JP2007162029A - Fluororesin film - Google Patents

Fluororesin film Download PDF

Info

Publication number
JP2007162029A
JP2007162029A JP2007001161A JP2007001161A JP2007162029A JP 2007162029 A JP2007162029 A JP 2007162029A JP 2007001161 A JP2007001161 A JP 2007001161A JP 2007001161 A JP2007001161 A JP 2007001161A JP 2007162029 A JP2007162029 A JP 2007162029A
Authority
JP
Japan
Prior art keywords
film
composite particles
particles
fluororesin film
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007001161A
Other languages
Japanese (ja)
Other versions
JP3996632B2 (en
Inventor
Hiroshi Ariga
広志 有賀
Yasusuke Kurooka
庸介 黒岡
Hideaki Miyazawa
英明 宮澤
Sakae Yoshida
栄 吉田
Osamu Kumazawa
修 熊沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daito Kasei Kogyo Co Ltd
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Daito Kasei Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, Daito Kasei Kogyo Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2007001161A priority Critical patent/JP3996632B2/en
Publication of JP2007162029A publication Critical patent/JP2007162029A/en
Application granted granted Critical
Publication of JP3996632B2 publication Critical patent/JP3996632B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor

Landscapes

  • Protection Of Plants (AREA)
  • Greenhouses (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluororesin film excellent in transparency and shielding property to UV light with wave length less than 360 nm. <P>SOLUTION: The invention relates to the fluororesin film composed of ethylene-tetrafluoroethylene copolymer, etc., containing composite particles dispersed in the resin, wherein the composite particle having 1-30 μm of particle size comprises zinc oxide particles obtained by coating 100 pts.wt. of zinc oxide with 20-200 pts.wt. of amorphous silica and agglutinating, preferably the surface of the composite particles is subjected to a treatment producing a hydrophobic surface by an organic silicone compound. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、フッ素樹脂に配合された紫外線遮断材料の分散性が良好で透明性があり、紫外線遮断性、及び耐候性に優れたフッ素樹脂フィルムに関する。   The present invention relates to a fluororesin film having excellent dispersibility and transparency of an ultraviolet blocking material blended in a fluororesin and excellent in ultraviolet blocking properties and weather resistance.

フッ素樹脂、特にテトラフルオロエチレン系共重体は、耐候性、透明性、および耐汚染性が屋外暴露20年以上にわたり維持される材料として、農業用ハウスフィルムや屋根材料として使用されている。   Fluororesin, especially tetrafluoroethylene copolymer, is used as an agricultural house film or roof material as a material that maintains weather resistance, transparency, and contamination resistance over 20 years of outdoor exposure.

フッ素樹脂フィルムを軟質塩化ビニル樹脂、硬質塩化ビニル樹脂、ポリエチレン、ABS樹脂、ポリカーボネートなどのプラスチックやステンレス鋼板、アルミニウム板、亜鉛メッキ鋼板などの金属板とラミネートして屋外建材に用いる場合、接着剤を介してラミネートする必要がある。しかし、フッ素樹脂フィルム自体は紫外線を透過するため、接着剤の紫外線による劣化を防ぐために最外層のフッ素樹脂フィルムが紫外線を遮断するという工夫、たとえば、フッ素樹脂に顔料を分散させ紫外線を遮断する方法が採られている。   When the fluororesin film is laminated with plastics such as soft vinyl chloride resin, hard vinyl chloride resin, polyethylene, ABS resin, polycarbonate, or metal plates such as stainless steel plate, aluminum plate, galvanized steel plate, etc. Need to be laminated through. However, since the fluororesin film itself transmits ultraviolet rays, the outermost layer fluororesin film blocks ultraviolet rays in order to prevent deterioration of the adhesive by ultraviolet rays, for example, a method of blocking ultraviolet rays by dispersing a pigment in the fluororesin. Has been adopted.

しかし、この方法ではフッ素樹脂フィルムの透明性が損なわれ、たとえば、フッ素樹脂フィルムを表面に印刷が施された鋼板にラミネートして使う場合、その印刷が見えにくい問題がある。これに対処するために、フッ素樹脂フィルムが400〜700nmの可視光線の透過率を高く維持し、かつ接着剤の光劣化を生じさせる360nm以下の波長の紫外線を遮断することが好ましい。   However, this method impairs the transparency of the fluororesin film. For example, when the fluororesin film is laminated on a steel sheet having a surface printed thereon, there is a problem that the printing is difficult to see. In order to cope with this, it is preferable that the fluororesin film keeps the visible light transmittance of 400 to 700 nm high and blocks ultraviolet light having a wavelength of 360 nm or less that causes photodegradation of the adhesive.

フッ素樹脂フィルムを農業用ハウスフィルムとして用いる場合、栽培する果実、花、野菜などの色、糖度、収穫量を向上させるため、それぞれに対応して紫外線透過率を調節したフィルムが要求されている。また、特に近年、アザミウマなどの害虫の被害が大きく、これらの害虫の農業ハウスでの活動を防止するため、紫外線を遮断した農業用ハウスフィルムの開発が待たれている。   When a fluororesin film is used as an agricultural house film, in order to improve the color, sugar content, and yield of cultivated fruits, flowers, vegetables, etc., a film in which the ultraviolet transmittance is adjusted correspondingly is required. In particular, in recent years, the damage of pests such as thrips has been great, and in order to prevent the activities of these pests in agricultural houses, the development of agricultural house films that block ultraviolet rays is awaited.

従来、フッ素樹脂フィルムに紫外線遮断機能を付与する方法として、たとえばエチレン−テトラフルオロエチレン系共重合体(以下、ETFEという)に0.02μm程度の粒子径の酸化チタンや酸化亜鉛を配合する方法が提案されている(特許文献1)。しかし、この方法では酸化チタン微粒子の分散が悪く、微粒子が凝集してフィルムが白化する問題と、長期にわたる光と雨による酸化チタンの光触媒によりETFEフィルム自体の劣化が促進されフィルムが空洞化する問題が生ずる。   Conventionally, as a method for imparting an ultraviolet blocking function to a fluororesin film, for example, a method of blending titanium oxide or zinc oxide having a particle diameter of about 0.02 μm with an ethylene-tetrafluoroethylene copolymer (hereinafter referred to as ETFE). It has been proposed (Patent Document 1). However, in this method, the dispersion of the titanium oxide fine particles is poor, the fine particles are aggregated and the film is whitened, and the deterioration of the ETFE film itself is promoted by the photocatalyst of titanium oxide due to light and rain for a long time, and the film becomes hollow. Will occur.

また、ケイ素原子に結合したメチル基を有するシランカップリング剤で表面被覆処理した酸化チタン微粒子をETFEに分散、混練して紫外線遮断フィルムを製造する方法が開示されている(特許文献2)。しかし、表面処理した酸化チタンの分散性が改良されずヘイズの小さいフィルムは得られない。また、酸化チタンなどの微粒子を表面処理したシランカップリング剤の被覆厚みはわずかに数nm程度であり、ETFEに対する光触媒作用を低減できにくい。   Also disclosed is a method of producing an ultraviolet blocking film by dispersing and kneading titanium oxide fine particles surface-coated with a silane coupling agent having a methyl group bonded to a silicon atom in ETFE (Patent Document 2). However, the dispersibility of the surface-treated titanium oxide is not improved, and a film having a small haze cannot be obtained. Moreover, the coating thickness of the silane coupling agent obtained by surface-treating fine particles such as titanium oxide is only a few nm, and it is difficult to reduce the photocatalytic action on ETFE.

酸化チタンの添加量が少ないETFEフィルムは、少なくとも波長300nm以下の紫外線を遮断できるが、360nm以下の紫外線を遮断するために酸化チタン添加量を多くする必要があり、その結果ETFEフィルムの透明性が著しく損なわれる。   An ETFE film with a small amount of added titanium oxide can block ultraviolet rays having a wavelength of 300 nm or less, but it is necessary to increase the amount of added titanium oxide in order to block ultraviolet rays having a wavelength of 360 nm or less. As a result, the transparency of the ETFE film is improved. Significantly damaged.

酸化亜鉛は紫外線遮断性能が酸化チタンより優れているため、酸化亜鉛の添加量が少なくともETFEフィルムは波長360nm以下の紫外線を遮断できる。しかし、酸化亜鉛は屋外暴露中にフッ素樹脂から遊離したフッ素化合物と反応し紫外線遮断機能を有しないフッ化亜鉛に変質し、その結果ETFEフィルムの紫外線遮断機能が低下しやすい問題が生ずる。また、酸化亜鉛微粒子をETFEに混練しフィルムを成形する際においても、発生するフッ素化合物により変質しやすい。   Since zinc oxide is superior to titanium oxide in its ability to block ultraviolet rays, at least the amount of zinc oxide added can block ultraviolet rays having a wavelength of 360 nm or less. However, zinc oxide reacts with a fluorine compound liberated from the fluororesin during outdoor exposure and changes to zinc fluoride which does not have an ultraviolet blocking function, resulting in a problem that the ultraviolet blocking function of the ETFE film tends to be lowered. In addition, even when zinc oxide fine particles are kneaded with ETFE to form a film, it is easily altered by the generated fluorine compound.

特許文献3には、酸化セリウム微粒子を混練した農業用ETFEフィルムが提案されている。酸化セリウムは、酸化チタンに比べ光触媒機能が小さく、また酸化亜鉛と同様に屋外暴露中にフッ素樹脂から遊離したフッ素化合物と反応し紫外線遮断機能を有しないフッ化セリウムに変質し、次第にフィルムの紫外線遮断機能が低下しやすい問題が生ずる。また、酸化セリウムの添加量が少ないETFEフィルムは、波長300nm以下の紫外線を遮断できるが、360nm以下のを遮断するために酸化セリウム添加量を多くする必要があり、その結果ETFEフィルムの透明性が著しく損なわれる。
特開平7−3047号公報 特開平7−304924号公報 特開平8−37942号公報
Patent Document 3 proposes an agricultural ETFE film in which cerium oxide fine particles are kneaded. Cerium oxide has a smaller photocatalytic function than titanium oxide, and in the same way as zinc oxide, it reacts with fluorine compounds released from fluororesin during outdoor exposure and changes to cerium fluoride, which does not have UV blocking function, and gradually becomes ultraviolet light on the film. There arises a problem that the shut-off function tends to deteriorate. In addition, an ETFE film with a small amount of cerium oxide can block ultraviolet rays having a wavelength of 300 nm or less, but it is necessary to increase the amount of cerium oxide added to block the wavelength of 360 nm or less. As a result, the transparency of the ETFE film is reduced. Significantly damaged.
JP 7-3047 A Japanese Patent Laid-Open No. 7-304924 JP-A-8-37942

本発明は、優れた透明性を有し、360nm以下の紫外線遮断に優れたフッ素樹脂フィルムを提供する。   The present invention provides a fluororesin film having excellent transparency and excellent ultraviolet blocking of 360 nm or less.

紫外線遮断材料を分散したフィルムが良好な透明性を確保するために、従来分散粒子径が0.01μm以下であることが望ましいとされていた。しかし、上記課題を解決するために鋭意検討を重ねた結果、分散粒子径が0.01μmに比べて100倍以上大きく、分散粒子として不定形シリカで被覆した酸化亜鉛粒子が集合してなる複合体粒子を分散させたフッ素樹脂フィルムは、優れた透明性を有し、かつフッ素樹脂から発生するフッ素化合物による酸化亜鉛の変質を完全に阻止することを見い出し、その知見に基づいて本発明を完成するに至った。   In order to ensure good transparency of the film in which the ultraviolet blocking material is dispersed, it has been conventionally desired that the dispersed particle diameter is 0.01 μm or less. However, as a result of intensive studies in order to solve the above-mentioned problems, a composite formed by agglomerating zinc oxide particles coated with amorphous silica as dispersed particles having a dispersed particle size of 100 times larger than 0.01 μm. The fluororesin film in which the particles are dispersed is found to have excellent transparency and completely prevent the alteration of zinc oxide by the fluorine compound generated from the fluororesin, and the present invention is completed based on the knowledge. It came to.

すなわち、本発明は、酸化亜鉛100重量部に対して20〜200重量部の不定形シリカで被覆した酸化亜鉛粒子が集合してなる複合体粒子が分散されているフッ素樹脂フィルムであって、該複合体粒子全体に占める粒子径1〜30μmの複合体粒子の比率が95重量%以上であることを特徴とするフッ素樹脂フィルムを提供する。
また酸化亜鉛100重量部に対して20〜200重量部の不定形シリカで被覆した酸化亜鉛粒子が集合してなる複合体粒子の表面が有機ケイ素化合物により疎水化処理されている複合体粒子が分散されているフッ素樹脂フィルムであって、該複合体粒子全体に占める粒子径1〜30μmの複合体粒子の比率が95重量%以上であることを特徴とするフッ素樹脂フィルムを提供する。
That is, the present invention is a fluororesin film in which composite particles formed by assembling zinc oxide particles coated with 20 to 200 parts by weight of amorphous silica with respect to 100 parts by weight of zinc oxide are dispersed, Provided is a fluororesin film, wherein the ratio of the composite particles having a particle diameter of 1 to 30 μm to the entire composite particles is 95% by weight or more.
Also, composite particles in which the surface of the composite particles formed by assembling zinc oxide particles coated with 20 to 200 parts by weight of amorphous silica with respect to 100 parts by weight of zinc oxide are hydrophobized with an organosilicon compound are dispersed. The fluororesin film is characterized in that the ratio of the composite particles having a particle diameter of 1 to 30 μm to the entire composite particles is 95% by weight or more.

透明性に優れ、かつ長期にわたる紫外線遮断性を有するフッ素樹脂フィルムが得られる。   A fluororesin film having excellent transparency and long-term ultraviolet blocking properties can be obtained.

本発明に用いる不定形シリカで被覆した酸化亜鉛粒子が集合してなる複合体粒子は、不溶性亜鉛化合物を不定形シリカで被覆した粒子の焼成物であり、以下に製造方法を例示するが、これ以外の製法で得られた複合体粒子を用いてもよい。
不溶性亜鉛化合物とは水に不溶または難溶な亜鉛化合物であり、たとえば水酸化亜鉛、リン酸亜鉛、炭酸亜鉛、酸化亜鉛などが挙げられ、炭酸亜鉛が好ましい。
The composite particles formed by assembling the zinc oxide particles coated with the amorphous silica used in the present invention are burned products of the particles coated with the insoluble zinc compound with the amorphous silica, and the production method is exemplified below. You may use the composite particle obtained by manufacturing methods other than.
The insoluble zinc compound is a zinc compound that is insoluble or hardly soluble in water, and examples thereof include zinc hydroxide, zinc phosphate, zinc carbonate, and zinc oxide. Zinc carbonate is preferred.

不定形シリカは、結晶性を有しない無定形のシリカであり、たとえば3号ケイ酸ナトリウム(SiO2 含有率:28.5%)やテトラエチルシリケートなどのケイ素化合物を加水分解して得られる不定形シリカが挙げられる。 Amorphous silica is amorphous silica having no crystallinity. For example, amorphous silica is obtained by hydrolyzing a silicon compound such as No. 3 sodium silicate (SiO 2 content: 28.5%) or tetraethyl silicate. Silica is mentioned.

不定形シリカで被覆した酸化亜鉛粒子が集合してなる複合体粒子の製造例を以下に示す。たとえば、粒径0.01μm程度の酸化亜鉛を水に分散し、この水分散液に撹拌下でケイ素化合物を滴下し、その後、乾燥し、さらに200〜1000℃、好ましくは400〜600℃で焼成する方法が挙げられる。また、炭酸亜鉛などの不溶性亜鉛化合物に水を加え分散機や乳化機を使って水分散液とし、この水分散液に撹拌下でケイ素化合物を滴下し、粒子径0.1μm以下程度のシリカ被覆不溶性亜鉛化合物を得る。その後、乾燥し、さらに200〜1000℃、好ましくは400〜600℃で焼成することにより、不溶性酸化亜鉛化合物は酸化亜鉛となり、不定形シリカで被覆された酸化亜鉛粒子が集合してなる複合体粒子が得られる。   A production example of composite particles formed by assembling zinc oxide particles coated with amorphous silica is shown below. For example, zinc oxide having a particle size of about 0.01 μm is dispersed in water, a silicon compound is dropped into the aqueous dispersion with stirring, and then dried, and further fired at 200 to 1000 ° C., preferably 400 to 600 ° C. The method of doing is mentioned. In addition, water is added to an insoluble zinc compound such as zinc carbonate to form an aqueous dispersion using a disperser or an emulsifier, and a silicon compound is added dropwise to the aqueous dispersion with stirring to coat silica with a particle size of about 0.1 μm or less. An insoluble zinc compound is obtained. Thereafter, it is dried and further calcined at 200 to 1000 ° C., preferably 400 to 600 ° C., whereby the insoluble zinc oxide compound becomes zinc oxide, and the composite particles are formed by collecting zinc oxide particles coated with amorphous silica. Is obtained.

本発明に用いる複合体粒子は、複合体粒子全体に占める粒子径1〜30μmの複合体粒子の比率が95重量%以上である。粒子径は、好ましくは1〜20μmである。複合体粒子径が大きいと、成形されたフィルムに孔を生じやすい。   In the composite particles used in the present invention, the ratio of the composite particles having a particle diameter of 1 to 30 μm in the entire composite particles is 95% by weight or more. The particle diameter is preferably 1 to 20 μm. When the composite particle diameter is large, holes are likely to be formed in the formed film.

本発明に用いる複合体粒子は1〜30μmの範囲の粒径を有するが、この粒径範囲以外の粒子を複合体粒子100重量部に対し10重量部以下、特に3重量部以下含有する複合体を用いても本発明の効果に対して支障ない。なお、複合体粒子の平均粒子径は、4〜10μmが好ましく、特に4〜8μmが好ましい。   The composite particle used in the present invention has a particle size in the range of 1 to 30 μm, and a composite containing 10 parts by weight or less, particularly 3 parts by weight or less of particles outside this particle size range with respect to 100 parts by weight of the composite particle. Even if it uses, there is no trouble with respect to the effect of this invention. The average particle diameter of the composite particles is preferably 4 to 10 μm, particularly 4 to 8 μm.

複合体粒子は、その複合体粒子製造時に不溶性亜鉛化合物粒子を被覆した不定形シリカ同士が乾燥、焼成工程において融着固化しているものである。しかし、焼成前の不溶性亜鉛化合物粒子や酸化亜鉛粒子は不定形シリカで被覆されているために、不溶性亜鉛化合物粒子や酸化亜鉛粒子同士は2次凝集も3次凝集もしていない。本発明に用いる複合体粒子における粒子の集合は、従来良好な透明性を確保するために用いられる0.01μm以下の超微粒子が2次凝集または3次凝集したものと異なる。不定形シリカは透明性が高いため、1〜30μmの大きな複合体粒子を分散してもフッ素フィルムの透明性に悪影響を与えない。   The composite particles are obtained by fusing and solidifying amorphous silica coated with insoluble zinc compound particles at the time of production of the composite particles in a drying and firing process. However, since the insoluble zinc compound particles and zinc oxide particles before firing are coated with amorphous silica, the insoluble zinc compound particles and zinc oxide particles are neither secondary nor tertiary aggregated. The aggregate of the particles in the composite particles used in the present invention is different from that in which ultrafine particles having a size of 0.01 μm or less, which has been conventionally used for ensuring good transparency, are secondary or tertiary aggregated. Since amorphous silica has high transparency, even if large composite particles of 1 to 30 μm are dispersed, the transparency of the fluorine film is not adversely affected.

本発明に用いる複合体は酸化亜鉛を被覆する不定形シリカの被覆厚みが大きいため酸化亜鉛がフッ素樹脂とは接することがなく、フッ素樹脂から発生するフッ素化合物と反応してフッ化亜鉛に変質することを防止できる。   Since the composite used in the present invention has a large coating thickness of amorphous silica covering zinc oxide, the zinc oxide does not come into contact with the fluororesin, and reacts with the fluorine compound generated from the fluororesin and transforms into zinc fluoride. Can be prevented.

不定形シリカは酸化亜鉛100重量部に対し20〜200重量部であり、好ましくは50〜150重量部である。20重量部未満では不定形シリカの被覆厚みが小さいため、フッ素樹脂内に発生したフッ素化合物による酸化亜鉛の変質を長期にわたり阻止できにくく、200重量部超では紫外線遮断性能が小さい。   The amorphous silica is 20 to 200 parts by weight, preferably 50 to 150 parts by weight, based on 100 parts by weight of zinc oxide. If the amount is less than 20 parts by weight, the coating thickness of the amorphous silica is small, so that it is difficult to prevent the deterioration of zinc oxide by the fluorine compound generated in the fluororesin for a long period of time.

複合体粒子のフッ素樹脂における分散を向上させるために、複合体粒子の表面を表面処理剤で疎水化処理することが好ましい。本発明に使用する複合体粒子は粒径が1〜30μmと大きいため、容易に表面処理を行うことができる。   In order to improve dispersion of the composite particles in the fluororesin, the surface of the composite particles is preferably subjected to a hydrophobic treatment with a surface treatment agent. Since the composite particles used in the present invention have a large particle size of 1 to 30 μm, the surface treatment can be easily performed.

疎水化の目安として、メタノール疎水化度を用いる。メタノール疎水化度は、粒子の疎水性を示す指標であり、その測定方法は次のとおりである。300ccのビーカーに蒸留水50ccを入れ、5gの粒子を良く撹拌させながら投入する。粒子が均一に分散されれば、この粒子は蒸留水ときわめてなじみが良く、メタノール疎水化度は0%である。粒子が均一に分散しない場合、水溶液に粒子が均一に分散されるまでメタノールを徐々に滴下する。ちょうど均一に分散されるようになるまでのメタノール総添加量M(単位:cc)から、メタノール疎水化度D(単位:%)は次式によって求められる。
D=100M/(M+50)
As a measure of hydrophobicity, the degree of methanol hydrophobicity is used. The degree of methanol hydrophobization is an index indicating the hydrophobicity of particles, and the measurement method is as follows. Add 50 cc of distilled water to a 300 cc beaker and add 5 g of particles while stirring well. If the particles are evenly dispersed, the particles are very familiar with distilled water and have a methanol hydrophobization degree of 0%. If the particles are not uniformly dispersed, methanol is gradually added dropwise until the particles are uniformly dispersed in the aqueous solution. The methanol hydrophobization degree D (unit:%) is determined by the following equation from the total amount M (unit: cc) of methanol added until it is uniformly dispersed.
D = 100M / (M + 50)

表面処理される前の複合体粒子のメタノール疎水化度は10%未満である。このようなメタノール疎水化度の低い粒子はフッ素樹脂に対して分散性が低いため、本発明では40〜75%の複合体粒子を用いることが好ましい。
なお、フッ素樹脂の種類により要求する好ましいメタノール疎水化度は若干異なり、ETFEの場合は40〜70%とすることが好ましく、ヘキサフルオロプロピレン−テトラフルオロエチレン系共重合体、パーフルオロ(アルキルビニルエーテル)−テトラフルオロエチレン系共重合体の場合は60〜75%であることが好ましい。また、テトラフルオロエチレン−ヘキサフルオロプロピレン−フッ化ビニリデン系共重合体では、40〜70%であることが好ましい。
The methanol hydrophobicity of the composite particles before surface treatment is less than 10%. Such particles having a low degree of hydrophobicity of methanol have a low dispersibility with respect to the fluororesin, and therefore it is preferable to use 40 to 75% of composite particles in the present invention.
The preferred degree of methanol hydrophobization required varies depending on the type of fluororesin, and in the case of ETFE, it is preferably 40 to 70%. Hexafluoropropylene-tetrafluoroethylene copolymer, perfluoro (alkyl vinyl ether) -In the case of a tetrafluoroethylene copolymer, it is preferably 60 to 75%. In the case of a tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer, the content is preferably 40 to 70%.

表面処理剤としては複合体粒子表面に強固に結合でき、かつ疎水化度を上げうるものであれば使用でき、アルコキシ基、水酸基、イソシアネート基、塩素原子などの加水分解性基、特に炭素数4以下のアルコキシ基がケイ素原子に2〜3個直接結合している有機ケイ素化合物が好ましく用いられる。さらに好ましくは、このような加水分解性基を有し、しかも疎水性の有機基がケイ素原子に炭素−ケイ素結合で結合している有機ケイ素化合物が用いられ、シランカップリング剤やシリコーンオイルなどの有機ケイ素化合物が好ましい。   Any surface treating agent can be used as long as it can be firmly bonded to the surface of the composite particle and can increase the degree of hydrophobicity. Hydrolyzable groups such as alkoxy groups, hydroxyl groups, isocyanate groups and chlorine atoms, particularly those having 4 carbon atoms. Organosilicon compounds in which 2 to 3 of the following alkoxy groups are directly bonded to a silicon atom are preferably used. More preferably, an organosilicon compound having such a hydrolyzable group and having a hydrophobic organic group bonded to a silicon atom by a carbon-silicon bond is used, and a silane coupling agent, silicone oil, or the like is used. Organosilicon compounds are preferred.

通常のシランカップリング剤は、加水分解性基と非加水分解性有機基とを有し、非加水分解性有機基は官能基としてたとえばエポキシ基、アミノ基などを有している。このような官能基は親水性が高く、本発明における表面被覆剤としてあまり好ましくない。むしろ、親水性基を有しない炭化水素基や、高い疎水性をもたらすフッ素化炭化水素基を有機基として有する有機ケイ素化合物が好ましい。   A normal silane coupling agent has a hydrolyzable group and a non-hydrolyzable organic group, and the non-hydrolyzable organic group has, for example, an epoxy group or an amino group as a functional group. Such a functional group has high hydrophilicity and is not so preferable as a surface coating agent in the present invention. Rather, an organosilicon compound having a hydrocarbon group that does not have a hydrophilic group or a fluorinated hydrocarbon group that provides high hydrophobicity as an organic group is preferable.

ケイ素原子に炭素−ケイ素結合で結合している有機基としては、アルキル基、アルケニル基、アリール基、アルアルキル基、モノ(またはポリ)フルオロアルキル基、モノ(またはポリ)フルオロアリール基などが好ましい。特に、炭素数2〜20のアルキル基、1以上のフッ素原子を有する炭素数2〜20のモノ(またはポリ)フルオロアルキル基、アルキル基やモノ(またはポリ)フルオロアルキル基で置換されてもよいフェニル基などが好ましい。   As the organic group bonded to the silicon atom by a carbon-silicon bond, an alkyl group, an alkenyl group, an aryl group, an aralkyl group, a mono (or poly) fluoroalkyl group, a mono (or poly) fluoroaryl group, and the like are preferable. . In particular, it may be substituted with an alkyl group having 2 to 20 carbon atoms, a mono (or poly) fluoroalkyl group having 2 to 20 carbon atoms having one or more fluorine atoms, an alkyl group or a mono (or poly) fluoroalkyl group. A phenyl group and the like are preferable.

有機ケイ素化合物としては、さらに加水分解性基がケイ素原子に直接結合しているオルガノシリコーン化合物であってもよい。このオルガノシリコーン化合物における有機基としては、炭素数4以下のアルキル基やフェニル基が好ましい。このようなオルガノシリコーン化合物としては、シリコーンオイルとよばれているものを用いうる。   The organosilicon compound may be an organosilicone compound in which a hydrolyzable group is directly bonded to a silicon atom. The organic group in the organosilicone compound is preferably an alkyl group having 4 or less carbon atoms or a phenyl group. As such an organosilicone compound, what is called silicone oil can be used.

有機ケイ素化合物の具体的として、イソブチルトリメトキシシラン、ヘキシルトリメトキシシラン、(3,3,3−トリフルオロプロピル)トリメトキシシラン、エチルトリエトキシシランなどのトリアルコキシシラン類、ジメチルシリコーンオイル、メチル水素シリコーンオイル、フェニルメチルシリコーンオイルなどのシリコーンオイルが好ましく、特にイソブチルトリメトキシシラン、ヘキシルトリメトキシシラン、エチルトリエトキシシラン、ジメチルシリコーンオイルが好ましい。   Specific examples of the organosilicon compound include isobutyltrimethoxysilane, hexyltrimethoxysilane, trialkoxysilanes such as (3,3,3-trifluoropropyl) trimethoxysilane, ethyltriethoxysilane, dimethyl silicone oil, methyl hydrogen Silicone oils such as silicone oil and phenylmethyl silicone oil are preferable, and isobutyltrimethoxysilane, hexyltrimethoxysilane, ethyltriethoxysilane, and dimethylsilicone oil are particularly preferable.

表面処理剤の処理量は、複合体粒子の比表面積、表面処理剤の複合体との反応性などに関連する。したがって、表面処理剤として複合体との反応性が高く、かつ少量で複合体を疎水化できるものが好ましい。本発明においては、複合体100重量部に対して5〜50重量部の表面処理剤を反応させ、複合体のメタノール疎水化度を調節する。処理量が多いと複合体粒子同士の表面処理剤が付着し、複合体粒子からなる凝集体がブツとなりフィルム外観が悪くなることがある。
表面処理方法は特に限定されないが、表面処理剤を溶解した水、アルコール、アセトン、n−ヘキサンなどの溶液に複合体粒子を分散させ、その後乾燥する方法が好ましい。
The treatment amount of the surface treatment agent is related to the specific surface area of the composite particles, the reactivity of the surface treatment agent with the composite, and the like. Accordingly, a surface treatment agent having high reactivity with the complex and capable of hydrophobizing the complex with a small amount is preferable. In the present invention, 5 to 50 parts by weight of a surface treatment agent is reacted with 100 parts by weight of the composite to adjust the degree of methanol hydrophobicity of the composite. When the amount of treatment is large, the surface treatment agent between the composite particles adheres, and the aggregates composed of the composite particles become lumpy and the film appearance may deteriorate.
The surface treatment method is not particularly limited, but a method of dispersing the composite particles in a solution of water, alcohol, acetone, n-hexane or the like in which the surface treatment agent is dissolved, and then drying is preferable.

本発明のフッ素樹脂フィルムに要求される紫外線遮断機能は、そのフィルムを使用する用途によって異なる。たとえば、ラミネートして用いる場合、接着剤を保護するために330〜360nmの紫外線を70%以上遮断し、基材表面の印刷を見やすくするために400〜700nmの可視光を70%以上透過させることが好ましい。   The ultraviolet blocking function required for the fluororesin film of the present invention varies depending on the use of the film. For example, when used in a laminated manner, block UV light of 330 to 360 nm for protecting the adhesive by 70% or more, and allow visible light of 400 to 700 nm to pass through 70% or more for easy printing on the substrate surface. Is preferred.

また、農業ハウスに用いる場合、穀物、花、野菜、果物の種類に適した紫外線遮断機能を有することが必要であり、330〜360nmの紫外線を100%遮断するフィルム、80%遮断するフィルム、50%遮断するフィルムなどが用いられる。また、アザミウマなどの害虫の活動を防止するため、特に330〜360nmの紫外線を70%以上遮断するフィルムが用いられる。   Moreover, when using for an agricultural house, it is necessary to have the ultraviolet-blocking function suitable for the kind of grain, a flower, a vegetable, and a fruit, the film which blocks | interrupts 100-300% of ultraviolet rays of 330-360 nm, the film which blocks 80%, 50 % Blocking film is used. Moreover, in order to prevent the activity of pests such as thrips, a film that blocks 70% or more of ultraviolet rays of 330 to 360 nm is used.

本発明における光線透過率とは、JIS−K7105に準拠した測定法によって求めたものであり、拡散光線と平行光線の総量、すなわち全光線透過率をいう。この方法に用いる光源はJIS−Z8720に準処し、300〜830nmに分布した標準光である。   The light transmittance in the present invention is determined by a measuring method based on JIS-K7105 and refers to the total amount of diffused light and parallel light, that is, the total light transmittance. The light source used in this method is standard light distributed according to JIS-Z8720 and distributed at 300 to 830 nm.

本発明において、330〜360nmの光を70%以上遮断するとは、この波長全域にわたり70%以上遮断することをいう。また、400〜700nmの光を70%以上透過するとは、この波長全域にわたり70%以上透過することをいう。   In the present invention, “blocking light of 330 to 360 nm by 70% or more” means blocking 70% or more over the entire wavelength range. Further, “transmitting light of 400 to 700 nm by 70% or more” means transmitting 70% or more over the entire wavelength range.

本発明におけるフッ素樹脂は特に限定されないが、フッ化ビニル重合体、フッ化ビニリデン重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン−フッ化ビニリデン共重合体、テトラフルオロエチレン−プロピレン共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン−プロピレン共重合体、ETFE、ヘキサフルオロプロピレン−テトラフルオロエチレン共重合体、またはパーフルオロ(アルキルビニルエーテル)−テトラフルオロエチレン共重合体樹脂などが挙げられる。   The fluororesin in the present invention is not particularly limited, but vinyl fluoride polymer, vinylidene fluoride polymer, tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer, tetrafluoroethylene-propylene copolymer, tetrafluoroethylene -Hexafluoropropylene-propylene copolymer, ETFE, hexafluoropropylene-tetrafluoroethylene copolymer, or perfluoro (alkyl vinyl ether) -tetrafluoroethylene copolymer resin.

これらのフッ素樹脂のうち、特にETFE、ヘキサフルオロプロピレン−テトラフルオロエチレン共重合体、パーフルオロ(アルキルビニルエーテル)−テトラフルオロエチレン共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン−フッ化ビニリデン共重合体が好ましい。   Among these fluororesins, ETFE, hexafluoropropylene-tetrafluoroethylene copolymer, perfluoro (alkyl vinyl ether) -tetrafluoroethylene copolymer, tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer are particularly preferred. preferable.

本発明のフッ素樹脂フィルムに分散させる複合体粒子の量は要求される紫外線遮断性能に応じて設定すればよく、通常、フッ素樹脂100重量部に対し、0.4〜10重量部程度分散させることが好ましい。
フッ素樹脂フィルムの厚みは特に制限はないが、通常6〜500μm、好ましくは10〜200μmの範囲である。
What is necessary is just to set the quantity of the composite particle disperse | distributed to the fluororesin film of this invention according to the ultraviolet-ray blocking performance requested | required, Usually, about 0.4-10 weight part is disperse | distributed with respect to 100 weight part of fluororesins. Is preferred.
Although the thickness of a fluororesin film does not have a restriction | limiting in particular, Usually, 6-500 micrometers, Preferably it is the range of 10-200 micrometers.

本発明を実施例、比較例により詳細に説明する。なお、本実施例では、330〜360nmの紫外線を約80%遮断するフィルムを作成し、農業ハウスフィルムとしてその長期にわたる性能を評価した。また、ラミネート用途として360nm以下の紫外光を100%遮断するフィルムを作成し評価した。本発明のフッ素樹脂フィルムの紫外線遮断程度はこの実施例に特に限定されない。   The present invention will be described in detail with reference to examples and comparative examples. In this example, a film that blocks about 80% of ultraviolet rays of 330 to 360 nm was prepared, and its long-term performance was evaluated as an agricultural house film. In addition, a film that blocks 100% of ultraviolet light of 360 nm or less as a laminate application was prepared and evaluated. The ultraviolet blocking degree of the fluororesin film of the present invention is not particularly limited to this example.

[例1]
20重量%塩化亜鉛水溶液に炭酸ガスを吹き込みながら重炭酸ナトリウムを加え、炭酸亜鉛の微白色スラリーを得た。炭酸亜鉛の粒子径は0.005〜0.02μmであった。この炭酸亜鉛をよく水洗した後、60℃に保温し、撹拌しながらテトラエチルシリケート20重量%のエタノール溶液を滴下し、炭酸亜鉛粒子表面に不定形シリカを沈積させた。テトラエチルシリケートの添加量は、炭酸亜鉛100重量部に対し、SiO2 として100重量部となるように滴下した。その後、1時間以上撹拌を続け、最後に希硝酸を加えて中和し、不定形シリカによる炭酸亜鉛の被覆を終了させた。その後、水洗、乾燥、粉砕の工程を経た後、500℃で1時間焼成し、不定形シリカで被覆した酸化亜鉛粒子が集合した複合体粒子を得た。
[Example 1]
Sodium carbonate was added while blowing carbon dioxide gas into a 20 wt% zinc chloride aqueous solution to obtain a fine white slurry of zinc carbonate. The particle size of zinc carbonate was 0.005 to 0.02 μm. The zinc carbonate was thoroughly washed with water, kept at 60 ° C., and an ethanol solution containing 20% by weight of tetraethyl silicate was added dropwise with stirring to deposit amorphous silica on the surface of the zinc carbonate particles. The amount of tetraethyl silicate added dropwise was 100 parts by weight as SiO 2 with respect to 100 parts by weight of zinc carbonate. Thereafter, stirring was continued for 1 hour or longer, and finally, neutralization was performed by adding dilute nitric acid to finish the coating of zinc carbonate with amorphous silica. Then, after passing through the steps of washing with water, drying and pulverization, firing was performed at 500 ° C. for 1 hour to obtain composite particles in which zinc oxide particles coated with amorphous silica were assembled.

この複合体粒子の組成は、ZnO:SiO2 =100:120(重量比)であった。また、この複合体粒子の粒径をレーザー回折・散乱式粒度分布測定機(セイシン企業製、LMS−24)で測定したところ、1〜30μmにその粒子の95%が分布し、平均粒径は7.8μmであった。 The composition of the composite particles was ZnO: SiO 2 = 100: 120 (weight ratio). Moreover, when the particle size of the composite particles was measured with a laser diffraction / scattering particle size distribution analyzer (manufactured by Seishin Enterprise, LMS-24), 95% of the particles were distributed in 1 to 30 μm, and the average particle size was It was 7.8 μm.

この複合体粒子200gを小型ヘンシェルミキサに投入し、続いて、エチルトリエトキシシシラン14gを水:メタノール=1:9(重量比)の混合溶媒に溶解した溶液40gをゆっくり投入し10分間撹拌した。続いて、表面処理した湿った複合体粒子を120℃で1時間乾燥し再度小型ヘンシェルミキサで2分間充分にほぐした。この表面処理した粒子のメタノール疎水化度は65%である。   200 g of the composite particles were put into a small Henschel mixer, and then 40 g of a solution obtained by dissolving 14 g of ethyltriethoxysilane in a mixed solvent of water: methanol = 1: 9 (weight ratio) was slowly added and stirred for 10 minutes. . Subsequently, the surface-treated wet composite particles were dried at 120 ° C. for 1 hour and again sufficiently loosened with a small Henschel mixer for 2 minutes. The surface treated particles have a methanol hydrophobization degree of 65%.

この表面処理された複合体粒子160gとETFE(アフロンCOP88AX、旭硝子製)4kgをVミキサにて乾式混合した。この混合物を2軸押出機にて320℃でペレット化を行った。
次いでTダイ方式により、320℃で40μmのフィルムを成形した。このフィルムは全光線透過率92.2%、ヘイズ18.5%であり、360〜330nmにおける全光線透過率は20%、400〜700nmの全光線透過率は83%以上であった。
160 g of the surface-treated composite particles and 4 kg of ETFE (Aflon COP88AX, manufactured by Asahi Glass) were dry-mixed with a V mixer. This mixture was pelletized at 320 ° C. with a twin screw extruder.
Next, a 40 μm film was formed at 320 ° C. by a T-die method. This film had a total light transmittance of 92.2% and a haze of 18.5%, a total light transmittance at 360 to 330 nm of 20%, and a total light transmittance of 400 to 700 nm of 83% or more.

得られたフィルムをコロナ放電処理し、この面にシリカ微粒子とシランカップリング剤を主成分とする流滴剤を0.2μm塗工した。この流滴加工した紫外線遮断フィルムをナイロン樹脂で被覆したマイカ線を使用して、農業用パイプハウスを作成した。   The obtained film was subjected to corona discharge treatment, and 0.2 μm of a dropping agent mainly composed of silica fine particles and a silane coupling agent was applied to this surface. An agricultural pipe house was made using a mica wire coated with a nylon resin on the UV-blocking film subjected to the droplet treatment.

このハウスを3年間展張し、その後の光学特性を測定した。全光線透過率は92.8%、ヘイズ18.0%、400〜700nmの全光線透過率は85%以上、360〜330nmにおける全光線透過率は21%であった。また、展張前後のフィルムの引張り破断強度保持率は99%、引張り伸度保持率は98%であり、劣化は認められなかった。結果を表1、表2に示す。また、3年間の展張前後の各波長における全光線透過率のチャートを図1に示す。   This house was extended for 3 years, and the optical properties after that were measured. The total light transmittance was 92.8%, haze 18.0%, the total light transmittance at 400 to 700 nm was 85% or more, and the total light transmittance at 360 to 330 nm was 21%. Further, the tensile rupture strength retention rate of the film before and after stretching was 99%, and the tensile elongation retention rate was 98%, and no deterioration was observed. The results are shown in Tables 1 and 2. Moreover, the chart of the total light transmittance in each wavelength before and behind the extension for 3 years is shown in FIG.

また、展張3年目にこのハウス内でキュウリ(品種:シャープ1)を栽培したが、アザミウマによる被害は皆無であり、キュウリの収穫も良好であった。結果を表2に示す。   In addition, cucumbers (variety: Sharp 1) were cultivated in this house in the third year of expansion, but there was no damage caused by thrips, and cucumber harvesting was also good. The results are shown in Table 2.

[例2、3、4]
例1と同様にして、ZnOとSiO2 の組成(重量比)が、100:30(例2)、100:80(例3)、100:160(例4)の不定形シリカ−酸化亜鉛複合体を作成し、その後、表面処理を行った粒子の物性を表1に示す。
[Examples 2, 3, 4]
In the same manner as in Example 1, the amorphous silica-zinc oxide composite in which the composition (weight ratio) of ZnO and SiO 2 is 100: 30 (Example 2), 100: 80 (Example 3), and 100: 160 (Example 4) Table 1 shows the physical properties of the particles that were prepared and then surface-treated.

また、この表面処理した複合体粒子を、例1と同様にてETFEに混練して得られたフィルムを流滴化工して農業用パイプハウスとして3年間展張した前後の光学特性および、引張り破断強度保持率および引張り伸度保持率を表1、表2に示す。
また、このハウス内でキュウリを栽培したが、その収穫量およびアザミウマによる被害の程度を表2に示す。
In addition, the film obtained by kneading the surface-treated composite particles into ETFE in the same manner as in Example 1 was subjected to droplet formation, and maintained for 3 years as an agricultural pipe house, and the optical properties before and after the tensile rupture strength was maintained. Tables 1 and 2 show the tensile strength and tensile elongation retention.
In addition, cucumbers were cultivated in this house. Table 2 shows the amount of harvest and the degree of damage caused by thrips.

[例5、6、7(比較例)]
例1と同様にして、ZnOとSiO2 の組成(重量比)が、100:5(例5)、100:10(例6)、100:15(例7)の不定形シリカ−酸化亜鉛複合体を作成し、その後、表面処理を行った粒子の物性を表1に示す。
また、この表面処理した複合体粒子を、例1と同様にてETFEに混練して得られたフィルムを流滴加工して農業用パイプハウスとして3年間展張した前後の光学特性および、引張り破断強度および伸度を表1および表2に示す。
[Examples 5, 6, and 7 (comparative examples)]
In the same manner as in Example 1, the amorphous silica-zinc oxide composite in which the composition (weight ratio) of ZnO and SiO 2 is 100: 5 (Example 5), 100: 10 (Example 6), and 100: 15 (Example 7) Table 1 shows the physical properties of the particles that were prepared and then surface-treated.
Further, the optical properties before and after stretching for 3 years as an agricultural pipe house by dropping a film obtained by kneading the surface-treated composite particles into ETFE in the same manner as in Example 1, and tensile breaking strength and The elongation is shown in Tables 1 and 2.

引張り強度および伸度は初期値をほとんど維持しているものの、不定形シリカの被覆量が少ないものほどUV遮断の機能が低下している。従って、表2に示すように、このハウス内でキュウリを栽培したが、アザミウマによる被害状況は甚大であった。
また、例6のフィルムについての3年間の展張前後の各波長における全光線透過率のチャートを図2に示す。
Although the tensile strength and elongation are almost maintained at the initial values, the smaller the amount of amorphous silica covered, the lower the UV blocking function. Therefore, as shown in Table 2, cucumbers were cultivated in this house, but the damage caused by thrips was enormous.
Moreover, the chart of the total light transmittance in each wavelength before and behind the extension for 3 years about the film of Example 6 is shown in FIG.

[例8(比較例)]
平均粒径0.01μmの酸化セリウム(CeO2 )粒子をETFE100重量部に対して1.5重量部配合した40μmETFEフィルムを成形した。このフィルムは全光線透過率92.5%、ヘイズ16.5%であり、360nmにおける全光線透過率は40%、400〜700nmにおける全光線透過率は80%以上であった。このフィルムを例1と同様にて農業用パイプハウスとして3年間展張した後の光学特性および、引張り破断強度および伸度を表1、表2に示す。
また、3年間の展張前後の各波長における全光線透過率のチャートを図3に示す。
引張り強度および伸度は初期値をほとんど維持していた。しかし、このハウス内でキュウリを栽培した際、アザミウマによる被害状況は甚大であった。
[Example 8 (comparative example)]
A 40 μm ETFE film in which 1.5 parts by weight of cerium oxide (CeO 2 ) particles having an average particle diameter of 0.01 μm was blended with 100 parts by weight of ETFE was molded. This film had a total light transmittance of 92.5% and a haze of 16.5%, a total light transmittance at 360 nm of 40%, and a total light transmittance at 400 to 700 nm of 80% or more. Tables 1 and 2 show optical properties, tensile strength at break, and elongation after the film was stretched for 3 years as an agricultural pipe house in the same manner as in Example 1.
Moreover, the chart of the total light transmittance in each wavelength before and behind the extension for 3 years is shown in FIG.
Tensile strength and elongation almost maintained their initial values. However, when cultivating cucumbers in this house, the damage caused by thrips was enormous.

[例9]
例1の表面処理したメタノール疎水化度65%の不定形シリカ−酸化亜鉛複合体を用い、これをETFE100重量部に対して8重量部配合した40μmのETFEフィルムを作成した。
このフィルムの全光線透過率は89.2%であり、ヘイズは26.2%であった。また、360nm以下の紫外線を100%遮断した。
[Example 9]
A 40 μm ETFE film was prepared by blending 8 parts by weight of 100 parts by weight of ETFE with the amorphous silica-zinc oxide composite having a surface treatment of 65% hydrophobized in Example 1.
This film had a total light transmittance of 89.2% and a haze of 26.2%. Further, ultraviolet rays of 360 nm or less were blocked 100%.

このフィルム表面をコロナ放電処理し、ポリエステル系接着剤を用いて白色ポリエステルシートとラミネートし、カーボンアーク型サンシャンウェザオメーター試験機に5000時間暴露した。暴露前後の密着力はそれぞれ1.5kgf/cm、1.4kgf/cmであり、密着力の低下はほとんど見られなかった。また、基材の白色ポリエステルシートの黄変は見られなかった。   This film surface was subjected to corona discharge treatment, laminated with a white polyester sheet using a polyester-based adhesive, and exposed to a carbon arc type Sanshan weatherometer tester for 5000 hours. The adhesion strength before and after exposure was 1.5 kgf / cm and 1.4 kgf / cm, respectively, and almost no decrease in adhesion strength was observed. Moreover, yellowing of the white polyester sheet of the base material was not observed.

Figure 2007162029
Figure 2007162029

Figure 2007162029
Figure 2007162029

[例10(比較例)]
平均粒子径0.01μmの酸化亜鉛を例1と同様にして、エチルトリエトキシシランで疎水化処理しメタノール疎水化度60%、平均粒子径0.2μmの粒子を得た。このフィラーをETFE100重量部に対して3重量部含む40μmのETFEフィルムを成形した。このフィルムは全光線透過率82.5%、ヘイズ20.0%であり、360nmにおける全光線透過率は8%、330nmにおける全光線透過率は8%であった。
[Example 10 (comparative example)]
Zinc oxide having an average particle size of 0.01 μm was hydrophobized with ethyltriethoxysilane in the same manner as in Example 1 to obtain particles having a degree of hydrophobicity of methanol of 60% and an average particle size of 0.2 μm. A 40 μm ETFE film containing 3 parts by weight of this filler with respect to 100 parts by weight of ETFE was formed. This film had a total light transmittance of 82.5% and a haze of 20.0%, a total light transmittance at 360 nm of 8%, and a total light transmittance at 330 nm of 8%.

このフィルムを例1と同様に処理し、農業用パイプハウスとして展張したが、1ケ月で紫外線遮断性を喪失し、全光線透過率93.5%、ヘイズ6.2%であり、360nmにおける全光線透過率は86%、330nmにおける全光線透過率は85%であった。   This film was processed in the same manner as in Example 1 and expanded as an agricultural pipe house, but in one month it lost its ultraviolet blocking property and had a total light transmittance of 93.5% and a haze of 6.2%. The transmittance was 86%, and the total light transmittance at 330 nm was 85%.

例1の展張前、3年間展張後のフィルム、および紫外線遮断剤を含有しないETFEフィルムの280〜700nmの全光線透過率のチャートを示す。The chart of the total light transmittance of 280-700 nm of the film before extending | stretching of Example 1, the film after extending | stretching for 3 years, and the ETFE film which does not contain a ultraviolet blocker is shown. 例6の展張前、3年間展張後のフィルムの280〜700nmの全光線透過率のチャートを示す。The chart of the total light transmittance of 280-700 nm of the film after extending | stretching for 3 years before extending | stretching of Example 6 is shown. 例8の展張前、3年間展張後のフィルムの280〜700nmの全光線透過率のチャートを示す。The chart of the total light transmittance of 280-700 nm of the film after extending for 3 years before extending | stretching of Example 8 is shown.

Claims (6)

酸化亜鉛100重量部に対して20〜200重量部の不定形シリカで被覆した酸化亜鉛粒子が集合してなる複合体粒子が分散されているフッ素樹脂フィルムであって、
該複合体粒子全体に占める粒子径1〜30μmの複合体粒子の比率が95重量%以上であることを特徴とするフッ素樹脂フィルム。
A fluororesin film in which composite particles formed by collecting zinc oxide particles coated with 20 to 200 parts by weight of amorphous silica with respect to 100 parts by weight of zinc oxide are dispersed,
A fluororesin film, wherein a ratio of composite particles having a particle diameter of 1 to 30 μm in the entire composite particles is 95% by weight or more.
酸化亜鉛100重量部に対して20〜200重量部の不定形シリカで被覆した酸化亜鉛粒子が集合してなる複合体粒子の表面が有機ケイ素化合物により疎水化処理されている複合体粒子が分散されているフッ素樹脂フィルムであって、
該複合体粒子全体に占める粒子径1〜30μmの複合体粒子の比率が95重量%以上であることを特徴とするフッ素樹脂フィルム。
Dispersed are composite particles in which the surface of a composite particle formed by assembling zinc oxide particles coated with 20 to 200 parts by weight of amorphous silica with respect to 100 parts by weight of zinc oxide is hydrophobized with an organosilicon compound. A fluororesin film,
A fluororesin film, wherein a ratio of composite particles having a particle diameter of 1 to 30 μm in the entire composite particles is 95% by weight or more.
前記複合体粒子の平均粒子径が4〜10μmである請求項1または2記載のフッ素樹脂フィルム。   The fluororesin film according to claim 1 or 2, wherein an average particle size of the composite particles is 4 to 10 µm. フッ素樹脂が、エチレン−テトラフルオロエチレン系共重合体、ヘキサフルオロプロピレン−テトラフルオロエチレン系共重合体、パーフルオロ(アルキルビニルエーテル)−テトラフルオロエチレン系共重合体、またはテトラフルオロエチレン−ヘキサフルオロプロピレン−フッ化ビニリデン系共重合体である請求項1〜3の何れかに記載のフッ素樹脂フィルム。   Fluorine resin is ethylene-tetrafluoroethylene copolymer, hexafluoropropylene-tetrafluoroethylene copolymer, perfluoro (alkyl vinyl ether) -tetrafluoroethylene copolymer, or tetrafluoroethylene-hexafluoropropylene- The fluororesin film according to any one of claims 1 to 3, which is a vinylidene fluoride copolymer. 波長330〜360nmの光線を50%以上遮蔽し、400〜700nmの光線を70%以上透過することを特徴とする請求項1〜4の何れかに記載のフッ素樹脂フィルム。   5. The fluororesin film according to claim 1, wherein 50% or more of light having a wavelength of 330 to 360 nm is shielded and 70% or more of light having a wavelength of 400 to 700 nm is transmitted. 波長330〜360nmの光線を70%以上遮蔽し、400〜700nmの光線を70%以上透過することを特徴とする請求項1〜4の何れかに記載のフッ素樹脂フィルム。

The fluororesin film according to claim 1, wherein 70% or more of light having a wavelength of 330 to 360 nm is shielded and 70% or more of light having a wavelength of 400 to 700 nm is transmitted.

JP2007001161A 2007-01-09 2007-01-09 Fluorine resin film Expired - Lifetime JP3996632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007001161A JP3996632B2 (en) 2007-01-09 2007-01-09 Fluorine resin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007001161A JP3996632B2 (en) 2007-01-09 2007-01-09 Fluorine resin film

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP8441498A Division JPH11279358A (en) 1998-03-30 1998-03-30 Fluororesin film

Publications (2)

Publication Number Publication Date
JP2007162029A true JP2007162029A (en) 2007-06-28
JP3996632B2 JP3996632B2 (en) 2007-10-24

Family

ID=38245286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007001161A Expired - Lifetime JP3996632B2 (en) 2007-01-09 2007-01-09 Fluorine resin film

Country Status (1)

Country Link
JP (1) JP3996632B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009154124A1 (en) * 2008-06-16 2009-12-23 旭硝子株式会社 Fluororesin film
US20100310774A1 (en) * 2009-06-05 2010-12-09 Xerox Corporation Hydrophobic coatings and their processes
WO2011068129A1 (en) 2009-12-03 2011-06-09 旭硝子株式会社 Process for producing fluorocopolymer nanocomposite
FR2955117A1 (en) * 2010-01-14 2011-07-15 Arkema France FILM BASED ON ACRYLIC FREE ODOR-FREE POLYMERIC POLYMER FOR PHOTOVOLTAIC APPLICATION
WO2012010495A1 (en) * 2010-07-20 2012-01-26 Solvay Solexis S.P.A. Fluoroelastomer composition
WO2014122692A1 (en) * 2013-02-07 2014-08-14 きそミクロ株式会社 Ultraviolet scattering member, and optical member for light modification
WO2019065281A1 (en) * 2017-09-26 2019-04-04 Agc株式会社 Agricultural fluorine-resin film and greenhouse
US20200339772A1 (en) * 2018-01-18 2020-10-29 Hyomen Kaimen Kobo Corporation Organic-inorganic hybrid membrane
CN112544300A (en) * 2020-12-09 2021-03-26 山东东大塑业有限公司 Wide-width high-weather-resistance light conversion greenhouse film and preparation method thereof
RU2773637C2 (en) * 2017-09-26 2022-06-06 ЭйДжиСи Инк. Agricultural film of fluorine resin and greenhouse

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009154124A1 (en) * 2008-06-16 2009-12-23 旭硝子株式会社 Fluororesin film
US8685533B2 (en) 2008-06-16 2014-04-01 Asahi Glass Company, Limited Fluororesin film
JPWO2009154124A1 (en) * 2008-06-16 2011-12-01 旭硝子株式会社 Fluorine resin film
JP5454472B2 (en) * 2008-06-16 2014-03-26 旭硝子株式会社 Fluorine resin film
US8431220B2 (en) * 2009-06-05 2013-04-30 Xerox Corporation Hydrophobic coatings and their processes
US20100310774A1 (en) * 2009-06-05 2010-12-09 Xerox Corporation Hydrophobic coatings and their processes
EP2508564A1 (en) * 2009-12-03 2012-10-10 Asahi Glass Company, Limited Process for producing fluorocopolymer nanocomposite
EP2508564A4 (en) * 2009-12-03 2013-04-24 Asahi Glass Co Ltd Process for producing fluorocopolymer nanocomposite
WO2011068129A1 (en) 2009-12-03 2011-06-09 旭硝子株式会社 Process for producing fluorocopolymer nanocomposite
FR2955117A1 (en) * 2010-01-14 2011-07-15 Arkema France FILM BASED ON ACRYLIC FREE ODOR-FREE POLYMERIC POLYMER FOR PHOTOVOLTAIC APPLICATION
US10358551B2 (en) 2010-07-20 2019-07-23 Solvay Specialty Polymers Italy S.P.A. Fluoroelastomer composition
WO2012010495A1 (en) * 2010-07-20 2012-01-26 Solvay Solexis S.P.A. Fluoroelastomer composition
WO2014122692A1 (en) * 2013-02-07 2014-08-14 きそミクロ株式会社 Ultraviolet scattering member, and optical member for light modification
WO2019065281A1 (en) * 2017-09-26 2019-04-04 Agc株式会社 Agricultural fluorine-resin film and greenhouse
CN111031786A (en) * 2017-09-26 2020-04-17 Agc株式会社 Fluororesin film for agriculture and greenhouse for agriculture
JPWO2019065281A1 (en) * 2017-09-26 2020-11-26 Agc株式会社 Fluororesin film for agriculture and greenhouse for agriculture
RU2773637C2 (en) * 2017-09-26 2022-06-06 ЭйДжиСи Инк. Agricultural film of fluorine resin and greenhouse
JP7081608B2 (en) 2017-09-26 2022-06-07 Agc株式会社 Fluororesin film for agriculture and house for agriculture
TWI776956B (en) * 2017-09-26 2022-09-11 日商Agc股份有限公司 Agricultural fluororesin film and agricultural greenhouse
US11491758B2 (en) 2017-09-26 2022-11-08 AGC Inc. Agricultural fluorine-resin film and greenhouse
US20200339772A1 (en) * 2018-01-18 2020-10-29 Hyomen Kaimen Kobo Corporation Organic-inorganic hybrid membrane
US11655347B2 (en) * 2018-01-18 2023-05-23 Hyomen Kaimen Kobo Corporation Organic-inorganic hybrid membrane
CN112544300A (en) * 2020-12-09 2021-03-26 山东东大塑业有限公司 Wide-width high-weather-resistance light conversion greenhouse film and preparation method thereof
CN112544300B (en) * 2020-12-09 2022-05-17 山东东大塑业有限公司 Wide-width high-weather-resistance light conversion greenhouse film and preparation method thereof

Also Published As

Publication number Publication date
JP3996632B2 (en) 2007-10-24

Similar Documents

Publication Publication Date Title
JP3996632B2 (en) Fluorine resin film
JP5158078B2 (en) Method for producing hydrophobized silicon oxide-coated metal oxide particles
JP3711692B2 (en) Fluorine resin film
JP5365195B2 (en) Fluororesin film and method for producing the same
CN103635543B (en) Inorganic hydrophilic coating fluid and, thus obtained by hydrophilic film and use its parts
WO2014061606A1 (en) Antifouling antireflection film, article and method for manufacturing same
KR20170108423A (en) Polyhedral oligomeric silsesquioxane and method for preparing the same
JP2011102359A (en) Coating liquid for forming primer layer, primer layer and highly-durable uv-blocking plastic base material
CN108299876A (en) Degradation film coating materials
KR102136939B1 (en) Titania-monomer dispersions and method for preparing the same
JP5541285B2 (en) Fluororesin film and method for producing the same
JP4210785B2 (en) Method for producing transparent coating agent for optical element containing rutile type titanium oxide sol
JP2011157492A (en) Fluororesin film
JPH11279358A (en) Fluororesin film
JP2011225660A (en) Zinc oxide dispersion, method for production thereof, coating liquid for forming primer layer, and highly durable uv-blocking plastic substrate
JP5035420B2 (en) Fluoropolymer film for agriculture
JP3785731B2 (en) Fluorine resin film
JP5246619B2 (en) Fluorine resin film
JP4294152B2 (en) Agricultural coating material with excellent anti-fog durability and durability
JP3588419B2 (en) Zinc oxide-based particles, production method and use thereof
JPH10195269A (en) Fluororesin film
JP2002069258A (en) Fluororesin film
JP2007136362A (en) Compound coating film structure and coated exterior material
JP5910095B2 (en) Weather-resistant composition, weather-resistant film and weather-resistant substrate using the same
JPH11292996A (en) Thermoplastic resin film and its use

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term