JP2007160325A - Electric resistance welded tube excellent in brittle fracture resistance occurrence characteristic - Google Patents
Electric resistance welded tube excellent in brittle fracture resistance occurrence characteristic Download PDFInfo
- Publication number
- JP2007160325A JP2007160325A JP2005357205A JP2005357205A JP2007160325A JP 2007160325 A JP2007160325 A JP 2007160325A JP 2005357205 A JP2005357205 A JP 2005357205A JP 2005357205 A JP2005357205 A JP 2005357205A JP 2007160325 A JP2007160325 A JP 2007160325A
- Authority
- JP
- Japan
- Prior art keywords
- brittle fracture
- angle
- electric resistance
- welded
- fracture resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Butt Welding And Welding Of Specific Article (AREA)
Abstract
Description
本発明は電縫鋼管に関し、特に溶接部の耐脆性破壊発生特性に優れたものに関する。 The present invention relates to an electric resistance welded steel pipe, and particularly relates to an excellent weld brittle fracture resistance.
近年、電縫鋼管は、その製造技術や素材特性の向上により、著しく性能が向上したため、油井管、ラインパイプなどに適用されるようになったが、これらの分野では使用環境も厳しさが増しているため、強度、靭性を一段と向上させることが必要とされている。 In recent years, ERW steel pipes have been applied to oil well pipes, line pipes, etc. because their performance has been significantly improved due to improvements in manufacturing technology and material characteristics. Therefore, it is necessary to further improve the strength and toughness.
特に高靭化のために調整された母材組織が消失し、特性が劣化しやすいシーム溶接部の信頼性向上が望まれ、種々の提案がなされている。 In particular, the improvement of the reliability of seam welds where the base metal structure adjusted for high toughness disappears and the characteristics are likely to deteriorate is desired, and various proposals have been made.
特許文献1は、電縫鋼管の製造方法に関し、シーム溶接部の靭性を向上させるため、電縫溶接後、溶接部を再加熱して靭性を回復させることが記載されている。 Patent document 1 relates to a method for producing an electric resistance welded pipe, and describes that after electric resistance welding, the weld is reheated to recover the toughness in order to improve the toughness of the seam weld.
特許文献2には、シーム溶接部の組織をフェライト主体とし、靭性を向上させることが記載され、特許文献3には電縫溶接後、鋼管全体を800℃以上に加熱し、マルテンサイトとならないように焼入れし、焼き戻しを行わないことにより低降伏比、低温靭性、耐サワー特性の複合的特性を向上させることが記載されている。 Patent Document 2 describes that the structure of the seam weld is mainly composed of ferrite and improves toughness. Patent Document 3 heats the entire steel pipe to 800 ° C. or higher after ERW welding so that it does not become martensite. It is described that the composite characteristics of low yield ratio, low temperature toughness and sour resistance are improved by quenching and not tempering.
一方、特許文献4はペネトレータと呼ばれる、高融点の酸化物が溶接部に残留する欠陥を防止する技術に関し、溶接点近傍にレーザビームを照射し、照射部の金属を蒸発させつつシーム溶接することによりペネトレータの発生を防止し、シャルピー試験で得られる靭性などを安定させることが記載されている。
ところで、使用環境が厳しく、破壊した場合に環境破壊が大きな構造物の場合、溶接部に耐脆性破壊発生特性が要求されることが多い。脆性破壊は溶接部のミクロ的な脆化部分、例えば、多層盛溶接における再熱された溶接熱影響部の微小領域、から発生するため、ノッチ底となったミクロ組織における平均化された靭性を評価するシャルピー衝撃試験では十分な評価ができず、BS7448規格などCTOD試験による限界CTOD値(限界亀裂開口変位量)で評価されている。 By the way, in the case of a structure in which the use environment is severe and the environment is severely damaged, the welded portion is often required to have brittle fracture resistance. Brittle fracture occurs from the microscopic embrittlement part of the weld, for example, the micro area of the reheated heat affected zone in multi-layer welding, so the average toughness in the microstructure at the bottom of the notch is reduced. In the Charpy impact test to be evaluated, sufficient evaluation cannot be performed, and the evaluation is based on a critical CTOD value (critical crack opening displacement amount) by a CTOD test such as BS7448 standard.
従って、溶接部の靭性をシャルピー衝撃試験で評価する特許文献1〜3や、シャルピー衝撃試験による靭性評価を前提とした特許文献4による電縫鋼管溶接部の耐脆性破壊発生特性は不明で、I型突合せ開先の通電による1パスの溶接熱サイクルを特徴とする電縫鋼管において耐脆性破壊発生特性に優れるものの製造方法は明らかとされない。 Therefore, the resistance to brittle fracture occurrence of ERW steel pipe welds according to Patent Documents 1 to 3 in which the toughness of the weld is evaluated by Charpy impact test and Patent Document 4 on the premise of the toughness evaluation by Charpy impact test is unknown. A method for producing an ERW steel pipe excellent in brittle fracture resistance characteristics characterized by a one-pass welding thermal cycle by energizing the die butt groove is not clarified.
そこで、本発明はシーム溶接部のCTOD試験で優れた限界CTOD値が得られる、耐脆性破壊特性に優れた電縫鋼管の製造方法を提供することを目的とする。 Accordingly, an object of the present invention is to provide a method for producing an electric resistance welded steel pipe excellent in brittle fracture resistance, in which an excellent critical CTOD value can be obtained in a CTOD test of a seam weld.
本発明者等は、電縫鋼管のシーム溶接部の破壊挙動を把握するため、開先形状や溶接条件を種々変化させた電縫鋼管について、多数の破壊靭性試験(CTOD試験)を実施し、また開先形状を変化させた場合のシーム溶接部における応力状態をFEM解析により調査した。 The present inventors conducted a number of fracture toughness tests (CTOD tests) on ERW steel pipes with various changes in groove shape and welding conditions in order to grasp the fracture behavior of seam welds of ERW steel pipes, Moreover, the stress state in the seam weld when the groove shape was changed was investigated by FEM analysis.
その結果、1.脆性破壊はボンド部から発生し、脆性破壊の起点となるミクロ的脆化域は、開先部に沿って形成されるボンド部に存在すること、2.開先形状を変化させた場合、ボンド部における応力状態が変化することを知見した。 As a result, 1. Brittle fracture occurs from the bond part, and the microscopic embrittlement region that is the starting point of the brittle fracture exists in the bond part formed along the groove part. It has been found that when the groove shape is changed, the stress state in the bond portion changes.
本発明は得られた知見を基に、更に検討を加えて得られたもので、すなわち、本発明は、
1.径方向断面におけるボンド部が、径方向に対し角度θを有する1辺〜3辺の斜辺からなり、溶接部の降伏強さが母材部の降伏強さ以下、且つ溶接部の降伏比が85%以下であることを特徴とする耐脆性破壊発生特性に優れた電縫鋼管。
2.角度θが3〜30°であることを特徴とする1記載の耐脆性破壊発生特性に優れた電縫鋼管。
The present invention was obtained by further study based on the obtained knowledge, that is, the present invention,
1. The bond portion in the radial cross section is composed of one to three hypotenuses having an angle θ with respect to the radial direction, the yield strength of the welded portion is equal to or less than the yield strength of the base metal portion, and the yield ratio of the welded portion is 85. % Electric resistance welded steel pipe with excellent brittle fracture resistance.
2. 2. The electric resistance welded steel pipe having excellent brittle fracture resistance according to 1, wherein the angle θ is 3 to 30 °.
本発明によれば、耐脆性破壊発生特性に優れた電縫鋼管が得られ、産業上極めて有用である。 According to the present invention, an ERW steel pipe excellent in brittle fracture resistance is obtained, which is extremely useful industrially.
本発明に係る耐脆性破壊発生特性に優れた電縫鋼管は、溶接部の径方向断面においてボンド部が、径方向に対し傾いた斜辺からなるもので、更に、溶接部の機械的性質を規定する。 The electric resistance welded steel pipe having excellent brittle fracture resistance according to the present invention is such that the bond part in the radial section of the welded part is composed of a hypotenuse inclined with respect to the radial direction, and further defines the mechanical properties of the welded part. To do.
まず、径方向に対し角度θだけ傾いた斜辺からなる、電縫鋼管の溶接部におけるボンド部の形状について説明する。 First, the shape of the bond portion in the welded portion of the ERW steel pipe, which is composed of a hypotenuse inclined by an angle θ with respect to the radial direction, will be described.
図1に溶接部の径方向断面におけるボンド部の形状を模式的に示す。図において、点線は鋼板表面に直角で鋼管中心に向かう線で径方向を示し、太線はボンド部を示し、BMは母材、HAZは溶接熱影響部を指すものとする。 FIG. 1 schematically shows the shape of the bond portion in the radial cross section of the weld. In the figure, the dotted line indicates the radial direction as a line perpendicular to the steel plate surface and toward the center of the steel pipe, the thick line indicates the bond portion, BM indicates the base material, and HAZ indicates the weld heat affected zone.
図1(a)は径方向に対し、角度θだけ傾いた斜辺が1辺の場合、(b)は2辺、(c)は3辺、(d)は4辺の場合を示し、斜辺が2辺以上の場合はボンド部はのこ歯状となる。尚、角度θは各辺で異なっても良い。 FIG. 1A shows the case where the hypotenuse inclined by the angle θ with respect to the radial direction is one side, FIG. 1B shows the case of two sides, FIG. 1C shows the case of three sides, and FIG. In the case of two or more sides, the bond portion has a sawtooth shape. The angle θ may be different on each side.
本発明に係る耐脆性破壊発生特性に優れた電縫鋼管では、溶接部の径断面においてボンド部が、径方向に対し角度θだけ傾いた斜辺からなり、斜辺の数は1辺〜3辺とする。 In the electric resistance welded steel pipe excellent in brittle fracture resistance according to the present invention, the bond portion in the radial cross section of the welded portion is composed of a hypotenuse inclined at an angle θ with respect to the radial direction, and the number of hypotenuses is 1 to 3 sides. To do.
ボンド部を傾斜させると、CTOD試験の際、CTOD試験片の疲労き裂が溶接部の高い応力域(ボンド部周辺)を横切って導入されるようになり、疲労亀裂の先端部がボンド部に沿った場合と比較して、限界CTOD値が向上する。 When the bond part is tilted, during the CTOD test, the fatigue crack of the CTOD test piece is introduced across the high stress area of the welded part (around the bond part), and the tip of the fatigue crack is in the bond part. The limit CTOD value is improved as compared with the case along.
角度θは、3〜30°とする。角度θが3°未満の場合は、上述した効果が得られず、一方、30°を超えるとボンド部に沿って剪断破壊が発生しやすくなり、且つ溶接部の引張り強度(シーム溶接部と直角方向の引張り強度)が低下するため、3〜30°とする。所望する溶接部の引張り強度を安定的に得るためには角度θは3〜15°とすることが好ましい。 The angle θ is 3 to 30 °. When the angle θ is less than 3 °, the above-described effect cannot be obtained. On the other hand, when the angle θ exceeds 30 °, shear fracture tends to occur along the bond portion, and the tensile strength of the welded portion (perpendicular to the seam welded portion). Since the tensile strength in the direction is reduced, the angle is set to 3 to 30 °. In order to stably obtain the desired tensile strength of the welded portion, the angle θ is preferably 3 to 15 °.
斜辺は1辺以上〜3辺以内とする。図1(a)に示すようにボンド部を1辺からなる斜辺とし、傾斜させると、CTOD試験の際、CTOD試験片の疲労き裂が溶接部の高い応力域(ボンド部周辺)を横切って導入されるようになり、疲労亀裂の先端部がボンド部に沿った場合と比較して、限界CTOD値が向上する。 The hypotenuse is between 1 and 3 sides. As shown in FIG. 1 (a), if the bond part is a hypotenuse consisting of one side and is inclined, the fatigue crack of the CTOD test piece crosses the high stress area of the welded part (around the bond part) during the CTOD test. As a result, the limit CTOD value is improved as compared with the case where the tip of the fatigue crack is along the bond portion.
一方、図1(d)に示すように斜辺を4辺とすると疲労亀裂の先端部がボンド部を横切る回数が増加し、上述した効果が得られない。図1(d)は斜辺が4辺の場合であるが、斜辺5辺以上でも同様である。そこで、本発明では1辺〜3辺とする。 On the other hand, as shown in FIG. 1 (d), when the hypotenuse is set to four sides, the number of times the tip of the fatigue crack crosses the bond portion increases, and the above-described effect cannot be obtained. FIG. 1 (d) shows a case where the hypotenuse has four sides, but the same applies to cases where there are five or more hypotenuses. Therefore, in the present invention, the length is 1 to 3 sides.
図1(b)、(c)に示すように、斜辺が2辺、3辺となるとボンド部はのこ歯状を呈する。この場合、角度θは点線で示す径方向の左右において点線と斜辺がなす角度のうち狭角を指すものとする。 As shown in FIGS. 1B and 1C, when the hypotenuse has two sides and three sides, the bond portion has a sawtooth shape. In this case, the angle θ indicates a narrow angle among the angles formed by the dotted line and the hypotenuse on the left and right in the radial direction indicated by the dotted line.
更に、本発明では、溶接部の引張特性において、降伏強さは母材以下、降伏比は85%以上とする。 Furthermore, in the present invention, in the tensile properties of the welded portion, the yield strength is not more than the base metal, and the yield ratio is not less than 85%.
溶接部の降伏強さが母材より高くなると、CTOD試験片の亀裂先端部の応力が高くなり限界CTOD値が低下するため、母材以下とする。 When the yield strength of the welded portion is higher than that of the base material, the stress at the crack tip of the CTOD test piece is increased and the critical CTOD value is decreased.
溶接部の降伏比は85%より小さくなると、CTOD試験片の亀裂先端部の応力が高くなり限界CTOD値が低下するため、85%以上とする。 If the yield ratio of the welded portion is smaller than 85%, the stress at the crack tip of the CTOD specimen increases and the critical CTOD value decreases, so the yield ratio is set to 85% or more.
表1に図1(a)〜(d)のボンド部の形状を有するAPIX80級電縫鋼管の溶接部について行った、CTOD試験結果を示す。CTOD試験片は図1(a)〜(d)の点線部に疲労ノッチを導入するサイドノッチ試験片とし、各試験条件で3本を試験し、限界CTOD値の最低値を求めた。試験はBS7448Part2に準拠した。 Table 1 shows the results of the CTOD test conducted on the welded portion of the APIX 80 grade ERW steel pipe having the shape of the bond portion shown in FIGS. The CTOD test piece was a side notch test piece in which a fatigue notch was introduced into the dotted line portion of FIGS. 1A to 1D, and three pieces were tested under each test condition to obtain the lowest limit CTOD value. The test was based on BS7448Part2.
表1より、ボンド部を、径方向に対し角度3〜30°だけ傾いた斜辺とし、且つ斜辺の数が1辺〜3辺とした場合(No.1〜6)は、角度または斜辺の数が本発明の規定を外れた場合(No.7〜9)より、限界CTOD値に優れる。 From Table 1, when the bond part is a hypotenuse inclined at an angle of 3 to 30 ° with respect to the radial direction and the number of hypotenuses is 1 to 3 (No. 1 to 6), the number of the angle or hypotenuse However, it is superior in the limit CTOD value compared to the case where it deviates from the definition of the present invention (No. 7 to 9).
また、溶接部の引張特性において、降伏比が75%と低い場合(No.10)、降伏強さが母材超えの場合(No.11)は、ボンド部の形状が本発明の規定を満足していても限界CTOD値が低い。 Further, in the tensile properties of the welded portion, when the yield ratio is as low as 75% (No. 10), when the yield strength exceeds the base metal (No. 11), the shape of the bond portion satisfies the provisions of the present invention. However, the critical CTOD value is low.
母材、溶接部の引張特性はJIS Z2201による試験片を用い、JIS Z2241に準拠し求めた。継手強度試験はJIS Z3121に準拠し行った。 The tensile properties of the base metal and the welded part were determined according to JIS Z2241 using test pieces according to JIS Z2201. The joint strength test was performed according to JIS Z3121.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005357205A JP2007160325A (en) | 2005-12-12 | 2005-12-12 | Electric resistance welded tube excellent in brittle fracture resistance occurrence characteristic |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005357205A JP2007160325A (en) | 2005-12-12 | 2005-12-12 | Electric resistance welded tube excellent in brittle fracture resistance occurrence characteristic |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007160325A true JP2007160325A (en) | 2007-06-28 |
Family
ID=38243816
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005357205A Pending JP2007160325A (en) | 2005-12-12 | 2005-12-12 | Electric resistance welded tube excellent in brittle fracture resistance occurrence characteristic |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007160325A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105115802A (en) * | 2015-09-21 | 2015-12-02 | 蓬莱巨涛海洋工程重工有限公司 | Novel welding repair CTOD (crack tip opening displacement) experimental method |
-
2005
- 2005-12-12 JP JP2005357205A patent/JP2007160325A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105115802A (en) * | 2015-09-21 | 2015-12-02 | 蓬莱巨涛海洋工程重工有限公司 | Novel welding repair CTOD (crack tip opening displacement) experimental method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5068645B2 (en) | High-strength steel plate and high-strength welded steel pipe excellent in ductile fracture characteristics, and methods for producing them | |
JP4288304B1 (en) | Turbine rotor and method of manufacturing turbine rotor | |
JP4528089B2 (en) | Large heat input butt welded joints for ship hulls with brittle fracture resistance | |
US20080226396A1 (en) | Seamless steel tube for use as a steel catenary riser in the touch down zone | |
US20070175967A1 (en) | High integrity welding and repair of metal components | |
JP5870665B2 (en) | High-strength welded steel pipe with excellent tensile stress strength of 600 MPa or more with excellent resistance to sulfide stress corrosion cracking | |
JP5751292B2 (en) | Welded joint manufacturing method and welded joint | |
WO2013051249A1 (en) | Welded steel pipe with excellent welding heat-affected zone toughness, and process for producing same | |
JP2005144552A5 (en) | Large heat input butt welded joint for hulls with excellent brittle fracture resistance | |
JP5171007B2 (en) | Electron beam welded joint with excellent brittle fracture resistance | |
JP6201803B2 (en) | Submerged arc welds with excellent low temperature toughness | |
JP2007021532A (en) | Electron beam welded joint having excellent resistance to generation of brittle fracture | |
JP2016216819A (en) | Thick steel plate and welded joint | |
JP4319886B2 (en) | Large heat input butt weld joint with brittle fracture resistance | |
JP2007160325A (en) | Electric resistance welded tube excellent in brittle fracture resistance occurrence characteristic | |
Ichiyama et al. | Factors affecting flash weldability in high strength steel–a study on toughness improvement of flash welded joints in high strength steel | |
JP5171006B2 (en) | Welded joints with excellent brittle fracture resistance | |
JP2009012049A (en) | Multi-layer butt weld joint superior in brittle crack propagation resistant characteristic and weld structure body | |
JP4394996B2 (en) | Welded joints with excellent brittle fracture resistance | |
JP6455210B2 (en) | UOE steel pipe with excellent low temperature toughness | |
JP4576262B2 (en) | Solid wire for gas shielded arc welding for steel pipe circumference welded joint and welding method | |
JP2003201535A (en) | Steel sheet and steel pipe for electron beam welding, and pipeline having excellent low temperature toughness in weld metal zone | |
JP4751027B2 (en) | High strength welded steel pipe with excellent weld brittle cracking characteristics | |
Mohammadijoo | Development of a welding process to improve welded microalloyed steel characteristics | |
JP2011143430A (en) | Method of manufacturing tailored blank, and steel plate for tailored blank |