JP2007161507A - Highly durable cross-section repairing material - Google Patents

Highly durable cross-section repairing material Download PDF

Info

Publication number
JP2007161507A
JP2007161507A JP2005357187A JP2005357187A JP2007161507A JP 2007161507 A JP2007161507 A JP 2007161507A JP 2005357187 A JP2005357187 A JP 2005357187A JP 2005357187 A JP2005357187 A JP 2005357187A JP 2007161507 A JP2007161507 A JP 2007161507A
Authority
JP
Japan
Prior art keywords
slag
mass
cross
portland cement
sulfuric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005357187A
Other languages
Japanese (ja)
Other versions
JP5273761B2 (en
Inventor
Toshiyuki Saeki
俊之 佐伯
Akinori Hamanaka
昭徳 浜中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Materials Corp
Original Assignee
Taiheiyo Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Materials Corp filed Critical Taiheiyo Materials Corp
Priority to JP2005357187A priority Critical patent/JP5273761B2/en
Publication of JP2007161507A publication Critical patent/JP2007161507A/en
Application granted granted Critical
Publication of JP5273761B2 publication Critical patent/JP5273761B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cement based cross-section repairing material stably having high sulfuric acid resistance and mid-and-long term strength developability without deteriorating workability in the application of a Portland cement based mortar composition having high assimilation to a concrete structure or the like as the cross-section repairing material for the structure. <P>SOLUTION: The high durable cross-section repairing material contains (A) Portland cement, (B) slag having 0.75-3.0 m<SP>2</SP>/g BET specific surface area, (C) flyash or/and meta-kaolin, (D) silica fume and (E) a quick lime based expansive material and additionally contains one or more kinds of (F) a polymer dispersion or a re-emulsifying type powdery resin, (G) a water retaining agent and (H) a dispersant. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、モルタルやコンクリート系の構造物の修復に用いる耐久性に優れたセメント系の断面修復材に関する。   The present invention relates to a cement-based cross-sectional repair material excellent in durability used for repairing mortar and concrete structures.

モルタルやコンクリート系の構造物の修復に使用される断面修復材には修復基体への同化性、修復時の施工性及び修復後の耐久性等が要求される。修復が必要な構造物が、例えば下水道構造物の如く硫酸酸性液に晒されるものでは、構造物への同化性が良いポルトランドセメントを主硬化成分とするモルタル質組成物を修復材に使用すると、ポルトランドセメントの水和時に生成する水酸化カルシウム等が硫酸と反応し、この反応生成物である石膏が再反応して膨張性のエトリンガイト相が徐々に形成され、凝結後のモルタルに膨張亀裂が発生して劣化する。このため硫酸への抵抗性が強い組成物が必要となる。硫酸への抵抗性が強いセメント系組成物として、これまで(I)硫酸抵抗性の高いアルミナセメントを有効成分とする組成物(例えば特許文献1参照。)や(II)ポルトランドセメントの一部を、潜在水硬性物質であるスラグ微粉末又はポゾラン反応性物質であるフライアッシュやシリカフューム等と置換し、水和時に生じる水酸化カルシウムと反応させてCaO−SiO2−H2O系ゲルを優先的に生成させ、硫酸と反応する水酸化カルシウム量を減少させた組成物(例えば特許文献2参照。)が知られている。しかるに、前記(I)の組成物では、乾燥収縮が大きくなるため収縮亀裂が起こり易く、これを改善するためスラグ微粉末を混和させたものも知られている。(例えば特許文献3参照。)しかし、アルミナセメント−スラグ系組成物は、中性化が早く進行するため中長期強度が低下し易く、また施工性も芳しくない。また、前記(II)のポルトランドセメント−スラグ系組成物でも、スラグ等との置換で単位セメント量が低下するため中性化が進行し易くなって長期強度が低下し、機械的耐久性が低くなる。また、ポルトランドセメント−スラグ系組成物で、単位セメント量を低下させずに高性能減水剤を併用し、施工性に支障のない範囲まで単位水量を下げて強度向上を図ることも知られている。(例えば特許文献4参照。)この場合、ポルトランドセメント水和時に生じる水酸化カルシウムをCaO−SiO2−H2O系ゲルへ反応消費させるのに必要なスラグの配合量も増加させねばならず、スラグ配合量の増加は中性化進行因子となり強度低下に繋がるため限界があって、所望の強度発現性の確保はできても、硫酸抵抗性は向上し難くなる。
特開2003−89565号公報 特開2002−68793号公報 特開2000−128618号公報 特開平11−60316号公報
Cross-section restoration materials used for restoration of mortar and concrete structures are required to have assimilation to a restoration substrate, workability during restoration, durability after restoration, and the like. When a structure that needs to be repaired is exposed to an acidic sulfuric acid solution such as a sewer structure, when a mortar composition containing Portland cement, which has good assimilation to the structure, as a main curing component is used as a repair material, Calcium hydroxide, etc., generated during hydration of Portland cement reacts with sulfuric acid, and the reaction product gypsum reacts again to form an expansive ettringite phase, which causes expansion cracks in the mortar after setting. And deteriorate. For this reason, a composition having strong resistance to sulfuric acid is required. As a cementitious composition having a strong resistance to sulfuric acid, there has heretofore been (I) a composition containing an alumina cement having a high sulfuric acid resistance as an active ingredient (see, for example, Patent Document 1) and (II) a part of Portland cement. , preferentially a latent hydraulic material is slag or pozzolanic reactive material is replaced with fly ash and silica fume etc., reacted with calcium hydroxide produced during hydration CaO-SiO 2 -H 2 O-based gel A composition in which the amount of calcium hydroxide produced and reacted with sulfuric acid is reduced (see, for example, Patent Document 2) is known. However, in the composition of (I), shrinkage cracks are liable to occur because of large drying shrinkage, and a slag fine powder is mixed to improve this. (For example, refer to Patent Document 3) However, since the neutralization of the alumina cement-slag composition progresses quickly, the medium- to long-term strength is likely to decrease, and the workability is not good. Further, even in the Portland cement-slag composition of the above (II), the unit cement amount is reduced by substitution with slag, etc., so that the neutralization easily proceeds, the long-term strength is reduced, and the mechanical durability is low. Become. It is also known to improve strength by reducing the unit water amount to a range that does not hinder workability by using a high-performance water reducing agent in combination with a Portland cement-slag composition without reducing the unit cement amount. . (For example, refer to Patent Document 4) In this case, the amount of slag necessary for reaction consumption of calcium hydroxide generated during Portland cement hydration to CaO-SiO 2 —H 2 O-based gel must also be increased. An increase in the amount of slag added becomes a neutralization progress factor and leads to a decrease in strength, so there is a limit, and even if the desired strength expression can be ensured, the sulfuric acid resistance is difficult to improve.
JP 2003-89565 A JP 2002-68793 A JP 2000-128618 A Japanese Patent Laid-Open No. 11-60316

本発明は、材質的にコンクリート系構造物との同化性が得られ易いポルトランドセメント−スラグ系組成物に於ける高い硫酸抵抗性と高い中長期強度発現性を共に有する上での従前の問題点を解決し、良好な施工性を有する耐久性に優れた断面修復材を提供することを課題とする。   The present invention is a conventional problem in having both high sulfuric acid resistance and high medium- and long-term strength development in a Portland cement-slag-based composition that can easily be assimilated with a concrete structure in terms of material. It is an object of the present invention to provide a cross-sectional repair material excellent in durability and having good workability.

本発明者らは、課題解決のため鋭意検討を重ねた結果、ポルトランドセメントに特定のBET比表面積のスラグ、フライアッシュ又はメタカオリン粉末、及びシリカフゥームを配合することで高い硫酸抵抗性と高い中長期強度発現性を共に備えたモルタルが得られ、更に生石灰系の膨張材を加えることで断面修復用途に適したセメント系組成物が得られたことから、本発明を完成させた。   As a result of intensive studies for solving the problems, the present inventors have blended Portland cement with slag, fly ash or metakaolin powder having a specific BET specific surface area, and silica fumes, and have high sulfuric acid resistance and high medium to long-term strength. The present invention was completed because a mortar having both expression properties was obtained, and a cementitious composition suitable for cross-sectional restoration was obtained by adding a quicklime-based expansion material.

即ち、本発明は、以下の(1)〜(3)で表す高耐久性断面修復材である。(1)(A)ポルトランドセメント、(B)BET比表面積0.75〜3.0m2/gのスラグ、(C)フライアッシュ又は/及びメタカオリン粉末、(D)シリカフゥーム及び(E)生石灰系膨張材を含有してなる高耐久性断面修復材。(2)スラグが化学成分としてCaOとSiO2をそれぞれ20質量%以上含有するスラグである前記(1)の高耐久性断面修復材。(3)さらに、(F)ポリマーディスパージョン又は再乳化形粉末樹脂、(G)保水剤、(H)分散剤の何れか1種又は2種以上を含有してなる前記(1)又は(2)の高耐久性断面修復材。 That is, the present invention is a highly durable cross-sectional repair material represented by the following (1) to (3). (1) (A) Portland cement, (B) BET specific surface area of 0.75-3.0 m 2 / g slag, (C) fly ash or / and metakaolin powder, (D) silica fumes and (E) quicklime expansion. A highly durable cross-section restoration material containing a material. (2) The highly durable cross-sectional repair material according to (1), wherein the slag is a slag containing 20% by mass or more of CaO and SiO 2 as chemical components. (3) The above (1) or (2) further comprising (F) a polymer dispersion or a re-emulsifying powder resin, (G) a water retention agent, or (H) a dispersant. ) High durability cross-section repair material.

本発明による高耐久性断面修復材は、ポルトランドセメント系修復材で発生し易い硫酸酸性下での劣化も起こらず、且つ中長期に渡って安定した高い強度発現性を維持でき、硬化時の寸法変化も十分抑制できるので、硫酸酸性下で長期間晒される可能性があるコンクリート系構造物の断面修復材として優れた適用性がある。   The highly durable cross-sectional restoration material according to the present invention does not cause deterioration under sulfuric acid acidity that is likely to occur in Portland cement-based restoration materials, and can maintain stable high strength development over the medium to long term. Since the change can be sufficiently suppressed, it has excellent applicability as a cross-section repair material for concrete structures that may be exposed to sulfuric acid for a long period of time.

本発明の高耐久性断面修復材は、ポルトランドセメント、BET比表面積0.75〜3.0m2/gのスラグ、フライアッシュ又は/及びメタカオリン粉末、シリカフゥーム及び生石灰系膨張材を必須配合使用してなるモルタル質の組成物である。本発明の高耐久性断面修復材に使用するポルトランドセメントは、モルタルの結合相を形成する主要成分であり、例えば普通、早強、超早強又は中庸熱等の何れのポルトランドセメントでも使用することができる。コストや扱い性の点からは普通ポルトランドセメントが好ましいが、修復施工工事を短期間にする上では早強又は超早強ポルトランドセメントを使用するかこれと普通ポルトランドセメントを併用するのがより好ましい。 The highly durable cross-sectional repair material of the present invention uses Portland cement, slag having a BET specific surface area of 0.75 to 3.0 m 2 / g, fly ash or / and metakaolin powder, silica fume and quick lime-based expansion material. A mortar composition. The Portland cement used in the highly durable cross-section restoration material of the present invention is a main component forming a mortar binder phase, and for example, any Portland cement, such as normal, early strength, very early strength or moderate heat, should be used. Can do. From the viewpoint of cost and handleability, ordinary Portland cement is preferable. However, in order to carry out restoration work in a short period of time, it is more preferable to use early strength or super early strength Portland cement or to use ordinary Portland cement in combination.

また本発明の高耐久性断面修復材に使用するスラグは、BET比表面積が0.75〜3.0m2/gのスラグであり、好ましくはBET比表面積が1.0〜3.0m2/gのスラグとする。該スラグは、ポルトランドセメント水和時に生成する水酸化カルシウムを水の存在下で優先的に反応して消費させ、硫酸と反応するのを阻止する。BET比表面積が0.75m2/g未満のスラグは、反応活性が低く、水酸化カルシウムとの反応が低迷し、硫酸と反応する水酸化カルシウムが急増して劣化を起こすので好ましくない。また、BET比表面積が3.0m2/gを超えるスラグは、粘性が増して鏝作業を行う上での施工性が著しく悪化し、また単位水量の増大により強度低下や乾燥収縮が増大するので好ましくない。本発明で使用するスラグは、BET比表面積以外は特に限定されるものではなく、その種類として例えば高炉スラグ等の製鋼時や金属精錬時の鉱滓、下水汚泥溶融スラグ、都市ゴミ焼却灰溶融スラグ等を挙げることができるが、好ましくは、化学成分としてCaOとSiO2をそれぞれ20質量%以上含有するスラグが良く、より好ましくはCaOとSiO2をそれぞれ25〜40質量%含有するスラグが適当である。このようなスラグは、セメント水和時に生成される水酸化カルシウムを反応消費させる上での効率性に優れ、スラグ配合量を低減させても硫酸抵抗性が得やすくなるので推奨される。本モルタルに使用するスラグ量は、ポルトランドセメント100質量部に対し70〜120質量部が好ましく、75〜100質量部がより好ましい。70質量部未満では水酸化カルシウムを反応消費させるためのスラグ量が不足して良好な硫酸抵抗性が得られず、また120質量部を超えると中性化が進行し易くなることから、何れも適当でない。 The slag for use in highly durable cross restorative material of the present invention is a slag having a BET specific surface area of 0.75~3.0m 2 / g, preferably a BET specific surface area of 1.0~3.0m 2 / Let slag be g. The slag preferentially reacts and consumes calcium hydroxide produced during hydration of Portland cement in the presence of water and prevents it from reacting with sulfuric acid. Slag having a BET specific surface area of less than 0.75 m 2 / g is not preferable because the reaction activity is low, the reaction with calcium hydroxide is sluggish, and the calcium hydroxide that reacts with sulfuric acid rapidly increases and deteriorates. In addition, slag having a BET specific surface area of more than 3.0 m 2 / g has increased viscosity and the workability in dredging work is significantly deteriorated, and the strength reduction and drying shrinkage increase due to the increase in unit water amount. It is not preferable. The slag used in the present invention is not particularly limited except for the BET specific surface area. Examples of the slag include slag at the time of steelmaking and metal refining such as blast furnace slag, sewage sludge melting slag, municipal waste incineration ash melting slag Preferably, slag containing 20% by mass or more of CaO and SiO 2 as chemical components is preferable, and more preferably slag containing 25 to 40% by mass of CaO and SiO 2 respectively. . Such slag is recommended because it has excellent efficiency in reaction consumption of calcium hydroxide produced during cement hydration, and it is easy to obtain sulfuric acid resistance even if the amount of slag is reduced. 70-120 mass parts is preferable with respect to 100 mass parts of Portland cement, and, as for the amount of slag used for this mortar, 75-100 mass parts is more preferable. If it is less than 70 parts by mass, the amount of slag for reaction consumption of calcium hydroxide is insufficient and good sulfuric acid resistance cannot be obtained, and if it exceeds 120 parts by mass, neutralization tends to proceed. Not appropriate.

また、本発明の高耐久性断面修復材に使用するフライアッシュやメタカオリン粉末は、ポルトランドセメント水和時に生成する水酸化カルシウムと反応し、堅牢で高緻密な硬化体を形成して機械的耐久性の向上と浸食物質の内部浸透を抑止することができる。このうちフライアッシュは、JIS A6201で規定されたフライアッシュII種が使用推奨され、特にBET比表面積1.5〜3.5m2/gのフライアッシュは反応活性が高く、且つ修復用に適した施工性を耐久性を低下させずに確保し易いことから望ましい。またメタカオリン粉末はBET比表面積8.0〜12.0m2/gのメタカオリンが高い反応活性を有し、且つ修復用に適した施工性を耐久性を低下させずに確保し易いことから望ましい。一方で結晶化が進んだカオリナイトやムライト等は比表面積が大きいものでもメタカオリンほどの活性が得られないため好ましくない。本発明の高耐久性断面修復材へはフライアッシュ又はメタカオリンの何れか1種か両方を使用することができ、その使用量は、ポルトランドセメント100質量部に対し、7〜30質量部が好ましく、8〜20質量部がより好ましい。7質量部未満では前記の作用が殆ど得られないので適当でなく、また30質量部を超えると強度低下を起こすので適当でない。フライアッシュとメタカオリンを併用する場合の両者間の配合割合は何等制限されない。更にフライアッシュやメタカオリンの一部を、概ね同等の作用が得られ易いことから化学成分としてAl23とSiO2を何れも約25質量%以上含むような非晶質乃至ガラス化率の高い無機微粉と置換して使用することもできる。 In addition, fly ash and metakaolin powder used in the highly durable cross-section restoration material of the present invention reacts with calcium hydroxide generated during hydration of Portland cement to form a robust and dense hardened body, resulting in mechanical durability And can prevent internal penetration of erodible substances. Of these, fly ash type II stipulated in JIS A6201 is recommended for use, especially fly ash having a BET specific surface area of 1.5 to 3.5 m 2 / g is highly reactive and suitable for repair. It is desirable because it is easy to ensure workability without reducing durability. Metakaolin powder is desirable because metakaolin having a BET specific surface area of 8.0 to 12.0 m 2 / g has high reaction activity, and it is easy to ensure workability suitable for restoration without reducing durability. On the other hand, kaolinite, mullite, etc., which have been crystallized, are not preferred because even those having a large specific surface area cannot be as active as metakaolin. Either one or both of fly ash and metakaolin can be used for the highly durable cross-sectional repair material of the present invention, and the amount used is preferably 7 to 30 parts by mass with respect to 100 parts by mass of Portland cement. 8-20 mass parts is more preferable. If the amount is less than 7 parts by mass, the above-mentioned action is hardly obtained, so that it is not suitable. The mixing ratio between fly ash and metakaolin is not limited at all. Further, since part of fly ash and metakaolin is likely to obtain almost the same action, it is amorphous or has a high vitrification rate so that both Al 2 O 3 and SiO 2 are contained as chemical components in an amount of about 25% by mass or more. It can also be used by replacing with inorganic fine powder.

また、本発明の高耐久性断面修復材に使用するシリカフュームは何れのものでも良い。シリカフュームを使用することで、より緻密な硬化体を得ることができ、硫酸溶液や他の腐食性流体が断面修復後の修復層内部へ浸透し難く、耐久性が向上する。シリカフュームの使用量は、ポルトランドセメント100質量部に対し、5〜15質量部が好ましく、8〜12質量部がより好ましい。シリカフュームの使用量が5質量部未満では配合効果が殆ど発現されないので適当でなく、また15質量部を超えると施工性が著しく低下することがあるので適当ではない。   Moreover, any silica fume may be used for the highly durable cross-sectional repair material of the present invention. By using silica fume, a denser hardened body can be obtained, and sulfuric acid solution and other corrosive fluids hardly penetrate into the repaired layer after cross-sectional repair, and durability is improved. 5-15 mass parts is preferable with respect to 100 mass parts of Portland cement, and, as for the usage-amount of a silica fume, 8-12 mass parts is more preferable. If the amount of silica fume used is less than 5 parts by mass, the blending effect is hardly manifested, so that it is not appropriate. If it exceeds 15 parts by mass, the workability may be significantly reduced, so that it is not appropriate.

また、本発明の高耐久性断面修復材に使用する生石灰系膨張材は、生石灰を有効成分とし、水和膨張するものであって、硫酸塩若しくは硫酸塩形成成分を実質含有しないものとする。生石灰系膨張材を使用することで、主に乾燥収縮を抑制し、修復部の形状寸法安定性が図れると共に収縮亀裂の発生を防ぐことができる。生石灰系膨張材の使用量は、ポルトランドセメント100質量部に対し、1〜7質量部が好ましく、2〜6質量部がより好ましい。生石灰系膨張材の使用量が1質量部未満では収縮抑制が十分できないので適当でなく、また7質量部を超えると過膨張の虞があるので適当ではない。   Moreover, the quicklime expansion material used for the highly durable cross-section repair material of the present invention is one that uses quicklime as an active ingredient, hydrates and expands, and does not substantially contain a sulfate or a sulfate-forming component. By using the quicklime-based expansion material, drying shrinkage can be mainly suppressed, and the shape and dimension stability of the repaired portion can be achieved and the occurrence of shrinkage cracks can be prevented. 1-7 mass parts is preferable with respect to 100 mass parts of Portland cement, and, as for the usage-amount of a quicklime type expansion material, 2-6 mass parts is more preferable. If the amount of the quicklime-based expansion material used is less than 1 part by mass, the shrinkage cannot be sufficiently suppressed, so that it is not appropriate. If it exceeds 7 parts by mass, there is a risk of overexpansion.

また、本発明の高耐久性断面修復材は、前記必須成分に加えて、ポリマーディスパージョン又は再乳化粉末樹脂、保水剤、分散剤の何れか1種又は2種以上が配合されたものであることが好ましい。   In addition, the highly durable cross-sectional repair material of the present invention is one in which one or more of a polymer dispersion or a re-emulsifying powder resin, a water retention agent, and a dispersant are blended in addition to the essential components. It is preferable.

また、本発明の高耐久性断面修復材で使用するポリマーディスパージョン又は再乳化形粉末樹脂は、セメント、モルタル又はコンクリートで使用できるものなら何れのものでも良く、例えばJIS A6203で規定されたポリマーディスパージョンや再乳化形粉末樹脂が使用できる。より具体的にはポリマーディスパージョンとして、ポリアクリル酸エステル、スチレンブタジエン、エチレン酢酸ビニル等の樹脂を例示でき、また、再乳化形粉末樹脂として、酢酸ビニル/バーサチック酸ビニルエステル、酢酸ビニル/バーサチック酸ビニル/アクリル酸エステル等を例示できる。ポリマーディスパージョン又は再乳化形粉末樹脂を配合することで、コンクリート系構造体への付着性が高まり、また遮水性が大幅に向上する。ポリマーディスパージョン又は再乳化形粉末樹脂の使用量はポルトランドセメント100質量部に対し、固型分換算で2〜20質量部が好ましく、2質量部未満では配合使用効果が殆ど得られないため適当でなく、また20質量部を超えると施工性と厚付け性が低下し易いので適当ではない。   The polymer dispersion or re-emulsifying powder resin used in the highly durable cross-section repair material of the present invention may be any one that can be used in cement, mortar, or concrete. For example, the polymer dispersion defined in JIS A6203 John or re-emulsified powder resin can be used. More specifically, examples of the polymer dispersion include resins such as polyacrylic acid ester, styrene butadiene, and ethylene vinyl acetate, and examples of the re-emulsifying powder resin include vinyl acetate / versaic acid vinyl ester, vinyl acetate / versaic acid. Examples include vinyl / acrylic acid esters. By blending the polymer dispersion or the re-emulsified powder resin, the adhesion to the concrete structure is enhanced, and the water barrier is greatly improved. The amount of the polymer dispersion or re-emulsified powder resin used is preferably 2 to 20 parts by mass in terms of solid content with respect to 100 parts by mass of Portland cement. If the amount exceeds 20 parts by mass, the workability and the thickness are likely to deteriorate, which is not appropriate.

また、本発明の高耐久性断面修復材で使用する保水剤は、モルタル又はコンクリートで使用できるものなら何れのものでも良く、その中でも水溶性セルロース系化合物が好ましい。具体的には、例えばメチルセルロース、カルボキシメチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルセルロース、セルロース硫酸エステル等のセルロース誘導体を挙げることができる。保水剤を配合することで修復材中の水分の急速な散免を抑制でき、補修後の乾燥ひび割れの発生や剥離・剥落を防ぐことができる。保水剤の使用量は、ポルトランドセメント100質量部に対し、0.15〜0.5質量部が好ましく、0.15質量部未満では配合使用効果が殆ど得られないため適当でなく、また0.5質量部を超えると高粘性になり過ぎて配合時の混合抵抗が増し作業性に支障を及ぼすことがあることに加え、強度発現性も低下するので適当ではない。   In addition, the water retention agent used in the highly durable cross-sectional repair material of the present invention may be any as long as it can be used in mortar or concrete, and among these, a water-soluble cellulose compound is preferable. Specific examples include cellulose derivatives such as methylcellulose, carboxymethylcellulose, hydroxypropylmethylcellulose, hydroxyethylmethylcellulose, hydroxypropylcellulose, and cellulose sulfate. By adding a water retention agent, it is possible to suppress the rapid release of moisture in the restoration material, and it is possible to prevent the occurrence of dry cracks after the repair, as well as peeling and peeling off. The amount of the water retention agent is preferably 0.15 to 0.5 parts by mass with respect to 100 parts by mass of Portland cement, and if less than 0.15 parts by mass, almost no blending effect can be obtained. If it exceeds 5 parts by mass, the viscosity becomes too high and the mixing resistance at the time of blending increases, which may hinder the workability, and the strength developability also decreases, so that it is not suitable.

また、本発明の高耐久性断面修復材で使用する分散剤は、モルタル又はコンクリートで使用できるものなら何れのものでも良く、流動化剤、減水剤、高性能減水剤、AE減水剤、高性能AE減水剤と称されるものを用いることができる。具体的には、ナフタレンスルフォン酸系、メラミン系、リグニン系、ポリカルボン酸系等の減水剤を例示することができる。分散剤を配合することで施工性に支障を及ぼすことなく単位水量を下げて強度向上を図ることができることに加え、均質な配合物を得易くなる。   In addition, the dispersant used in the highly durable cross-section repair material of the present invention may be any one that can be used in mortar or concrete, and includes a fluidizing agent, a water reducing agent, a high performance water reducing agent, an AE water reducing agent, a high performance. What is called an AE water reducing agent can be used. Specifically, water reducing agents such as naphthalene sulfonic acid, melamine, lignin, and polycarboxylic acid can be exemplified. By blending a dispersant, the unit water amount can be lowered and the strength can be improved without affecting the workability, and it becomes easy to obtain a homogeneous blend.

また、本発明の高耐久性断面修復材は、本発明の効果を喪失させない範囲で前記以外の成分が配合されたものであっても良い。このような成分として例えば、高分子、金属、カーボン又は耐アルカリ性ガラス等の成分からなる繊維、細骨材、空気連行剤、消泡剤、収縮低減材、顔料等を挙げることができる。   Moreover, the highly durable cross-sectional repair material of this invention may mix | blend components other than the above in the range which does not lose the effect of this invention. Examples of such components include fibers, fine aggregates, air entraining agents, antifoaming agents, shrinkage reducing materials, pigments, and the like made of components such as polymers, metals, carbon, or alkali resistant glass.

本発明の高耐久性断面修復材の製造方法は、各配合成分を例えば市販のモルタルミキサーに投入し、水を加えて混合すれば良く、配合成分の投入・混合方法等は特に限定されない。水の配合量は、修復材中の全粉体成分量100質量部に対し、14〜18質量部が好ましい。14質量部未満では配合時の混練抵抗が増すので適当ではなく、また18質量部を超えると強度発現性が低下し、また施工時の厚付けも困難になり易いので適当ではない。また、本発明の高耐久性断面修復材による修復施工は、従来から使用されているセメント系断面修復材と概ね同様の方法で施工することができ、特段の配慮等は必要としない。   The manufacturing method of the highly durable cross-sectional repair material of this invention should just add each compounding component, for example to a commercially available mortar mixer, and may add and mix water, and the mixing | blending component mixing method etc. are not specifically limited. The blending amount of water is preferably 14 to 18 parts by mass with respect to 100 parts by mass of the total powder component in the restoration material. If it is less than 14 parts by mass, the kneading resistance at the time of blending is increased, so that it is not appropriate. If it exceeds 18 parts by mass, the strength development is reduced and the thickness during construction tends to be difficult. In addition, the repair work using the highly durable cross-sectional repair material of the present invention can be performed by a method substantially the same as a conventional cement-based cross-section repair material, and no special consideration is required.

以下、実施例により本発明を具体的に詳しく説明する。
[修復材の作製] 次に表すA1〜A2、B1〜B7、C1〜C4、D1〜D2、E1〜E2、F1〜F2、G、H及びJから選定される材料と水を、表1に記した配合量となるようモルタルミキサーに投入し、約20℃の温度下で3分間混合し、修復材(本発明品1〜10、参考品11〜17)を作製した。
A1;普通ポルトランドセメント(太平洋セメント株式会社製)
A2;早強ポルトランドセメント(太平洋セメント株式会社製)
A3;アルミナセメント(太平洋マテリアル株式会社製)
B1;BET比表面積0.5m2/gの高炉スラグ粉末(主要化学成分含有量CaO;45.4質量%、SiO2;29.4質量%、Al23;14.1質量%、MgO;5.2質量%、Fe23;0.8質量%)
B2;BET比表面積1.5m2/gの高炉スラグ粉末(含有化学成分はB1と同じ)
B3;BET比表面積2.5m2/gの高炉スラグ粉末(含有化学成分はB1と同じ)
B4;BET比表面積4.0m2/gの高炉スラグ粉末(含有化学成分はB1と同じ)
B5;BET比表面積0.5m2/gの下水汚泥溶融スラグ粉末(主要化学成分含有量CaO;35.0質量%、SiO2;28.2質量%、Al23;14.0質量%、MgO;3.1質量%、Fe23;7.3質量%)
B6;BET比表面積1.0m2/gの下水汚泥溶融スラグ粉末(含有化学成分はB5と同じ)
B7;BET比表面積2.5m2/gの下水汚泥溶融スラグ粉末(主要化学成分含有量CaO;38.4質量%、SiO2;17.2質量%、Al23;15.8質量%、MgO;3.5質量%、Fe23;8.0質量%)
C1;BET比表面積1.5m2/gのフライアッシュ
C2;BET比表面積3.5m2/gのフライアッシュ
C3;メタカオリン粉末(BET比表面積14.5m2/g)
C4;カオリナイト粉末(BET比表面積4.0m2/g)
D1;シリカフューム(BET比表面積20.0m2/g)
D2;硫酸リチウム(市販品)
E1;生石灰系膨張剤(商品名「太平洋エクスパン」、太平洋マテリアル株式会社製)
E2;カルシウムサルファアルミネート系膨張剤(商品名「デンカCSA」、電気化学工業株式会社製)
F1;スチレンブタジエン系ポリマーディスパージョン(商品名「太平洋CXB」、太平洋マテリアル株式会社製)
F2;アクリルスチレン系再乳化粉末樹脂(商品名「LL512」、旭化成ケミカルズ株式会社製)
G;ヒドロキシプロピルメチルセルロース(商品名「90SH−4000」、信越化学工業株式会社製)
H;ポリカルボン酸系高性能減水剤(商品名「コアフローNF−100」、太平洋マテリアル株式会社製)
J;細骨材(粒径0.15〜2.5mmで粗粒率3.58の山砂)
Hereinafter, the present invention will be described in detail by way of examples.
[Production of Restoring Material] Table 1 shows materials and water selected from A1-A2, B1-B7, C1-C4, D1-D2, E1-E2, F1-F2, G, H, and J. It put into the mortar mixer so that it might become the compounding quantity described, and it mixed for 3 minutes under the temperature of about 20 degreeC, and produced the restoration | repair material (this invention goods 1-10, reference goods 11-17).
A1: Normal Portland cement (manufactured by Taiheiyo Cement Co., Ltd.)
A2: Early strong Portland cement (manufactured by Taiheiyo Cement Co., Ltd.)
A3: Alumina cement (manufactured by Taiheiyo Material Co., Ltd.)
B1; blast furnace slag powder having a BET specific surface area of 0.5 m 2 / g (main chemical component content CaO; 45.4 mass%, SiO 2 ; 29.4 mass%, Al 2 O 3 ; 14.1 mass%, MgO 5.2 mass%, Fe 2 O 3 ; 0.8 mass%)
B2: Blast furnace slag powder with a BET specific surface area of 1.5 m 2 / g (containing chemical components are the same as B1)
B3: Blast furnace slag powder with a BET specific surface area of 2.5 m 2 / g (containing chemical components are the same as B1)
B4: Blast furnace slag powder having a BET specific surface area of 4.0 m 2 / g (containing chemical components are the same as B1)
B5; Sewage sludge molten slag powder with a BET specific surface area of 0.5 m 2 / g (major chemical component content CaO; 35.0 mass%, SiO 2 ; 28.2 mass%, Al 2 O 3 ; 14.0 mass% MgO; 3.1% by mass; Fe 2 O 3 ; 7.3% by mass)
B6; BET specific surface area 1.0 m 2 / g sewage sludge melted slag powder (containing chemical component is the same as B5)
B7; Sewage sludge molten slag powder with a BET specific surface area of 2.5 m 2 / g (main chemical component content CaO; 38.4% by mass, SiO 2 ; 17.2% by mass, Al 2 O 3 ; 15.8% by mass) MgO; 3.5% by mass, Fe 2 O 3 ; 8.0% by mass)
C1; fly ash C2 having a BET specific surface area of 1.5 m 2 / g; fly ash C3 having a BET specific surface area of 3.5 m 2 / g; metakaolin powder (BET specific surface area of 14.5 m 2 / g)
C4: Kaolinite powder (BET specific surface area 4.0 m 2 / g)
D1: Silica fume (BET specific surface area 20.0 m 2 / g)
D2: Lithium sulfate (commercially available)
E1; Quicklime expansion agent (trade name “Pacific Expan”, manufactured by Taiheiyo Materials Co., Ltd.)
E2: Calcium sulfur aluminate-based swelling agent (trade name “Denka CSA”, manufactured by Denki Kagaku Kogyo Co., Ltd.)
F1: Styrene butadiene polymer dispersion (trade name “Pacific CXB”, manufactured by Taiheiyo Materials Co., Ltd.)
F2: Acrylic styrene re-emulsified powder resin (trade name “LL512”, manufactured by Asahi Kasei Chemicals Corporation)
G: Hydroxypropyl methylcellulose (trade name “90SH-4000”, manufactured by Shin-Etsu Chemical Co., Ltd.)
H: Polycarboxylic acid-based high-performance water reducing agent (trade name “Core Flow NF-100”, manufactured by Taiheiyo Materials Co., Ltd.)
J: Fine aggregate (mountain sand having a particle size of 0.15 to 2.5 mm and a coarse particle ratio of 3.58)

Figure 2007161507
Figure 2007161507

[施工性の評価] 作製した修復材について、鏝切れ、鏝伸び、塗り垂れ抵抗及び吹付け施工適合性の4項目を調べ、断面修復材としての施工性を評価した。各項目の試験方法と評価判定基準は次の通りである。評価結果は表2に表す。   [Evaluation of workability] About the prepared restoration material, four items of flaw cutting, wrinkle elongation, dripping resistance and spraying work compatibility were examined, and the workability as a cross-sectional restoration material was evaluated. The test methods and evaluation criteria for each item are as follows. The evaluation results are shown in Table 2.

<鏝切れ> 市販の金鏝で修復材を垂直に設置した100×100×15cmのコンクリート平板の100×100cmの面に塗り付けた。塗り付け面の仕上がり状況を目視で調べ、実質平滑な表面が確認でき、且つ使用した金鏝に付着残存した修復材が殆ど見られなかったものを鏝切れ「良好」と判断し、それ以外を鏝切れ「不良」と判断した。   <Cut-off> A restoration material was applied to a 100 × 100 cm surface of a 100 × 100 × 15 cm flat concrete plate with a commercially available hammer. Visually inspect the finish of the painted surface, confirm that the surface is substantially smooth, and that there was almost no restorative material remaining on the used hammer. Judged to be dead.

<鏝伸び> 前記同様のコンクリート平板面に採取した修復材を金鏝で塗り付け、100×100cmの面全体がおよそ2cmの厚さになるよう金鏝で押し広げた。面全体に5分以内に押し広げられたものを鏝伸び「良好」と判断し、それ以外を鏝伸び「不良」と判断した。   <Stretch elongation> The restoration material collected on the flat surface of the concrete was coated with a hammer and spread with a hammer so that the entire surface of 100 × 100 cm had a thickness of about 2 cm. Those that were spread over the entire surface within 5 minutes were judged to be “good” and the others were judged to be “bad”.

<塗り垂れ抵抗> 垂直に設置した100×100×15cmのコンクリート平板の100×100cmの面全体を厚さおよそ2cmになるよう金鏝で修復材を塗り付け、塗り付け完了から24時間経過時点で塗り付けた修復材に垂れが生じているかを目視で確認した。垂れが見られなかったものを塗り垂れ抵抗「良好」と判断し、それ以外を塗り垂れ抵抗「不良」と判断した。   <Drip resistance> Restoration material was applied with a metal hammer so that the entire 100x100cm surface of a 100x100x15cm concrete plate placed vertically would be approximately 2cm thick, and 24 hours after the completion of painting It was visually confirmed whether sagging occurred in the applied restoration material. Those that did not sag were judged as “good” sag resistance, and the others were judged as “bad” sag resistance.

<吹付け施工適合性> スクイズ式モルタルポンプに連結させた内径40mmで長さ40mの圧送ホース端に取り付けた吐出口径12mmのスプレーガンを用い、約0.4m離れたコンクリート擁壁の垂直面に修復材を連続5分間吹き付け、修復材圧送状況とスプレーガンの噴出状況を調べた。ホース内に詰まりもなく圧送でき、且つスプレーガンの噴出口の目詰まりも起こさずに擁壁面に吹き付けることができたものを吹付け施工適合性「良好」と判断し、それ以外を吹付け施工適合性「不良」と判断した。   <Compatibility with spraying construction> Using a spray gun with an inner diameter of 40 mm connected to a squeeze-type mortar pump and an outlet diameter of 12 mm attached to the end of a pressure hose, the vertical surface of the concrete retaining wall about 0.4 m away The restoration material was sprayed continuously for 5 minutes, and the restoration material pumping status and spray gun ejection status were examined. Those that could be pumped without clogging in the hose and could be sprayed onto the retaining wall without causing clogging of the spray gun outlet were judged to be “good” for spraying construction, and other parts were sprayed. The compatibility was judged as “bad”.

Figure 2007161507
Figure 2007161507

[耐久性の評価] 作製した修復材について、圧縮強度と2通りの試験方法で硫酸抵抗性を調べ、耐久性を評価した。試験方法と評価判定基準は次の通りである。結果は表2に表す。   [Evaluation of Durability] The prepared restoration material was examined for sulfuric acid resistance by compressive strength and two test methods, and durability was evaluated. The test method and evaluation criteria are as follows. The results are shown in Table 2.

<圧縮強度試験> 修復材を内径4×4×16cmの型枠に充填し、温度20℃、湿度80%の恒温恒湿槽で24時間養生した後脱型した。得られた供試体を所定材齢まで20℃の水中で養生させた。材齢3日及び28日の供試体をJIS R5201の方法に準拠して圧縮強度を測定した。   <Compressive Strength Test> The restoration material was filled in a mold having an inner diameter of 4 × 4 × 16 cm, cured in a constant temperature and humidity chamber at a temperature of 20 ° C. and a humidity of 80%, and then demolded. The obtained specimen was cured in water at 20 ° C. until a predetermined age. Compressive strength was measured for specimens having a material age of 3 days and 28 days according to the method of JIS R5201.

<硫酸抵抗性試験1> 前記圧縮強度試験で作製したものと同様の供試体の質量を測定した後、これを20℃に維持した5%硫酸溶液に28日間浸漬した。浸漬後の供試体を水洗して質量を測定し、浸漬前後の質量から質量変化率を次の式で算出した。尚、浸漬に使用した硫酸溶液は7日毎に全量入れ替えた。
質量変化率(%)=100×(浸漬前の質量−浸漬後の質量)/浸漬前の質量
質量変化率が±10%以内であったものを硫酸抵抗性「良好」と判断し、それ以外を硫酸抵抗性「不良」と判断した。
<Sulfuric acid resistance test 1> After measuring the mass of the same specimen as that prepared in the compressive strength test, it was immersed in a 5% sulfuric acid solution maintained at 20 ° C for 28 days. The specimen after immersion was washed with water, the mass was measured, and the mass change rate was calculated from the mass before and after immersion using the following formula. The sulfuric acid solution used for the immersion was replaced every 7 days.
Mass change rate (%) = 100 × (mass before dipping−mass after dipping) / mass change rate before dipping within ± 10% is judged as “good” sulfuric acid resistance, otherwise Was judged to be sulfuric acid resistant “bad”.

<硫酸抵抗性試験2> 前記圧縮強度試験で作製したものと同様の供試体を、20℃に維持した5%硫酸溶液に28日間浸漬した。浸漬後の供試体を水洗し、該供試体底面(4×4cmの面)から8cmの箇所を底面と平行となるよう切断した。切断面にフェノールフタレイン溶液を添加し、赤く呈色した領域を供試体内部への硫酸浸透深さと見なし、供試体外表面(4×16cmの面)から最も深部まで呈色した地点までの長さを測定した。この長さが3.0mm未満であったものを硫酸抵抗性「良好」と判断し、それ以外を硫酸抵抗性「不良」と判断した。尚、浸漬に使用した硫酸溶液は7日毎に全量入れ替えた。   <Sulfuric acid resistance test 2> A specimen similar to that prepared in the compressive strength test was immersed in a 5% sulfuric acid solution maintained at 20 ° C for 28 days. The specimen after immersion was washed with water, and a portion 8 cm from the bottom face (4 × 4 cm face) of the specimen was cut so as to be parallel to the bottom face. The phenolphthalein solution is added to the cut surface, the red colored area is regarded as the sulfuric acid penetration depth into the specimen, and the length from the specimen outer surface (4 × 16 cm face) to the deepest colored spot Was measured. Those having a length of less than 3.0 mm were judged to be sulfuric acid resistance “good”, and the others were judged to be sulfuric acid resistance “bad”. The sulfuric acid solution used for the immersion was replaced every 7 days.

本発明の高耐久性断面修復材は、セメント系以外の無機材質からなる構造体の修復用にも、また断面以外の修復用にも使用することができる。更に、耐硫酸性のみならず総じて耐食性が強いため、例えば目地材や動物畜舎の床材等の耐食性構造部材や一般建築資材としても利用できる可能性がある。また、特に高性能減水剤と収縮低減剤を併用配合することで、型枠工法でも使用できるグラウト材として利用することもできる。   The highly durable cross-sectional repair material of the present invention can be used for repairing structures made of inorganic materials other than cement-based materials and for repairs other than cross-sections. Furthermore, since it has not only sulfuric acid resistance but generally high corrosion resistance, it may be used as a corrosion-resistant structural member such as a joint material or an animal barn, or a general building material. Moreover, it can also utilize as a grout material which can be used also by a formwork method especially by mix | blending a high performance water reducing agent and a shrinkage reducing agent together.

Claims (3)

(A)ポルトランドセメント、(B)BET比表面積0.75〜3.0m2/gのスラグ、(C)フライアッシュ又は/及びメタカオリン粉末、(D)シリカフゥーム及び(E)生石灰系膨張材を含有してなる高耐久性断面修復材。 (A) Portland cement, (B) BET specific surface area of 0.75 to 3.0 m 2 / g slag, (C) fly ash or / and metakaolin powder, (D) silica fumes and (E) quick lime-based expansion material High durability cross-section repair material. スラグが化学成分としてCaOとSiO2をそれぞれ20質量%以上含有するスラグである請求項1記載の高耐久性断面修復材。 High durability sectional restorative material according to claim 1, wherein the slag is a slag containing CaO and SiO 2 more than 20 wt% respectively as chemical components. さらに、(F)ポリマーディスパージョン又は再乳化形粉末樹脂、(G)保水剤、(H)分散剤の何れか1種又は2種以上を含有してなる請求項1又は2記載の高耐久性断面修復材。 The high durability according to claim 1 or 2, further comprising any one or more of (F) a polymer dispersion or a re-emulsifying powder resin, (G) a water retention agent, and (H) a dispersant. Cross section repair material.
JP2005357187A 2005-12-12 2005-12-12 High durability cross-section repair material Active JP5273761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005357187A JP5273761B2 (en) 2005-12-12 2005-12-12 High durability cross-section repair material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005357187A JP5273761B2 (en) 2005-12-12 2005-12-12 High durability cross-section repair material

Publications (2)

Publication Number Publication Date
JP2007161507A true JP2007161507A (en) 2007-06-28
JP5273761B2 JP5273761B2 (en) 2013-08-28

Family

ID=38244826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005357187A Active JP5273761B2 (en) 2005-12-12 2005-12-12 High durability cross-section repair material

Country Status (1)

Country Link
JP (1) JP5273761B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008030968A (en) * 2006-07-26 2008-02-14 Sumitomo Osaka Cement Co Ltd Acid-resistant cement material
JP2008050177A (en) * 2006-08-22 2008-03-06 Asahi Kasei Construction Materials Co Ltd Expansive cement-based joint filler for autoclaved lightweight cellular concrete board
JP2008266120A (en) * 2007-03-28 2008-11-06 Taiheiyo Cement Corp Cement additive and cement composition
JP2009084092A (en) * 2007-09-28 2009-04-23 Taiheiyo Material Kk Mortar-based restoring material
JP2009132557A (en) * 2007-11-30 2009-06-18 Taiheiyo Material Kk Admixture for polymer cement grout
JP2010013343A (en) * 2008-06-06 2010-01-21 Utsunomiya Univ Cross section repairing material having thixotropy
JP2010150084A (en) * 2008-12-25 2010-07-08 Taiheiyo Materials Corp Expansive additive composition for cement
JP2011184744A (en) * 2010-03-09 2011-09-22 Denki Kagaku Kogyo Kk Anticorrosive construction method of reinforcing bar existing inside reinforced concrete structure
CN102351491A (en) * 2011-06-17 2012-02-15 华北水利水电学院 Concrete building anti-abrasion thin layer repairing material and repairing construction method
JP2012140295A (en) * 2010-12-28 2012-07-26 Taiheiyo Materials Corp Early expansive cement composition
JP2013112583A (en) * 2011-11-30 2013-06-10 Taiheiyo Materials Corp Mortar composition for repair
JP2016037407A (en) * 2014-08-06 2016-03-22 太平洋マテリアル株式会社 High fluidity retention type low heat generation grout composition
CN106699081A (en) * 2016-11-21 2017-05-24 同济大学 Cob brick structure repair materials prepared by using lime, bentonite and metakaolin and use method thereof
CN107056110A (en) * 2017-04-01 2017-08-18 武汉理工大学 A kind of metakaolin base Portland cement mortar reinforcing agent and preparation method thereof
JP2017226557A (en) * 2016-06-20 2017-12-28 宇部興産株式会社 Repair method of concrete structure
US10047270B2 (en) 2014-02-28 2018-08-14 Halliburton Energy Services, Inc. Tunable control of pozzolan-lime cement compositions
CN110282917A (en) * 2019-07-17 2019-09-27 广西大学 A kind of preparation method of bagasse lime and brick
JP2019218256A (en) * 2018-06-22 2019-12-26 住友大阪セメント株式会社 Cement composition for centrifugal molding, and method for producing tubular molded body
JP2021028280A (en) * 2019-08-09 2021-02-25 宇部興産株式会社 concrete
JP2021155292A (en) * 2020-03-27 2021-10-07 住友大阪セメント株式会社 Covering material, manufacturing method of covering material, concrete molded body, tubular molded body, manufacturing method of tubular molded body, and, slurry
JP7474627B2 (en) 2020-03-30 2024-04-25 太平洋マテリアル株式会社 Salt-resistant grout composition and salt-resistant grout

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110606757B (en) * 2019-09-23 2022-02-25 长兴兴鹰新型耐火建材有限公司 Sulfur-alkali corrosion resistant wear-resistant castable for sludge incineration kiln and preparation process thereof
CN110563409B (en) * 2019-10-09 2021-11-02 中建商品混凝土有限公司 Steam-curing-free light and ultra-high-strength concrete and preparation method thereof

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0710633A (en) * 1993-06-18 1995-01-13 Sekisui Chem Co Ltd Production of hardened inorganic body
JPH09132486A (en) * 1995-11-06 1997-05-20 Sekisui Chem Co Ltd Inorganic coated body and its production
JPH10324555A (en) * 1997-05-26 1998-12-08 Denki Kagaku Kogyo Kk Cement admixture and method for placing jointed concrete
JP2000219555A (en) * 1999-01-28 2000-08-08 Taiheiyo Cement Corp Quick setting agent for highly fluid spray concrete
JP2002020153A (en) * 2000-06-30 2002-01-23 Daicel Kaseihin Co Ltd Resin-mixed cement composition and its production process
JP2002137954A (en) * 2000-10-26 2002-05-14 Taiheiyo Material Kk Hydraulic composition and paste, mortar and concrete using it
JP2003192424A (en) * 2001-12-21 2003-07-09 Taiheiyo Material Kk Acid resistant hydraulic composition and hardened body thereof
JP2004137086A (en) * 2002-08-23 2004-05-13 Taiheiyo Material Kk Mortar-concrete
JP2004292245A (en) * 2003-03-27 2004-10-21 Japan Sewage Works Agency Acid-proof cement composition
JP2005119885A (en) * 2003-10-14 2005-05-12 Taiheiyo Material Kk High strength mortar composition
JP2005162565A (en) * 2003-12-05 2005-06-23 Taiheiyo Material Kk Expansive material for mortar/concrete and concrete
JP2005194168A (en) * 2003-12-11 2005-07-21 Taiheiyo Material Kk Cement admixture
JP2005324996A (en) * 2004-05-17 2005-11-24 Ohbayashi Corp Acid-resistant concrete repair material

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0710633A (en) * 1993-06-18 1995-01-13 Sekisui Chem Co Ltd Production of hardened inorganic body
JPH09132486A (en) * 1995-11-06 1997-05-20 Sekisui Chem Co Ltd Inorganic coated body and its production
JPH10324555A (en) * 1997-05-26 1998-12-08 Denki Kagaku Kogyo Kk Cement admixture and method for placing jointed concrete
JP2000219555A (en) * 1999-01-28 2000-08-08 Taiheiyo Cement Corp Quick setting agent for highly fluid spray concrete
JP2002020153A (en) * 2000-06-30 2002-01-23 Daicel Kaseihin Co Ltd Resin-mixed cement composition and its production process
JP2002137954A (en) * 2000-10-26 2002-05-14 Taiheiyo Material Kk Hydraulic composition and paste, mortar and concrete using it
JP2003192424A (en) * 2001-12-21 2003-07-09 Taiheiyo Material Kk Acid resistant hydraulic composition and hardened body thereof
JP2004137086A (en) * 2002-08-23 2004-05-13 Taiheiyo Material Kk Mortar-concrete
JP2004292245A (en) * 2003-03-27 2004-10-21 Japan Sewage Works Agency Acid-proof cement composition
JP2005119885A (en) * 2003-10-14 2005-05-12 Taiheiyo Material Kk High strength mortar composition
JP2005162565A (en) * 2003-12-05 2005-06-23 Taiheiyo Material Kk Expansive material for mortar/concrete and concrete
JP2005194168A (en) * 2003-12-11 2005-07-21 Taiheiyo Material Kk Cement admixture
JP2005324996A (en) * 2004-05-17 2005-11-24 Ohbayashi Corp Acid-resistant concrete repair material

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008030968A (en) * 2006-07-26 2008-02-14 Sumitomo Osaka Cement Co Ltd Acid-resistant cement material
JP2008050177A (en) * 2006-08-22 2008-03-06 Asahi Kasei Construction Materials Co Ltd Expansive cement-based joint filler for autoclaved lightweight cellular concrete board
JP2012254936A (en) * 2007-03-28 2012-12-27 Taiheiyo Cement Corp Cement additive and cement composition
JP2008266120A (en) * 2007-03-28 2008-11-06 Taiheiyo Cement Corp Cement additive and cement composition
JP2009084092A (en) * 2007-09-28 2009-04-23 Taiheiyo Material Kk Mortar-based restoring material
JP2009132557A (en) * 2007-11-30 2009-06-18 Taiheiyo Material Kk Admixture for polymer cement grout
JP2010013343A (en) * 2008-06-06 2010-01-21 Utsunomiya Univ Cross section repairing material having thixotropy
JP2010150084A (en) * 2008-12-25 2010-07-08 Taiheiyo Materials Corp Expansive additive composition for cement
JP2011184744A (en) * 2010-03-09 2011-09-22 Denki Kagaku Kogyo Kk Anticorrosive construction method of reinforcing bar existing inside reinforced concrete structure
JP2012140295A (en) * 2010-12-28 2012-07-26 Taiheiyo Materials Corp Early expansive cement composition
CN102351491A (en) * 2011-06-17 2012-02-15 华北水利水电学院 Concrete building anti-abrasion thin layer repairing material and repairing construction method
JP2013112583A (en) * 2011-11-30 2013-06-10 Taiheiyo Materials Corp Mortar composition for repair
US10047270B2 (en) 2014-02-28 2018-08-14 Halliburton Energy Services, Inc. Tunable control of pozzolan-lime cement compositions
US10781355B2 (en) 2014-02-28 2020-09-22 Halliburton Energy Services, Inc. Tunable control of pozzolan-lime cement compositions
JP2016037407A (en) * 2014-08-06 2016-03-22 太平洋マテリアル株式会社 High fluidity retention type low heat generation grout composition
JP2017226557A (en) * 2016-06-20 2017-12-28 宇部興産株式会社 Repair method of concrete structure
CN106699081A (en) * 2016-11-21 2017-05-24 同济大学 Cob brick structure repair materials prepared by using lime, bentonite and metakaolin and use method thereof
CN107056110A (en) * 2017-04-01 2017-08-18 武汉理工大学 A kind of metakaolin base Portland cement mortar reinforcing agent and preparation method thereof
JP2019218256A (en) * 2018-06-22 2019-12-26 住友大阪セメント株式会社 Cement composition for centrifugal molding, and method for producing tubular molded body
JP7076704B2 (en) 2018-06-22 2022-05-30 住友大阪セメント株式会社 Cement composition for centrifugal molding, manufacturing method of tubular molded body
CN110282917A (en) * 2019-07-17 2019-09-27 广西大学 A kind of preparation method of bagasse lime and brick
JP2021028280A (en) * 2019-08-09 2021-02-25 宇部興産株式会社 concrete
JP2021155292A (en) * 2020-03-27 2021-10-07 住友大阪セメント株式会社 Covering material, manufacturing method of covering material, concrete molded body, tubular molded body, manufacturing method of tubular molded body, and, slurry
JP7474627B2 (en) 2020-03-30 2024-04-25 太平洋マテリアル株式会社 Salt-resistant grout composition and salt-resistant grout

Also Published As

Publication number Publication date
JP5273761B2 (en) 2013-08-28

Similar Documents

Publication Publication Date Title
JP5273761B2 (en) High durability cross-section repair material
JP6223813B2 (en) Mortar composition
JP2007320783A (en) Thick applying mortar
JP5939776B2 (en) Repair mortar composition
JP2017132667A (en) Corrosion resistant mortar composition
KR102284008B1 (en) Rapid hardening cement mortar for maintenance and reinforcement of concrete structure, and Repair and reinforcement construction method of concrete structure using the same
KR102224215B1 (en) Non-shirinkage mortar composition with crack resistance and the concrete structure section restoration method using thereof
JP5957944B2 (en) Repair method for concrete structures
JP5161062B2 (en) High flow mortar
JP4490200B2 (en) High acid resistant mortar composition with improved wet adhesion
JP4634212B2 (en) Alumina cement composition and repair method using the same
JP5910156B2 (en) Acid-resistant hydraulic composition, mortar composition, and cured mortar
JP2009084092A (en) Mortar-based restoring material
JP2019167273A (en) Mortar for plastering
JP2007176740A (en) Thickening mortar
JP4647767B2 (en) Hydraulic composition and its paste, mortar, concrete
JP2007277017A (en) Adhesive for tile
JP2007001801A (en) Corrosion resistant composite, and method of manufacturing the same
JP4551697B2 (en) Sulfuric acid resistant concrete
KR100519605B1 (en) The manufacturing method and composition of Restoration mortar with function of sulfuric acid resistance
JP7350425B2 (en) Highly durable grout composition
JP2004331459A (en) Cement composition and hardened cement having resistance to sulfuric acid
JP2023049713A (en) Cement admixture, quick curing mortar concrete material, quick curing mortar concrete composition, and cured body
JP2005015268A (en) Acid-proof mortar composition
JP2011207634A (en) Acid-proof cement composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130510

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5273761

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250