JP5171007B2 - Electron beam welded joint with excellent brittle fracture resistance - Google Patents

Electron beam welded joint with excellent brittle fracture resistance Download PDF

Info

Publication number
JP5171007B2
JP5171007B2 JP2006271044A JP2006271044A JP5171007B2 JP 5171007 B2 JP5171007 B2 JP 5171007B2 JP 2006271044 A JP2006271044 A JP 2006271044A JP 2006271044 A JP2006271044 A JP 2006271044A JP 5171007 B2 JP5171007 B2 JP 5171007B2
Authority
JP
Japan
Prior art keywords
weld metal
less
electron beam
value
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006271044A
Other languages
Japanese (ja)
Other versions
JP2008088504A (en
Inventor
忠 石川
竜一 本間
明彦 児島
譲 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2006271044A priority Critical patent/JP5171007B2/en
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to US12/442,665 priority patent/US8114528B2/en
Priority to EP11189660.1A priority patent/EP2422913B1/en
Priority to KR1020097005190A priority patent/KR101192815B1/en
Priority to DK11189659.3T priority patent/DK2422912T3/en
Priority to DK07707042.3T priority patent/DK2070631T3/en
Priority to ES07707042.3T priority patent/ES2442867T3/en
Priority to PCT/JP2007/050738 priority patent/WO2008041372A1/en
Priority to EP11189659.3A priority patent/EP2422912B1/en
Priority to ES11189660.1T priority patent/ES2444507T3/en
Priority to EP07707042.3A priority patent/EP2070631B1/en
Priority to BRPI0719795-0A priority patent/BRPI0719795B1/en
Priority to ES11189659.3T priority patent/ES2444784T3/en
Priority to DK11189660.1T priority patent/DK2422913T3/en
Publication of JP2008088504A publication Critical patent/JP2008088504A/en
Priority to NO20091123A priority patent/NO336433B1/en
Application granted granted Critical
Publication of JP5171007B2 publication Critical patent/JP5171007B2/en
Priority to NO20150120A priority patent/NO339549B1/en
Priority to NO20150121A priority patent/NO339550B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Welding Or Cutting Using Electron Beams (AREA)

Description

本発明は、溶接構造体、特に、板厚50mm超の厚鋼板を電子ビームにより突合せ溶接して構成した溶接構造体の耐脆性破壊発生特性に優れた電子ビーム溶接継手に関する。   The present invention relates to an electron beam welded joint excellent in brittle fracture resistance of a welded structure, particularly a welded structure formed by butt welding a thick steel plate having a thickness of more than 50 mm with an electron beam.

石油等の化石エネルギーから脱却し、再生可能な自然エネルギーを利用しようとする社会的ニーズは極めて高まっており、大規模な風力発電も世界的に普及しつつある。
風力発電に最も適している地域は、絶えず強風を期待できる地域であり、洋上風力発電も世界的規模で実現されている。洋上に風力発電塔を建設するためには、海底の地盤に塔の基礎部分を打ち込む必要があり、海水面から風力発電のタービン翼の高さを十分確保するためには、基礎部分も十分な長さが必要である。
Social needs to move away from fossil energy such as oil and utilize renewable natural energy are extremely increasing, and large-scale wind power generation is also spreading worldwide.
The most suitable area for wind power generation is the area where strong winds can always be expected, and offshore wind power generation has also been realized on a global scale. In order to construct a wind power tower on the ocean, it is necessary to drive the foundation of the tower into the ground at the bottom of the sea. In order to secure the height of the turbine blades of the wind power generation from the sea level, the foundation is also sufficient. Length is needed.

そのため、風力発電塔の基礎部分では、板厚が100mm程度で、直径が4m程度の大断面を有する管構造となり、塔の全体高さは80m以上にもなる。そのような巨大構造物を建設現場近くの海岸において、簡易に、しかも高能率で溶接組み立てすることが求められている。
そこで、上記のような板厚100mmにもおよぶ極厚鋼板を高能率で、しかもオンサイトで溶接するという、従来にないニーズが生じてきた。
For this reason, the basic portion of the wind power generation tower has a pipe structure having a large cross section with a plate thickness of about 100 mm and a diameter of about 4 m, and the overall height of the tower is 80 m or more. It is required to weld and assemble such a huge structure easily and efficiently on the coast near the construction site.
Therefore, an unprecedented need has arisen to weld an extremely thick steel plate having a thickness of 100 mm as described above with high efficiency and on-site welding.

一般に、電子ビーム溶接方法は、高密度・高エネルギービームにより厚鋼板を効率的に溶接できる溶接方法であるが、真空チャンバー内で高真空状態を維持して溶接する必要があるので、従来は、溶接できる鋼板の大きさが限られていた。   Generally, the electron beam welding method is a welding method that can efficiently weld a thick steel plate with a high-density, high-energy beam. However, since it is necessary to perform welding while maintaining a high vacuum state in a vacuum chamber, The size of the steel plate that can be welded was limited.

これに対して、近年、極厚鋼板を効率よく現地溶接できる溶接方法として、低真空下で施工が可能な電子ビーム溶接方法(RPEBW:Reduced Pressured Electron Beam Welding: 減圧電子ビーム溶接)が英国の溶接研究所で開発され、提案されている(例えば、特許文献1参照)。
このRPEBW法を用いることにより、風力発電塔のような大型構造物を溶接する場合にも、溶接する部分だけを局所的に真空にして、効率的に溶接ができることが期待される。
On the other hand, recently, an electron beam welding method (RPEBW: Reduced Pressure Electron Beam Welding), which can be applied under low vacuum, is a welding method that can be used to efficiently weld ultra-thick steel sheets in the field. It has been developed and proposed in a laboratory (see, for example, Patent Document 1).
By using this RPEBW method, even when welding a large structure such as a wind power tower, it is expected that only the part to be welded is locally evacuated and welding can be performed efficiently.

しかし、一方で、このRPEBW法では、真空チャンバー内で溶接する方法に比べて、真空度が低下した状態で溶接するために、電子ビームで溶融され、その後凝固する溶融金属部分(以下、溶接金属部と称する)の靭性確保が困難となるという、新たな課題が浮かび上がってきた。   However, on the other hand, in this RPEBW method, a molten metal portion (hereinafter referred to as a weld metal) that is melted by an electron beam and then solidified in order to perform welding in a state where the degree of vacuum is lowered as compared with a method of welding in a vacuum chamber. A new problem has emerged that it is difficult to ensure the toughness of the part.

このような課題に対し、従来、板状のNiなどのインサートメタルを溶接面に張付けて電子ビーム溶接することにより、溶接金属のNi含有量を0.1〜4.5%として、溶接金属のシャルピー衝撃値などの靭性を改善することが、特許文献2などで知られている。
しかし、RPEBW法を用いて溶接する際に、この方法では、インサートメタル中のNi等の元素が溶接熱影響部まで均一に拡散せず、溶接金属と溶接熱影響部(以下、HAZ部と称する)の硬さの差を増大させるため、かえってHAZ部の靭性が大きくばらつくという問題が明らかになってきた。
For such problems, conventionally, by inserting an insert metal such as plate-like Ni onto the welding surface and performing electron beam welding, the Ni content of the weld metal is set to 0.1 to 4.5%, and It is known in Patent Document 2 and the like to improve toughness such as Charpy impact value.
However, when welding using the RPEBW method, in this method, elements such as Ni in the insert metal are not uniformly diffused to the weld heat affected zone, and the weld metal and the weld heat affected zone (hereinafter referred to as HAZ zone). However, the problem that the toughness of the HAZ part varies greatly has been clarified.

近年、溶接構造物の安全性を定量的に評価する指標として、CTOD(Crack Tip Opening Displacement:亀裂端開口変位)試験により求められる、破壊力学に基づいた破壊靭性値δc値が重視されるようになってきている。従来のVノッチシャルピー衝撃試験のような小型の試験では良好な結果を示しても、大型構造物の溶接継手のCTOD試験では、必ずしも良好な破壊靭性値δcを示すとは限らない。
RPEBW法により溶接して得られる溶接継手は、上記のようなインサートメタルを使用する方法では、溶接熱影響部の靭性が大きくばらつくため破壊靭性値δcを十分に確保することは困難であった。
In recent years, as an index for quantitatively evaluating the safety of welded structures, the fracture toughness value δc value based on fracture mechanics obtained by CTOD (Crack Tip Opening Displacement) test is emphasized. It has become to. Even if a small test such as the conventional V-notch Charpy impact test shows a good result, the CTOD test of a welded joint of a large structure does not always show a good fracture toughness value δc.
In the welded joint obtained by welding by the RPEBW method, it is difficult to sufficiently secure the fracture toughness value δc because the toughness of the weld heat affected zone varies greatly in the method using the insert metal as described above.

一方、インサートメタルによらないで、電子ビーム溶接継手の靭性を向上させることも知られている。たとえば、
特許文献3には、母材として、Al:0.007%以下、Ti:0.003〜0.05%、O:0.0010〜0.0100%を含有し、かつ粒子径が0.05〜5.0μmのTi酸化物を均一に分散させた鋼を用い、HAZ部と溶接金属部のミクロ組織を微細化することが記載されている。
On the other hand, it is also known to improve the toughness of an electron beam welded joint without using insert metal. For example,
Patent Document 3 contains, as a base material, Al: 0.007% or less, Ti: 0.003-0.05%, O: 0.0010-0.0100%, and a particle size of 0.05. It describes that the microstructure of the HAZ part and the weld metal part is refined using a steel in which Ti oxide of ˜5.0 μm is uniformly dispersed.

特許文献4には、母材のAl量を0.005%未満とすることにより、少ない非金属介在物数であっても微細なミクロ組織の溶接金属が得られることが記載されている。
特許文献5には、母材として、Mn:0.8〜1.5%、P :0.010%以下、S :0.001%以下、Ti:0.005〜0.03%、Al:0.005%以下、Ca:0.001〜0.004%、N :0.001〜0.005%、O :0.003%以下を含有する鋼を用い、溶接金属部に、Sを0.002〜0.01%含有させるとともに、0.1〜5μmのTi、Al、Caを主体とする酸化物とMnSとの複合体を5〜1000個/mm含有させることが記載されている。
Patent Document 4 describes that when the Al content of the base material is less than 0.005%, a weld metal having a fine microstructure can be obtained even with a small number of non-metallic inclusions.
In Patent Document 5, as a base material, Mn: 0.8 to 1.5%, P: 0.010% or less, S: 0.001% or less, Ti: 0.005 to 0.03%, Al: 0.005% or less, Ca: 0.001 to 0.004%, N: 0.001 to 0.005%, O: steel containing 0.003% or less, S is 0 in the weld metal part with inclusion .002~0.01%, Ti of 0.1 to 5 [mu] m, Al, a composite of oxide and MnS mainly of Ca be contained 5-1000 pieces / mm 2 have been described .

特許文献6には、母材として、Ti:0.005〜0.025%、Al:0.020〜0.050%、O:0.0030%以下を含有し、かつ、〔O〕<0.019×〔Si〕+0.009×〔Al〕を満足する組成からなり、3μm以上の鋼中介在物が5.0個/mm以下の鋼を用い、溶接金属部の3μm以上の鋼中介在物が3.0個/mm以下となるようにすることが記載されている。 Patent Document 6 contains Ti: 0.005 to 0.025%, Al: 0.020 to 0.050%, O: 0.0030% or less as a base material, and [O] <0. 0.19 × [Si] + 0.009 × [Al] The composition consists of steel with 3 μm or more inclusions in steel of 5.0 pieces / mm 2 or less, and a weld metal part of 3 μm or more in steel. It is described that the number of existing objects is 3.0 pieces / mm 2 or less.

以上の技術は、溶接後の冷却過程において微細な酸化物系非金属介在物を多数形成させ、その介在物をオーステナイトからフェライトへの変態に際しその変態の核として利用し、良好な靭性を示す微細な針状フェライトを多く含むミクロ組織を形成させることにより、靭性の優れた溶接金属を得るものであるが、いずれも、上記インサートメタルを使用する場合と同様にCTOD試験での破壊靭性値δc値の確保については検討されておらず、また、いずれも、高真空を用いた電子ビーム溶接、すなわち、雰囲気から溶接金属中に酸素が供給されないことを前提とする技術であり、真空度の低いRPEBWにおける適用については、さらに検討が必要である。   The above technology forms a large number of fine oxide-based non-metallic inclusions in the cooling process after welding, and uses these inclusions as the nucleus of the transformation in the transformation from austenite to ferrite. By forming a microstructure containing a large amount of acicular ferrite, a weld metal with excellent toughness is obtained. In both cases, the fracture toughness value δc value in the CTOD test is the same as when using the above insert metal. Is not studied, and both are electron beam welding using a high vacuum, that is, a technique based on the premise that oxygen is not supplied into the weld metal from the atmosphere, and the RPEBW has a low degree of vacuum. Further study is needed on the application of.

また、靭性を向上させるその他の方法として、エレクトロガス溶接等の大入熱溶接継手においては、ディープノッチ試験に基づく破壊靭性値Kcを確保するために、溶接金属と母材の硬さ比を110%以下となるように制御して、溶接金属部と母材部の境界部(以下、FL部と称する)の破壊靭性Kcを改善する方法が、特許文献7によって提案されている。   As another method for improving toughness, in a high heat input welded joint such as electrogas welding, the hardness ratio of the weld metal to the base metal is set to 110 in order to ensure the fracture toughness value Kc based on the deep notch test. Patent Document 7 proposes a method for improving the fracture toughness Kc of the boundary between the weld metal part and the base metal part (hereinafter referred to as the FL part) by controlling it to be less than or equal to%.

しかしながら、電子ビーム溶接継手の破壊靭性値δcを確保するためには、FL部と溶接金属部の両方の破壊靭性値δcを満足させる必要があり、溶接金属の硬さを、大入熱溶接継手と同様に母材の硬さの110%以下にまで低下させると、電子ビーム溶接継手における溶接金属部の破壊靭性値δcを確保できなくないという問題が生じる。   However, in order to ensure the fracture toughness value δc of the electron beam welded joint, it is necessary to satisfy the fracture toughness value δc of both the FL part and the weld metal part. Similarly, when the hardness is lowered to 110% or less of the base metal hardness, there arises a problem that the fracture toughness value δc of the weld metal portion in the electron beam welded joint cannot be secured.

また、電子ビーム溶接法は、電子ビームの持つエネルギーにより溶接部の母材を一旦溶融し再凝固して溶接する方法であり、エレクトロガス溶接等のように、溶接ワイヤー等による溶接金属部の硬さや破壊靭性値δcなどの特性を容易にコントロールすることは難しい。   In addition, the electron beam welding method is a method in which the base metal of the welded portion is once melted and re-solidified by the energy of the electron beam and then welded, and the weld metal portion is hardened by a welding wire or the like, such as electrogas welding. It is difficult to easily control characteristics such as the thickness and fracture toughness value δc.

WO99/16101WO99 / 16101 特開平3−248783号公報Japanese Patent Laid-Open No. 3-247873 特開昭62−64486号公報JP-A-62-64486 特開昭64−34598号公報Japanese Patent Laid-Open No. 64-34598 特開2001−207242号JP 2001-207242 A 特開2003−201535号JP 2003-201535 A 特開2005−144552号JP-A-2005-144552

上記従来技術に鑑みて、本発明は、インサートメタルを使用せずに電子ビーム溶接した溶接継手において、溶接金属部、及び、特に局所的な応力が増大するFL部の両方の破壊靭性値δcを向上させ、溶接継手の破壊靭性を安定的に向上する方法を提供することを課題とする。   In view of the above prior art, the present invention provides the fracture toughness value δc of both the weld metal part and the FL part where local stress increases in a welded joint which is electron beam welded without using an insert metal. It is an object of the present invention to provide a method for improving and stably improving the fracture toughness of a welded joint.

本発明者は、インサートメタルを使用して電子ビーム溶接した場合、溶接金属部の靭性を向上させるために使用したインサートメタルの存在により溶接金属部の強度や硬さが上昇し、母材の強度や硬さよりも著しく高くなっていることにより、溶接金属部に接しているHAZ部との境界近傍で局所的な応力が増大し、そのため、FL部の破壊靭性値δcが低下することを知見した。   When the present inventor performs electron beam welding using an insert metal, the presence of the insert metal used to improve the toughness of the weld metal part increases the strength and hardness of the weld metal part, and the strength of the base metal It has been found that when the hardness is significantly higher than the hardness, local stress increases in the vicinity of the boundary with the HAZ portion in contact with the weld metal portion, and therefore the fracture toughness value δc of the FL portion decreases. .

そして、この知見に基づき、溶接金属部の硬さを母材の硬さの220%以下となるように制御し、好ましくは、溶接金属部の硬さを母材の硬さの110%以上220%以下、溶接金属部の幅を、母材板厚の20%以下とすることにより、母材と溶接金属部の硬さのオーバーマッチングによる継手靭性の低下を防止できることを見出し、先に特許出願(特願2005−207261号)した。   And based on this knowledge, the hardness of the weld metal part is controlled to be 220% or less of the hardness of the base material, and preferably the hardness of the weld metal part is 110% or more and 220 of the hardness of the base material. %, Less than 20% of the base metal plate thickness, the joint toughness can be prevented from lowering due to over-matching of the base metal and weld metal thickness, and a patent application was filed first. (Japanese Patent Application No. 2005-207261).

本発明者らは、降伏強度が355MPaクラス以上で、板厚が50mm超(好ましくは、50mm超〜100mm程度)の高強度厚鋼板の電子ビーム溶接において、そのような母材と溶接金属部の硬さのオーバーマッチングによる継手靭性の低下を防止する観点から、上記特許文献3〜6に記載されているような微細酸化物を利用して溶接金属部のミクロ組織を改善する技術をさらに発展させて、インサートメタルを使用しない場合における溶接金属部とFL部の両方の破壊靭性値δcを向上させ、溶接継手の破壊靭性を安定的に確保できる溶接継手を具現化する技術について検討した。
そして、その過程で、溶接金属中に、特定の大きさの介在物が一定頻度以上存在する場合に、破壊靱性値δcのばらつきが生じることを見出し、本発明を完成した。
In the electron beam welding of a high-strength thick steel plate having a yield strength of 355 MPa class or higher and a plate thickness of more than 50 mm (preferably, more than about 50 mm to about 100 mm), the inventors of the present invention From the viewpoint of preventing reduction in joint toughness due to over-matching of hardness, the technology for improving the microstructure of the weld metal part using the fine oxide as described in Patent Documents 3 to 6 is further developed. Thus, a technique for realizing a welded joint that can improve the fracture toughness value δc of both the weld metal part and the FL part when insert metal is not used and can stably secure the fracture toughness of the welded joint was studied.
And in the process, when the inclusion of a specific size was present in the weld metal at a certain frequency or more, it was found that the fracture toughness value δc varies, and the present invention was completed.

上記課題を解決する本発明の要旨は、以下のとおりである
(1)質量%で、C:0.02〜0.2%、Mn:0.8〜3.5%、S:0.0005〜0.0025%、Al:0.02%未満、Ti:0.01〜0.05%を含有し、上記(1)式で表されるPcmの値が0.12%以上0.5%以下である鋼材を用いた溶接構造体の突合せ溶接継手であって、
該溶接継手の溶接金属中に含まれるOの量が20ppm以上70ppm以下であり、同じく粒径2.0μm以上の酸化物の量が10個/mm以下であるとともに、粒径0.1μm以上2.0μm未満のTi酸化物の量が30〜600個/mmであることを特徴とする耐脆性破壊発生特性に優れた電子ビーム溶接継手。
Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B
・・・・・・・ (1)
The gist of the present invention for solving the above problems is as follows .
(1 ) By mass%, C: 0.02 to 0.2%, Mn: 0.8 to 3.5%, S: 0.0005 to 0.0025%, Al: less than 0.02%, Ti: A butt weld joint of a welded structure using a steel material containing 0.01 to 0.05% and having a Pcm value represented by the above formula (1) of 0.12% to 0.5%. And
The amount of O contained in the weld metal of the weld joint is 20 ppm or more and 70 ppm or less, and the amount of oxide having a particle size of 2.0 μm or more is 10 pieces / mm 2 or less, and the particle size is 0.1 μm or more. An electron beam welded joint excellent in brittle fracture resistance, characterized in that the amount of Ti oxide less than 2.0 μm is 30 to 600 pieces / mm 2 .
Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B
(1)

)溶接金属部の硬さが母材の硬さの110%超220%以下であることを特徴とする前記(1)に記載の耐脆性破壊発生特性に優れた電子ビーム溶接継手。
)溶接構造体が板厚50mm超の鋼板を突合せ溶接したものであることを特徴とする(1)または(2)に記載の耐脆性破壊発生特性に優れた電子ビーム溶接継手。
( 2 ) The electron beam welded joint having excellent brittle fracture resistance as described in (1 ) above, wherein the hardness of the weld metal part is more than 110% and 220% or less of the hardness of the base metal.
( 3 ) The electron beam welded joint having excellent brittle fracture resistance according to (1) or (2) , wherein the welded structure is a butt-welded steel plate having a thickness of more than 50 mm.

本発明によれば、降伏強度が355MPaクラスで、板厚が50mm超の高強度鋼板を電子ビーム溶接して溶接構造体とする際、破壊靭性値δcが十分に高い溶接継手を形成することができる。   According to the present invention, when a high-strength steel sheet having a yield strength of 355 MPa class and a thickness of more than 50 mm is welded by electron beam welding to form a welded structure, a weld joint having a sufficiently high fracture toughness value δc can be formed. it can.

本発明者らは、Tiを添加して微細酸化物を分散させた鋼板を用いて形成した電子ビーム溶接継手のCTOD試験での破壊発生点を詳細に調査した結果、CTOD試験における破壊の起点となるのはある大きさ以上の酸化物であり、そのような酸化物の存在頻度を低減することによりCTOD試験における破壊靱性値δcのばらつきを低減できることを知見した。   As a result of investigating in detail the failure occurrence point in the CTOD test of an electron beam welded joint formed using a steel plate in which Ti is added and fine oxide is dispersed, It has been found that oxides of a certain size or more can be obtained, and variation in the fracture toughness value δc in the CTOD test can be reduced by reducing the presence frequency of such oxides.

以下、上記知見が得られた実験について説明する。
C:0.04%、Mn:1.8%、S:0.003%、Al:0.006%、Ti:0.02%を含有する厚さ70mmの鋼板を突合せ、まず、インサートメタルの有無による溶接継手の違いを調べるために、一方は(a)突合せ部にNi箔を挿入し、他方は(b)Ni箔を挿入しないでRPEBW法により溶接した。
溶接後のそれぞれの溶接継手部において、鋼板厚み方向1/4と3/4の2箇所の位置から試験片を採取し、溶接金属部(WM部)、溶接金属部と母材部の境界部(FL部)及びHAZ部にノッチを設けてCTOD試験を行うとともに、溶接継手部の硬さ変化を調べた。
Hereinafter, an experiment in which the above knowledge is obtained will be described.
A 70 mm thick steel plate containing C: 0.04%, Mn: 1.8%, S: 0.003%, Al: 0.006%, Ti: 0.02% was butted. In order to examine the difference between the welded joints depending on the presence or absence, one was (a) Ni foil inserted into the butt, and the other was (b) welded by the RPEBW method without inserting Ni foil.
At each welded joint after welding, specimens were taken from two positions in the steel sheet thickness direction 1/4 and 3/4, and the weld metal part (WM part), the boundary between the weld metal part and the base metal part A CTOD test was performed with notches in the (FL part) and the HAZ part, and the hardness change of the welded joint part was examined.

CTOD試験結果を図1に、溶接継手部の硬さ変化を図2に示す。
突合せ部にNi箔を挿入した(a)の場合は、溶接金属部の硬度が高く、FL部での破壊靱性値δcが低下しているのに対し、Ni箔を挿入しない(b)の場合には、溶接金属部の硬度が低く、硬さのオーバーマッチングの程度が緩和されており、FL部での破壊靱性値は溶接金属部と同程度の値であり、溶接金属部の破壊靱性値δcの値もNi箔を挿入した場合に比べて多少低い程度であった。
A CTOD test result is shown in FIG. 1, and the hardness change of a welded joint part is shown in FIG.
In the case of (a) in which Ni foil is inserted into the butt portion, the hardness of the weld metal portion is high and the fracture toughness value δc in the FL portion is reduced, whereas in the case of not inserting Ni foil (b) The weld metal part has a low hardness and the degree of overmatching of the hardness is relaxed. The fracture toughness value in the FL part is the same level as the weld metal part, and the fracture toughness value of the weld metal part The value of δc was also somewhat lower than when Ni foil was inserted.

次に、(a)と(b)の場合の溶接金属部の酸化物の分散状況を調査した。
(b)の場合には、粒径0.1μm以上2.0μm未満のTi酸化物の量が400個/mmであって、微細なTi酸化物が溶接金属中に均一に分散しており、粒径が2μm以上の酸化物の個数は、2個/mmであって、その数は少なかった。
一方、(a)の場合にも、酸化物分散状態は(b)の場合と同様であり、両者の間に特別な相違は認められなかった。ただし、(a)の場合は、溶接金属部の硬さが、FL部の硬さの260%と高かったため、Fl部の局所応力が増大し、δcが低くなったものと考えられる。
Next, the state of oxide dispersion in the weld metal part in the cases (a) and (b) was investigated.
In the case of (b), the amount of Ti oxide having a particle size of 0.1 μm or more and less than 2.0 μm is 400 pieces / mm 2 , and the fine Ti oxide is uniformly dispersed in the weld metal. The number of oxides having a particle size of 2 μm or more was 2 / mm 2 , and the number was small.
On the other hand, also in the case of (a), the oxide dispersion state was the same as in the case of (b), and no special difference was observed between the two. However, in the case of (a), since the hardness of the weld metal part was as high as 260% of the hardness of the FL part, it is considered that the local stress in the Fl part increased and δc became low.

以上のように、Ni箔を挿入しない場合には、適切な酸化物分散状態の溶接金属を得ることによって、溶接金属部とHAZ部の間のオーバーマッチングの程度を緩和でき、溶接金属部及びFL,HAZ部とも高い破壊靱性値δcを得られることが確認できたので、さらにNi箔を挿入しない場合の溶接金属部中の酸化物と溶接金属部及びFL部の破壊靱性値δcとの関係を調査した。   As described above, when the Ni foil is not inserted, the degree of overmatching between the weld metal part and the HAZ part can be reduced by obtaining a weld metal in an appropriate oxide dispersion state. , HAZ part, it was confirmed that a high fracture toughness value δc can be obtained, and the relationship between the oxide in the weld metal part and the fracture toughness value δc of the weld metal part and the FL part when no Ni foil is inserted. investigated.

C:0.04%、Mn:1.8%、S:0.003%、Al:0.006%、Ti:0.02%を含有し、酸素含有量が10〜250ppmと異なる、厚さ70mmの鋼板をRPEBW法により突合せ溶接後、同様に、鋼板厚み方向1/4と3/4の2箇所の位置の溶接金属部から試験片を採取して破壊靭性値と酸化物個数の測定を行った。   C: 0.04%, Mn: 1.8%, S: 0.003%, Al: 0.006%, Ti: 0.02%, oxygen content is different from 10-250 ppm, thickness After butt welding a 70 mm steel plate by the RPEBW method, similarly, specimens are taken from the weld metal parts at two positions 1/4 and 3/4 in the thickness direction of the steel plate to measure the fracture toughness value and the number of oxides. went.

なお、介在物の個数は、光学顕微鏡画像を画像処理によって酸化物個々の面積を求め、その面積と等価となる円の直径(円相当直径)をその酸化物の粒径とし、粒径が2μm以上の酸化物の単位面積当たり個数を求めた。   The number of inclusions is obtained by obtaining the area of each oxide by image processing of an optical microscope image, and the diameter of the circle equivalent to that area (circle equivalent diameter) as the particle diameter of the oxide, and the particle diameter is 2 μm. The number of oxides per unit area was determined.

結果を図3に示すが、大きさが2μm以上の酸化物の個数が10個/mm以下で、溶接金属の破壊靭性値δcのばらつきが大きく低減され、かつ、十分に高い値が得られることがわかる。 The results are shown in FIG. 3, and the number of oxides having a size of 2 μm or more is 10 pieces / mm 2 or less, so that the variation in fracture toughness value δc of the weld metal is greatly reduced and a sufficiently high value is obtained. I understand that.

また、さらに、同様の実験により、破壊靱性値の良好な溶接金属の得られるTi酸化物の種類と分散条件を求めた。
その結果、粒径0.1μm以上2.0μm未満のTi酸化物の量が30〜600個/mmであると破壊靱性値δcの良好な溶接金属部が得られることがわかった。
Furthermore, through the same experiment, the kind of Ti oxide and the dispersion condition for obtaining a weld metal having a good fracture toughness value were obtained.
As a result, it was found that a weld metal part having a good fracture toughness value δc can be obtained when the amount of Ti oxide having a particle size of 0.1 μm or more and less than 2.0 μm is 30 to 600 pieces / mm 2 .

そして、本発明は、そのような酸化物の分散状況の得られる母材の化学組成についてさらに検討した結果なされたものである。   And this invention was made | formed as a result of examining further about the chemical composition of the base material from which the dispersion condition of such an oxide was obtained.

以下、本発明について順次説明する。
本発明では、溶接構造体を構成する母材として、少なくとも、質量%で、C:0.02〜0.2%、Mn:0.8〜3.5%、S:0.0005〜0.0025%、Al:0.02%未満、Ti:0.01〜0.05%を含有し、Pcmの値が0.12%以上0.5%以下である鋼材を用いる。
Hereinafter, the present invention will be sequentially described.
In the present invention, as a base material constituting the welded structure, at least by mass, C: 0.02-0.2%, Mn: 0.8-3.5%, S: 0.0005-0. A steel material containing 0025%, Al: less than 0.02%, Ti: 0.01 to 0.05% and having a Pcm value of 0.12% to 0.5% is used.

Cは、溶接構造体としての強度を確保するために少なくとも0.02%は必要であるが、0.2%を超えると凝固割れが発生しやすくなる。
Mnは、強度および靭性を確保するために少なくとも0.8%は必要であるが、3.5%を超えると焼入性が増大しすぎて靭性が低下する。
Sは、靭性を低下させる元素であり、0.0025%以下にする必要がある。しかし、MnSを形成させ、酸化物とMnSの複合体を粒内変態核として利用するためには、0.0005%以上含有させることが好ましい。
C needs to be at least 0.02% in order to ensure the strength as a welded structure, but if it exceeds 0.2%, solidification cracks are likely to occur.
Mn needs to be at least 0.8% in order to ensure strength and toughness, but if it exceeds 3.5%, the hardenability increases too much and the toughness decreases.
S is an element that lowers toughness, and should be 0.0025% or less. However, in order to form MnS and use a complex of oxide and MnS as an intragranular transformation nucleus, it is preferable to contain 0.0005% or more.

Alは、通常、鋼の製造において脱酸剤として添加されるが、Al酸化物はフェライト変態核生成能力が極めて小さいので、本発明では、Tiによる脱酸を行うため、Alの含有量を0.02%未満とする。0.005%以下であればさらに好ましく、また、特に含有しなくてもかまわない。
Tiは、本発明では、脱酸剤として使用するとともに、Ti酸化物を生成させ、Ti酸化物によるミクロ組織微細化により溶接金属およびHAZ部の破壊靭性を向上させる上で必須の元素である。必要なTi酸化物を形成させるためには少なくとも0.01以上必要であるが、0.05%を超えると酸化物の量やサイズが過大になり破壊の起点となる恐れがある。
Al is usually added as a deoxidizer in the production of steel. However, since Al oxide has a very low ability to produce ferrite transformation nuclei, in the present invention, deoxidation with Ti is performed, so the Al content is reduced to 0. 0.02% or less. If it is 0.005% or less, it is more preferable, and it does not need to be contained in particular.
In the present invention, Ti is an element essential for use as a deoxidizer, to generate Ti oxide, and to improve the fracture toughness of the weld metal and the HAZ part by refining the microstructure with the Ti oxide. In order to form the necessary Ti oxide, at least 0.01 or more is necessary. However, if it exceeds 0.05%, the amount and size of the oxide become excessive, which may be a starting point of destruction.

Oは、Ti酸化物を形成するために母材中にも必要である。溶接金属中のTi酸化物の粒径や個数の条件を満たすためには、溶接金属中に少なくとも20ppm以上、より好ましくは40ppm以上含有する必要がある。溶接金属中の酸素量は、母材の鋼中の含有量ばかりでなく、電子ビーム溶接の真空度に応じて変化するため、母材中の含有量を一律には規定できないが、母材中のO含有量は、通常の高真空の電子ビーム溶接では、40ppm以上とし、また、真空度の低い上記RPEBWでは30ppm以上とするのがよい。溶接金属中のO含有量は、後述する酸化物の粒径や個数の条件を満たすためには、250ppm以下が好ましいことから、母材中のO含有量の上限も同程度が好ましい。なお、溶接金属中のO含有量の上限は、実施例に基づいて70ppm以下とする。 O is also necessary in the base material to form Ti oxide. In order to satisfy the conditions of the particle diameter and number of Ti oxides in the weld metal, it is necessary to contain at least 20 ppm, more preferably 40 ppm or more in the weld metal. The amount of oxygen in the weld metal varies not only with the steel content of the base metal, but also with the degree of vacuum in electron beam welding, so the content in the base material cannot be specified uniformly. The O content is preferably 40 ppm or more in normal high vacuum electron beam welding, and 30 ppm or more in the above-described RPEBW having a low degree of vacuum. Since the O content in the weld metal is preferably 250 ppm or less in order to satisfy the conditions of the particle size and number of oxides described later, the upper limit of the O content in the base material is preferably the same. In addition, the upper limit of O content in a weld metal shall be 70 ppm or less based on an Example.

さらに、本発明では、溶接金属部の焼入性を確保して、溶接金属部に粗大なフェライトが生成しないようにするために、母材における下記(1)式で表されるPcm値を0.12質量%以上とする。また、Pcm値が0.5質量%を超えると溶接金属部の硬度が高くなりすぎるので、上限を0.5質量%とする。前述の溶接金属部の硬さを母材の硬さの220%以下とする観点からは、0.38%以下が好ましい。
Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B
・・・・・・ (1)
Furthermore, in the present invention, in order to ensure the hardenability of the weld metal part and prevent the formation of coarse ferrite in the weld metal part, the Pcm value represented by the following formula (1) in the base metal is set to 0. .12% by mass or more. Moreover, since the hardness of a weld metal part will become high too much when Pcm value exceeds 0.5 mass%, an upper limit shall be 0.5 mass%. From the viewpoint of setting the hardness of the weld metal part to 220% or less of the hardness of the base material, 0.38% or less is preferable.
Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B
(1)

本発明の電子ビーム溶接継手の母材となる鋼材は、上記成分の条件を満たす限りにおいて、公知の溶接用鋼であってよいが、上記成分に加え、通常の鋼で含有するSiを1.0質量%以下、Pを0.01質量%以下含有し残部がFeおよび不可避的不純物よりなる鋼を基本とし、母材強度や継手靭性の向上等、要求される性質に応じて、Ni、Cr、Mo、Cu、W、Co、V、Nb、Zr、Ta、Hf、REM、Y、Ca、Mg、Te、Se、Bの内の1種又は2種以上を合計で8質量%以下の範囲で含有させた鋼が好ましい。   The steel material used as the base material of the electron beam welded joint according to the present invention may be a known welding steel as long as the above-described components are satisfied. Based on steel containing 0% by mass or less and P of 0.01% by mass or less with the balance being Fe and inevitable impurities, depending on required properties such as improvement of base metal strength and joint toughness, Ni, Cr , Mo, Cu, W, Co, V, Nb, Zr, Ta, Hf, REM, Y, Ca, Mg, Te, Se, B, or a total of 8 mass% or less of one or more of them The steel contained in is preferred.

本発明では、Ti酸化物を微細に分散させて、オーステナイトからフェライトへの変態に際しその変態の核として利用し、良好な靭性を示す微細な針状フェライトを多く含むミクロ組織を形成させることにより、靭性の優れた溶接金属を得るものであるが、その際、図3に示すように、粒径2.0μm以上の酸化物の量が10個/mmを超えないようにすることが必要である。それを超えて鋼中に存在する場合には、CTOD試験における破壊の起点となり、溶接金属部における破壊靱性値のばらつきの原因となる。 In the present invention, Ti oxide is finely dispersed and used as a nucleus of the transformation in the transformation from austenite to ferrite, and by forming a microstructure containing a lot of fine acicular ferrite exhibiting good toughness, In order to obtain a weld metal with excellent toughness, it is necessary to prevent the amount of oxide having a particle size of 2.0 μm or more from exceeding 10 pieces / mm 2 as shown in FIG. is there. When it exists in steel exceeding it, it becomes a starting point of the fracture | rupture in a CTOD test, and causes the dispersion | variation in the fracture toughness value in a weld metal part.

また、粒内変態核として機能するTi酸化物の粒径は0.1μm以上2.0μm未満であり、その範囲の粒径のTi酸化物の量が30〜600個/mmになるようすることで、微細な針状フェライトを多く含むミクロ組織を形成させることができる。
なお、一部の微細なTi酸化物は、そのまわりMnSが析出することにより、MnSと複合体を形成する。この複合体は、粒内変態核としてより有効であり、本発明のTi酸化物には、このような複合体を含めるものとする。
The particle size of the Ti oxide functioning as an intragranular transformation nucleus is 0.1 μm or more and less than 2.0 μm, and the amount of Ti oxide having a particle size in the range is 30 to 600 pieces / mm 2. Thus, a microstructure containing a large amount of fine acicular ferrite can be formed.
Some fine Ti oxides form a composite with MnS by precipitation of MnS around them. This composite is more effective as an intragranular transformation nucleus, and the Ti oxide of the present invention includes such a composite.

溶接金属部において、粒径2.0μm以上の酸化物の量が10個/mmを超えないようにするとともに、粒径0.1μm以上2.0μm未満のTi酸化物の量が30〜600個/mmになるようするためには、母材として、酸化物のサイズが2.0μm以下に抑制された鋼材を使用するのがよい。 In the weld metal part, the amount of oxide having a particle size of 2.0 μm or more is made not to exceed 10 pieces / mm 2, and the amount of Ti oxide having a particle size of 0.1 μm or more and less than 2.0 μm is 30 to 600. In order to achieve the number of pieces / mm 2 , it is preferable to use a steel material whose oxide size is suppressed to 2.0 μm or less as a base material.

そのためには、母材となる鋼材の脱酸工程において注意して介在物制御を行う必要がある。
鋼の脱酸には通常Alが用いられているが、強脱酸元素であるAlを添加すると、脱酸反応が急速に進み、2μm以上の大きな酸化物が生成してしまう。そこで、Alよりも脱酸能力の小さいTiで脱酸することにより、比較的小さな酸化物を生成させる。しかし、一度に多量のTiを投入すると粗大な酸化物ができやすいため、溶鋼中の酸素量が段階的に減少するように、Tiの投入タイミングを制御したり、弱脱酸元素であるTiを投入した後に、強脱酸元素であるAl、Ca、Mgなどを極めて少量投入したりすることで、2μm以上の粗大酸化物の生成を抑制し、0.1〜2μmの微小酸化物を多数生成させることができる。
For that purpose, it is necessary to carefully control the inclusions in the deoxidation process of the steel material as the base material.
Al is usually used for deoxidizing steel, but if Al, which is a strong deoxidizing element, is added, the deoxidation reaction proceeds rapidly and a large oxide of 2 μm or more is generated. Therefore, a relatively small oxide is generated by deoxidizing with Ti having a smaller deoxidizing ability than Al. However, if a large amount of Ti is added at once, a coarse oxide is likely to be formed. Therefore, the timing of introducing Ti is controlled so that the amount of oxygen in the molten steel decreases stepwise, or Ti, which is a weak deoxidizing element, is added. By adding a very small amount of a strong deoxidizing element such as Al, Ca, Mg, etc., the generation of coarse oxides of 2 μm or more is suppressed, and a large number of fine oxides of 0.1 to 2 μm are generated. Can be made.

本発明は、さらに、先の出願(特願2005−207261号)で開示した技術と組み合わせるとより効果的である。
すなわち、溶接金属部の硬さHv(WM)が母材の硬さHv(BM)の110%超220%以下になるようにする。
溶接金属部は、焼入れ性を確保して粗大なフェライトが生成しないようにするためには、ある程度の硬さが必要であり、溶接金属部の硬さを母材の硬さの110%超とする。しかし、硬すぎると局所的な応力の増大による破壊靭性値δcの低下を招くので、220%以下に抑制する。
The present invention is more effective when combined with the technique disclosed in the previous application (Japanese Patent Application No. 2005-207261).
That is, the hardness Hv (WM) of the weld metal part is set to be more than 110% and 220% or less of the hardness Hv (BM) of the base material.
The weld metal part needs to have a certain degree of hardness in order to ensure hardenability and prevent the formation of coarse ferrite. The hardness of the weld metal part is more than 110% of the hardness of the base metal. To do. However, if it is too hard, the fracture toughness value δc is lowered due to an increase in local stress, so it is suppressed to 220% or less.

インサートメタルを使用しないで、溶接金属部の硬さと母材の硬さの比を上記の範囲に抑えるためには、溶接金属内に形成させる初析フェライトをできるだけ生成しないように制御する必要がある。そのため、本発明では、母材となる鋼材のPcm値を0.12%以上に規制することにより、鋼材の焼入性を確保している。   In order to keep the ratio of the hardness of the weld metal part and the hardness of the base metal within the above range without using an insert metal, it is necessary to control the generation of pro-eutectoid ferrite formed in the weld metal as much as possible. . Therefore, in this invention, the hardenability of steel materials is ensured by restricting the Pcm value of the steel material used as a base material to 0.12% or more.

本発明では、鋼板の板厚は特に限定されないが、上記の課題が顕在化するのは、板厚が50mm超の高強度鋼板である。
また、電子ビーム溶接は、通常、例えば、板厚80mmの場合、電圧175V、電流120mA、溶接速度125mm/分程度の条件で行なわれる。通常、10−3mbar以下の高真空下で溶接が行われるが、上述のRPEBW法のような低真空度、例えば、1mbar程度の真空下で溶接した継手であっても、本発明は適用することができる。
In the present invention, the plate thickness of the steel plate is not particularly limited, but the above-mentioned problem becomes apparent in a high-strength steel plate having a plate thickness of more than 50 mm.
Electron beam welding is usually performed under conditions of a voltage of 175 V, a current of 120 mA, and a welding speed of about 125 mm / min when the plate thickness is 80 mm. Usually, welding is performed under a high vacuum of 10 −3 mbar or less, but the present invention is applicable even to a joint welded under a low vacuum degree such as the above-described RPEBW method, for example, a vacuum of about 1 mbar. be able to.

次に、本発明を、実施例に基いて説明するが、実施例における条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、該一条件例に限定されるものではない。
本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件ないし条件の組合せを採用し得るものである。
Next, the present invention will be described based on examples. The conditions in the examples are one example of conditions adopted to confirm the feasibility and effects of the present invention, and the present invention It is not limited to examples.
The present invention can adopt various conditions or combinations of conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

表1に示す成分を含有し残部Feおよび不可避的不純物よりなる、板厚50〜100mmの厚鋼板を準備し、電子ビーム溶接によって突合せ溶接した後、形成された溶接継手の特徴及び性能を試験し、調査した。
その結果を表2に示す。
A thick steel plate having a thickness of 50 to 100 mm containing the components shown in Table 1 and the balance of Fe and unavoidable impurities was prepared. After butt welding by electron beam welding, the characteristics and performance of the formed welded joint were tested. ,investigated.
The results are shown in Table 2.

表2において、Hv(BM)は、10kgの圧痕により測定した母材の板厚方向における硬さの平均値である。Hv(WM)は、溶接金属部の板厚中央部において、10kgの圧痕により測定した硬さの値である。
ビード幅は、溶接金属部の表面、裏面、及び、板厚中心の3点で測定した平均値である。
溶接継手の性能に関し、δc(mm)は、CTOD試験において−10℃の試験温度で求めた値である。
In Table 2, Hv (BM) is the average value of the hardness in the plate thickness direction of the base material measured with an indentation of 10 kg. Hv (WM) is a hardness value measured with a 10 kg indentation at the center of the plate thickness of the weld metal part.
The bead width is an average value measured at three points of the front surface, the back surface, and the center of the plate thickness of the weld metal part.
Regarding the performance of the welded joint, δc (mm) is a value obtained at a test temperature of −10 ° C. in the CTOD test.

表2に示すように、本発明例のNo.1〜17は、鋼材の化学成分、溶接金属中の酸素量と酸化物量がいずれも本発明で規定する範囲内にあるものであり、δc値が溶接金属部及びFL,HAZ部とも十分な値を示している。
なお、本発明例1、17は、Hv(WM)/Hv(BM)の値がより好ましい範囲にないため、溶接金属部、FL及びHAZ部ともδc値が低めであり、本発明例6、7、13、14は、粒径2μm以上の酸化物個数が多めであったので、溶接金属部のδc値が低めであった。
As shown in Table 2, No. of the present invention example. Nos. 1 to 17 are those in which the chemical composition of the steel material, the amount of oxygen and the amount of oxide in the weld metal are both within the range defined by the present invention, and the δc value is a sufficient value for both the weld metal part and the FL and HAZ parts. Is shown.
In Examples 1 and 17 of the present invention, since the value of Hv (WM) / Hv (BM) is not in a more preferable range, the weld metal part, FL and HAZ part have lower δc values. In Nos. 7, 13, and 14, the number of oxides having a particle size of 2 μm or more was larger, so the δc value of the weld metal part was lower.

これに対し、比較例18は、鋼材のC量が及びPcm値が本発明の規定値以上で、Hv(WM)/Hv(BM)の値が本発明の範囲より大きく、かつ粒径0.1〜2μmの酸化物個数が本発明の規定値以下のため、溶接金属部及びFL,HAZ部ともδc値は不十分であった。
比較例19は、鋼材のC量及びPcmが本発明の規定値以上であり、粒径0.1〜2μmの酸化物個数が本発明の規定値以下のため、溶接金属部及びFL,HAZ部ともδc値は不十分であった。
比較例20は、鋼材のPcmが本発明の規定値以下で、粒径2μm以上の酸化物個数が本発明の規定値以上のため、溶接金属部のδc値は不十分であった。
On the other hand, in Comparative Example 18, the amount of C of the steel material and the Pcm value are not less than the specified values of the present invention, the value of Hv (WM) / Hv (BM) is larger than the range of the present invention, and the particle size is 0.1 to Since the number of oxides of 2 μm was less than the specified value of the present invention, the δc value was insufficient in both the weld metal part and the FL and HAZ parts.
In Comparative Example 19, since the C content and Pcm of the steel material are not less than the specified values of the present invention and the number of oxides having a particle size of 0.1 to 2 μm is not more than the specified value of the present invention, both the weld metal part and the FL and HAZ parts have δc. The value was insufficient.
In Comparative Example 20, the Pcm of the steel material was not more than the specified value of the present invention, and the number of oxides having a particle size of 2 μm or more was not less than the specified value of the present invention, so the δc value of the weld metal part was insufficient.

比較例21は、鋼材のPcmが本発明の規定値以下であり、粒径0.1〜2μmの酸化物個数が本発明の規定値以下のため、溶接金属部のδc値は不十分であった。
比較例22、23は、鋼材のTi量が本発明の規定値以下であり、溶接金属中の酸素量も低かったため、粒径0.1〜2μmの酸化物個数が本発明の規定値以下となり、溶接金属部及びFL,HAZ部ともδc値は不十分であった。
比較例24は、鋼材のAl量が本発明の規定値以上であるため、溶接金属中の酸素量が十分であるにもかかわらず、粒径0.1〜2μmの酸化物個数が本発明の規定値以下で、粒径2μm以上の酸化物個数が本発明の規定値以上であるため、溶接金属部及びFL,HAZ部ともδc値は不十分であった。
In Comparative Example 21, the Pcm of the steel material was not more than the specified value of the present invention, and the number of oxides having a particle size of 0.1 to 2 μm was not more than the specified value of the present invention, so the δc value of the weld metal part was insufficient.
In Comparative Examples 22 and 23, the amount of Ti in the steel material was less than the specified value of the present invention, and the amount of oxygen in the weld metal was also low, so the number of oxides with a particle size of 0.1 to 2 μm was less than the specified value of the present invention. The δc value was insufficient for both the weld metal part and the FL and HAZ parts.
In Comparative Example 24, the amount of oxide having a particle size of 0.1 to 2 μm is the specified value of the present invention even though the amount of oxygen in the weld metal is sufficient because the Al amount of the steel material is not less than the specified value of the present invention. In the following, since the number of oxides having a particle size of 2 μm or more is not less than the specified value of the present invention, the δc value is insufficient for both the weld metal part and the FL and HAZ parts.

Figure 0005171007
Figure 0005171007

Figure 0005171007
Figure 0005171007

本発明によれば、高強度でかつ板厚の大きい高強度鋼板の電子ビーム溶接継手において、万一、溶接欠陥が存在したり、疲労亀裂が発生、成長しても、脆性破壊が発生し難いので、溶接構造体が破壊するような致命的な損傷、損壊を防止することができる。
よって、本発明は、溶接構造体の安全性を顕著に高めるという顕著な効果を奏し、産業上の利用価値の高い発明である。
According to the present invention, in an electron beam welded joint of a high-strength steel plate having a high strength and a large plate thickness, even if a weld defect exists or a fatigue crack is generated or grows, brittle fracture is unlikely to occur. Therefore, it is possible to prevent a fatal damage or damage that causes the welded structure to break.
Therefore, the present invention has a remarkable effect of significantly increasing the safety of the welded structure, and is an invention having high industrial utility value.

突合せ部にNi箔を挿入、あるいは挿入しないでRPEBW法により溶接した場合のCTOD試験結果を示す図である。It is a figure which shows the CTOD test result at the time of welding by RPEBW method, inserting Ni foil in a butt | matching part, or not inserting. 図1と同様の場合の溶接継手部の硬さ変化を示す図である。It is a figure which shows the hardness change of the welded joint part in the case similar to FIG. 溶接金属の破壊靭性値と粒径2.0μm以上の酸化物個数との関係を示す図である。It is a figure which shows the relationship between the fracture toughness value of a weld metal, and the number of oxides with a particle size of 2.0 micrometers or more.

Claims (3)

質量%で、C:0.02〜0.2%、Mn:0.8〜3.5%、S:0.0005〜0.0025%、Al:0.02%未満、Ti:0.01〜0.05%を含有し、下記(1)式で表されるPcmの値が0.12%以上0.5%以下である鋼材を用いた溶接構造体の突合せ溶接継手であって、
該溶接継手の溶接金属中に含まれるOの量が20ppm以上70ppm以下であり、同じく粒径2.0μm以上の酸化物の量が10個/mm以下であるとともに、粒径0.1μm以上2.0μm未満のTi酸化物の量が30〜600個/mmであることを特徴とする耐脆性破壊発生特性に優れた電子ビーム溶接継手。
Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B
・・・・・・・ (1)
In mass%, C: 0.02-0.2%, Mn: 0.8-3.5%, S: 0.0005-0.0025%, Al: less than 0.02%, Ti: 0.01 A butt weld joint of a welded structure using a steel material containing ~ 0.05% and having a Pcm value represented by the following formula (1) of 0.12% to 0.5%,
The amount of O contained in the weld metal of the weld joint is 20 ppm or more and 70 ppm or less, and the amount of oxide having a particle size of 2.0 μm or more is 10 pieces / mm 2 or less, and the particle size is 0.1 μm or more. An electron beam welded joint excellent in brittle fracture resistance, characterized in that the amount of Ti oxide less than 2.0 μm is 30 to 600 pieces / mm 2 .
Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B
(1)
溶接金属部の硬さが母材の硬さの110%超220%以下であることを特徴とする請求項1に記載の耐脆性破壊発生特性に優れた電子ビーム溶接継手。 2. The electron beam welded joint having excellent brittle fracture resistance according to claim 1, wherein the weld metal part has a hardness of more than 110% and not more than 220% of the hardness of the base metal. 前記溶接構造体が板厚50mm超の鋼板を突合せ溶接したものであることを特徴とする請求項1または2に記載の耐脆性破壊発生特性に優れた電子ビーム溶接継手。 The electron beam welded joint having excellent brittle fracture resistance according to claim 1 or 2 , wherein the welded structure is a butt weld of a steel plate having a thickness of more than 50 mm.
JP2006271044A 2006-10-02 2006-10-02 Electron beam welded joint with excellent brittle fracture resistance Expired - Fee Related JP5171007B2 (en)

Priority Applications (17)

Application Number Priority Date Filing Date Title
JP2006271044A JP5171007B2 (en) 2006-10-02 2006-10-02 Electron beam welded joint with excellent brittle fracture resistance
ES11189659.3T ES2444784T3 (en) 2006-10-02 2007-01-12 Joint welded by electron beam with excellent fragile fracture resistance
KR1020097005190A KR101192815B1 (en) 2006-10-02 2007-01-12 Joint welded by electron beam with excellent unsusceptibility to brittle fracture
DK11189659.3T DK2422912T3 (en) 2006-10-02 2007-01-12 ELECTRON RADIATION WELDING WITH VERY GOOD CROSS-BREAKING RESISTANCE
DK07707042.3T DK2070631T3 (en) 2006-10-02 2007-01-12 ASSEMBLY WELDED WITH ELECTRON Beam WITH SPECIAL NON-SENSITIVITY FOR CROSS-BREAKING
ES07707042.3T ES2442867T3 (en) 2006-10-02 2007-01-12 Joint welded by electron beam with excellent fragile fracture resistance
PCT/JP2007/050738 WO2008041372A1 (en) 2006-10-02 2007-01-12 Joint welded by electron beam with excellent unsusceptibility to brittle fracture
EP11189659.3A EP2422912B1 (en) 2006-10-02 2007-01-12 Electron beam welded joint excellent in brittle fracture resistance
US12/442,665 US8114528B2 (en) 2006-10-02 2007-01-12 Electron beam welded joint excellent in brittle fracture resistance
EP07707042.3A EP2070631B1 (en) 2006-10-02 2007-01-12 Joint welded by electron beam with excellent unsusceptibility to brittle fracture
BRPI0719795-0A BRPI0719795B1 (en) 2006-10-02 2007-01-12 WELDED JOINT BY EXCELLENT ELECTRONIC BEAM IN RESISTANCE TO FRAGILE FRACTURE
EP11189660.1A EP2422913B1 (en) 2006-10-02 2007-01-12 Electron beam welded joint excellent in brittle fracture resistance
DK11189660.1T DK2422913T3 (en) 2006-10-02 2007-01-12 ELECTRON RADIATION WELDING WITH VERY GOOD CROSS-BREAKING RESISTANCE
ES11189660.1T ES2444507T3 (en) 2006-10-02 2007-01-12 Joint welded by electron beam with excellent fragile fracture resistance
NO20091123A NO336433B1 (en) 2006-10-02 2009-03-16 Electron beam welded (weld seam) with excellent crack resistance
NO20150120A NO339549B1 (en) 2006-10-02 2015-01-27 Electron beam welded (weld seam) with excellent crack resistance.
NO20150121A NO339550B1 (en) 2006-10-02 2015-01-27 Electron beam welded joint (weld seam) with excellent crack resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006271044A JP5171007B2 (en) 2006-10-02 2006-10-02 Electron beam welded joint with excellent brittle fracture resistance

Publications (2)

Publication Number Publication Date
JP2008088504A JP2008088504A (en) 2008-04-17
JP5171007B2 true JP5171007B2 (en) 2013-03-27

Family

ID=39372962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006271044A Expired - Fee Related JP5171007B2 (en) 2006-10-02 2006-10-02 Electron beam welded joint with excellent brittle fracture resistance

Country Status (1)

Country Link
JP (1) JP5171007B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5471380B2 (en) * 2009-12-04 2014-04-16 新日鐵住金株式会社 High-efficiency manufacturing method for large welded steel pipes for offshore wind power towers
EP2508291B1 (en) * 2009-12-04 2017-05-03 Nippon Steel & Sumitomo Metal Corporation Butt-welded joint formed using electron beam
JP2011246805A (en) 2010-04-30 2011-12-08 Nippon Steel Corp Electronic-beam welding joint and steel for electronic-beam welding, and manufacturing method therefor
JP2011246804A (en) 2010-04-30 2011-12-08 Nippon Steel Corp Electronic-beam welding joint and steel for electronic-beam welding, and manufacturing method therefor
EP2644733B1 (en) 2010-11-22 2016-05-25 Nippon Steel & Sumitomo Metal Corporation Electron-beam welded joint, steel material for electron-beam welding, and manufacturing method therefor
KR20150127304A (en) 2010-11-22 2015-11-16 신닛테츠스미킨 카부시키카이샤 Electron-beam welded joint, steel material for electron-beam welding, and manufacturing method therefor
KR101423445B1 (en) 2010-11-22 2014-07-24 신닛테츠스미킨 카부시키카이샤 Electron beam welded joint, steel material for electron beam welding, and manufacturing method thereof
KR101867111B1 (en) 2010-11-22 2018-06-12 신닛테츠스미킨 카부시키카이샤 Electron-beam welded joint, steel material for electron-beam welding, and manufacturing method therefor
KR101346961B1 (en) * 2010-11-22 2014-01-02 신닛테츠스미킨 카부시키카이샤 Electron beam welded joint, steel material for use in electron beam welded joint, and manufacturing method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03248783A (en) * 1990-02-23 1991-11-06 Nippon Steel Corp Electron beam welding method for steel plate
JP3351139B2 (en) * 1994-12-08 2002-11-25 住友金属工業株式会社 Welding method for low alloy high strength steel
JP2003245787A (en) * 2001-12-18 2003-09-02 Jfe Steel Kk High energy beam welded joint excellent in welded metal part elasticity property and its manufacturing method

Also Published As

Publication number Publication date
JP2008088504A (en) 2008-04-17

Similar Documents

Publication Publication Date Title
JP5171007B2 (en) Electron beam welded joint with excellent brittle fracture resistance
US8114528B2 (en) Electron beam welded joint excellent in brittle fracture resistance
JP5098139B2 (en) Electron beam welded joint with excellent brittle fracture resistance
JP2011246805A (en) Electronic-beam welding joint and steel for electronic-beam welding, and manufacturing method therefor
JP2011246804A (en) Electronic-beam welding joint and steel for electronic-beam welding, and manufacturing method therefor
JP2011246806A (en) Electron beam welded joint, electron beam welding steel material, and manufacturing method therefor
EP2594657B1 (en) Electron beam welded joint, steel material for use in electron beam welded joint, and manufacturing method thereof
EP2644732B1 (en) Electron-beam welded joint, steel material for electron-beam welding, and manufacturing method therefor
JP5171006B2 (en) Welded joints with excellent brittle fracture resistance
JP4719118B2 (en) Electron beam welded joint with excellent brittle fracture resistance
JP5135560B2 (en) Electron beam welding joint, steel for electron beam welding, and manufacturing method thereof
JP5273301B2 (en) Electron beam welding joint and steel for electron beam welding
JP2008087030A (en) Electron beam welded joint having excellent resistance to generation of brittle fracture
JP2011246803A (en) Electronic-beam welding joint and steel for electronic-beam welding, and manufacturing method therefor
JP2011246807A (en) Electronic-beam welding joint and steel for electronic-beam welding, and manufacturing method therefor
JP2012106290A (en) Electronic beam weld joint with excellent resistance to generation of brittle fracture
JP2011246808A (en) Electron beam welded joint, electron beam welding steel material, and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110512

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121225

R150 Certificate of patent or registration of utility model

Ref document number: 5171007

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees