JP2007160426A - Pore-free surface coated cermet cutting throw-away tip having hard coating layer exhibiting excellent chipping resistance in high speed cutting - Google Patents

Pore-free surface coated cermet cutting throw-away tip having hard coating layer exhibiting excellent chipping resistance in high speed cutting Download PDF

Info

Publication number
JP2007160426A
JP2007160426A JP2005357086A JP2005357086A JP2007160426A JP 2007160426 A JP2007160426 A JP 2007160426A JP 2005357086 A JP2005357086 A JP 2005357086A JP 2005357086 A JP2005357086 A JP 2005357086A JP 2007160426 A JP2007160426 A JP 2007160426A
Authority
JP
Japan
Prior art keywords
layer
cutting
hard coating
zro
phase mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005357086A
Other languages
Japanese (ja)
Other versions
JP4900653B2 (en
Inventor
Hiroshi Hara
央 原
Tetsuhiko Honma
哲彦 本間
Hitoshi Kunugi
斉 功刀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2005357086A priority Critical patent/JP4900653B2/en
Publication of JP2007160426A publication Critical patent/JP2007160426A/en
Application granted granted Critical
Publication of JP4900653B2 publication Critical patent/JP4900653B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pore-free coated cutting tip having a hard coating layer exhibiting excellent chipping resistance in high speed cutting. <P>SOLUTION: In this pore-free coated cutting tip fitted to the tool body by clamping and fastening using a clamp piece, a hard coating layer including: a Ti compound layer as a bottom layer; and a two-phase mixed oxide layer (Al<SB>2</SB>O<SB>3</SB>-ZrO<SB>2</SB>layer) of aluminum oxide and zirconium oxide as a top layer is formed on the surface of a tip base by vapor deposition. On the whole surface of the two-phase mixed oxide layer (Al<SB>2</SB>O<SB>3</SB>-ZrO<SB>2</SB>layer)of the top layer, an abrasive material layer made of titanium nitride layer is formed with a means layer thickness ranging from 0.5 to 5 μm by vapor deposition. In this state, by a wet blast, polishing liquid where Al<SB>2</SB>O<SB>3</SB>fine grains are mixed is injected as an injected polishing material, thereby polishing the surface of the two-phase mixed oxide layer (Al<SB>2</SB>O<SB>3</SB>-ZrO<SB>2</SB>layer) of the top layer with the abrasive material layer of the clamp piece abut surface part left undone so that the surface roughness is Ra:0.2 μm or less. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、特に各種の鋼や鋳鉄などの高速切削加工に用いた場合に、硬質被覆層がすぐれた耐チッピング性を発揮する穴なし表面被覆サーメット製切削スローアウエイチップ(以下、被覆切削チップという)に関するものである。   The present invention is a cutting throwaway tip made of a surface-less cermet having a hard coating layer that exhibits excellent chipping resistance, particularly when used for high-speed cutting of various steels and cast irons (hereinafter referred to as a coated cutting tip). ).

従来、一般に、図3に概略斜視図で示される通り、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称してチップ基体という)の切刃稜線部を含むすくい面および逃げ面の全面に、
下部層として、炭化チタン(以下、TiCで示す)層、窒化チタン(以下、同じくTiNで示す)層、炭窒化チタン(以下、TiCNで示す)層、炭酸化チタン(以下、TiCOで示す)層、および炭窒酸化チタン(以下、TiCNOで示す)層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、
上部層として、1〜15μmの平均層厚を有し、かつ化学蒸着した状態で酸化アルミニウムと酸化ジルコニウムの2相混合酸化物組織を有する2相混合酸化物層(以下、Al−ZrO層で示す)、
で構成された硬質被覆層を蒸着形成してなる被覆切削チップが知られており、また、上記被覆切削チップが、図5に概略斜視図で示されるとおり、工具本体、例えばシャンク部の先端部にシートを介して載置され、チップ上面にクランプ駒の先端部を当接させ、前記クランプ駒後部に設けたクランプねじの締め込みにより交換自在に挟み締め固定した状態で、例えば各種の鋼や鋳鉄などの連続切削や断続切削に用いられることは良く知られている。
Conventionally, in general, as shown in a schematic perspective view in FIG. 3, a substrate composed of tungsten carbide (hereinafter referred to as WC) based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) based cermet (hereinafter referred to as these). On the entire surface of the rake face and flank including the cutting edge ridge line portion of the chip base)
As a lower layer, a titanium carbide (hereinafter referred to as TiC) layer, a titanium nitride (hereinafter also referred to as TiN) layer, a titanium carbonitride (hereinafter referred to as TiCN) layer, a titanium carbonate (hereinafter referred to as TiCO) layer And a Ti compound layer comprising one or more of titanium carbonitride oxide (hereinafter referred to as TiCNO) layers and having an overall average layer thickness of 3 to 20 μm,
As an upper layer, a two-phase mixed oxide layer (hereinafter referred to as Al 2 O 3 —ZrO) having an average layer thickness of 1 to 15 μm and having a two-phase mixed oxide structure of aluminum oxide and zirconium oxide in a state of chemical vapor deposition. 2 layers)
A coated cutting tip is known which is formed by vapor-depositing a hard coating layer composed of the above, and the coated cutting tip is a tool body, for example, a tip portion of a shank portion as shown in a schematic perspective view in FIG. In the state where the tip of the clamp piece is brought into contact with the upper surface of the chip, and is clamped and fixed by tightening a clamp screw provided at the rear of the clamp piece, for example, various steels and cast irons. It is well known that it is used for continuous cutting and interrupted cutting.


そして、上記2相混合酸化物層(Al−ZrO層)は、次のような条件で化学蒸着することにより形成されることが知られている。
(イ)反応ガス組成(体積%)
AlCl: 1〜10 %、
ZrCl: 0.01〜10 %、
CO2 : 1〜30 %、
HCl: 1〜30 %、
S: 0.01〜1 %、
2:残り、
(ロ)反応雰囲気温度 : 900〜1050 ℃、
(ハ)反応雰囲気圧力 : 4〜70 kPa(30〜525 torr)、

The two-phase mixed oxide layer (Al 2 O 3 —ZrO 2 layer) is known to be formed by chemical vapor deposition under the following conditions.
(B) Reaction gas composition (volume%)
AlCl 3 : 1 to 10%,
ZrCl 4: 0.01~10%,
CO 2: 1~30%,
HCl: 1-30%,
H 2 S: 0.01~1%,
H 2 : Remaining
(B) Reaction atmosphere temperature: 900 to 1050 ° C.
(C) Reaction atmosphere pressure: 4 to 70 kPa (30 to 525 torr),

また、上記の被覆切削チップにおいて、これの硬質被覆層の構成層は、一般に粒状結晶組織を有し、さらに、下部層であるTi化合物層を構成するTiCN層を、層自身の強度向上を目的として、通常の化学蒸着装置にて、反応ガスとして有機炭窒化物を含む混合ガスを使用し、700〜950℃の中温温度域で化学蒸着することにより形成して縦長成長結晶組織をもつようにすることも知られている。

さらに、被覆切削チップの硬質被覆層を構成する上部層の表面を、切削性能を向上させる目的でウエットブラスト処理して、平滑化することも知られている。
特開2000−334605号公報 特開2004−42150号公報 特開平6−8010号公報 特開平8−276305号公報
In the above-mentioned coated cutting tip, the constituent layer of the hard coating layer generally has a granular crystal structure, and the TiCN layer constituting the Ti compound layer as the lower layer is intended to improve the strength of the layer itself. In a normal chemical vapor deposition apparatus, a gas mixture containing organic carbonitrides is used as a reaction gas, and it is formed by chemical vapor deposition at an intermediate temperature range of 700 to 950 ° C. so that it has a vertically grown crystal structure. It is also known to do.

Furthermore, it is also known to smooth the surface of the upper layer constituting the hard coating layer of the coated cutting tip by wet blasting for the purpose of improving the cutting performance.
JP 2000-334605 A JP 2004-42150 A Japanese Patent Laid-Open No. 6-8010 JP-A-8-276305

近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高速化の傾向にあるが、上記の従来被覆切削チップにおいては、これを鋼や鋳鉄などの通常の条件での連続切削や断続切削に用いた場合には問題はないが、特に切削速度が350m/min.を越える高速で切削加工を行なうのに用いた場合には、硬質被覆層の上部層を構成する2相混合酸化物層にチッピング(微少欠け)が発生し易く、この結果比較的短時間で使用寿命に至るのが現状である。   In recent years, the performance of cutting machines has been remarkable. On the other hand, there has been a strong demand for labor saving and energy saving and further cost reduction for cutting work. The cutting tip has no problem when it is used for continuous cutting or intermittent cutting under normal conditions such as steel or cast iron, but the cutting speed is 350 m / min. When used for cutting at a high speed exceeding 1, the two-phase mixed oxide layer constituting the upper layer of the hard coating layer is likely to chip (small chipping), and as a result, used in a relatively short time. The current situation is that it reaches the end of its life.

そこで、本発明者等は、上述のような観点から、上記の2相混合酸化物層(Al−ZrO層)が硬質被覆層の上部層を構成する被覆切削チップに着目し、特にAl−ZrO層の耐チッピング性向上を図るべく研究を行った結果、
(a)上記の従来被覆切削チップにおける硬質被覆層の上部層を構成するAl−ZrO層の表面に、ウエットブラストにて、噴射研磨材として、水との合量に占める割合で15〜60質量%の酸化アルミニウム(以下、Al23で示す)微粒を配合した研磨液を噴射して、研磨すると、前記Al−ZrO層は、準拠規格JIS・B0601−1994に基いた測定(以下の表面粗さは全てかかる準拠規格に基いた測定値を示す)で、Ra:0.3〜0.6μmの表面粗さを示すようになるが、この結果の前記Al−ZrO層の表面を、ウエットブラストにてRa:0.3〜0.6μmの表面粗さに平滑化した被覆切削チップを用いても、切削速度が350m/min.を越えた高速切削加工では切刃部におけるチッピング発生を満足に抑制することはできないこと。
Therefore, the present inventors pay attention to the coated cutting tip in which the above-described two-phase mixed oxide layer (Al 2 O 3 —ZrO 2 layer) constitutes the upper layer of the hard coating layer from the above viewpoint, In particular, as a result of research to improve the chipping resistance of the Al 2 O 3 —ZrO 2 layer,
(A) On the surface of the Al 2 O 3 —ZrO 2 layer constituting the upper layer of the hard coating layer in the above-mentioned conventional coated cutting tip, the ratio of the wet blast to the total amount of water as the spray abrasive When a polishing liquid containing 15 to 60% by mass of aluminum oxide (hereinafter referred to as Al 2 O 3 ) fine particles is sprayed and polished, the Al 2 O 3 —ZrO 2 layer is in compliance with JIS B0601-1994. (The following surface roughness is a measured value based on such standards.) Ra: 0.3 to 0.6 μm surface roughness is obtained. Even when a coated cutting tip in which the surface of the 2 O 3 —ZrO 2 layer was smoothed to a surface roughness of Ra: 0.3 to 0.6 μm by wet blasting, the cutting speed was 350 m / min. High-speed cutting that exceeds the limit cannot effectively suppress chipping at the cutting edge.

(b)一方、図2に概略斜視図で示される通り、上記の従来被覆切削チップにおける硬質被覆層の上部層を構成するAl−ZrO層の切刃稜線部を含むすくい面および逃げ面の全面に、通常の化学蒸着装置を用い、通常の条件、例えば表3に示される条件で、かつ、0.5〜5μmの平均層厚で、窒化チタン(以下、TiNで示す)層を蒸着形成した状態で、
上記(a)におけると同じくウエットブラストにて、噴射研磨材として、水との合量に占める割合で15〜60質量%のAl23微粒を配合した研磨液を噴射すると、上記TiN層(以下、TiN研磨材層という)は、前記Al23微粒によって粉砕微粒化し、TiN微粒となって前記Al23微粒の共存下で研磨材として作用し、硬質被覆層の上部層を構成するAl−ZrO層の表面を研磨することになり、この結果研磨後の前記Al−ZrO層の表面は、Ra:0.2μm以下の表面粗さにまで平滑化されるようになり、この上部層であるAl−ZrO層の表面がRa:0.2μm以下の表面粗さに平滑化した被覆切削チップを用いて、高速切削加工を行った場合、350m/min.を越える切削速度でも切刃部におけるチッピング発生が防止され、前記硬質被覆層は長期に亘ってすぐれた耐摩耗性を発揮するようになること。
(B) On the other hand, as shown in the schematic perspective view of FIG. 2, the rake face including the cutting edge ridge portion of the Al 2 O 3 —ZrO 2 layer constituting the upper layer of the hard coating layer in the conventional coated cutting tip and A titanium nitride (hereinafter referred to as TiN) layer is formed on the entire flank surface by using a normal chemical vapor deposition apparatus under normal conditions, for example, conditions shown in Table 3 and an average layer thickness of 0.5 to 5 μm. In the state of vapor deposition,
When a polishing liquid containing 15 to 60% by mass of Al 2 O 3 fine particles as a spraying abrasive in a ratio to the total amount of water is sprayed by wet blasting as in (a) above, the TiN layer ( Hereinafter, the TiN abrasive layer is pulverized and pulverized by the Al 2 O 3 fine particles, becomes TiN fine particles and acts as an abrasive in the presence of the Al 2 O 3 fine particles, and constitutes the upper layer of the hard coating layer to become polishing the surface of the Al 2 O 3 -ZrO 2 layers, the surface of the Al 2 O 3 -ZrO 2 layer after the results polishing, Ra: smoothed to a surface roughness of not more than 0.2μm When high-speed cutting is performed using a coated cutting tip in which the surface of the upper layer Al 2 O 3 —ZrO 2 layer is smoothed to a surface roughness of Ra: 0.2 μm or less 350 m / min. Chipping at the cutting edge is prevented even at a cutting speed exceeding 1, and the hard coating layer exhibits excellent wear resistance over a long period of time.


(c)上記の通り、切削速度が350m/min.を越えた高速切削加工では、被覆切削チップの切刃部に懸かる負荷はきわめて高いものになるため、特にフライス切削の場合、工具本体への被覆切削チップの取り付けに際しては、きわめて高い挟み締め力で取り付けが行なわれることになり、この結果被覆切削チップのクランプ駒当接部の硬質被覆層に対する圧縮応力はきわめて高いものとなるばかりでなく、これに対応して、切削加工時にクランプ駒当接部における機械的震動はきわめて強力なものとなるので、特に上部層を構成するAl−ZrO層は、ビッカース硬さ(Hv)で約2400の高硬度を有することと相俟って、これに割れが発生し易くなり、これが原因で硬質被覆層に剥離やチッピングが発生するようになるが、図1に概略斜視図で示される通り、前記ウエットブラストに際して、クランプ駒当接部を研磨せず、この部分のTiN研磨材層を残した状態にしておくと、前記TiN研磨材層は前記Al−ZrO層に比して、相対的にきわめて低いHv:約1950の硬さをもつほか、高強度を具備するものであるため、図3に概略斜視図で示される通り、工具本体へのクランプ駒による被覆切削チップの取り付けに際して、高い挟み締め力の緩衝層として作用し、この結果前記Al−ZrO層に対する圧縮応力を著しく緩和し、さらに、切削加工時に発生する強力な機械的震動の前記クランプ駒への伝達を吸収し、緩和する防震層としても作用し、これによって前記Al−ZrO層に対する前記クランプ駒による震動攻撃が緩和されることから、前記Al−ZrO層における剥離やチッピング発生の原因となる割れ発生が防止されるようになること。

以上(a)〜(c)に示される研究結果を得たのである。

(C) As described above, the cutting speed is 350 m / min. In high-speed cutting that exceeds 1, the load applied to the cutting edge of the coated cutting tip becomes extremely high. Especially in the case of milling, when attaching the coated cutting tip to the tool body, the clamping force is extremely high. As a result, not only the compressive stress on the hard coating layer of the clamp piece abutting portion of the coated cutting tip is extremely high, but also the clamp piece abutting portion during cutting is correspondingly applied. In particular, the mechanical vibration in the Al 2 O 3 —ZrO 2 layer constituting the upper layer is combined with the fact that the Vickers hardness (Hv) has a high hardness of about 2400, Cracks are likely to occur in this, and this causes peeling and chipping in the hard coating layer. As shown in the schematic perspective view of FIG. In Toburasuto, without polishing the clamping piece abutment and keep the state of leaving the TiN abrasive layer of this portion, the TiN abrasive layer as compared with the Al 2 O 3 -ZrO 2, and the relative In addition to having a very low Hv: about 1950 hardness and high strength, as shown in a schematic perspective view in FIG. It acts as a buffer layer with a high clamping force. As a result, the compressive stress on the Al 2 O 3 —ZrO 2 layer is remarkably relieved, and the strong mechanical vibration generated during cutting is transmitted to the clamp piece. It acts also as a seismic layer that absorbs and mitigates, thereby mitigating the seismic attack by the clamp piece against the Al 2 O 3 —ZrO 2 layer, so that the Al 2 O 3 The generation of cracks that cause peeling and chipping in the -ZrO 2 layer is prevented.

The research results shown in (a) to (c) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、WC基超硬合金またはTiCN基サーメットで構成されたチップ基体の切刃稜線部を含むすくい面および逃げ面の全面に、
下部層として、TiC層、TiN層、TiCN層、TiCO層、およびTiCNO層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、
上部層として、1〜15μmの平均層厚を有し、化学蒸着した状態で酸化アルミニウムと酸化ジルコニウムの2相混合酸化物組織を有し、かつ、前記酸化ジルコニウムは、Zrの含有割合に換算して、層中に含有するAlとZrの合量に占める割合(原子比)で0.01〜0.20である、酸化アルミニウムと酸化ジルコニウムの2相混合酸化物層(Al−ZrO層)、
で構成された硬質被覆層を蒸着形成してなり、かつ、工具本体にクランプ駒による挟み締めにより交換自在に取り付けられる被覆切削チップにおいて、
上記硬質被覆層の上部層である酸化アルミニウムと酸化ジルコニウムの2相混合酸化物層(Al−ZrO層)の全面に、0.5〜5μmの平均層厚で、TiN研磨材層を蒸着形成した状態で、
ウエットブラストにて、噴射研磨材として、水との合量に占める割合で15〜60質量%のAl微粒を配合した研磨液を噴射し、

上記のTiN研磨材層のウエットブラストによる粉砕化TiN微粒と、噴射研磨材としてのAl微粒の共存下で、上記クランプ駒当接面部分の研磨材層を残して、上記硬質被覆層の上部層を構成する2相混合酸化物層(Al−ZrO層)の表面を研磨して、切刃稜線部を含むすくい面および逃げ面の表面粗さを準拠規格JIS・B0601−1994に基いた測定で、Ra:0.2μm以下としてなる、硬質被覆層が高速切削加工ですぐれた耐チッピング性を発揮する穴なし表面被覆サーメット製切削スローアウエイチップ(被覆切削チップ)に特徴を有するものである。
The present invention has been made based on the above research results, and the entire rake face and flank face including the cutting edge ridge line portion of the chip base composed of the WC-based cemented carbide or TiCN-based cermet,
As a lower layer, a Ti compound layer composed of one or more of a TiC layer, a TiN layer, a TiCN layer, a TiCO layer, and a TiCNO layer and having an overall average layer thickness of 3 to 20 μm,
As an upper layer, it has an average layer thickness of 1 to 15 μm, has a two-phase mixed oxide structure of aluminum oxide and zirconium oxide in the state of chemical vapor deposition, and the zirconium oxide is converted into a content ratio of Zr. The two-phase mixed oxide layer of aluminum oxide and zirconium oxide (Al 2 O 3 —ZrO) having a ratio (atomic ratio) to the total amount of Al and Zr contained in the layer of 0.01 to 0.20. 2 layers),
In a coated cutting tip that is formed by vapor deposition of a hard coating layer composed of and attached to a tool body by clamping with a clamp piece,
A TiN abrasive layer having an average layer thickness of 0.5 to 5 μm over the entire surface of the two-phase mixed oxide layer (Al 2 O 3 —ZrO 2 layer) of aluminum oxide and zirconium oxide, which is the upper layer of the hard coating layer. In the state of vapor deposition,
In wet blasting, as a spraying abrasive, a polishing liquid containing 15 to 60% by mass of Al 2 O 3 fine particles in a proportion of the total amount with water is sprayed,

In the coexistence of pulverized TiN fine particles by wet blasting of the TiN abrasive layer and Al 2 O 3 fine particles as a spray abrasive, the hard coating layer is left with the abrasive layer on the abutting surface portion of the clamp piece remaining. The surface of the two-phase mixed oxide layer (Al 2 O 3 —ZrO 2 layer) constituting the upper layer is polished, and the surface roughness of the rake face and the flank face including the cutting edge ridge line portion is compliant with JIS / B0601. -Measured based on 1994, Ra: 0.2 μm or less, characterized by a hard-coated layer with a cermet cutting throwaway tip (coated cutting tip) made of surface-coated cermet that exhibits excellent chipping resistance in high-speed cutting It is what has.

以下に、この発明の被覆切削チップの硬質被覆層およびTiN研磨材層、さらにウエットブラストで用いられる研磨液のAl23微粒に関して、上記の通りに数値限定した理由を説明する。
(a)硬質被覆層
(a−1)下部層のTi化合物層
Ti化合物層は、2相混合酸化物層の下部層として存在し、自身の具備するすぐれた高温強度によって硬質被覆層の高温強度向上に寄与するほか、チップ基体と2相混合酸化物層のいずれにも強固に密着し、よって硬質被覆層のチップ基体に対する密着性を向上させる作用を有するが、その全体平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方その全体平均層厚が20μmを越えると、特に高熱発生を伴なう高速切削では熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その全体平均層厚を3〜20μmと定めた。
The reason why the numerical values of the hard coating layer and the TiN abrasive layer of the coated cutting chip of the present invention and the Al 2 O 3 fine particles of the polishing liquid used in wet blasting are limited as described above will be described below.
(A) Hard coating layer (a-1) Ti compound layer of the lower layer The Ti compound layer exists as a lower layer of the two-phase mixed oxide layer, and the high temperature strength of the hard coating layer by the excellent high temperature strength that it has. In addition to contributing to the improvement, it has a function of firmly adhering to both the chip base and the two-phase mixed oxide layer, thereby improving the adhesion of the hard coating layer to the chip base, but the overall average layer thickness is less than 3 μm However, when the above-mentioned action cannot be fully exhibited, and the overall average layer thickness exceeds 20 μm, it becomes easy to cause thermoplastic deformation particularly in high-speed cutting accompanied by high heat generation, which is a cause of uneven wear. Therefore, the total average layer thickness was determined to be 3 to 20 μm.

(a−2)上部層の2相混合酸化物層(Al−ZrO層)

酸化アルミニウムと酸化ジルコニウムの2相混合酸化物層(Al−ZrO層)からなる上部層は、そのAl成分によって、すぐれた高温硬さと耐熱性を、また、そのZr成分によって、すぐれた高温強度を備え、被覆切削チップの切削性能(耐チッピング性、耐摩耗性)向上に寄与するが、2相混合酸化物層(Al−ZrO層)における酸化ジルコニウムの含有割合は、Zrの含有割合に換算して、層中に含有するAlとZrの合量に占める割合(=Zr/(Al+Zr))で、0.01〜0.20(但し、原子比)の範囲内のものとする。Al−ZrO層における酸化ジルコニウムの含有割合を示すこの値が0.01未満であると、上部層の高温強度の向上の効果が少なく、一方、この値が0.20を超えると、上部層における酸化アルミニウム量の相対的な減少により高温硬さ、耐熱性の低下が生じ、その結果として耐摩耗性劣化の傾向がみられるので、2相混合酸化物層(Al−ZrO層)における酸化ジルコニウムの含有割合(原子比で換算したZr/(Al+Zr)の値)を、上記のとおり、0.01〜0.20の範囲内の値とする。
また、その平均層厚が1μm未満では、所望のすぐれた切削性能を長期に亘って発揮させることができず、一方その平均層厚が15μmを越えて厚くなりすぎると、チッピングが発生し易くなることから、その平均層厚を1〜15μmと定めた。
(A-2) Two-phase mixed oxide layer (Al 2 O 3 —ZrO 2 layer) as an upper layer

The upper layer composed of a two-phase mixed oxide layer of aluminum oxide and zirconium oxide (Al 2 O 3 —ZrO 2 layer) has excellent high temperature hardness and heat resistance due to its Al component, and also excellent due to its Zr component. High-temperature strength contributes to improving the cutting performance (chipping resistance, wear resistance) of the coated cutting tip, but the content ratio of zirconium oxide in the two-phase mixed oxide layer (Al 2 O 3 —ZrO 2 layer) is In terms of the content ratio of Zr, the ratio of the total amount of Al and Zr contained in the layer (= Zr / (Al + Zr)) in the range of 0.01 to 0.20 (however, atomic ratio) Shall be. When this value indicating the content ratio of zirconium oxide in the Al 2 O 3 —ZrO 2 layer is less than 0.01, the effect of improving the high-temperature strength of the upper layer is small, whereas when this value exceeds 0.20 The relative decrease in the amount of aluminum oxide in the upper layer causes a decrease in high-temperature hardness and heat resistance. As a result, there is a tendency for wear resistance to deteriorate, so a two-phase mixed oxide layer (Al 2 O 3 − The content ratio of zirconium oxide in the ZrO 2 layer) (the value of Zr / (Al + Zr) converted in terms of atomic ratio) is set to a value in the range of 0.01 to 0.20 as described above.
Further, if the average layer thickness is less than 1 μm, the desired excellent cutting performance cannot be exhibited over a long period of time. On the other hand, if the average layer thickness exceeds 15 μm, chipping is likely to occur. Therefore, the average layer thickness was determined to be 1 to 15 μm.

(b)TiN研磨材層
上記の通り、TiN研磨材層は、ウエットブラスト時に、研磨液に噴射研磨材として配合したAl23微粒によって粉砕微粒化し、TiN微粒となって前記Al23微粒との共存下で研磨材として作用し、硬質被覆層の上部層を構成する2相混合酸化物層(Al−ZrO層)の表面を研磨するが、この場合、その平均層厚が0.5μm未満では、ウエットブラスト時における粉砕化TiN微粒の割合が少な過ぎて、研磨機能を十分に発揮することができず、一方、その平均層厚が5μmを越えると、研磨液に噴射研磨材として配合したAl微粒とのバランスがくずれて、相対的に多くなり過ぎ、この場合も研磨機能が急激に低下するようになり、いずれの場合も2相混合酸化物層(Al−ZrO層)の表面をRa:0.2μm以下の表面粗さに研磨することができなくなるという理由で、その平均層厚を0.5〜5μmと定めた。
(B) TiN abrasive layer As described above, TiN abrasive layer during wet blasting, the Al 2 O 3 fine formulated as injection abrasive in the polishing liquid milled micronized, the Al 2 O 3 becomes TiN fine The surface of the two-phase mixed oxide layer (Al 2 O 3 —ZrO 2 layer) that acts as an abrasive in the presence of fine particles and constitutes the upper layer of the hard coating layer is polished. If the thickness is less than 0.5 μm, the ratio of the pulverized TiN fine particles at the time of wet blasting is too small to fully exhibit the polishing function, while if the average layer thickness exceeds 5 μm, the polishing liquid contains The balance with the Al 2 O 3 fine particles blended as the blasting abrasive is lost and becomes relatively large. In this case as well, the polishing function rapidly decreases, and in both cases the two-phase mixed oxide layer ( Al 2 O 3 The surface of the ZrO 2 layer) Ra: because it can not be polished to a surface roughness of less than 0.2 [mu] m, determined the average layer thickness and 0.5 to 5 [mu] m.

(c)研磨液のAl微粒の割合
研磨液のAl微粒には、ウエットブラスト時にTiN研磨材層の粉砕化TiN微粒と共存した状態で、2相混合酸化物層(Al−ZrO層)の表面を研磨する作用があるが、その割合が水との合量に占める割合で15質量%未満でも、また60質量%を越えても研磨機能が急激に低下するようになることから、その割合を15〜60質量%と定めた。
(C) The Al 2 O 3 fine of Al 2 O 3 fine fraction polishing liquid of the polishing liquid, while coexisting with pulverized TiN fine of TiN abrasive layer during wet blasting, two-phase mixed oxide layer (Al 2 O 3 —ZrO 2 layer) has an action of polishing the surface, but the polishing function is drastically reduced even if the proportion of the total amount with water is less than 15% by mass or exceeds 60% by mass. Therefore, the ratio was determined to be 15 to 60% by mass.

この発明の被覆切削チップは、硬質被覆層の上部層を構成する酸化アルミニウムと酸化ジルコニウムの2相混合酸化物層(Al−ZrO層)の切刃稜線部を含むすくい面および逃げ面が、Ra:0.2μm以下の表面粗さに研磨され、さらにクランプ駒当接面部分に存在する研磨材層が、工具本体への被覆切削チップの取り付けに際して、高速切削加工では不可欠の高い挟み締め力の緩衝層として作用するほか切削加工時に発生する強力な機械的震動の防震沿うとして作用することから、前記2相混合酸化物層(Al−ZrO層)に対する圧縮応力が著しく緩和され、かつ、前記クランプ駒による震動攻撃がきわめて小さなものとなり、この結果前記2相混合酸化物層(Al−ZrO層)における剥離やチッピング発生の原因となる割れ発生が防止されるようになることと相俟って、各種の鋼や鋳鉄などの切削加工を、切削速度が350m/min.を越える高速で行うのに用いた場合にも、すぐれた耐チッピング性を発揮し、使用寿命の一層の延命化を可能とするものである。 The coated cutting tip of the present invention includes a rake face and a relief including a cutting edge ridge line portion of a two-phase mixed oxide layer of aluminum oxide and zirconium oxide (Al 2 O 3 —ZrO 2 layer) constituting the upper layer of the hard coating layer. The surface is polished to a surface roughness of Ra: 0.2 μm or less, and the abrasive layer present on the clamp piece abutting surface portion is indispensable for high-speed cutting when attaching the coated cutting tip to the tool body. In addition to acting as a buffer layer for clamping force, it acts as an anti-vibration mechanism for strong mechanical vibrations that occur during cutting, so the compressive stress on the two-phase mixed oxide layer (Al 2 O 3 —ZrO 2 layer) is significantly relaxed, and vibration attack by the clamp piece becomes extremely small, Ya peeling in a result the two-phase mixed oxide layer (Al 2 O 3 -ZrO 2 layers) What it coupled with the cracking causing mappings generation is to be prevented, the cutting of various kinds of steel and cast iron, cutting speed 350 meters / min. Even when used for high-speed operation exceeding the above, excellent chipping resistance is exhibited, and the service life can be further extended.

つぎに、この発明の被覆切削チップを実施例により具体的に説明する。   Next, the coated cutting tip of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMN120408に規定するスローアウエイチップ形状をもったWC基超硬合金製のチップ基体A〜Fをそれぞれ製造した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders were blended into the composition shown in Table 1, added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and pressed into a green compact with a predetermined shape at a pressure of 98 MPa. The green compact was vacuum sintered at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour in a vacuum of 5 Pa. After sintering, the cutting edge portion was R: 0.07 mm honing By processing, chip bases A to F made of a WC-based cemented carbide having a throwaway tip shape specified in ISO · CNMN120408 were manufactured.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMN120412のチップ形状をもったTiCN基サーメット製のチップ基体a〜fを形成した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after the sintering, the cutting edge portion was subjected to a honing process of R: 0.07 mm. Chip bases a to f made of TiCN base cermet having standard / CNMN12041 chip shape were formed.

ついで、これらのチップ基体A〜Fおよびチップ基体a〜fのそれぞれを、通常の化学蒸着装置に装入し、
まず、表3(表3中のl−TiCNは特開平6−8010号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)、表4に示される条件にて、表6に示される目標層厚のTi化合物層および2相混合酸化物層(Al−ZrO層)を硬質被覆層の下部層および上部層として蒸着形成し(図4参照)、
ついで、同じく表3に示されるTiN層形成条件でTiN研磨材層を、同じく表6に示される目標層厚で蒸着形成し(図2参照)、
引き続いて、上記のTiN研磨材層形成の被覆切削チップに、表5に示されるブラスト条件で、かつ表6に示される組み合わせでウエットブラストを施して、クランプ駒当接面部分にTiN研磨材層を存在させた状態で、前記2相混合酸化物層(Al−ZrO層)からなる上部層の切刃稜線部を含むすくい面および逃げ面を、同じく表6に示される表面粗さに研磨することにより本発明被覆切削チップ1〜13をそれぞれ製造した(図1参照)。
Next, each of these chip bases A to F and chip bases a to f is charged into a normal chemical vapor deposition apparatus,
First, Table 3 (l-TiCN in Table 3 indicates the conditions for forming a TiCN layer having a vertically grown crystal structure described in JP-A No. 6-8010, and other than that, a normal granular crystal structure is shown. Hard coating of the Ti compound layer and the two-phase mixed oxide layer (Al 2 O 3 —ZrO 2 layer) having the target layer thickness shown in Table 6 under the conditions shown in Table 4 Vapor deposition as the lower and upper layers of the layer (see Figure 4)
Next, a TiN abrasive material layer was formed by vapor deposition with a target layer thickness also shown in Table 6 under the TiN layer formation conditions shown in Table 3 (see FIG. 2).
Subsequently, the coated cutting tip for forming the TiN abrasive layer is subjected to wet blasting under the blasting conditions shown in Table 5 and in the combinations shown in Table 6, and the TiN abrasive layer is applied to the clamp piece contact surface portion. The rake face and flank face including the cutting edge ridge line portion of the upper layer composed of the two-phase mixed oxide layer (Al 2 O 3 —ZrO 2 layer) in the presence of the surface roughness are also shown in Table 6. The coated cutting chips 1 to 13 of the present invention were each manufactured by polishing (see FIG. 1).

また、比較の目的で、表7に示される通り、上記TiN研磨材層の形成を行なわないで、ウエットブラストを硬質被覆層の2相混合酸化物層(Al−ZrO層)の表面に直接施す以外は同一の条件で従来被覆切削チップ1〜13をそれぞれ製造した。
この結果得られた従来被覆切削チップ1〜13の硬質被覆層を構成する2相混合酸化物層(Al−ZrO層)のウエットブラスト後の表面粗さを表7に示した。
Further, for comparison purposes, as shown in Table 7, without forming the TiN abrasive layer, the wet blasting of the two-phase mixed oxide layer (Al 2 O 3 —ZrO 2 layer) of the hard coating layer was performed. Conventionally coated cutting chips 1 to 13 were produced under the same conditions except that they were directly applied to the surface.
Table 7 shows the surface roughness after wet blasting of the two-phase mixed oxide layer (Al 2 O 3 —ZrO 2 layer) constituting the hard coating layer of the conventional coated cutting chips 1 to 13 obtained as a result.

また、上記本発明被覆切削チップ1〜13の硬質被覆層および研磨材層の組成、さらに従来被覆切削チップ1〜13の硬質被覆層の組成を、それぞれ厚さ方向中央部をオージェ分光分析装置で測定したところ、いずれも目標組成と実質的に同じ組成を示し、さらに同構成層の厚さを、走査型電子顕微鏡を用いて測定(縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。   In addition, the composition of the hard coating layer and the abrasive layer of the above-described coated cutting chips 1 to 13 of the present invention, and the composition of the hard coating layer of the conventional coated cutting chips 1 to 13 are each measured with an Auger spectroscopic analyzer at the center in the thickness direction. When measured, all showed substantially the same composition as the target composition, and when the thickness of the same constituent layer was measured using a scanning electron microscope (longitudinal section measurement), both were substantially the same as the target layer thickness. The same average layer thickness (average value of 5-point measurement) was shown.

つぎに、上記の本発明被覆切削チップ1〜13および従来被覆切削チップ1〜13の各種の被覆切削チップについて、それぞれ図3、図5に示されるとおり、いずれも工具鋼製バイト(工具本体)のシャンク先端部にクランプ駒のクランプねじによる挟み締めにより取り付けた状態で、
被削材:JIS・SCM420の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 400 m/min、
切り込み: 2.5 mm、
送り: 0.35 mm/rev、
切削時間: 7 分、
の条件(切削条件Aという)での合金鋼の乾式断続高速切削試験(通常の切削速度は200m/min)、
被削材:JIS・S50Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度: 430 m/min、
切り込み: 2.0 mm、
送り: 0.4 mm/rev、
切削時間: 8 分、
の条件(切削条件Bという)での炭素鋼の乾式断続高速切削試験(通常の切削速度は200m/min)、さらに、
被削材:JIS・FC350の丸棒、
切削速度: 590 m/min、
切り込み: 2.0 mm、
送り: 0.4 mm/rev、
切削時間: 10 分、
の条件(切削条件Cという)での普通鋳鉄の乾式連続高速切削試験(通常の切削速度は250m/min)を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表8に示した。
Next, as for the various coated cutting tips of the present invention coated cutting tips 1 to 13 and the conventional coated cutting tips 1 to 13, respectively, as shown in FIGS. 3 and 5, each is a tool steel tool (tool body). In a state where it is attached to the tip of the shank by clamping with a clamp screw of the clamp piece,
Work material: JIS · SCM420 lengthwise equal four round grooved round bars,
Cutting speed: 400 m / min,
Cutting depth: 2.5 mm,
Feed: 0.35 mm / rev,
Cutting time: 7 minutes,
Dry interrupted high-speed cutting test of alloy steel under the above conditions (referred to as cutting condition A) (normal cutting speed is 200 m / min),
Work material: JIS / S50C lengthwise equal 4 round bars with vertical grooves,
Cutting speed: 430 m / min,
Cutting depth: 2.0 mm,
Feed: 0.4 mm / rev,
Cutting time: 8 minutes,
Dry intermittent high speed cutting test (normal cutting speed is 200 m / min) of carbon steel under the above conditions (referred to as cutting conditions B),
Work material: JIS / FC350 round bar,
Cutting speed: 590 m / min,
Cutting depth: 2.0 mm,
Feed: 0.4 mm / rev,
Cutting time: 10 minutes,
A dry continuous high-speed cutting test (normal cutting speed is 250 m / min) of normal cast iron under the above conditions (referred to as cutting condition C), and the flank wear width of the cutting edge was measured in any cutting test. The measurement results are shown in Table 8.

Figure 2007160426
Figure 2007160426

Figure 2007160426
Figure 2007160426

Figure 2007160426
Figure 2007160426

Figure 2007160426
Figure 2007160426

Figure 2007160426
Figure 2007160426

Figure 2007160426
Figure 2007160426

Figure 2007160426
Figure 2007160426


Figure 2007160426
Figure 2007160426


表6〜8に示される結果から、本発明被覆切削チップ1〜13は、いずれも硬質被覆層の上部層を構成する2相混合酸化物層(Al−ZrO層)の切刃稜線部を含むすくい面および逃げ面が、Ra:0.2μm以下の表面粗さに研磨され、さらにクランプ駒当接面部分に存在するTiN研磨材層が、工具本体への被覆切削チップの取り付けに際して、350m/minを越える高速切削加工では不可欠の高い挟み締め力の緩衝層として作用し、さらに切削加工時に発生する強力な機械的震動の防震層としても作用することから、前記2相混合酸化物層(Al−ZrO層)に対する圧縮応力が著しく緩和され、かつ、前記クランプ駒による震動攻撃がきわめて小さなものとなり、この結果前記2相混合酸化物層(Al−ZrO層)における剥離やチッピング発生の原因となる割れ発生が防止され、鋼および鋳鉄の高速切削加工で、すぐれた耐チッピング性を示し、長期に亘ってすぐれた切削性能を発揮するのに対して、硬質被覆層の上部層を構成する2相混合酸化物層(Al−ZrO層)の表面粗さが、Ra:0.3〜0.6μmを示す従来被覆切削チップ1〜13においては、いずれも350m/minを越える高速切削加工では、工具取り付けに高い挟み締め力を必要とすることと相俟って、前記2相混合酸化物層(Al−ZrO層)にチッピングが発生し、比較的短時間で使用寿命に至ることが明らかである。

From the results shown in Tables 6 to 8, the coated cutting tips 1 to 13 of the present invention are each a cutting edge of a two-phase mixed oxide layer (Al 2 O 3 —ZrO 2 layer) constituting the upper layer of the hard coating layer. The rake face and flank face including the ridge line part are polished to a surface roughness of Ra: 0.2 μm or less, and the TiN abrasive layer present on the clamp piece abutting surface part is attached to the tool main body with the coated cutting tip. At this time, it acts as a buffer layer with a high clamping force, which is indispensable in high-speed cutting processing exceeding 350 m / min, and also acts as a vibration-proof layer for strong mechanical vibration generated during cutting processing. The compressive stress on the material layer (Al 2 O 3 —ZrO 2 layer) is remarkably relieved and the vibration attack by the clamp piece is extremely small. As a result, the two-phase mixed oxide layer (Al 2 O 3 -ZrO 2 layer) is prevented from cracking, which causes peeling and chipping, exhibits excellent chipping resistance in high-speed cutting of steel and cast iron, and exhibits excellent cutting performance over a long period of time. In contrast, conventional coated cutting in which the surface roughness of the two-phase mixed oxide layer (Al 2 O 3 —ZrO 2 layer) constituting the upper layer of the hard coating layer is Ra: 0.3 to 0.6 μm In each of the chips 1 to 13, the high-speed cutting process exceeding 350 m / min is coupled with the fact that a high clamping force is required for tool attachment, and the two-phase mixed oxide layer (Al 2 O 3 − It is clear that chipping occurs in the ZrO 2 layer) and the service life is reached in a relatively short time.

上述のように、この発明の被覆切削チップは、各種鋼や鋳鉄などの通常の条件での連続切削や断続切削は勿論のこと、特に切削加工を350m/minを越えた高速で行う場合にもすぐれた耐チッピング性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated cutting tip of the present invention can be used not only for continuous cutting and intermittent cutting under normal conditions such as various steels and cast iron, but also when cutting is performed at a high speed exceeding 350 m / min. Because it shows excellent chipping resistance and exhibits excellent cutting performance over a long period of time, it can sufficiently satisfy the high performance of cutting equipment, labor saving and energy saving of cutting work, and further cost reduction. Is.


硬質被覆層の一部を切り欠いて示した本発明被覆切削チップの概略斜視図である。It is a schematic perspective view of this invention coating cutting tip shown notching a part of hard coating layer. 研磨材層の一部を切り欠いて示したTiN研磨材層蒸着形成の被覆切削チップの概略斜視図である。It is a schematic perspective view of the coated cutting tip of TiN abrasive material layer deposition formation shown by cutting out a part of the abrasive material layer. 本発明被覆切削チップの工具本体への取り付け態様を示す概略斜視図である。It is a schematic perspective view which shows the attachment aspect to the tool main body of this invention coated cutting tip. 硬質被覆層の一部を切り欠いて示した従来被覆切削チップの概略斜視図である。It is a schematic perspective view of the conventional coated cutting tip shown by cutting out a part of a hard coating layer. 従来被覆切削チップの工具本体への取り付け態様を示す概略斜視図である。It is a schematic perspective view which shows the attachment aspect to the tool main body of the conventional coated cutting tip.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成されチップ基体の切刃稜線部を含むすくい面および逃げ面の全面に、
下部層として、炭化チタン層、窒化チタン層、炭窒化チタン層、炭酸化チタン層、および炭窒酸化チタン層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、

上部層として、1〜15μmの平均層厚を有し、化学蒸着した状態で、酸化アルミニウムと酸化ジルコニウムの2相混合酸化物組織を有し、かつ、前記酸化ジルコニウムは、Zrの含有割合に換算して、層中に含有するAlとZrの合量に占める割合(原子比)で、0.01〜0.20である、酸化アルミニウムと酸化ジルコニウムの2相混合酸化物層(Al−ZrO層)、

で構成された硬質被覆層を蒸着形成してなり、かつ、工具本体にクランプ駒による挟み締めにより交換自在に取り付けられる穴なし表面被覆サーメット製切削スローアウエイチップにおいて、
上記硬質被覆層の上部層である酸化アルミニウムと酸化ジルコニウムの2相混合酸化物層(Al−ZrO層)の全面に、0.5〜5μmの平均層厚を有する窒化チタン層で構成された研磨材層を蒸着形成した状態で、
ウエットブラストにて、噴射研磨材として、水との合量に占める割合で15〜60質量%の酸化アルミニウム微粒を配合した研磨液を噴射し、
上記の研磨材層のウエットブラストによる粉砕化窒化チタン微粒と、噴射研磨材としての酸化アルミニウム微粒の共存下で、上記クランプ駒当接面部分の上記研磨材層を残して、上記硬質被覆層の上部層を構成する酸化アルミニウムと酸化ジルコニウムの2相混合酸化物層(Al−ZrO層)の表面を研磨して、切刃稜線部を含むすくい面および逃げ面の表面粗さを準拠規格JIS・B0601−1994に基いた測定で、Ra:0.2μm以下としたことを特徴とする、硬質被覆層が高速切削加工ですぐれた耐チッピング性を発揮する穴なし表面被覆サーメット製切削スローアウエイチップ。
It is composed of tungsten carbide base cemented carbide or titanium carbonitride base cermet, and on the entire rake face and flank face including the cutting edge ridge line part of the chip base,
The lower layer is composed of one or more of a titanium carbide layer, a titanium nitride layer, a titanium carbonitride layer, a titanium carbonate layer, and a titanium carbonitride oxide layer, and has an overall average layer thickness of 3 to 20 μm. Having a Ti compound layer,

As an upper layer, it has an average layer thickness of 1 to 15 μm, has a two-phase mixed oxide structure of aluminum oxide and zirconium oxide in the state of chemical vapor deposition, and the zirconium oxide is converted into a content ratio of Zr Then, the ratio (atomic ratio) of the total amount of Al and Zr contained in the layer is 0.01 to 0.20, and the two-phase mixed oxide layer of aluminum oxide and zirconium oxide (Al 2 O 3 -ZrO 2 layer),

In a cutting throwaway tip made of cermet without a hole, which is formed by vapor-depositing a hard coating layer composed of and attached to a tool body by clamping with a clamp piece so as to be replaceable,
A titanium nitride layer having an average layer thickness of 0.5 to 5 μm is formed on the entire surface of the two-phase mixed oxide layer (Al 2 O 3 —ZrO 2 layer) of aluminum oxide and zirconium oxide, which is the upper layer of the hard coating layer. In a state where the configured abrasive layer is deposited and formed,
In wet blasting, as a spraying abrasive, a polishing liquid containing 15 to 60% by mass of aluminum oxide fine particles in a proportion of the total amount with water is sprayed,
In the presence of the ground titanium nitride fine particles by wet blasting of the abrasive layer and the aluminum oxide fine particles as the spray abrasive, the abrasive layer of the abutting surface portion of the clamp piece is left, and the hard coating layer The surface of the two-phase mixed oxide layer (Al 2 O 3 —ZrO 2 layer) of aluminum oxide and zirconium oxide constituting the upper layer is polished to reduce the surface roughness of the rake face and the flank face including the cutting edge ridge line portion. The measurement based on JIS / B0601-1994, Ra: 0.2 μm or less, the hard coating layer is made of surface-coated cermet without hole that exhibits excellent chipping resistance in high-speed cutting. Slow away tip.
JP2005357086A 2005-12-12 2005-12-12 Surface polishing method for throated surface-coated cermet with a hard coating layer that exhibits excellent chipping resistance in high-speed cutting Expired - Fee Related JP4900653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005357086A JP4900653B2 (en) 2005-12-12 2005-12-12 Surface polishing method for throated surface-coated cermet with a hard coating layer that exhibits excellent chipping resistance in high-speed cutting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005357086A JP4900653B2 (en) 2005-12-12 2005-12-12 Surface polishing method for throated surface-coated cermet with a hard coating layer that exhibits excellent chipping resistance in high-speed cutting

Publications (2)

Publication Number Publication Date
JP2007160426A true JP2007160426A (en) 2007-06-28
JP4900653B2 JP4900653B2 (en) 2012-03-21

Family

ID=38243906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005357086A Expired - Fee Related JP4900653B2 (en) 2005-12-12 2005-12-12 Surface polishing method for throated surface-coated cermet with a hard coating layer that exhibits excellent chipping resistance in high-speed cutting

Country Status (1)

Country Link
JP (1) JP4900653B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108044457A (en) * 2017-12-12 2018-05-18 嘉泰数控科技股份公司 The cryogenic processor and method of a kind of zirconia ceramics

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54136489A (en) * 1978-04-14 1979-10-23 Ngk Spark Plug Co Ltd Keeper
JPH0557507A (en) * 1991-08-29 1993-03-09 Kyocera Corp Coating tool and manufacture thereof
JPH0852603A (en) * 1994-07-20 1996-02-27 Sandvik Ab Cutting tool insert and manufacture thereof
JP2001310203A (en) * 1999-08-12 2001-11-06 Mitsubishi Materials Corp Surface covered cemented carbide made cutting tool excellent in surface lubricity against chip
JP2003170311A (en) * 2001-11-30 2003-06-17 Sumitomo Electric Ind Ltd Rotary cutting tool and its accessory
JP2004308008A (en) * 2003-04-01 2004-11-04 Sandvik Ab Cutting tool and method for manufacturing the same
JP2005212045A (en) * 2004-01-29 2005-08-11 Kyocera Corp Holder for cutting tool and cutting tool using this holder
JP2005297145A (en) * 2004-04-13 2005-10-27 Sumitomo Electric Hardmetal Corp Surface-coated end mill and surface-coated drill

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54136489A (en) * 1978-04-14 1979-10-23 Ngk Spark Plug Co Ltd Keeper
JPH0557507A (en) * 1991-08-29 1993-03-09 Kyocera Corp Coating tool and manufacture thereof
JPH0852603A (en) * 1994-07-20 1996-02-27 Sandvik Ab Cutting tool insert and manufacture thereof
JP2001310203A (en) * 1999-08-12 2001-11-06 Mitsubishi Materials Corp Surface covered cemented carbide made cutting tool excellent in surface lubricity against chip
JP2003170311A (en) * 2001-11-30 2003-06-17 Sumitomo Electric Ind Ltd Rotary cutting tool and its accessory
JP2004308008A (en) * 2003-04-01 2004-11-04 Sandvik Ab Cutting tool and method for manufacturing the same
JP2005212045A (en) * 2004-01-29 2005-08-11 Kyocera Corp Holder for cutting tool and cutting tool using this holder
JP2005297145A (en) * 2004-04-13 2005-10-27 Sumitomo Electric Hardmetal Corp Surface-coated end mill and surface-coated drill

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108044457A (en) * 2017-12-12 2018-05-18 嘉泰数控科技股份公司 The cryogenic processor and method of a kind of zirconia ceramics

Also Published As

Publication number Publication date
JP4900653B2 (en) 2012-03-21

Similar Documents

Publication Publication Date Title
JP5023654B2 (en) Surface-coated cermet cutting tool with excellent crystal grain interface strength, modified α-type Al2O3 layer of hard coating layer
JP4900653B2 (en) Surface polishing method for throated surface-coated cermet with a hard coating layer that exhibits excellent chipping resistance in high-speed cutting
JP4853822B2 (en) Surface polishing method for throated surface-coated cermet with a hard coating layer that exhibits excellent chipping resistance in high-speed cutting
JP4857751B2 (en) Surface polishing method for throated surface-coated cermet with a hard coating layer that exhibits excellent chipping resistance in high-speed cutting
JP4883389B2 (en) Surface polishing method for throated surface-coated cermet with a hard coating layer that exhibits excellent chipping resistance in high-speed cutting
JP4900652B2 (en) Surface polishing method for cutting throwaway tip made of surface-covered cermet whose hard coating layer exhibits excellent chipping resistance in high-speed cutting
JP2008149390A (en) Surface coated cutting tool
JP4888689B2 (en) Surface polishing method for throated surface-coated cermet with a hard coating layer that exhibits excellent chipping resistance in high-speed cutting
JP4857711B2 (en) Surface polishing method for throated surface-coated cermet with a hard coating layer that exhibits excellent chipping resistance in high-speed cutting
JP4853612B2 (en) Manufacturing method of cutting throwaway tip made of surface coated cermet whose hard coating layer exhibits excellent chipping resistance in high speed cutting
JP2007118155A (en) Surface-coated cermet throwaway cutting tip having hard coating layer exhibiting excellent chipping resistance in high speed cutting
JP4857752B2 (en) Surface polishing method for cutting throwaway tip made of surface-covered cermet whose hard coating layer exhibits excellent chipping resistance in high-speed cutting
JP4853621B2 (en) Surface polishing method for cutting throwaway tip made of surface-covered cermet whose hard coating layer exhibits excellent chipping resistance in high-speed cutting
JP4873289B2 (en) Surface polishing method for throated surface-coated cermet with a hard coating layer that exhibits excellent chipping resistance in high-speed cutting
JP2007118108A (en) Non-hole surface-coated cermet throwaway cutting tip having hard coating layer exhibiting excellent chipping resistance in high speed cutting
JP4888688B2 (en) Surface polishing method for cutting throwaway tip made of surface-covered cermet whose hard coating layer exhibits excellent chipping resistance in high-speed cutting
JP2007090457A (en) Surface coated cermet-made cutting throw-away tip having hard coating layer exhibiting excellent chipping resistance in high speed cutting
JP4888759B2 (en) Surface polishing method for cutting throwaway tip made of surface-covered cermet whose hard coating layer exhibits excellent chipping resistance in high-speed cutting
JP2007125661A (en) Non-perforated surface coated cermet-made cutting throw-away chip having hard coated layer exhibiting excellent chipping resistance in high-speed cutting
JP4853820B2 (en) Surface polishing method for throated surface-coated cermet with a hard coating layer that exhibits excellent chipping resistance in high-speed cutting
JP4853613B2 (en) Manufacturing method of cutting throwaway tip made of surface coated cermet whose hard coating layer exhibits excellent chipping resistance in high speed cutting
JP2007111814A (en) Throwaway cutting tip of surface-coated cermet with hard coating layer achieving excellent anti-chipping performance in high-speed cutting work
JP4888762B2 (en) Surface polishing method for cutting throwaway tip made of surface-covered cermet whose hard coating layer exhibits excellent chipping resistance in high-speed cutting
JP2007125659A (en) Non-perforated surface coated cermet-made cutting throw-away chip having hard coated layer exhibiting excellent chipping resistance in high-speed cutting
JP2007118157A (en) Non-hole surface-coated cermet throwaway cutting tip having hard coating layer exhibiting excellent chipping resistance in high speed cutting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111221

R150 Certificate of patent or registration of utility model

Ref document number: 4900653

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees