial core 11, and flanges 7 arranged on both sides of the winding group 6 and having a smaller diameter D<SB>2</SB>than the diameter D<SB>1</SB>of the winding group 6. To the circumferential surface of the flange 7, the current collector leads 9 led out from the cathode and anode plates are connected. When the gap is made h between the end surface of the winding group 6 and the end surface of the winding group 6 side of the flange part 7, the length from a lead-out position of the current collector lead 9 at the outermost circumference to the connection position is set at ≥(D<SB>1</SB>-D<SB>2</SB>)/2+h. The diameter D<SB>2</SB>of the flange 7, considering a deviation amount c is set at D<SB>2</SB>≤D<SB>1</SB>-c<SP>2</SP>/h between the lead-out position of the current collector lead 9 at the outermost circumference involved in rewinding of the winding group 6 in the horizontal direction when the axial core 11 is made vertical and the connection position, thereby securing the length of the current collector leads 9. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は二次電池に係り、特に、帯状の正負極板が捲回された電極群と、電極群の両側にそれぞれ配置された円盤状の集電部材とを備え、正負極板からそれぞれ導出された多数の集電リードの先端部が集電部材の外周に接合された二次電池に関する。   The present invention relates to a secondary battery, and in particular, includes an electrode group in which strip-shaped positive and negative electrode plates are wound, and disk-shaped current collecting members respectively disposed on both sides of the electrode group, and each is derived from the positive and negative electrode plates. The present invention relates to a secondary battery in which tips of a large number of current collecting leads are joined to the outer periphery of a current collecting member.

非水電解液二次電池は、高エネルギ密度を有するため、様々な用途に用いられている。近年では、大型非水電解液二次電池も開発されており、例えば、動力源にモータと内燃機関とを併用するハイブリッド電気自動車用電源としても用いられている。このような用途においては、電池に高入出力特性が求められており、この要求に適応した電池としてリチウムイオン二次電池が注目されている。   Non-aqueous electrolyte secondary batteries have high energy density and are used in various applications. In recent years, large nonaqueous electrolyte secondary batteries have also been developed, and are used, for example, as power sources for hybrid electric vehicles that use a motor and an internal combustion engine in combination as a power source. In such applications, high input / output characteristics are required for batteries, and lithium ion secondary batteries are attracting attention as batteries that meet these requirements.

通常、リチウムイオン二次電池では、以下のような捲回式の内部構造を有している。すなわち、金属箔に活物質をそれぞれ塗着した正負極板が帯状に形成され、該正負極板をセパレータを介して直接接触しないように断面渦巻状に捲回した電極群(捲回群)が形成されている。正負極板の捲回時には、捲きズレを防止するため、テンションをかけながら捲回される。そして、電極群が円筒状の電池容器に収容され、電解液注液後、電池容器が電池蓋で封口される。   Usually, a lithium ion secondary battery has the following winding internal structure. That is, an electrode group (winding group) in which positive and negative electrode plates each coated with an active material on a metal foil are formed in a band shape, and the positive and negative electrode plates are wound in a cross-sectional spiral shape so as not to directly contact through a separator. Is formed. When the positive and negative electrode plates are wound, they are wound while applying tension to prevent twisting. And an electrode group is accommodated in a cylindrical battery container, and after pouring electrolyte solution, a battery container is sealed with a battery cover.

電気自動車用電源等の高入出力特性を要求されるリチウムイオン二次電池では、内部抵抗を低減するために、正負極板からそれぞれ多数の集電リードが導出されている。集電リードとしては、電池の高出力化を図るため、例えば、正負極集電体である金属箔の一部に活物質を塗着せずに残しておき、短冊状に加工することで直接集電リードが形成される。正負極板から導出された集電リードの先端部は、電極群の両側にそれぞれ配置された円盤状の集電部材の外周に接合されている。また、集電リードと集電部材とを確実に接合するために、例えば、円盤状の集電部材の端面の外周部と金属製リングの一面側とで短冊状の集電リードを挟んで溶接する技術も開示されている(特許文献1参照)。   In a lithium ion secondary battery that requires high input / output characteristics such as a power source for an electric vehicle, a large number of current collecting leads are led out from the positive and negative electrode plates in order to reduce internal resistance. In order to increase the output of the battery, for example, the current collecting lead can be directly collected by processing it into a strip shape by leaving an active material uncoated on a part of the metal foil that is a positive and negative electrode current collector. Electrical leads are formed. The leading ends of the current collecting leads led out from the positive and negative electrode plates are joined to the outer periphery of a disk-shaped current collecting member disposed on each side of the electrode group. Also, in order to securely join the current collecting lead and the current collecting member, for example, the strip-shaped current collecting lead is welded between the outer peripheral portion of the end surface of the disk-shaped current collecting member and the one surface side of the metal ring. The technique to do is also disclosed (refer patent document 1).

特開2001−118561号公報JP 2001-118561 A

しかしながら、捲回式の二次電池では、電池使用中に振動や温度変化が加わり、また、充放電の繰返しに伴う活物質の膨張、収縮等が生じるため、正負極板の捲回時にかけられたテンションにより電極群の外周部で不安定な捲き戻りが起こる。電極群の捲き戻りが起こると集電部材に接合されている集電リードの破損(切断)が生じるため、内部抵抗の上昇を引き起こして出力の低下を招く。更に、集電リードの切断面がセパレータを圧迫、貫通し対向する電極に接触して正負極板間の短絡を起こすこともある。   However, in a wound secondary battery, vibration and temperature change are applied during use of the battery, and the active material expands and contracts due to repeated charge and discharge. Due to the tension, an unstable rewound occurs on the outer periphery of the electrode group. When the electrode group is rolled back, the current collecting lead joined to the current collecting member is damaged (cut), causing an increase in internal resistance and a decrease in output. Further, the cut surface of the current collecting lead may press the separator, contact the opposing electrode and cause a short circuit between the positive and negative electrodes.

本発明は上記事案に鑑み、電極群の捲き戻りに伴う集電リードの破損を防止することができる二次電池を提供することを課題とする。   In view of the above-described case, an object of the present invention is to provide a secondary battery that can prevent a current collecting lead from being damaged when the electrode group is rolled back.

上記課題を解決するために、本発明は、帯状の正負極板が捲回された電極群と、前記電極群の両側にそれぞれ配置された円盤状の集電部材とを備え、前記正負極板からそれぞれ導出された多数の集電リードの先端部が前記集電部材の外周に接合された二次電池において、前記集電部材は前記電極群より小さい直径を有しており、前記電極群の直径をD、前記集電部材の直径をD、前記電極群の端面と前記集電部材の前記電極群側の端面との間隔をhとしたときに、前記電極群の最外周に位置する集電リードは前記電極群の端面での導出位置から前記集電部材の端面での接合位置までの長さが(D−D)/2+h以上であり、かつ、前記電極群の軸線方向を垂直とし前記電極群の側面側から見たときの捲き戻り方向を前記軸線方向に対する水平方向とした場合の前記電極群の捲き戻りに伴う前記導出位置と前記接合位置との前記水平方向におけるズレ量をcとしたときに、前記集電部材の直径DがD≦D−c/hの関係を満たすことを特徴とする。 In order to solve the above-mentioned problems, the present invention comprises an electrode group in which strip-like positive and negative electrode plates are wound, and disk-shaped current collecting members respectively disposed on both sides of the electrode group, and the positive and negative electrode plates In the secondary battery in which the tip portions of a large number of current collecting leads respectively led out from are joined to the outer periphery of the current collecting member, the current collecting member has a smaller diameter than the electrode group, When the diameter is D 1 , the diameter of the current collecting member is D 2 , and the distance between the end face of the electrode group and the end face of the current collecting member on the electrode group side is h, it is located on the outermost periphery of the electrode group The current collecting lead has a length from the lead-out position at the end face of the electrode group to the joining position at the end face of the current collecting member is not less than (D 1 -D 2 ) / 2 + h, and the axis of the electrode group When the direction is vertical, the return direction when viewed from the side of the electrode group is the direction of the axis. The shift amount in the horizontal direction between the derived position and the bonding position due to the return Maki of the electrode group in the case of the horizontal direction is taken as c for, the collector diameter D 2 of the member D 2 ≦ D It is characterized by satisfying the relationship of 1 −c 2 / h.

電極群の捲き戻りが生じたときの最外周に位置する集電リードの電極群の端面での導出位置及び集電部材の端面での接合位置間の距離は、D、D(D>D)、h、cを上述したように定義したときに、[c+h+{(D−D)/2}0.5で表される。本発明では、電極群の捲き戻りに伴う集電リードの破損を防止するには、最外周に位置する集電リードの導出位置から接合位置までの長さをズレが生じたときの導出位置及び接合位置間の距離以上とすればよい。すなわち、最外周に位置する集電リードの導出位置から接合位置までの長さが(D−D)/2+h以上であることから、(D−D)/2+h≧[c+h+{(D−D)/2}0.5の関係を満たしていればよく、これを展開整理した、D≦D−c/hの関係を満たしていればよい。本発明によれば、集電部材の直径DがD≦D−c/hの関係を満たすため、電極群の捲き戻りに伴うズレ量cを加味して集電部材の直径Dを電極群の直径Dより小さくした分、電極群の最外周に位置する集電リードの導出位置から接合位置までの長さが確保されるので、電極群の捲き戻りが生じても、集電リードの破損を防止することができる。 The distance between the lead-out position on the end face of the electrode group of the current collecting lead and the joining position on the end face of the current collecting member when the electrode group is rolled back is D 1 , D 2 (D 1 > D 2 ), h, and c are defined as described above, [c 2 + h 2 + {(D 1 −D 2 ) / 2} 2 ] 0.5 . In the present invention, in order to prevent the collector lead from being damaged due to the electrode group being rolled back, the lead-out position when the length from the lead-out position of the current-collecting lead located on the outermost circumference to the joining position is shifted, and What is necessary is just to be more than the distance between joining positions. That is, since it is the length from the outlet position of the current collecting lead positioned in the outermost periphery to the joining position (D 1 -D 2) / 2 + h or more, (D 1 -D 2) / 2 + h ≧ [c 2 + h 2 + {(D 1 −D 2 ) / 2} 2 ] 0.5 only needs to be satisfied, and if the relationship D 2 ≦ D 1 −c 2 / h, which is developed and arranged, is satisfied. Good. According to the present invention, since the diameter D 2 of the current collecting member satisfies the relationship of D 2 ≦ D 1 −c 2 / h, the diameter D of the current collecting member is taken into account by the amount of displacement c associated with the electrode group rolling back. Since the length from the lead-out position of the current collecting lead located on the outermost periphery of the electrode group to the joining position is ensured by the amount 2 is made smaller than the diameter D 1 of the electrode group, Breakage of the current collecting lead can be prevented.

この場合において、集電リードのうち電極群の外周に位置する集電リードが、電極群の端面を水平方向に沿っており、垂直方向に沿って立ち上がって集電部材の外周に接合されていれば、最外周の集電リードの導出位置から接合位置までの長さを(D−D)/2+h以上とすることができる。また、集電リードを、正極がアルミニウム製、負極が銅製としてもよい。 In this case, the current collecting lead located on the outer periphery of the electrode group among the current collecting leads is along the horizontal direction on the end surface of the electrode group and rises along the vertical direction and is joined to the outer periphery of the current collecting member. For example, the length from the lead-out position of the outermost current collecting lead to the joining position can be set to (D 1 −D 2 ) / 2 + h or more. In addition, the current collecting lead may have a positive electrode made of aluminum and a negative electrode made of copper.

本発明によれば、集電部材の直径DがD≦D−c/hの関係を満たすため、電極群の捲き戻りが生じても、集電リードの破損を防止することができる、という効果を得ることができる。 According to the present invention, to satisfy the relation of the diameter D 2 is D 2 ≦ D 1 -c 2 / h of the current collecting member, even if the return Maki electrode group, is possible to prevent damage to the collector lead The effect that it is possible can be acquired.

以下、図面を参照して、本発明を円筒型リチウムイオン二次電池に適用した実施の形態について説明する。   Embodiments in which the present invention is applied to a cylindrical lithium ion secondary battery will be described below with reference to the drawings.

(構成)
図1に示すように、本実施形態の円筒型リチウムイオン二次電池20は、円筒状の電池容器5及び中空円筒状の軸芯11に帯状の正負極板がセパレータを介して断面渦巻状に捲回された捲回群(電極群)6を備えている。
(Constitution)
As shown in FIG. 1, the cylindrical lithium ion secondary battery 20 of the present embodiment includes a cylindrical battery container 5 and a hollow cylindrical shaft core 11 with a strip-like positive and negative electrode plate having a spiral cross section through a separator. A wound group (electrode group) 6 is provided.

捲回群6の両側には、軸芯11のほぼ延長線上に、先端部が正極外部端子1を構成する正極の極柱及び先端部が負極外部端子1’を構成する負極の極柱が軸芯11の中空部に嵌合されている。正負極外部端子1、1’には、周囲から一体に張り出した円盤状の集電部材としての鍔部7が形成されている。鍔部7の周面(外周)には、正極板及び負極板からそれぞれ導出された集電リード9の先端部が超音波溶接で接合されている。   On both sides of the wound group 6, on the substantially extension line of the shaft core 11, a positive pole column whose tip portion constitutes the positive electrode external terminal 1 and a negative pole column whose tip portion constitutes the negative electrode external terminal 1 ′ are shafts. The hollow portion of the core 11 is fitted. The positive and negative external terminals 1, 1 ′ are formed with a flange portion 7 as a disk-shaped current collecting member protruding integrally from the periphery. On the peripheral surface (outer periphery) of the flange portion 7, the tip end portions of the current collecting leads 9 respectively led out from the positive electrode plate and the negative electrode plate are joined by ultrasonic welding.

図2に示すように、捲回群6は直径Dを有しており、正負極外部端子1、1’の鍔部7は捲回群6の直径Dより小さい直径Dを有している。鍔部7の捲回群6側の端面と捲回群6の端面との間には、間隔hが形成されている。鍔部7の周面より外側で捲回群6の外周側に位置する正負極板から導出された集電リード9は、一旦捲回群6の端面に沿っており、先端部が鍔部7の周面と平行となるように鍔部7の方向に立ち上がっている。このため、捲回群6の最外周に位置する正負極板から導出された集電リード9は、捲回群6の端面での導出位置から鍔部7の捲回群6側の端面での接合位置までの長さが、(D−D)/2+h以上となる。 As shown in FIG. 2, the wound group 6 has a diameter D 1 , and the flange portion 7 of the positive and negative external terminals 1, 1 ′ has a diameter D 2 that is smaller than the diameter D 1 of the wound group 6. ing. A gap h is formed between the end surface of the winding unit 7 on the winding group 6 side and the end surface of the winding group 6. The current collecting lead 9 led out from the positive and negative electrode plates positioned outside the peripheral surface of the winding part 7 and on the outer peripheral side of the winding group 6 is once along the end surface of the winding group 6, and the tip part is the hook part 7. It rises in the direction of the collar part 7 so as to be parallel to the peripheral surface of. For this reason, the current collecting leads 9 led out from the positive and negative electrode plates located on the outermost periphery of the winding group 6 are arranged on the end surface of the winding part 7 on the winding group 6 side from the leading position on the end surface of the winding group 6. The length to the joining position is (D 1 −D 2 ) / 2 + h or more.

鍔部7の直径Dは、以下のように設定されている。図3(A)に示すように、捲回群6の側面側から見ると、最外周に位置する集電リード9は、捲回群6から鍔部7の周面までまっすぐに延びている。捲回群6の捲き戻りが発生すると、図3(B)に示すように、集電リード9の導出位置と接合位置とが、軸芯11を垂直にしたときの水平方向にズレが生じる。このズレは、捲回群6の最外周で最大となることから、捲回群6の最外周に位置する集電リード9の導出位置と接合位置との水平方向のズレ量cとしたときに、直径DがD≦D−c/h(以下、式(1)という。)の関係を満たすように設定されている。このため、鍔部7の直径Dは、捲回群6の直径Dよりc/hの分小さくなる。 The diameter D 2 of the flange portion 7 is set as follows. As shown in FIG. 3A, when viewed from the side of the wound group 6, the current collecting lead 9 located on the outermost periphery extends straight from the wound group 6 to the peripheral surface of the flange portion 7. When the winding group 6 rolls back, as shown in FIG. 3B, the lead-out position and the joining position of the current collecting lead 9 are displaced in the horizontal direction when the shaft core 11 is vertical. Since this deviation becomes maximum at the outermost periphery of the winding group 6, when the horizontal deviation amount c between the lead-out position of the current collecting lead 9 located at the outermost periphery of the winding group 6 and the joining position is set. The diameter D 2 is set so as to satisfy the relationship of D 2 ≦ D 1 -c 2 / h (hereinafter referred to as Expression (1)). Therefore, the diameter D 2 of the flange portion 7, the partial smaller than the diameter D 1 of the winding group 6 c 2 / h.

図1に示すように、正負極外部端子1、1’の鍔部7より外側には、第2のセラミックワッシャ3’(アルミナ製、電池蓋4裏面と当接する部分の厚み2mm、内径16mm、外径25mm)がそれぞれ嵌め込まれている。第2のセラミックワッシャ3’の周囲には、ゴム(EPDM)製のOリング16が配置されており、円盤状の電池蓋4が載置されている。電池蓋4の周端面は、電池容器5の開口部に嵌合されており、双方の接触部全域がレ−ザ溶接で接合されている。   As shown in FIG. 1, on the outer side of the flange portion 7 of the positive and negative external terminals 1, 1 ′, a second ceramic washer 3 ′ (alumina, thickness of the portion in contact with the back surface of the battery cover 4 is 2 mm, inner diameter is 16 mm, Each having an outer diameter of 25 mm). Around the second ceramic washer 3 ′, an O-ring 16 made of rubber (EPDM) is disposed, and a disk-shaped battery lid 4 is placed. The peripheral end surface of the battery lid 4 is fitted into the opening of the battery container 5, and both contact parts are joined together by laser welding.

正負極外部端子1、1’は、電池蓋4の中心にある穴を貫通して電池蓋4の外側にそれぞれ反対方向に突出している。電池蓋4の外側で正負極外部端子1、1’には、平状の第1のセラミックワッシャ3(厚み2mm、アルミナ製、内径16mm、外径28mm)、金属ワッシャ14(ナット2底面よりも平滑)が、この順でそれぞれ嵌め込まれている。正負極外部端子1、1’の先端部には、金属製のナット2がそれぞれ螺着されている。このため、電池蓋4が、第2のセラミックワッシャ3’、第1のセラミックワッシャ3、金属ワッシャ14を介して鍔部7とナット2との間で締め付け固定されている。締め付けトルク値は、6.9N・m(70kgf・cm)に設定されている。締め付け作業が終了するまで金属ワッシャは回転しなかった。この状態では、Oリング16の圧縮により電池容器5内部の発電要素は外気から遮断されている。電池蓋4には、電池の内圧上昇に応じて開裂するガス排出弁10が配置されている。ガス排出弁の開裂圧は、1.3〜1.8MPa(13〜18kg/cm)に設定されている。 The positive and negative external terminals 1, 1 ′ pass through a hole in the center of the battery cover 4 and protrude outward in the opposite direction from the battery cover 4. On the outside of the battery lid 4, the positive and negative external terminals 1, 1 ′ are provided with a flat first ceramic washer 3 (thickness 2 mm, made of alumina, inner diameter 16 mm, outer diameter 28 mm), metal washer 14 (from the bottom of the nut 2). Smooth) are fitted in this order. Metal nuts 2 are respectively screwed to the tips of the positive and negative external terminals 1 and 1 ′. For this reason, the battery lid 4 is fastened and fixed between the flange 7 and the nut 2 via the second ceramic washer 3 ′, the first ceramic washer 3, and the metal washer 14. The tightening torque value is set to 6.9 N · m (70 kgf · cm). The metal washer did not rotate until the tightening operation was completed. In this state, the power generation element inside the battery container 5 is blocked from the outside air by the compression of the O-ring 16. The battery cover 4 is provided with a gas discharge valve 10 that cleaves in response to an increase in the internal pressure of the battery. The cleavage pressure of the gas discharge valve is set to 1.3 to 1.8 MPa (13 to 18 kg / cm 2 ).

電池容器5内には、電池蓋4に形成された注液口15を通じて非水電解液が注液されている。非水電解液には、本例では、エチレンカーボネートとジメチルカーボネートとジエチルカーボネートとの体積比1:1:1の混合溶媒中へ6フッ化リン酸リチウム(LiPF)を1モル/リットル溶解したものが用いられている。注液口15を封止することでリチウムイオン二次電池20を完成させる。なお、本例では、電池容器5は、外径67mm、内径66mmに設定されており、非水電解液の注液量は480gに設定されている。 A nonaqueous electrolytic solution is injected into the battery container 5 through a liquid injection port 15 formed in the battery lid 4. In this example, 1 mol / liter of lithium hexafluorophosphate (LiPF 6 ) was dissolved in a non-aqueous electrolyte in a mixed solvent of ethylene carbonate, dimethyl carbonate, and diethyl carbonate in a volume ratio of 1: 1: 1. Things are used. The lithium ion secondary battery 20 is completed by sealing the liquid injection port 15. In this example, the battery container 5 is set to have an outer diameter of 67 mm and an inner diameter of 66 mm, and the injection amount of the non-aqueous electrolyte is set to 480 g.

電池容器5に挿入される捲回群6は、正極板及び負極板が、これら両極板が直接接触しないように厚さ40μmのポリエチレン製セパレータを介して捲回されている。正極板及び負極板からそれぞれ導出された集電リード9は、それぞれ捲回群6の互いに反対側の両端面に位置するように捲回されている。捲回時には、正負極板の捲きズレを防止するため、テンションをかけながら捲回される。捲回群6外周面全周には、絶縁被覆8が施されている。絶縁被覆8には、ポリイミド製基材の片面にヘキサメタアクリレートを含む粘着剤が塗布された粘着テープが使用されている。この粘着テープが捲回群6外周面に何重にも巻かれている。正極板、負極板、セパレータの長さを調整することで、捲回群6の直径Dが64±0.5mmに設定されている。 In the wound group 6 inserted into the battery case 5, the positive electrode plate and the negative electrode plate are wound through a polyethylene separator having a thickness of 40 μm so that the two electrode plates do not directly contact each other. The current collecting leads 9 respectively led out from the positive electrode plate and the negative electrode plate are wound so as to be positioned on both end surfaces on the opposite sides of the wound group 6. At the time of winding, in order to prevent the positive and negative electrode plates from slipping, the winding is performed while applying tension. An insulating coating 8 is applied to the entire outer periphery of the wound group 6. For the insulating coating 8, a pressure-sensitive adhesive tape in which a pressure-sensitive adhesive containing hexamethacrylate is applied to one surface of a polyimide base material is used. This adhesive tape is wound around the outer peripheral surface of the wound group 6 several times. The positive electrode plate, negative electrode plate, by adjusting the length of the separator, diameter D 1 of the winding group 6 is set to 64 ± 0.5 mm.

捲回群6を構成する正極板は、正極集電体として厚さ20μmのアルミニウム箔を有している。アルミニウム箔の両面には、正極活物質を含む正極合剤が塗着されている。正極活物質には、充放電によりリチウムを放出、収容可能なリチウム遷移金属複酸化物のマンガン酸リチウム(LiMn)が使用されている。正極合剤には、マンガン酸リチウム粉末と、導電剤として鱗片状黒鉛(平均粒径:5μm)と、結着剤(バインダ)としてポリフッ化ビニリデン(以下、PVDFと略記する。)とが配合されており、配合比は、例えば、質量比85:10:5に設定されている。アルミニウム箔に正極合剤を塗着するときには、分散溶媒のN−メチル−2−ピロリドン(以下、NMPと略記する。)が添加され、乾燥後の正極合剤の塗着量が280g/mとなるように塗着される。正極板長寸方向一側の側縁には幅50mmの未塗布部が残されている。正極板は、乾燥後、プレスされ、長さ6000mmに裁断される。なお、正極活物質合剤層は、幅300mm、厚さ(アルミニウム箔含む)230μmに設定されている。 The positive electrode plate constituting the wound group 6 has an aluminum foil having a thickness of 20 μm as a positive electrode current collector. A positive electrode mixture containing a positive electrode active material is applied to both surfaces of the aluminum foil. As the positive electrode active material, lithium manganate (LiMn 2 O 4 ), which is a lithium transition metal double oxide capable of releasing and accommodating lithium by charging and discharging, is used. In the positive electrode mixture, lithium manganate powder, scaly graphite (average particle diameter: 5 μm) as a conductive agent, and polyvinylidene fluoride (hereinafter abbreviated as PVDF) as a binder (binder) are blended. The blending ratio is set to, for example, a mass ratio of 85: 10: 5. When the positive electrode mixture is applied to the aluminum foil, a dispersion solvent N-methyl-2-pyrrolidone (hereinafter abbreviated as NMP) is added, and the applied amount of the positive electrode mixture after drying is 280 g / m 2. It is applied to become. An uncoated portion having a width of 50 mm is left on the side edge on one side in the longitudinal direction of the positive electrode plate. The positive electrode plate is dried, pressed, and cut to a length of 6000 mm. The positive electrode active material mixture layer has a width of 300 mm and a thickness (including aluminum foil) of 230 μm.

長寸方向一側の側縁の未塗布部には切り欠きが形成されており、切り欠き残部で集電リード9が構成されている。このため、正極の集電リード9はアルミニウム製である。隣り合う集電リード9は、20mm間隔、集電リード9の幅が10mm、切り欠き部の未塗布部の幅は2mmに設定されている。   A notch is formed in the uncoated part on the side edge on one side in the longitudinal direction, and the current collecting lead 9 is constituted by the remaining part of the notch. For this reason, the positive electrode current collecting lead 9 is made of aluminum. Adjacent current collecting leads 9 are set at an interval of 20 mm, the width of the current collecting leads 9 is 10 mm, and the width of the uncoated portion of the notch is 2 mm.

一方、負極板は、負極集電体として厚さ10μmの圧延銅箔を有している。圧延銅箔の両面には、負極活物質を含む負極合剤が塗着されている。負極活物質には、非晶質炭素が使用されている。負極合剤には、非晶質炭素と結着剤のPVDFとが配合されており、配合比は、例えば重量比90:10に設定されている。圧延銅箔に負極合剤を塗着するときには、分散溶媒のNMPが添加され、乾燥後の負極合剤の塗布量が66g/mとなるように塗着される。負極板長寸方向一側の側縁には幅50mmの未塗布部を残されている。負極板は、乾燥後、プレスされ、長さ6200mmに裁断される。負極合剤の未塗布部には、正極板と同様にして集電リード9が形成されている。このため、負極の集電リード9は銅製である。なお、負極活物質合剤層は、幅306mm、厚さ(銅箔含む)140μmに設定されている。 On the other hand, the negative electrode plate has a rolled copper foil having a thickness of 10 μm as a negative electrode current collector. A negative electrode mixture containing a negative electrode active material is coated on both surfaces of the rolled copper foil. Amorphous carbon is used for the negative electrode active material. In the negative electrode mixture, amorphous carbon and binder PVDF are blended, and the blending ratio is set to 90:10, for example. When the negative electrode mixture is applied to the rolled copper foil, NMP as a dispersion solvent is added, and the negative electrode mixture after drying is applied in an amount of 66 g / m 2 . An uncoated portion with a width of 50 mm is left on the side edge on one side in the longitudinal direction of the negative electrode plate. The negative electrode plate is dried, pressed, and cut to a length of 6200 mm. A current collecting lead 9 is formed on the uncoated portion of the negative electrode mixture in the same manner as the positive electrode plate. For this reason, the negative electrode current collecting lead 9 is made of copper. The negative electrode active material mixture layer has a width of 306 mm and a thickness (including copper foil) of 140 μm.

(作用等)
次に、本実施形態のリチウムイオン二次電池20の作用等について説明する。
(Action etc.)
Next, the operation and the like of the lithium ion secondary battery 20 of the present embodiment will be described.

従来リチウムイオン二次電池では、捲回群の両端面からそれぞれ導出された集電リードは、捲回群の両側に配置された集電部材までほぼ最短の長さとなるように接合される。ところが、電池使用中には、振動、温度変化、充放電の繰返しに伴う活物質の膨張、収縮等が生じるため、捲回群作製時にかけられたテンションにより捲回群の捲き戻りが起こる。この捲き戻りは、捲回群の捲回方向に沿って生じるため、捲回群の外周ほど捲き戻り量が大きくなる。このため、捲回群の最外周に位置する集電リードが捲回群の捲き戻りに伴い切断され、電池出力の低下を引き起こす。また、切断された集電リードの切断面がセパレータを破損して正負極間の短絡を招くこととなる。これは集電リードの長さが不十分なためと考えられる。これを避けるために集電リードの長さを大きくすると、集電リードに弛みが生じ捲回群の周面より外側に飛び出すことから、電池作製時の取扱中に切断するおそれがある。本実施形態のリチウムイオン二次電池20は、これらの問題を解決するものである。   In the conventional lithium ion secondary battery, the current collecting leads led out from both end faces of the wound group are joined so as to have a shortest length to the current collecting members arranged on both sides of the wound group. However, during use of the battery, vibrations, temperature changes, expansion and contraction of the active material accompanying repeated charge / discharge, etc. occur, so that the winding group is rolled back by the tension applied during the preparation of the winding group. Since this rollback occurs along the winding direction of the wound group, the amount of rollback increases toward the outer periphery of the wound group. For this reason, the current collecting lead located on the outermost periphery of the wound group is cut as the wound group is rolled back, causing a decrease in battery output. Further, the cut surface of the cut current collecting lead breaks the separator and causes a short circuit between the positive and negative electrodes. This is presumably because the length of the current collecting lead is insufficient. If the length of the current collecting lead is increased in order to avoid this, the current collecting lead is slackened and jumps out of the peripheral surface of the wound group, so that there is a risk of cutting during handling during battery production. The lithium ion secondary battery 20 of the present embodiment solves these problems.

本実施形態のリチウムイオン二次電池20では、正負極外部端子1、1’の鍔部7の直径Dが捲回群6の直径Dより小さく設定されている。また、捲回群6の最外周に位置する集電リード9が、捲回群6の端面に沿っており、先端部が鍔部7の周面と平行となるように鍔部7の方向に立ち上がっている。このため、最外周に位置する集電リード9は、捲回群6の端面での導出位置から鍔部7の捲回群6側の端面での接合位置までの長さが、(D−D)/2+h以上となる。これにより、鍔部7の直径Dを小さくした分で最外周に位置する集電リード9の長さを確保することができる。 In the lithium ion secondary battery 20 of the present embodiment, the diameter D 2 of the flange portion 7 of the positive and negative external terminals 1, 1 ′ is set smaller than the diameter D 1 of the wound group 6. Further, the current collecting lead 9 located on the outermost periphery of the winding group 6 is along the end surface of the winding group 6, and the tip portion is in the direction of the flange portion 7 so as to be parallel to the peripheral surface of the flange portion 7. Standing up. For this reason, the length of the current collecting lead 9 located on the outermost periphery from the lead-out position on the end face of the wound group 6 to the joining position on the end face on the wound group 6 side of the saddle portion 7 is (D 1 − D 2 ) / 2 + h or more. Thus, it is possible to secure the length of the current collector leads 9 positioned in the outermost periphery in minutes of reduced diameter D 2 of the flange portion 7.

また、リチウムイオン二次電池20の作製は、通常、室温(25°C)環境下で行われることから、リチウムイオン二次電池20を低温環境下で使用した場合には、金属箔製の集電リード9が収縮して破損することが考えられる。このため、集電リード9は長さのマージンを有していることが必要である。本実施形態では、最外周の集電リード9の長さが(D−D)/2+h以上のため、低温環境下で集電リード9が収縮しても破損を防止することができる。 Moreover, since the production of the lithium ion secondary battery 20 is usually performed in a room temperature (25 ° C.) environment, when the lithium ion secondary battery 20 is used in a low temperature environment, a metal foil collection is used. It is conceivable that the electric lead 9 contracts and breaks. Therefore, the current collecting lead 9 needs to have a length margin. In the present embodiment, since the length of the outermost current collecting lead 9 is (D 1 −D 2 ) / 2 + h or more, damage can be prevented even if the current collecting lead 9 contracts in a low temperature environment.

更に、軸芯11を垂直とし捲回群6の側面側から見たときの捲き戻り方向を軸芯11に対する水平方向としたときに、捲回群6の捲き戻りに伴う最外周に位置する集電リード9の導出位置と接合位置との水平方向のズレ量cとすると、その導出位置と接合位置との距離bは、b=[c+h+{(D−D)/2}0.5で表される(図3(B)も参照)。このとき集電リード9の破損を防止するためには、最外周に位置する集電リード9の長さを距離bより大きく設定すればよく、(D−D)/2+h≧[c+h+{(D−D)/2}0.5を満たしていればよい。この関係式を展開整理すると、鍔部7の直径Dが式(1)の関係、すなわち、D≦D−c/hの関係を満たしていればよい。本実施形態のリチウムイオン二次電池20では、鍔部7の直径Dが式(1)の関係を満たしているため、最外周に位置する集電リード9の導出位置から接合位置までの長さが距離bより大きいので、捲回群6の捲き戻りが生じても集電リード9の破損を防止することができる。従って、電池出力の低下を防止することができ、セパレータを破損することなく正負極間の短絡を防止することができる。 Further, when the shaft core 11 is vertical and the winding return direction when viewed from the side surface side of the winding group 6 is the horizontal direction with respect to the shaft core 11, the cluster positioned on the outermost periphery accompanying the winding back of the winding group 6. Assuming that the horizontal displacement amount c between the lead-out position of the electric lead 9 and the joint position is, the distance b between the lead-out position and the joint position is b = [c 2 + h 2 + {(D 1 −D 2 ) / 2. } 2 ] 0.5 (see also FIG. 3B). At this time, in order to prevent the current collecting lead 9 from being damaged, the length of the current collecting lead 9 located on the outermost periphery may be set larger than the distance b, and (D 1 −D 2 ) / 2 + h ≧ [c 2 + H 2 + {(D 1 −D 2 ) / 2} 2 ] 0.5 only needs to be satisfied. Expanding organize this relationship, the diameter D 2 of the flange portion 7 the relationship of formula (1), namely, it satisfies the relationship of D 2 ≦ D 1 -c 2 / h. In a lithium-ion secondary battery 20 of the present embodiment, since the diameter D 2 of the flange portion 7 meets the relation of the formula (1), to the joining position from the outlet position of the current collecting lead 9 positioned in the outermost periphery length Is larger than the distance b, it is possible to prevent the current collecting lead 9 from being damaged even if the wound group 6 is rolled back. Accordingly, it is possible to prevent a decrease in battery output, and it is possible to prevent a short circuit between the positive and negative electrodes without damaging the separator.

なお、本実施形態のリチウムイオン二次電池20では、集電リード9を正負極の集電体の側縁の切り欠きで形成する例を示したが、本発明はこれに限定されるものではなく、別に作製した集電リードを溶接等で集電体に接合するようにしてもよい。このとき、正極の集電リード9をアルミニウム製、負極の集電リード9を銅製とすれば、集電体との接合部分で生じる抵抗を低減することができる。集電リード9の数や間隔等に制限のないことはもちろんである。また、集電リード9は、捲回群6の端面に沿っており、先端部が鍔部7の周面と平行となるように鍔部7の方向に立ち上がっていればよく、直角に曲がっていなくてもよい。   In the lithium ion secondary battery 20 of the present embodiment, the example in which the current collecting lead 9 is formed by notching the side edges of the positive and negative current collectors is shown, but the present invention is not limited to this. Alternatively, a separately produced current collector lead may be joined to the current collector by welding or the like. At this time, if the current collector lead 9 of the positive electrode is made of aluminum and the current collector lead 9 of the negative electrode is made of copper, the resistance generated at the junction with the current collector can be reduced. Needless to say, the number and interval of the current collecting leads 9 are not limited. Further, the current collecting lead 9 is provided along the end surface of the winding group 6, and it is sufficient that the tip end portion rises in the direction of the flange portion 7 so as to be parallel to the peripheral surface of the flange portion 7, and is bent at a right angle. It does not have to be.

また、本実施形態のリチウムイオン二次電池20では、電気自動車用電源等に用いられる大形のリチウムイオン二次電池を例示したが、本発明は電池の大きさ、電池容量に限定されるものではない。また、電池構造についても、本実施形態以外に、例えば、有底筒状容器(缶)に電池上蓋がかしめによって封口されている構造の円筒型電池であっても構わない。特に電気自動車用電源としての電池では、比較的高容量、高出力な特性が要求されるため、本発明の適用は好ましい。また、本発明は、リチウムイオン二次電池以外の捲回式二次電池にも適用可能であり、電池容器の形状についても、円筒型に限定されるものではなく、例えば捲回群を角形の電池容器に収容した電池にも適用することができる。   Moreover, in the lithium ion secondary battery 20 of this embodiment, although the large lithium ion secondary battery used for the power source for electric vehicles etc. was illustrated, this invention is limited to the magnitude | size of a battery and a battery capacity. is not. In addition to the present embodiment, the battery structure may be, for example, a cylindrical battery having a structure in which a battery top cover is sealed by caulking on a bottomed cylindrical container (can). In particular, a battery as a power source for an electric vehicle is required to have relatively high capacity and high output characteristics, so that the application of the present invention is preferable. Further, the present invention can be applied to a wound secondary battery other than a lithium ion secondary battery, and the shape of the battery container is not limited to a cylindrical shape. The present invention can also be applied to a battery housed in a battery container.

更に、本実施形態のリチウムイオン二次電池20では、正極活物質にリチウム遷移金属複酸化物のマンガン酸リチウムを示したが、本発明は特に限定されるものではない。例えば、コバルト酸リチウムやニッケル酸リチウム、リチウムとマンガン、コバルト、ニッケルの複合酸化物やマンガン、コバルト、ニッケル以外の元素をドープした他元素ドープ材でも本発明の効果を妨げるものではない。また、結晶構造においても限定はなく、スピネル型結晶構造であっても層状型結晶構造であってもよい。   Furthermore, in the lithium ion secondary battery 20 of the present embodiment, lithium transition metal double oxide lithium manganate was shown as the positive electrode active material, but the present invention is not particularly limited. For example, the effect of the present invention is not hindered by lithium cobaltate, lithium nickelate, a composite oxide of lithium and manganese, cobalt, nickel, or other element doped materials doped with elements other than manganese, cobalt, and nickel. The crystal structure is not limited, and may be a spinel crystal structure or a layered crystal structure.

また更に、本実施形態のリチウムイオン二次電池20では、負極活物質に非晶質炭素を示したが、本発明は特に限定されるものではなく、例えば、天然黒鉛や、人造の各種黒鉛材、コークスなどの炭素質材料等でもよい。また、その形状においても、鱗片状、球状、繊維状、塊状等、特に制限されるものではない。   Furthermore, in the lithium ion secondary battery 20 of the present embodiment, amorphous carbon is shown as the negative electrode active material, but the present invention is not particularly limited. For example, natural graphite and various artificial graphite materials Carbonaceous materials such as coke may be used. Also, the shape is not particularly limited, such as a scale shape, a spherical shape, a fiber shape, or a lump shape.

更にまた、本実施形態以外で用いることのできる結着剤としては、ポリテトラフルオロエチレン(PTFE)、ポリエチレン、ポリスチレン、ポリブタジエン、ブチルゴム、ニトリルゴム、スチレン/ブタジエンゴム、多硫化ゴム、ニトロセルロース、シアノエチルセルロース、各種ラテックス、アクリロニトリル、フッ化ビニル、フッ化ビニリデン、フッ化プロピレン、フッ化クロロプレン、ビニルアルコール等の重合体及びこれらの混合体などがある。   Furthermore, as binders that can be used in other embodiments, polytetrafluoroethylene (PTFE), polyethylene, polystyrene, polybutadiene, butyl rubber, nitrile rubber, styrene / butadiene rubber, polysulfide rubber, nitrocellulose, cyano There are polymers such as ethyl cellulose, various latexes, acrylonitrile, vinyl fluoride, vinylidene fluoride, propylene fluoride, chloroprene fluoride, vinyl alcohol, and mixtures thereof.

また、本実施形態のリチウムイオン二次電池20では、非水電解液にエチレンカーボネートとジメチルカーボネートとジエチルカーボネートの体積比1:1:1の混合溶媒中へ6フッ化リン酸リチウムを1モル/リットル溶解したものを示したが、本発明はこれに限定されるものではない。非水電解液としては、一般的なリチウム塩を電解質とし、これを有機溶媒に溶解した、通常用いられる非水電解液を用いることができる。用いられるリチウム塩や有機溶媒は特に制限されない。例えば、電解質としては、LiClO、LiAsF、LiPF、LiBF、LiB(C、CHSOLi、CFSOLi等やこれらの混合物を用いることができる。本実施形態以外の有機溶媒としては、プロピレンカーボネート、エチレンカーボネート、エチルメチルカーボネート、1,2−ジメトキシエタン、1,2−ジエトキシエタン、γ−ブチロラクトン、テトラヒドロフラン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、プロピオニトリル等又はこれらの2種以上の混合溶媒を用いることができる。混合配合比についても限定されるものではない。 Moreover, in the lithium ion secondary battery 20 of this embodiment, 1 mol / liter of lithium hexafluorophosphate is added to a non-aqueous electrolyte in a mixed solvent of ethylene carbonate, dimethyl carbonate, and diethyl carbonate in a volume ratio of 1: 1: 1. Although the liter dissolved is shown, the present invention is not limited to this. As the non-aqueous electrolyte, a commonly used non-aqueous electrolyte in which a general lithium salt is used as an electrolyte and dissolved in an organic solvent can be used. The lithium salt and organic solvent used are not particularly limited. For example, as the electrolyte, LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, or a mixture thereof can be used. Examples of organic solvents other than the present embodiment include propylene carbonate, ethylene carbonate, ethyl methyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, tetrahydrofuran, 1,3-dioxolane, 4-methyl. -1,3-dioxolane, diethyl ether, sulfolane, methyl sulfolane, acetonitrile, propionitrile, or a mixed solvent of two or more of these can be used. The mixing ratio is not limited.

更に、本実施形態では、絶縁被覆8に、基材がポリイミドで、その片面にヘキサメタアクリレートからなる粘着剤を塗布した粘着テープを用いたが、特に制限されるものではない。例えば、基材がポリプロピレンやポリエチレン等のポリオレフィンで、その片面又は両面にヘキサメタアクリレートやブチルアクリレート等のアクリル系粘着剤を塗布した粘着テープや、粘着剤を塗布しないポリオレフィンやポリイミドからなるテープ等を好適に使用することができる。   Furthermore, in this embodiment, although the base material is a polyimide and the adhesive tape which apply | coated the adhesive which consists of hexamethacrylates to the one side was used for the insulation coating 8, it does not restrict | limit in particular. For example, the base material is a polyolefin such as polypropylene or polyethylene, and an adhesive tape in which an acrylic adhesive such as hexamethacrylate or butyl acrylate is applied on one or both sides, or a tape made of polyolefin or polyimide that does not apply an adhesive. It can be preferably used.

次に、本実施形態に従い、鍔部7の直径Dを変えて作製したリチウムイオン二次電池20の実施例について説明する。なお、比較のために作製した比較例の電池についても併記する。 Then, in accordance with the present embodiment, for example of the lithium ion secondary battery 20 manufactured by changing the diameter D 2 of the flange portion 7 will be described. In addition, it describes together about the battery of the comparative example produced for the comparison.

(実施例1−1)
下表1に示すように、実施例1−1では、直径Dを35.2mmに設定し、捲回群6の端面と鍔部7の端面との間隔hを5.0mmに設定した。捲回群6の直径Dが64mmであることから、直径Dは直径Dの55.0%に相当する。また、この電池で100サイクルの充放電を行ったところ、捲回群6の捲き戻りに伴い最外周の集電リード9の導出位置と接合位置とに10mm程度のズレが生じた。このズレはさらに充放電サイクルを重ねても増大しなかったため、ズレ量cを10mmとした。従って、実施例1−1の電池では、式(1)の右辺は、D−c/h=64−10/5=44.0となる。
(Example 1-1)
As shown in Table 1 below, in Examples 1-1, the diameter D 2 is set to 35.2 mm, the distance h between the end surface of the end face of the winding group 6 and the collar portion 7 is set to 5.0 mm. Since the diameter D 1 of the winding group 6 is 64 mm, the diameter D 2 corresponds 55.0% of the diameter D 1. Further, when 100 cycles of charging / discharging were performed with this battery, a deviation of about 10 mm occurred between the lead-out position of the outermost current collecting lead 9 and the joining position as the winding group 6 was rolled back. Since this deviation did not increase even after repeated charge / discharge cycles, the deviation c was set to 10 mm. Therefore, in the battery of Example 1-1, the right side of Expression (1) is D 1 −c 2 / h = 64−10 2 /5=44.0.

Figure 2007165117
Figure 2007165117

(実施例1−2〜実施例1−3)
表1に示すように、実施例1−2〜実施例1−3では、直径Dを変える以外は実施例1と同様にした。実施例1−2では38.4mm(直径Dの60.0%に相当)とし、実施例1−3では44.0mm(直径Dの68.8%に相当)とした。
(比較例1−1〜比較例1−3)
(Example 1-2 to Example 1-3)
As shown in Table 1, in Examples 1-2 to Example 1-3, except for changing the diameter D 2 were the same as in Example 1. And in Example 1-2 38.4 mm (equivalent 60.0% of the diameter D 1), was in Example 1-3 44.0 mm (equivalent 68.8% of the diameter D 1).
(Comparative Example 1-1 to Comparative Example 1-3)

表1に示すように、比較例1−1〜比較例1−3では、直径Dを変える以外は実施例1と同様にした。比較例1−1では44.8mm(直径Dの70.0%に相当)とし、比較例1−2では51.2mm(直径Dの80.0%に相当)とし、比較例1−3では64.0mm(直径Dの100%に相当)とした。従って、比較例1−1〜比較例1−3の電池は、いずれも式(1)の関係を満たしていない従来の電池である。 As shown in Table 1, in Comparative Examples 1-1 to 1-3, except for changing the diameter D 2 were the same as in Example 1. And in Comparative Example 1-1 44.8 mm (equivalent to 70.0 with a diameter D 1), and in Comparative Example 1-2 51.2 mm (equivalent to 80.0% of the diameter D 1), Comparative Example 1 and the at 3 64.0 mm (corresponding to 100% of the diameter D 1). Accordingly, the batteries of Comparative Examples 1-1 to 1-3 are conventional batteries that do not satisfy the relationship of the formula (1).

(評価)
実施例及び比較例の各電池について、100サイクルの充放電を行った後、電池を解体し集電リードの破損状況を判定した。判定は、○:集電リード破損(切れ)なし、△:集電リード破損5本未満、×:集電リード破損5本以上の3段階とした。判定結果を表1に合わせて示している。
(Evaluation)
About each battery of an Example and a comparative example, after charging / discharging 100 cycles, the battery was disassembled and the damage condition of the current collection lead was determined. Judgment was made into three stages: ○: no current collector lead breakage (cut), Δ: less than 5 current collector lead breaks, and x: 5 current collector lead breaks or more. The determination results are also shown in Table 1.

表1に示すように、鍔部7を式(1)を満たしていない直径Dとした比較例1−1、比較例1−2及び比較例1−3のリチウムイオン二次電池では、捲回群の捲き戻りに伴う集電リードの切れが見られた。これに対して、鍔部7を式(1)を満たす直径Dとした実施例1−1、実施例1−2及び実施例1−3のリチウムイオン二次電池20では、捲回群6の捲き戻りに伴う集電リード9の切れは見られなかった。これは鍔部7の周面に固定された集電リード9が、捲回群6の捲き戻りによる引っ張りを許容する充分な長さを有しているためと考えられる。従って、捲回群6の捲き戻りに伴う集電リード9の破損を防止するためには、鍔部7を式(1)を満たす直径Dとすることが重要である、ということが明らかとなった。 As shown in Table 1, Comparative Example 1-1 the flange portion 7 has a diameter D 2 that does not satisfy the equation (1), the lithium ion secondary battery of Comparative Example 1-2 and Comparative Example 1-3, wound The current collector lead was cut off as the group returned. In contrast, Examples 1-1 the flange portion 7 and the diameter D 2 which satisfy the formula (1), the lithium ion secondary battery 20 of Example 1-2 and Example 1-3, the winding group 6 There was no breakage of the current collecting lead 9 due to the return. This is presumably because the current collecting lead 9 fixed to the peripheral surface of the collar portion 7 has a sufficient length that allows the winding group 6 to be pulled due to rolling back. Therefore, in order to prevent damage to the collector lead 9 with the return Maki winding group 6, it is important that the flange portion 7 and the diameter D 2 which satisfy the formula (1), clear that became.

本発明は電極群の捲き戻りに伴う集電リードの破損を防止することができる二次電池を提供するため、二次電池の製造、販売に寄与するので、産業上の利用可能性を有する。   The present invention contributes to the manufacture and sale of secondary batteries in order to provide a secondary battery that can prevent the current collecting lead from being damaged due to the electrode group being rolled back, and thus has industrial applicability.

本発明を適用した実施形態の円筒型リチウムイオン二次電池の概略を示す断面図である。It is sectional drawing which shows the outline of the cylindrical lithium ion secondary battery of embodiment to which this invention is applied. 実施形態の円筒型リチウムイオン二次電池の捲回群の最外周に位置する集電リードの導出位置から鍔部への接合位置までの配置を示す断面図である。It is sectional drawing which shows arrangement | positioning from the derived | leading-out position of the current collection lead located in the outermost periphery of the winding group of the cylindrical lithium ion secondary battery of embodiment to the joining position to a collar part. 実施形態の円筒型リチウムイオン二次電池を側面側から見たときの捲回群、集電リード及び鍔部の位置関係を示す側面図であり、(A)は捲回群作製直後、(B)は捲回群の捲き戻り発生後をそれぞれ示す。It is a side view which shows the positional relationship of the winding group when the cylindrical lithium ion secondary battery of embodiment is seen from the side surface, a current collection lead, and a collar part, (A) is immediately after winding group production, (B ) Indicates after the return of the winding group.

符号の説明Explanation of symbols

1 正極外部端子
1’ 負極外部端子
6 捲回群(電極群)
7 鍔部(集電部材)
9 集電リード
11 軸芯
20 円筒型リチウムイオン二次電池(二次電池)
1 Positive external terminal 1 'Negative external terminal 6 Winding group (electrode group)
7 buttock (current collecting member)
9 Current collecting lead 11 Shaft core 20 Cylindrical lithium ion secondary battery (secondary battery)

Claims (3)

帯状の正負極板が捲回された電極群と、前記電極群の両側にそれぞれ配置された円盤状の集電部材とを備え、前記正負極板からそれぞれ導出された多数の集電リードの先端部が前記集電部材の外周に接合された二次電池において、前記集電部材は前記電極群より小さい直径を有しており、前記電極群の直径をD、前記集電部材の直径をD、前記電極群の端面と前記集電部材の前記電極群側の端面との間隔をhとしたときに、前記電極群の最外周に位置する集電リードは前記電極群の端面での導出位置から前記集電部材の端面での接合位置までの長さが(D−D)/2+h以上であり、かつ、前記電極群の軸線方向を垂直とし前記電極群の側面側から見たときの捲き戻り方向を前記軸線方向に対する水平方向とした場合の前記電極群の捲き戻りに伴う前記導出位置と前記接合位置との前記水平方向におけるズレ量をcとしたときに、前記集電部材の直径DがD≦D−c/hの関係を満たすことを特徴とする二次電池。 A plurality of current collector leads each of which is led out from the positive and negative electrode plates, each of which includes a group of electrodes wound with a belt-like positive and negative electrode plate and a disk-shaped current collecting member disposed on each side of the electrode group; In the secondary battery in which the part is joined to the outer periphery of the current collecting member, the current collecting member has a smaller diameter than the electrode group, and the diameter of the electrode group is D 1 and the diameter of the current collecting member is D 2 , when the distance between the end face of the electrode group and the end face on the electrode group side of the current collecting member is h, the current collecting lead located on the outermost periphery of the electrode group is at the end face of the electrode group The length from the lead-out position to the joining position at the end face of the current collecting member is not less than (D 1 −D 2 ) / 2 + h, and the axial direction of the electrode group is vertical, as viewed from the side of the electrode group. The electric power when the whirling return direction is horizontal with respect to the axial direction. The shift amount in the horizontal direction between the derived position due to the return Maki group and the bonding position when is c, the diameter D 2 of the current collector member is the relation D 2 ≦ D 1 -c 2 / h A secondary battery characterized by satisfying. 前記集電リードのうち前記電極群の外周に位置する集電リードは、前記電極群の端面を前記水平方向に沿っており、前記垂直方向に沿って立ち上がって前記集電部材の外周に接合されていることを特徴とする請求項1に記載の二次電池。   Among the current collecting leads, a current collecting lead located on the outer periphery of the electrode group extends along the horizontal direction on the end surface of the electrode group, rises along the vertical direction, and is joined to the outer periphery of the current collecting member. The secondary battery according to claim 1, wherein: 前記集電リードは、正極がアルミニウム製、負極が銅製であることを特徴とする請求項1又は請求項2に記載の二次電池。   The secondary battery according to claim 1, wherein the current collecting lead has a positive electrode made of aluminum and a negative electrode made of copper.
JP2005359854A 2005-12-14 2005-12-14 Secondary battery Active JP4934318B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005359854A JP4934318B2 (en) 2005-12-14 2005-12-14 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005359854A JP4934318B2 (en) 2005-12-14 2005-12-14 Secondary battery

Publications (2)

Publication Number Publication Date
JP2007165117A true JP2007165117A (en) 2007-06-28
JP4934318B2 JP4934318B2 (en) 2012-05-16

Family

ID=38247806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005359854A Active JP4934318B2 (en) 2005-12-14 2005-12-14 Secondary battery

Country Status (1)

Country Link
JP (1) JP4934318B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009176452A (en) * 2008-01-22 2009-08-06 Hitachi Vehicle Energy Ltd Winding type lithium ion secondary battery
JP2009187724A (en) * 2008-02-05 2009-08-20 Hitachi Vehicle Energy Ltd Rolled lithium ion secondary battery
JP2009224070A (en) * 2008-03-13 2009-10-01 Hitachi Vehicle Energy Ltd Lithium secondary battery
JP2012510143A (en) * 2008-11-25 2012-04-26 エイ 123 システムズ,インク. Method and design for externally applied laser welding of internal connections in high power electrochemical cells
WO2012111712A1 (en) * 2011-02-16 2012-08-23 新神戸電機株式会社 Lithium-ion battery
CN107086282A (en) * 2017-06-09 2017-08-22 广东保达动力技术有限公司 A kind of novel secondary battery
CN108604707A (en) * 2016-11-14 2018-09-28 株式会社Lg化学 It include the battery unit with the contact pin and lead for being tightly engaged into structure
JPWO2019163220A1 (en) * 2018-02-21 2021-02-04 パナソニック株式会社 Square secondary battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0992338A (en) * 1995-09-27 1997-04-04 Sony Corp Cylindrical secondary battery
JPH09147829A (en) * 1995-11-24 1997-06-06 Toyota Autom Loom Works Ltd Storage battery
JP2000260417A (en) * 1999-03-11 2000-09-22 Toyota Central Res & Dev Lab Inc Laminated battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0992338A (en) * 1995-09-27 1997-04-04 Sony Corp Cylindrical secondary battery
JPH09147829A (en) * 1995-11-24 1997-06-06 Toyota Autom Loom Works Ltd Storage battery
JP2000260417A (en) * 1999-03-11 2000-09-22 Toyota Central Res & Dev Lab Inc Laminated battery

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009176452A (en) * 2008-01-22 2009-08-06 Hitachi Vehicle Energy Ltd Winding type lithium ion secondary battery
JP2009187724A (en) * 2008-02-05 2009-08-20 Hitachi Vehicle Energy Ltd Rolled lithium ion secondary battery
JP2009224070A (en) * 2008-03-13 2009-10-01 Hitachi Vehicle Energy Ltd Lithium secondary battery
JP2012510143A (en) * 2008-11-25 2012-04-26 エイ 123 システムズ,インク. Method and design for externally applied laser welding of internal connections in high power electrochemical cells
US9231270B2 (en) 2011-02-16 2016-01-05 Shin-Kobe Electric Machinery Co., Ltd. Lithium-ion battery
JPWO2012111712A1 (en) * 2011-02-16 2014-07-07 新神戸電機株式会社 Lithium ion battery
WO2012111712A1 (en) * 2011-02-16 2012-08-23 新神戸電機株式会社 Lithium-ion battery
CN108604707A (en) * 2016-11-14 2018-09-28 株式会社Lg化学 It include the battery unit with the contact pin and lead for being tightly engaged into structure
CN108604707B (en) * 2016-11-14 2022-02-22 株式会社Lg化学 Battery cell including tab and lead having tight engagement structure
CN107086282A (en) * 2017-06-09 2017-08-22 广东保达动力技术有限公司 A kind of novel secondary battery
CN107086282B (en) * 2017-06-09 2024-05-07 广东保达动力技术有限公司 Secondary battery
JPWO2019163220A1 (en) * 2018-02-21 2021-02-04 パナソニック株式会社 Square secondary battery
JP7358329B2 (en) 2018-02-21 2023-10-10 パナソニックホールディングス株式会社 Square secondary battery

Also Published As

Publication number Publication date
JP4934318B2 (en) 2012-05-16

Similar Documents

Publication Publication Date Title
US6447946B1 (en) Lithium-ion battery
JP4934318B2 (en) Secondary battery
JP4835594B2 (en) Secondary battery
JP2001143762A (en) Cylindrical lithium ion battery
JP4305111B2 (en) Battery pack and electric vehicle
KR101275677B1 (en) lithium secondary battery
JP2004006264A (en) Lithium secondary battery
JP5433164B2 (en) Lithium ion secondary battery
JP4305035B2 (en) Winding cylindrical lithium-ion battery
JP4752154B2 (en) Method for manufacturing lithium secondary battery
WO2012105553A1 (en) Cylindrical secondary battery
JP4055307B2 (en) Cylindrical lithium-ion battery
JP2001126769A (en) Cylindrical lithium ion battery
JP2007165114A (en) Lithium secondary battery
JP2009224070A (en) Lithium secondary battery
JP5882697B2 (en) Prismatic lithium-ion battery
JP2001229970A (en) Cylindrical lithium battery
JP6106774B2 (en) Prismatic lithium-ion battery
JP4352654B2 (en) Non-aqueous electrolyte secondary battery
JP3511966B2 (en) Cylindrical lithium-ion battery
JP2003051340A (en) Lithium secondary battery
JP2005100955A (en) Winding type lithium ion battery
JP2001185220A (en) Cylindrical lithium ion battery
JP3783503B2 (en) Lithium secondary battery
JP2001229974A (en) Cylindrical lithium ion battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4934318

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250