JP2004137086A - Mortar-concrete - Google Patents

Mortar-concrete Download PDF

Info

Publication number
JP2004137086A
JP2004137086A JP2002283454A JP2002283454A JP2004137086A JP 2004137086 A JP2004137086 A JP 2004137086A JP 2002283454 A JP2002283454 A JP 2002283454A JP 2002283454 A JP2002283454 A JP 2002283454A JP 2004137086 A JP2004137086 A JP 2004137086A
Authority
JP
Japan
Prior art keywords
mortar
slag
concrete
sulfuric acid
cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002283454A
Other languages
Japanese (ja)
Inventor
Yoshinori Nagai
長井 義徳
Akinori Hamanaka
浜中 昭徳
Toshiyuki Saeki
佐伯 俊之
Toshihiko Araki
荒木 敏彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Materials Corp
Original Assignee
Taiheiyo Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Materials Corp filed Critical Taiheiyo Materials Corp
Priority to JP2002283454A priority Critical patent/JP2004137086A/en
Priority to AU2003252317A priority patent/AU2003252317A1/en
Priority to PCT/JP2003/009653 priority patent/WO2004011383A1/en
Publication of JP2004137086A publication Critical patent/JP2004137086A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mortar-concrete having high acid resistance, particularly strong sulfuric acid resistance, hardly causing the degradation such as the occurrence of expansion and crack due to the formation of gypsum dihydrate even in the case of being placed under sulfuric acid atmosphere for a long period of time and also having long term acid resistance to stably keep high strength manifestation even in the exposure under sulfuric acid atmosphere for a long period of time. <P>SOLUTION: The mortar-concrete contains an aggregate composed of sewage sludge molten slag and/or municipal refuse molten slag, cement and slag powder having particle diameter of ≤100 μm. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、海水、腐食液、酸性液などに対する長期安定性を必要とする建設物、構築物、製品等に適したモルタルやコンクリートに関する。
【0002】
【従来の技術とその問題点】
化学的に過酷な環境下、例えば鉱水、温泉、海水、各種排水、化学溶液、或いは酸化雰囲気等などと直接接触する建設物、構築物又は製品にセメント系材料が使用されることがある。広汎に使用されているポルトランドセメント類は、アルカリに対する強力な抵抗性は備えているものの、酸に対する耐久性は乏しい。とりわけ、pH1〜3の硫酸酸性液と接触する部材等の場合、ポルトランドセメントを主成分としたモルタルやコンクリートでは、表層部の水酸化カルシウムが硫酸イオンと反応して二水石膏を生成し、更にアルミン酸三カルシウムとも反応してエトリンガイトを生成することがある。二水石膏やエトリンガイトの生成は体積増加を伴うため、モルタル・コンクリートの深部まで生成反応が進むと過度の膨張を起し、やがては硬化体の破壊をもたらす。防食ライニングを施すことで、硫酸酸性液とセメント系材質との直接接触を避けることも可能であるが、よほど入念に施工されない限り表面に微細なピンホールが発生し易く、また防食材が剥離したり微少なひび割れも発生し易く、それらの部分から酸が浸透すると膨張破壊に繋がる。
【0003】
このため、下水処理施設のような特に硫酸抵抗性を必要とする建設物等に使用するセメントは、水和反応においてCaO−SiO−HO系化合物生成割合を増すことによって水酸化カルシウムの生成割合をできるだけ少なくしたセメントが必要になる。この種の市販品では高炉急冷スラグ微粉を潜在水硬性物質として含むスラグセメントがあるが、水和反応で生成する水酸化カルシウムの量は硫酸抵抗性を十分有する程には低減されたものにはならない。硫酸抵抗性を強化するためスラグ微粉含有割合を高めると、硬化時の収縮率が増大してひび割れが発生し易くなったり、強度低下をきたす。また単独では耐酸性が低いポルトランドセメントを用いる場合、これにフライアッシュやシリカフューム、高炉スラグ微粉などのアルカリ潜在水硬性物質を配合すると、得られるモルタル・コンクリート組成物は水酸化カルシウムの生成量がかなり抑制されるため、良好な耐酸性を有することが知られている。(例えば特許文献1、特許文献2参照)しかし、十分な耐酸性を発現させる上ではアルカリ潜在水硬性物質からなる微粉の含有割合をかなり高めねばならず、その結果硬化時の収縮率が一層拡大し、寸法制御が困難となる他、ひび割れが発生し、強度面での劣化やモルタル施工時などでは施工面からの剥離を起こすことがある。セメント用膨張剤による収縮抑制作用の付与は膨張剤がアルカリ質のため耐酸性低下に繋がるのでその併用には限界がある。またさらに、硫酸抵抗性を始めとする耐酸性を向上させかつ強度低下を抑制する方策として、特許文献3には高炉急冷スラグ微粉の使用と併せて、骨材に高炉スラグからなる骨材を使用することで高耐久のモルタル・コンクリートが得られることが開示されている。従来から知られている各種のスラグは一般に程度の差こそあれカルシウムを含むため、酸の中でも特に硫酸溶液と接するような状況下では、含有カルシウム分が硫酸イオンと反応して二水石膏を生成し、該二水石膏生成による体積膨張を起こす。製鋼高炉スラグは一般にカルシウムを含有率がCaO換算で40重量%前後と高いため、硫酸溶液と接する期間が長期になると、二水石膏の反応生成量も増大し、やがては膨張亀裂を発生するほどの膨張量となって、脆く崩壊し易くなる。このような製鋼高炉スラグからなる骨材を使用したモルタル・コンクリート硬化体は、長期に渡って硫酸酸性溶液と接すると、強度的な低下を招き易くなる。
【0004】
【特許文献1】
特開2000−128618号公報
【特許文献2】
特開2002−128559号公報
【特許文献3】
特公平03−061624号公報
【0005】
【発明が解決しようとする課題】
本発明は、耐酸性に加え、特に強力な硫酸抵抗性を有し、とりわけ硫酸酸性環境下に長期間放置された場合でも劣化を起こし難く、高い強度発現性を安定して維持できるモルタル・コンクリートを提供することを課題とする。
【0006】
【課題を解決するための手段】
本発明者らは、前記課題の解決に対し、耐酸性を有するスラグ粉を潜在水硬性物質として結合相形成成分に使用し、また一般にカルシウム含有量が高炉スラグよりも低く、且つアルカリ金属及び鉄属金属含有量が侵入する強酸に対しても中和作用等により浸食緩和させる能力を有する程度の量が確保されている下水汚泥溶融スラグ及び/又は都市ゴミ溶融スラグを骨材に使用することによって、長期間硫酸酸性環境下に置いても、高い強度発現性を維持できる強固なモルタル・コンクリート硬化体が得られたことから、本発明を完成するに至った。
【0007】
即ち、本発明は、次の(1)〜(3)で表されるモルタル・コンクリートである。(1)下水汚泥溶融スラグからなる骨材及び/又は都市ゴミ溶融スラグからなる骨材、セメント及び粒径100μm以下のスラグ粉末を含有してなるモルタル・コンクリート。(2)スラグ粉末が急冷スラグからなることを特徴とする前記(1)のモルタル・コンクリート。(3)さらに粒径100μm以下のシリカフューム及び/又はフライアッシュを含有する前記(1)又は(2)のモルタル・コンクリート。
【0008】
【発明の実施の形態】
本発明のモルタル・コンクリートは、骨材等の分散相形成成分と該分散相を結合するセメント等の水硬性物質等を主体とする結合相形成成分からなる。
【0009】
本発明のモルタル・コンクリートに必須含有されるセメントは何れのセメントでも使用でき、例えば各種のポルトランドセメントや混合セメント、シリカセメント、高炉セメント、アルミナセメント、耐硫酸塩セメントなどを挙げることができる。このうち、高炉セメント、アルミナセメント、耐硫酸塩セメントは、特に酸に対する抵抗性が他のセメントよりも高いので使用を推奨される。
【0010】
また、本発明のモルタル・コンクリートに必須含有される粒径100μm以下のスラグ粉末の種類は特に限定されず、例えば高炉スラグ、転炉スラグ、脱燐スラグ、脱ケイスラグ、脱硫スラグ、下水汚泥溶融スラグ、都市ゴミ溶融スラグ等を挙げることができる。また、該スラグ粉末は、好ましくは反応活性が高いことから急冷したスラグの粉末の使用、即ち高ガラス化率のスラグ粉末が推奨され、このようなスラグ粉末を使用することによって強度の向上を図ることができる。本発明では粒径100μm以下のスラグ粉末は、主にモルタル・コンクリート硬化体の結合相形成成分として用いる。粒径100μmを超えるスラグ粉末では反応活性が低く、水和反応の進行が緩慢になるので結合相形成成分としての使用は好ましくない。また十分な反応活性を確保する上で、使用スラグ粉末の比表面積は3000cm/g以上が望ましい。本発明のモルタル・コンクリートにおいて、粒径100μm以下のスラグ粉末の配合量は前記セメント100重量部に対し、20〜100重量部とする。スラグ粉末の配合量が20重量部未満では硬化体結合相の耐酸性の向上が乏しくなり、また100重量部を超えると硬化体強度が低下し易くなるるので何れも好ましくない。
【0011】
また、本発明のモルタル・コンクリートは、下水汚泥溶融スラグからなる骨材及び/又は都市ゴミ溶融スラグからなる骨材を必須含有する。また下水汚泥源及び都市ゴミ源は特に限定されるものではない。本発明で使用する骨材を下水汚泥溶融スラグ及び/又は都市ゴミ溶融スラグとするのは、下水汚泥や都市ゴミはその採取源によって化学成分的には差異が見られるものの、これら差異を考慮しても一般に入手可能なものはカルシウム含有量が高炉スラグよりも低く、硫酸溶液と接する期間が長期になっても硫酸との反応で硫酸カルシウム類の生成による膨張が亀裂を発生するほどの膨張量には達し難いことによる他、酸、特に強酸の浸食に対してもこれを中和するなど浸食緩和できるアルカリ金属及び鉄属金属成分が適度に含有されていることにもよる。また該アルカリ金属及び鉄属金属成分は硫酸カルシウム類の生成によって発生するスラグ膨張圧に対抗し得る強度を付与できる可能性が高いことによる。好ましくは、下水汚泥溶融スラグ又は都市ゴミ溶融スラグの何れか一方を骨材に使用する場合は使用する方のスラグの、また両者を任意割合で骨材として混合使用するときはその混合物としての、カルシウム含有量は、酸化物(CaO)換算で10〜40重量%、より好ましくは15〜35重量%のものであって、アルカリ金属及び鉄属金属の合計含有量は、酸化物換算で2重量%以上、より好ましくは5重量%以上となるものを使用する。カルシウム含有量が酸化物換算で10重量%未満の場合は耐酸性が低下するので好ましくない。アルカリ金属及び鉄属金属の合計含有量の上限値は特に限定されず、通常入手可能な都市ゴミや下水汚泥に含有される量なら支障はない。また、本発明で用いる骨材の粒径は、一般に細骨材及び/又は粗骨材として用いられている粒径に相当する範囲から、本発明のモルタル・コンクリートの適用対象に応じて適宜選定すれば良いが、好ましくは粒径0.15mm以上とする。特にモルタルに使用する場合では粒径0.15〜2.5mmが好ましい。本発明のモルタル・コンクリートの骨材配合量は、セメント100重量部に対し、100〜700重量部が好ましく、粒径0.15〜2.5mmの骨材を用いたモルタルでは100〜300重量部が特に好ましい。
【0012】
本発明で骨材に使用する下水汚泥溶融スラグや都市ゴミ溶融スラグの製造方法は、採取された下水汚泥や都市ゴミを乾燥させ、必要により破砕・破断処理し、通常の溶融手法によって加熱溶融すれば良い。また、溶融状態からの冷却条件は任意とし、急冷又は徐冷の何れでも良い。このため、本発明で骨材に用いる下水汚泥溶融スラグや都市ゴミ溶融スラグのガラス化率は限定されない。
【0013】
本発明のモルタル・コンクリートは、下水汚泥溶融スラグからなる骨材や都市ゴミ溶融スラグからなる骨材以外の骨材の混入使用は避ける方が望ましいが、完全に排除するものではなく、該骨材に近いかそれ以上の耐酸性と強度を有する骨材であれば、含有骨材全体の概ね25体積%を超えない範囲で許容される。
【0014】
また本発明のモルタル・コンクリートは、硬化体の強度発現性や耐酸性状に特段の支障を及ぼさない限り、前記成分以外の成分を含有することは制限されない。含有可能な成分としては、例えば硫酸カルシウムやポゾラン反応性物質などの水和硬化性無機物質、これ以外にも例えば凝結促進、硬化促進、硬化遅延、減水、増粘、保水、消泡等の性状を付与できるモルタル・コンクリートに使用可能な混和剤、更には例えば繊維、顔料、増量材、発泡材、ゼオライト等の粘土鉱物などのモルタル・コンクリートで使用可能な混和材を挙げることができる。
【0015】
このうち、ポゾラン反応性物質、その中でも特に粒径100μm以下のシリカフューム及び/又はフライアッシュを含有するのが好ましい。より好ましくは、粒径1μm以下で比表面積10000cm/g以上のシリカフューム、比表面積4000cm/g以上のフライアッシュを含有するのが良い。本発明ではシリカフュームやフライアッシュを、主に初期からより長期に渡る高い強度発現性の付与及び硬化体の水密性を向上させるために配合使用するので、その配合量はセメント100重量部に対し最大50重量部が望ましい。50重量部を超えると亀裂発生の可能性があり、強度維持が困難となるので好ましくない。尚、約5重量部未満では配合効果が殆ど現れない。
【0016】
本発明のモルタル・コンクリートの配合各成分の混合・混練方法は限定されず、例えば混合・混練機に使用全成分を水と共に一括投入しても、任意の順に投入しても良く、混合・混練機も限定されず、例えばスキ型ミキサ、プローシェアミキサ、リボンミキサ、噴射式ミキサ、左官ミキサ、強制ミキサ、連続ミキサ等が使用できる。また、水の配合量も用途に応じて選定すれば良いが、好ましくはセメント等の水硬性物質100重量部に対し、30〜50重量部にすると強度発現性のより高い硬化体が得らる。
【0017】
本発明のモルタル・コンクリートは、その施工や製品製造にあたっての制約は特に受けず、用途に応じた方法を概ね自在に選択することができる。一例としてモルタルとして適応可能な施工方法を示すと、鏝による左官施工、スネークポンプ、スクィーズポンプ又はプランジャーポンプによる吹付け施工、グラウト施工などで行なうことができる。
【0018】
【実施例】
以下、実施例により本発明を説明する。
[使用材料] 次のA〜Kで記した材料を用い、モルタル混練物及びその硬化体を作製した。尚、表1の化学成分含有量は含有金属成分を表記の酸化物とした場合の換算。
A:普通ポルトランドセメント(太平洋セメント株式会社製)
B:ブレーン比表面積約8000cm/gの高炉水砕スラグ微粉末(商品名:ファインセラメント、第一セメント株式会社製)
C:表1に記載した化学成分を含有する下水汚泥溶融スラグ(F.M.=2.5)
D:表1に記載した化学成分を含有する都市ゴミ溶融スラグ(F.M.=2.5)
E:表1に記載した化学成分を含有する高炉水砕スラグ(F.M.=2.5、住金鹿島鉱化株式会社製)
F:珪砂骨材(F.M.=2.5、山形県産)
G:膨張剤(商品名:太平洋エクスパン、太平洋マテリアル株式会社製)
H:保水剤(商品名:90SH−4000、信越化学工業株式会社製)
I:高性能減水剤(商品名:マイティー100、花王株式会社製)
J:シリカフューム(粒径5μm以下、平均粒径0.11μm、平均比表面積21000cm/g、シムコア社製)
K:フライアッシュ(粒径20μm以下、平均粒径5.2μm、平均比表面積6100cm/g、太平洋セメント株式会社製)
【0019】
【表1】

Figure 2004137086
【0020】
[モルタル混練物の作製] 前記A〜Kから選定された材料と水を表2に表す配合量となるよう、ホバートミキサーにほぼ同時に一括投入し、20℃で混合・混練を約3分間行い、モルタル混練物(本発明品に係わる実施例1〜9並びに本発明外の参考品に係わる比較例1〜4)を作製した。
【0021】
【表2】
Figure 2004137086
【0022】
[硬化体の性状評価] 前記混練物から、JIS A 1132に準拠した方法で直径7.5cm、高さ15cmの円柱状の硬化供試体を作製し、当該供試体の材齢28日の一軸圧縮強度を測定した。また、該供試体をpH0.4±0.1に調整した硫酸溶液4.4リットルに浸漬させ、該硫酸溶液を2週間毎に全量交換し、26週間の連続浸漬を行なった。浸漬後の供試体は水洗及び乾燥した後、JIS A 1108に準拠した方法で一軸圧縮強度を測定した。
【0023】
更に、前記混練物から作製した直径7.5cm、高さ15cmの円柱状の硬化試験体の硫酸抵抗性をJIS A 1132に準拠した方法で調べた。即ち、材齢28日まで硬化試験体を水中養生した後、該試験体の直径(D0)を測定した。次いでこの試験体をpH0.4±0.1に調整した硫酸溶液4.4リットルに浸漬させ、該硫酸溶液を1週間毎に全量交換し、8週間の連続浸漬を行なった。浸漬後、試験体を水洗し、ダイヤモンドカッターで端面から長手方向7.5cmの箇所で断面を切断した。乾燥させた切断面にフェノールフタレイン1%アルコール溶液を噴霧して赤色を呈した部分の直径(D1)を測定し、次式から算出した硫酸浸透深さをもって硫酸抵抗性を評価した。
硫酸浸透深さ=(D0−D1)/2
硫酸浸透深さが浅いものほど高い硫酸抵抗性を有する。以上の結果を表3に記す。
【0024】
【表3】
Figure 2004137086
【0025】
【発明の効果】
本発明によるモルタル・コンクリートは、強酸性液、とりわけ高濃度の硫酸に対する抵抗性に突出すると共に、長期間に渡って硫酸と接触しても劣化等を起こし難く、安定して高い強度発現性を有することができる。このため本発明によるモルタル・コンクリートは、下水処理施設、食品工場、化学薬品工場などの酸性液貯留施設或いは耐食管などへの利用に特に適したものとなる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a mortar or concrete suitable for a building, a building, a product, and the like that require long-term stability against seawater, corrosive liquid, acidic liquid, and the like.
[0002]
[Conventional technology and its problems]
In a chemically harsh environment, for example, a cement-based material may be used for a building, a building, or a product that comes into direct contact with, for example, mineral water, hot spring, seawater, various wastewaters, chemical solution, or oxidizing atmosphere. Portland cements, which are widely used, have strong alkali resistance, but poor acid resistance. In particular, in the case of a member or the like that comes into contact with a sulfuric acid acid solution having a pH of 1 to 3, in mortar or concrete containing Portland cement as a main component, calcium hydroxide in the surface layer reacts with sulfate ions to generate gypsum, It may also react with tricalcium aluminate to form ettringite. Since the formation of dihydrate gypsum and ettringite involves an increase in volume, if the formation reaction proceeds to the deep part of the mortar concrete, excessive expansion occurs, eventually leading to the destruction of the cured product. By applying anticorrosion lining, it is possible to avoid direct contact between sulfuric acid acid solution and cement-based material, but unless carefully constructed, fine pinholes are likely to be generated on the surface, and the anticorrosion material may peel off. Also, small cracks are liable to occur, and when acid permeates from those parts, it leads to expansion and destruction.
[0003]
For this reason, cement used for constructions that require sulfuric acid resistance, such as sewage treatment facilities, is required to increase the proportion of CaO—SiO 2 —H 2 O-based compounds in the hydration reaction to reduce the amount of calcium hydroxide. It is necessary to use a cement with a production ratio as small as possible. In this type of commercial product, there is slag cement containing blast furnace quenched slag fine powder as a potential hydraulic substance, but the amount of calcium hydroxide generated by the hydration reaction has been reduced to a level that has sufficient sulfuric acid resistance. No. When the content ratio of the slag fine powder is increased in order to enhance the sulfuric acid resistance, the shrinkage ratio at the time of curing is increased, so that cracks are easily generated or the strength is reduced. When Portland cement, which has low acid resistance, is used alone, when an alkali latent hydraulic material such as fly ash, silica fume, or blast furnace slag fine powder is added to the cement, the resulting mortar / concrete composition has a considerable amount of calcium hydroxide generated. Because it is suppressed, it is known to have good acid resistance. (For example, see Patent Documents 1 and 2) However, in order to develop sufficient acid resistance, the content ratio of fine powder composed of an alkali latent hydraulic substance must be considerably increased, and as a result, the shrinkage rate during curing further increases. However, dimensional control becomes difficult, and cracks are generated, which may cause deterioration in strength and peeling from the construction surface during mortar construction. The addition of the expansion inhibitor for cement to the shrinkage-suppressing action leads to a decrease in acid resistance due to the alkali of the expansion agent, so that there is a limit to the combined use thereof. In addition, as a measure to improve acid resistance including sulfuric acid resistance and to suppress a decrease in strength, Patent Document 3 discloses the use of blast furnace slag aggregate as well as the use of blast furnace quenched slag fine powder. It is disclosed that a highly durable mortar / concrete can be obtained. Since various types of slag known in the past generally contain calcium to a greater or lesser degree, the calcium content reacts with sulfate ions to produce gypsum in the acid, especially in situations where it comes into contact with sulfuric acid solutions. Then, volume expansion occurs due to the formation of the dihydrate gypsum. Since steelmaking blast furnace slag generally has a high calcium content of about 40% by weight in terms of CaO, if the period of contact with the sulfuric acid solution is prolonged, the amount of reaction generated by gypsum dihydrate increases, and eventually expansion cracks are generated. Swelling amount, and it becomes brittle and easily collapsed. When the mortar / concrete hardened body using the aggregate made of such steelmaking blast furnace slag is in contact with a sulfuric acid acid solution for a long period of time, the strength tends to decrease.
[0004]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2000-128618 [Patent Document 2]
Japanese Patent Application Laid-Open No. 2002-128559 [Patent Document 3]
Japanese Patent Publication No. 03-0661624
[Problems to be solved by the invention]
The present invention provides a mortar / concrete which has particularly strong sulfuric acid resistance in addition to acid resistance, and is hardly deteriorated even when left for a long time in a sulfuric acid environment, and which can stably maintain high strength development. The task is to provide
[0006]
[Means for Solving the Problems]
The present inventors have solved the above problem by using slag powder having acid resistance as a latent hydraulic substance for a binder phase forming component, and generally having a calcium content lower than that of blast furnace slag, and containing alkali metal and iron. By using sewage sludge melting slag and / or municipal refuse melting slag for aggregates, the amount of which has the ability to reduce erosion by neutralizing action etc. even for strong acids in which the metal content invades. The present invention was completed because a hardened mortar / concrete hardened body capable of maintaining high strength even under a sulfuric acid environment for a long time was obtained.
[0007]
That is, the present invention is a mortar concrete represented by the following (1) to (3). (1) A mortar / concrete containing aggregate composed of sewage sludge molten slag and / or aggregate composed of municipal waste molten slag, cement, and slag powder having a particle size of 100 μm or less. (2) The mortar / concrete according to (1), wherein the slag powder comprises quenched slag. (3) The mortar / concrete according to (1) or (2), further containing silica fume and / or fly ash having a particle size of 100 μm or less.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The mortar / concrete of the present invention comprises a dispersed phase forming component such as aggregate and a binding phase forming component mainly composed of a hydraulic substance such as cement which binds the dispersed phase.
[0009]
The cement essential to the mortar concrete of the present invention can be any cement, and examples include various portland cements, mixed cements, silica cements, blast furnace cements, alumina cements, sulfate-resistant cements, and the like. Of these, blast furnace cement, alumina cement, and sulfate-resistant cement are recommended to be used because they have higher resistance to acids than other cements.
[0010]
The type of the slag powder having a particle size of 100 μm or less that is essentially contained in the mortar concrete of the present invention is not particularly limited. For example, blast furnace slag, converter slag, dephosphorized slag, desilicate slag, desulfurized slag, sewage sludge melting slag And municipal waste melting slag. Further, since the slag powder preferably has a high reaction activity, use of quenched slag powder, that is, slag powder having a high vitrification rate is recommended, and strength is improved by using such slag powder. be able to. In the present invention, the slag powder having a particle size of 100 μm or less is mainly used as a binder phase forming component of a hardened mortar / concrete body. A slag powder having a particle size of more than 100 μm has a low reaction activity and slows down the hydration reaction, so that it is not preferable to use it as a binder phase forming component. In order to ensure sufficient reaction activity, the specific surface area of the slag powder used is desirably 3000 cm 2 / g or more. In the mortar / concrete of the present invention, the compounding amount of the slag powder having a particle size of 100 μm or less is 20 to 100 parts by weight based on 100 parts by weight of the cement. If the amount of the slag powder is less than 20 parts by weight, the acid resistance of the cured body binding phase is poorly improved, and if it is more than 100 parts by weight, the strength of the cured body is liable to be lowered, so neither is preferable.
[0011]
Further, the mortar concrete of the present invention essentially contains an aggregate composed of sewage sludge molten slag and / or an aggregate composed of municipal waste molten slag. The sewage sludge source and the municipal waste source are not particularly limited. The sewage sludge molten slag and / or municipal waste melting slag is used as the aggregate used in the present invention, although sewage sludge and municipal waste have different chemical components depending on their collection sources, but these differences are taken into account. However, generally available calcium oxide has a lower calcium content than blast furnace slag, and even if the period of contact with the sulfuric acid solution is prolonged, the expansion due to the formation of calcium sulfates by the reaction with sulfuric acid causes cracks to occur. In addition to the above, it is also due to the fact that alkali metals and iron group metal components which can neutralize erosion of acids, especially strong acids and neutralize the erosion can be contained. In addition, the alkali metal and iron group metal components are highly likely to provide strength that can withstand the slag expansion pressure generated by the formation of calcium sulfates. Preferably, when either one of the sewage sludge melting slag or the municipal waste melting slag is used for the aggregate, the slag to be used, or as a mixture when both are mixed and used as an aggregate at an arbitrary ratio, The calcium content is 10 to 40% by weight, more preferably 15 to 35% by weight in terms of oxide (CaO), and the total content of alkali metal and iron group metal is 2% in terms of oxide. %, More preferably 5% by weight or more. If the calcium content is less than 10% by weight in terms of oxides, the acid resistance is undesirably reduced. The upper limit of the total content of the alkali metal and the iron group metal is not particularly limited, and there is no problem as long as the content is contained in normally available municipal waste or sewage sludge. Further, the particle size of the aggregate used in the present invention is appropriately selected from the range corresponding to the particle size generally used as fine aggregate and / or coarse aggregate according to the application target of the mortar / concrete of the present invention. However, the particle diameter is preferably 0.15 mm or more. In particular, when used for mortar, the particle size is preferably 0.15 to 2.5 mm. The amount of aggregate of the mortar / concrete of the present invention is preferably 100 to 700 parts by weight with respect to 100 parts by weight of cement, and 100 to 300 parts by weight in mortar using aggregate having a particle size of 0.15 to 2.5 mm. Is particularly preferred.
[0012]
The method for producing sewage sludge molten municipal slag and municipal refuse molten slag used for aggregates in the present invention includes drying the collected sewage sludge and municipal refuse, crushing and breaking if necessary, and heating and melting by a normal melting method. Good. The cooling condition from the molten state is arbitrary, and may be either rapid cooling or slow cooling. For this reason, the vitrification rate of the sewage sludge fusion slag and the municipal waste fusion slag used for the aggregate in the present invention is not limited.
[0013]
The mortar concrete of the present invention is preferable to avoid using aggregates other than aggregates composed of sewage sludge molten slag and aggregates composed of municipal waste molten slag, but it is not completely excluded. If the aggregate has acid resistance and strength close to or higher than that, it is permissible within a range that does not exceed approximately 25% by volume of the total contained aggregate.
[0014]
Further, the mortar / concrete of the present invention is not limited to containing components other than the above components, as long as the mortar / concrete does not particularly affect the strength development and acid resistance of the cured product. Components that can be contained include, for example, hydrate-curable inorganic substances such as calcium sulfate and pozzolan-reactive substances, and other properties such as acceleration of setting, acceleration of curing, retardation of curing, water reduction, thickening, water retention, defoaming, and the like. And admixtures that can be used in mortar and concrete, such as fibers, pigments, extenders, foams, and clay minerals such as zeolites.
[0015]
Among them, it is preferable to contain a pozzolan-reactive substance, in particular, silica fume and / or fly ash having a particle diameter of 100 μm or less. More preferably, the specific surface area in the particle size 1μm or less 10000 cm 2 / g or more silica fume, is good to contain a specific surface area 4000 cm 2 / g or more fly ash. In the present invention, silica fume and fly ash are used mainly for the purpose of imparting high strength development from the initial stage to a longer period of time and improving the water tightness of the cured product. 50 parts by weight is desirable. If it exceeds 50 parts by weight, cracks may be generated, and it becomes difficult to maintain the strength. If the amount is less than about 5 parts by weight, the mixing effect is hardly exhibited.
[0016]
The method of mixing and kneading the components of the mortar / concrete of the present invention is not limited. For example, all the components used in a mixing and kneading machine may be charged together with water, or may be charged in any order. The type of the mixer is not limited, and for example, a ski mixer, a plaster mixer, a ribbon mixer, an injection mixer, a plasterer mixer, a forced mixer, a continuous mixer, and the like can be used. The amount of water may be selected according to the intended use, but preferably, a cured product having a higher strength is obtained when the content is 30 to 50 parts by weight with respect to 100 parts by weight of a hydraulic substance such as cement. .
[0017]
The mortar / concrete of the present invention is not particularly limited in its construction and product production, and a method according to the use can be almost freely selected. As an example, a construction method applicable as mortar can be performed by plastering with a trowel, spraying with a snake pump, squeeze pump or plunger pump, grouting, or the like.
[0018]
【Example】
Hereinafter, the present invention will be described with reference to examples.
[Materials Used] Using the materials described in A to K below, mortar kneaded materials and cured products thereof were produced. In addition, the chemical component content in Table 1 is a conversion when the contained metal component is the indicated oxide.
A: Ordinary Portland cement (manufactured by Taiheiyo Cement Corporation)
B: Fine granulated blast furnace slag powder having a specific surface area of brane of about 8000 cm 2 / g (trade name: Fine Cementment, manufactured by Daiichi Cement Co., Ltd.)
C: Sewage sludge molten slag containing the chemical components described in Table 1 (FM = 2.5)
D: Municipal waste melting slag containing the chemical components described in Table 1 (FM = 2.5)
E: Granulated blast furnace slag containing the chemical components described in Table 1 (FM = 2.5, manufactured by Sumikin Kashima Mineralization Co., Ltd.)
F: Silica sand aggregate (FM = 2.5, produced in Yamagata Prefecture)
G: Swelling agent (trade name: Pacific Expan, Pacific Material Co., Ltd.)
H: Water retention agent (trade name: 90SH-4000, manufactured by Shin-Etsu Chemical Co., Ltd.)
I: High performance water reducing agent (trade name: Mighty 100, manufactured by Kao Corporation)
J: Silica fume (particle size 5 μm or less, average particle size 0.11 μm, average specific surface area 21000 cm 2 / g, manufactured by Simcore)
K: Fly ash (particle size 20 μm or less, average particle size 5.2 μm, average specific surface area 6100 cm 2 / g, manufactured by Taiheiyo Cement Corporation)
[0019]
[Table 1]
Figure 2004137086
[0020]
[Preparation of mortar kneaded material] The materials and water selected from the above A to K were simultaneously and simultaneously charged into a Hobart mixer so as to have the compounding amounts shown in Table 2, and mixed and kneaded at 20 ° C for about 3 minutes. Mortar kneaded materials (Examples 1 to 9 according to the present invention and Comparative Examples 1 to 4 relating to reference products outside the present invention) were produced.
[0021]
[Table 2]
Figure 2004137086
[0022]
[Evaluation of Properties of Cured Body] A cylindrical cured specimen having a diameter of 7.5 cm and a height of 15 cm was prepared from the kneaded material by a method in accordance with JIS A 1132, and the specimen was uniaxially compressed for 28 days. The strength was measured. Further, the specimen was immersed in 4.4 liters of a sulfuric acid solution adjusted to pH 0.4 ± 0.1, and the total amount of the sulfuric acid solution was changed every two weeks, followed by continuous immersion for 26 weeks. The specimen after immersion was washed with water and dried, and then the uniaxial compressive strength was measured by a method according to JIS A 1108.
[0023]
Further, the sulfuric acid resistance of a columnar cured test specimen having a diameter of 7.5 cm and a height of 15 cm produced from the kneaded material was examined by a method in accordance with JIS A 1132. That is, the cured specimen was cured in water until the age of 28 days, and then the diameter (D0) of the specimen was measured. Next, the test specimen was immersed in 4.4 liters of a sulfuric acid solution adjusted to pH 0.4 ± 0.1, and the entire amount of the sulfuric acid solution was changed every week to perform continuous immersion for 8 weeks. After immersion, the specimen was washed with water, and a cross section was cut at a position 7.5 cm in the longitudinal direction from the end face with a diamond cutter. A 1% alcohol solution of phenolphthalein was sprayed on the dried cut surface to measure the diameter (D1) of the red portion, and the sulfuric acid resistance was evaluated based on the sulfuric acid penetration depth calculated from the following equation.
Sulfuric acid penetration depth = (D0-D1) / 2
The shallower the sulfuric acid penetration depth, the higher the sulfuric acid resistance. Table 3 shows the above results.
[0024]
[Table 3]
Figure 2004137086
[0025]
【The invention's effect】
The mortar / concrete according to the present invention has excellent resistance to a strongly acidic liquid, particularly a high concentration of sulfuric acid, and hardly causes deterioration or the like even when contacted with sulfuric acid for a long period of time. Can have. Therefore, the mortar concrete according to the present invention is particularly suitable for use in an acidic liquid storage facility such as a sewage treatment facility, a food factory, a chemical factory, or a corrosion resistant pipe.

Claims (3)

下水汚泥溶融スラグ及び/又は都市ゴミ溶融スラグからなる骨材、セメント及び粒径100μm以下のスラグ粉末を含有してなるモルタル・コンクリート。A mortar / concrete comprising an aggregate composed of sewage sludge molten slag and / or municipal waste molten slag, cement and slag powder having a particle size of 100 μm or less. スラグ粉末が急冷スラグからなることを特徴とする請求項1記載のモルタル・コンクリート。The mortar / concrete according to claim 1, wherein the slag powder comprises quenched slag. さらに粒径100μm以下のシリカフューム及び/又はフライアッシュを含有する請求項1又は2記載のモルタル・コンクリート。The mortar / concrete according to claim 1 or 2, further comprising silica fume and / or fly ash having a particle size of 100 µm or less.
JP2002283454A 2002-07-31 2002-09-27 Mortar-concrete Pending JP2004137086A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002283454A JP2004137086A (en) 2002-08-23 2002-09-27 Mortar-concrete
AU2003252317A AU2003252317A1 (en) 2002-07-31 2003-07-30 Mortar or concrete
PCT/JP2003/009653 WO2004011383A1 (en) 2002-07-31 2003-07-30 Mortar or concrete

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002244366 2002-08-23
JP2002283454A JP2004137086A (en) 2002-08-23 2002-09-27 Mortar-concrete

Publications (1)

Publication Number Publication Date
JP2004137086A true JP2004137086A (en) 2004-05-13

Family

ID=32472625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002283454A Pending JP2004137086A (en) 2002-07-31 2002-09-27 Mortar-concrete

Country Status (1)

Country Link
JP (1) JP2004137086A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006124205A (en) * 2004-10-27 2006-05-18 Chuden Kankyo Technos Co Ltd Sulfuric acid-resistant mixture
JP2006248839A (en) * 2005-03-10 2006-09-21 Taiheiyo Material Kk Hydraulic coating material having sulfuric acid-resistance
JP2007161507A (en) * 2005-12-12 2007-06-28 Taiheiyo Material Kk Highly durable cross-section repairing material
JP4509210B1 (en) * 2009-04-03 2010-07-21 勝彦 太田 Improved treatment method for construction sludge
JP2017132667A (en) * 2016-01-29 2017-08-03 太平洋マテリアル株式会社 Corrosion resistant mortar composition

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006124205A (en) * 2004-10-27 2006-05-18 Chuden Kankyo Technos Co Ltd Sulfuric acid-resistant mixture
JP4518908B2 (en) * 2004-10-27 2010-08-04 中国電力株式会社 Sulfuric acid resistant mixture
JP2006248839A (en) * 2005-03-10 2006-09-21 Taiheiyo Material Kk Hydraulic coating material having sulfuric acid-resistance
JP2007161507A (en) * 2005-12-12 2007-06-28 Taiheiyo Material Kk Highly durable cross-section repairing material
JP4509210B1 (en) * 2009-04-03 2010-07-21 勝彦 太田 Improved treatment method for construction sludge
JP2010240567A (en) * 2009-04-03 2010-10-28 Katsuhiko Ota Improvement treatment method of construction sludge
JP2017132667A (en) * 2016-01-29 2017-08-03 太平洋マテリアル株式会社 Corrosion resistant mortar composition

Similar Documents

Publication Publication Date Title
KR101709240B1 (en) Mortar composition for recovering cross section of eco-friendly cement with sulphate resistance
Barbhuiya et al. Properties of fly ash concrete modified with hydrated lime and silica fume
KR101533093B1 (en) High-Early Strength cement concrete composition and concrete pavement repair it using the same method using silicon sludge
JP5442249B2 (en) Acid resistant cement composition
JP2017132667A (en) Corrosion resistant mortar composition
WO2011135584A2 (en) Geopolymer concrete
Olonade et al. Effects of sulphuric acid on the compressive strength of blended cement-cassava peel ash concrete
JP2004315303A (en) Cement composition, coating material and chlorine blocking method using the same
JP3979130B2 (en) Corrosion environment facility mortar composition and concrete structure corrosion prevention method
JP4647767B2 (en) Hydraulic composition and its paste, mortar, concrete
JP2006306646A (en) Alumina cement composition and repairing method using the same
JP4982332B2 (en) Quick-hardening cement composition admixture, quick-hardening cement composition containing the same, quick-hardening cement kneaded material and spraying material
JP2004059396A (en) Mortar/concrete
JP2003020260A (en) Extra quick hardening and acid resistant cement material
JP6985177B2 (en) Hydraulic composition and concrete
JP2004137086A (en) Mortar-concrete
JP2001240456A (en) Acid proof mortar, grout and concrete, and method for working therewith
JP5069073B2 (en) Manufacturing method of cement concrete pipe using cement for centrifugal force forming and its cement concrete pipe
JP2003192422A (en) Inorganic hydraulic composition, hardened body thereof and operation method therefor
JP2010100473A (en) Cement admixture and cement composition
JP5089943B2 (en) Sulfuric acid resistant cement composition and repair method using the same
JP4825609B2 (en) Acid-resistant cement material
JP4388250B2 (en) Hydraulic composition and cured body thereof
JP2004331459A (en) Cement composition and hardened cement having resistance to sulfuric acid
JP2004292245A (en) Acid-proof cement composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080612

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081010