JP2007021532A - Electron beam welded joint having excellent resistance to generation of brittle fracture - Google Patents

Electron beam welded joint having excellent resistance to generation of brittle fracture Download PDF

Info

Publication number
JP2007021532A
JP2007021532A JP2005207261A JP2005207261A JP2007021532A JP 2007021532 A JP2007021532 A JP 2007021532A JP 2005207261 A JP2005207261 A JP 2005207261A JP 2005207261 A JP2005207261 A JP 2005207261A JP 2007021532 A JP2007021532 A JP 2007021532A
Authority
JP
Japan
Prior art keywords
weld
metal part
hardness
less
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005207261A
Other languages
Japanese (ja)
Other versions
JP5098139B2 (en
Inventor
Tadashi Ishikawa
忠 石川
Ryuichi Honma
竜一 本間
Akihiko Kojima
明彦 児島
Yuzuru Yoshida
譲 吉田
Yoichi Tanaka
洋一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005207261A priority Critical patent/JP5098139B2/en
Publication of JP2007021532A publication Critical patent/JP2007021532A/en
Application granted granted Critical
Publication of JP5098139B2 publication Critical patent/JP5098139B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Welding Or Cutting Using Electron Beams (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To form a welded joint having a sufficiently high fracture toughness value δc by butt-welding a high-strength steel sheet for electron beam welding, which has a fracture toughness value of ≥355 MPa class and has a sheet thickness of >50 mm. <P>SOLUTION: A welded structure is formed of a butt-welded joint and has the following characteristics: (a) the hardness of a weld metal part is ≥110% and ≤220% of that of the base material; if necessary, (b) the width of the weld metal part is ≤20% of the sheet thickness of the base material; (c) the width of the region of a weld heat-affected zone, whose hardness is softened to ≤95% of that of the base material not affected by heat, is ≥3 mm; and/or (d) the former austenite grain size of the weld heat-affected zone (HAZ) being in contact with a weld fusion line is ≤100 μm. This butt-welded joint is an electron beam welded joint with an excellent resistance to generation of brittle fracture. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、溶接構造体、特に、板厚50mm超の鋼板を突合せ溶接して構成した溶接構造体の耐脆性破壊発生特性に優れた電子ビーム溶接継手に関する。   The present invention relates to an electron beam welded joint excellent in brittle fracture resistance of a welded structure, particularly a welded structure formed by butt welding a steel plate having a thickness of more than 50 mm.

石油等の化石エネルギーから脱却し、再生可能な自然エネルギーを利用しようとする社会的ニーズは極めて高まっており、大規模な風力発電も世界的に普及しつつある。   Social needs to move away from fossil energy such as oil and utilize renewable natural energy are extremely increasing, and large-scale wind power generation is also spreading worldwide.

風力発電に最も適している地域は、絶えず強風を期待できる地域であり、洋上風力発電も世界的規模で実現されている。洋上に風力発電塔を建設するためには、海底の地盤に塔の基礎部分を打ち込む必要があり、海水面から風力発電のタービン翼の高さを十分確保するためには、基礎部分も十分な長さが必要である。   The most suitable area for wind power generation is the area where strong winds can always be expected, and offshore wind power generation has also been realized on a global scale. In order to construct a wind power tower on the ocean, it is necessary to drive the foundation of the tower into the ground at the bottom of the sea. In order to secure the height of the turbine blades of the wind power generation from the sea level, the foundation is also sufficient. Length is needed.

そのため、風力発電塔の基礎部分では、板厚100mm程度、直径が4m程度の大断面を有する管構造となり、塔の全体高さは80m以上にもなる。そのような巨大構造物を建設現場近くの海岸において、簡易に、しかも高能率で溶接組み立てすることが求められている。   Therefore, the basic portion of the wind power generation tower has a tube structure having a large section with a plate thickness of about 100 mm and a diameter of about 4 m, and the overall height of the tower is 80 m or more. It is required to weld and assemble such a huge structure easily and efficiently on the coast near the construction site.

そこで、上記のように、板厚100mmにもおよぶ極厚鋼板を高能率で、しかもオンサイトで溶接するという、従来にないニーズが生じてきた。     Thus, as described above, an unprecedented need has arisen to weld an extremely thick steel plate having a thickness of 100 mm with high efficiency and on-site welding.

一般に、電子ビーム溶接方法は、高密度・高エネルギービームにより効率的に溶接できる溶接方法であるが、真空チャンバー内で高真空状態を維持して溶接する必要があるので、従来は、自動車部品等、比較的小さい部品の溶接に用いられてきた。   In general, the electron beam welding method is a welding method that can be efficiently welded by a high-density / high-energy beam. However, since it is necessary to perform welding while maintaining a high vacuum state in a vacuum chamber, conventionally, such as automobile parts, etc. It has been used to weld relatively small parts.

これに対して、近年、板厚100mm程度の極厚鋼板を効率よく現地溶接できる溶接方法として、低真空下で施工が可能な電子ビーム溶接方法(RPEBW:Reduced Pressured Electron Beam Welding: 減圧電子ビーム溶接)が英国の溶接研究所で開発され、提案されている(例えば、特許文献1、参照)。   On the other hand, in recent years, an electron beam welding method (RPEBW: Reduced Pressure Electron Beam Welding) that can be applied under low vacuum is a welding method that can be used to efficiently weld an extremely thick steel plate having a thickness of about 100 mm. ) Has been developed and proposed at a welding laboratory in the UK (see, for example, Patent Document 1).

このRPEW法を用いることにより、風力発電塔のような大型構造物を溶接する場合にも、溶接する部分だけを局所的に真空にして、効率的に溶接ができることが期待される。   By using this RPEW method, even when welding a large structure such as a wind power tower, it is expected that only the part to be welded is locally evacuated and welding can be performed efficiently.

しかし、一方で、このRPEBW法では、真空チャンバー内で溶接する方法に比べて、真空度が低下した状態で溶接するために、電子ビームで溶融され、その後凝固する溶融金属部分(以下、溶接金属部と称する)の靭性確保が困難となるという、新たな課題が浮かび上がってきた。   However, on the other hand, in this RPEBW method, a molten metal portion (hereinafter referred to as a weld metal) that is melted by an electron beam and then solidified in order to perform welding in a state where the degree of vacuum is lowered as compared with a method of welding in a vacuum chamber. A new problem has emerged that it is difficult to ensure the toughness of the part.

この対策として、RPEBW法を用いて溶接する際に、予め溶接開先部に、Ni等の元素を含有するインサートメタルを挟み込むことにより、溶接金属部のシャルピー吸収エネルギーなどの靭性を確保する方法も提案されている。   As a countermeasure against this, when welding using the RPEBW method, there is also a method of securing toughness such as Charpy absorbed energy of the weld metal part by inserting an insert metal containing an element such as Ni into the weld groove part in advance. Proposed.

しかし、この方法では、インサートメタル中のNi等の元素が溶接熱影響部まで均一に拡散しないため、特に溶接熱影響部の靭性が大きくばらつくという新たな課題が浮かび上がった。   However, in this method, since an element such as Ni in the insert metal does not diffuse uniformly to the weld heat affected zone, a new problem has arisen that the toughness of the weld heat affected zone varies particularly.

一般に、溶接構造物の安全性を定量的に評価する指標として、CTOD試験により求められる、破壊力学に基づいた破壊靭性値δc値が知られている。従来のRPEBW法により溶接して得られる溶接継手は、上記溶接熱影響部の靭性が大きくばらつくため、破壊靭性値δc値を十分に確保することは困難であった。   Generally, as an index for quantitatively evaluating the safety of a welded structure, a fracture toughness value δc value based on fracture mechanics obtained by a CTOD test is known. A welded joint obtained by welding by the conventional RPEBW method has a large variation in the toughness of the weld heat-affected zone. Therefore, it has been difficult to sufficiently secure the fracture toughness value δc.

一方、エレクトロガス溶接等の大入熱溶接継手における破壊靭性値Kcを確保するために、溶接金属と母材の硬さ比を110%以下となるように制御して、溶接金属部と母材部の境界(FL部)の破壊靭性Kcを改善する方法が提案されている(例えば、特許文献2、参照)。   On the other hand, in order to ensure the fracture toughness value Kc in a high heat input welded joint such as electrogas welding, the weld metal and the base metal are controlled so that the hardness ratio of the weld metal and the base metal is 110% or less. A method for improving the fracture toughness Kc of the boundary (FL part) of the part has been proposed (see, for example, Patent Document 2).

しかしながら、電子ビーム溶接継手の破壊靭性値δcを確保するためには、FL部と溶接金属部の両方の破壊靭性値δcを満足させる必要があり、大入熱溶接継手と同様に母材の硬さの110%以下にまで低下させると、電子ビーム溶接継手における溶接金属部の破壊靭性値を確保できなくないという問題が生じる。   However, in order to ensure the fracture toughness value δc of the electron beam welded joint, it is necessary to satisfy the fracture toughness value δc of both the FL part and the weld metal part. If the thickness is reduced to 110% or less, the fracture toughness value of the weld metal part in the electron beam welded joint cannot be secured.

また、電子ビーム溶接法は、電子ビームの持つエネルギーにより溶接部の母材を一旦溶融し再凝固して溶接する方法であり、エレクトロガス溶接等の大入熱アーク溶接法のように、溶接ワイヤー等による溶接金属部の硬さや破壊靭性値δcなどの特性を、容易にコントロールすることは難しい。   The electron beam welding method is a method in which the base metal of the welded portion is once melted and re-solidified by the energy of the electron beam, and then welded. Like a high heat input arc welding method such as electrogas welding, a welding wire is used. It is difficult to easily control properties such as the hardness of the weld metal and the fracture toughness value δc due to the above.

WO99/16101WO99 / 16101 特開2005−144552号JP-A-2005-144552

上記従来技術に鑑みて、本発明は、電子ビーム溶接継手における溶接金属部、及び、特に局所的な応力が増大する溶接金属部と溶接熱影響部との境界(FL部)の両方の破壊靭性値δcを向上させ、溶接継手の破壊靭性を安定的に向上する方法を提供することを目的とする。   In view of the above prior art, the present invention provides fracture toughness of both the weld metal part in the electron beam welded joint and the boundary (FL part) between the weld metal part where the local stress increases and the weld heat affected zone. It is an object to provide a method for improving the value δc and stably improving the fracture toughness of the welded joint.

本発明者は、上記課題を解決するため、母材と溶接継手の機械的性質について調査した。その結果、本発明者は、溶接金属部の靭性を向上させるために使用したインサートメタルの存在により溶接金属部の強度や硬さが上昇し、母材の強度や硬さよりも著しく高くなっていることにより、溶接金属部に接している溶接熱影響部(HAZ部)との境界近傍で局所的な応力が増大し、そのため、FL部の破壊靭性値δcが低下することを知見した。   In order to solve the above problems, the present inventor investigated the mechanical properties of the base material and the welded joint. As a result, the present inventors have increased the strength and hardness of the weld metal part due to the presence of the insert metal used to improve the toughness of the weld metal part, which is significantly higher than the strength and hardness of the base metal. As a result, it has been found that the local stress increases in the vicinity of the boundary with the weld heat affected zone (HAZ portion) in contact with the weld metal portion, and therefore the fracture toughness value δc of the FL portion decreases.

そして、上記知見に基づいて、電子ビーム溶接部に関する新規な継手設計技術を見出した。   And based on the said knowledge, the novel joint design technique regarding the electron beam welding part was discovered.

即ち、電子ビーム溶接継手の継手設計において、溶接金属部の硬さを母材の硬さの220%以下となるように制御し、好ましくは、溶接金属部の硬さを母材の硬さの110%以上220%以下、溶接金属部の幅を、母材板厚の20%以下とすることにより、オーバーマッチングによる継手靭性の低下を防止できることを見出した。   That is, in the joint design of the electron beam welded joint, the hardness of the weld metal part is controlled to be 220% or less of the hardness of the base metal, and preferably the hardness of the weld metal part is set to the hardness of the base metal. It has been found that by reducing the width of the weld metal part to 110% or more and 220% or less and 20% or less of the base metal plate thickness, a decrease in joint toughness due to overmatching can be prevented.

そして、上記知見に基づいて、降伏強度が355MPaクラス以上で、板厚が50mm超(好ましくは、50mm超〜100mm程度)の高強度厚鋼板の電子ビーム溶接において、安定的に優れた靭性を確保できる溶接継手を具現化する技術として、本発明を完成した。   Based on the above findings, stable and excellent toughness is ensured in electron beam welding of high-strength steel plates with yield strength of 355 MPa class or higher and plate thicknesses of more than 50 mm (preferably more than 50 mm to 100 mm). The present invention has been completed as a technique for embodying a welded joint.

本発明の要旨は、以下のとおりである。   The gist of the present invention is as follows.

(1) 溶接構造体の突合せ溶接継手において、
(a)溶接金属部の硬さが母材部の硬さの110%超220%以下である
ことを特徴とする耐脆性破壊発生特性に優れた電子ビーム溶接継手。
(1) In butt weld joints of welded structures,
(A) An electron beam welded joint excellent in brittle fracture resistance, characterized in that the hardness of the weld metal part is more than 110% and less than 220% of the hardness of the base metal part.

(2) 溶接構造体の突合せ溶接継手において、
(a)溶接金属部の硬さが母材部の硬さの110%超220%以下であり、かつ
(b)溶接金属部の幅が母材部の板厚の20%以下である
ことを特徴とする耐脆性破壊発生特性に優れた電子ビーム溶接継手。
(2) In butt weld joints of welded structures,
(A) The hardness of the weld metal part is more than 110% and less than or equal to 220% of the hardness of the base metal part, and (b) the width of the weld metal part is 20% or less of the plate thickness of the base metal part. An electron beam welded joint with excellent brittle fracture resistance.

(3) 溶接構造体の突合せ溶接継手において、
(a)溶接金属部の硬さが母材部の硬さの110%超220%以下であり、
(b)溶接金属部の幅が母材部の板厚の20%以下であり、かつ、
(c)熱影響を受けていない母材部の硬さの95%以下の硬さに軟化している溶接影響部領域の幅が3mm以上である
ことを特徴とする耐脆性破壊発生特性に優れた電子ビーム溶接継手。
(3) In butt weld joints of welded structures,
(A) the hardness of the weld metal part is more than 110% and 220% or less of the hardness of the base metal part,
(B) the width of the weld metal part is 20% or less of the thickness of the base metal part, and
(C) Excellent resistance to occurrence of brittle fracture, characterized in that the width of the weld-affected zone softened to 95% or less of the hardness of the base metal that is not affected by heat is 3 mm or more. Electron beam welded joint.

(4) 溶接構造体の突合せ溶接継手において、
(a)溶接金属部の硬さが母材の硬さの110%超220%以下であり、
(c)熱影響を受けていない母材部の硬さの95%以下の硬さに軟化している溶接熱影響部領域の幅が5mm以上であり、かつ、
(d)溶接溶融線と接する溶接影響部(HAZ)の旧オーステナイト粒径が100μm以下である
ことを特徴とする耐脆性破壊発生特性に優れた電子ビーム溶接継手。
(4) In butt weld joints of welded structures,
(A) the hardness of the weld metal part is more than 110% and less than or equal to 220% of the hardness of the base material;
(C) the width of the weld heat affected zone region softened to a hardness of 95% or less of the hardness of the base material portion not affected by heat is 5 mm or more, and
(D) An electron beam welded joint excellent in brittle fracture resistance, characterized in that the prior austenite grain size of the weld affected zone (HAZ) in contact with the weld melting line is 100 μm or less.

(5) 溶接構造体の突合せ溶接継手において、
(a)溶接金属部の硬さが母材部の硬さの110%超220%以下であり、
(b)溶接金属部の幅が母材部の板厚の20%以下であり、
(c)熱影響を受けていない母材部の硬さの95%以下の硬さに軟化している溶接影響部領域の幅が3mm以上であり、かつ、
(d)溶接溶融線と接する溶接影響部の旧オーステナイト粒径が100μm以下である
ことを特徴とする耐脆性破壊発生特性に優れた電子ビーム溶接継手。
(5) In butt weld joints of welded structures,
(A) the hardness of the weld metal part is more than 110% and 220% or less of the hardness of the base metal part,
(B) the width of the weld metal part is 20% or less of the thickness of the base metal part,
(C) the width of the weld affected area softened to 95% or less of the hardness of the base metal part not affected by heat is 3 mm or more, and
(D) An electron beam welded joint excellent in brittle fracture resistance, characterized in that the prior austenite grain size of the weld-affected zone in contact with the weld melt line is 100 μm or less.

(6) 前記溶接構造体が板厚50mm超の高強度鋼板を突合せ溶接したものであることを特徴とする前記(1)〜(5)のいずれかに記載の耐脆性破壊発生特性に優れた電子ビーム溶接継手。   (6) The weld structure is excellent in brittle fracture resistance according to any one of (1) to (5), wherein the welded structure is obtained by butt welding a high-strength steel sheet having a thickness of more than 50 mm. Electron beam welded joint.

本発明によれば、降伏強度が355MPaクラスで、板厚が50mm超の高強度鋼板を電子ビーム溶接する時、破壊靭性値δcが十分に高い溶接継手を形成するこができる。   According to the present invention, when a high-strength steel sheet having a yield strength of 355 MPa class and a thickness of more than 50 mm is subjected to electron beam welding, a weld joint having a sufficiently high fracture toughness value δc can be formed.

一般の電子ビーム溶接継手では、母材部の一部を溶融し再凝固して形成された溶接金属部において、所要の破壊靭性δcを確保することは困難である。このため、従来、電子ビーム溶接の際、溶接開先部にニッケル箔などのインサートメタルを挿入し、溶接金属部の焼入れ性を向上させ、この相乗効果により、破壊靭性値δcを確保する方法が知られている。   In a general electron beam welded joint, it is difficult to secure a required fracture toughness δc in a weld metal part formed by melting and resolidifying a part of a base material part. For this reason, conventionally, during electron beam welding, an insert metal such as nickel foil is inserted into the weld groove to improve the hardenability of the weld metal, and this synergistic effect ensures a fracture toughness value δc. Are known.

しかし、本発明者は、この方法では、電子ビーム溶接継手における溶接熱影響部、特に溶接金属部と溶接熱影響部との境界(FL部)の破壊靭性値δcが大幅に低下し、電子ビーム溶接継手の破壊靭性値δcを十分に確保できないことを知見した。   However, the present inventor has found that in this method, the fracture toughness value δc of the weld heat affected zone, particularly the boundary between the weld metal zone and the weld heat affected zone (FL zone) in the electron beam welded joint is significantly reduced. It was found that the fracture toughness value δc of the welded joint could not be secured sufficiently.

そこで、本発明者は、降伏強さで460MPaクラスの鋼板を試作し、Ni含有量が4%のインサートメタルを溶接開先に挿入して、電子ビーム溶接を実施し、CTOD試験により得られた溶接継手の破壊靭性値δcを測定し、評価した。   Therefore, the present inventor made a prototype steel sheet of 460 MPa in yield strength, inserted an insert metal having a Ni content of 4% into the welding groove, performed electron beam welding, and was obtained by a CTOD test. The fracture toughness value δc of the welded joint was measured and evaluated.

上記溶接継手のCTOD試験の結果、溶接金属部の破壊靭性値δcは0.2mm以上と十分高い値を示したが、溶接金属部とHAZ部との境界部(FL部)の破壊靭性値δcは、0.02mm以下と極めて低い値を示すことが判明した。   As a result of the CTOD test of the above welded joint, the fracture toughness value δc of the weld metal part was a sufficiently high value of 0.2 mm or more, but the fracture toughness value δc of the boundary part (FL part) between the weld metal part and the HAZ part. Was found to be a very low value of 0.02 mm or less.

そこで、上記溶接継手のCTOD試験での破壊発生点を詳細に調査した結果、
(i)破壊の発生位置は、溶接金属部(WM)と溶接熱影響部(HAZ)の境界(溶接溶融線[FL])部であること、及び、上記溶接継手のCTOD試験において、破壊のドライビングフォースとなる局所応力の分布形態を3次元有限要素法で解析した結果、
(ii)FL部の局所応力は、隣接する溶接金属部(WM)の硬さの影響を著しく受けることを知見した。
Therefore, as a result of detailed investigation of the fracture occurrence point in the CTOD test of the above welded joint,
(I) The fracture occurrence position is the boundary (weld fusion line [FL]) between the weld metal part (WM) and the weld heat affected zone (HAZ), and in the CTOD test of the weld joint, As a result of analyzing the distribution form of local stress that becomes driving force by the three-dimensional finite element method,
(Ii) It was found that the local stress in the FL part is significantly affected by the hardness of the adjacent weld metal part (WM).

図3は、板厚70mmの試験片につき、溶接金属部(WM)と溶接熱影響部(HAZ)との境界部(FL)、及び、溶接熱影響部(HAZ)にノッチを設け、ノッチ先端でのCTOD(Crack Tip Opening Displacement:亀裂端開口変位)が0.05mmになる場合のノッチ先端から亀裂進展方向に離れた各位置における亀裂開口応力分布を、FEM(3次元有限要素法)で解析した結果の一例を示す。   FIG. 3 shows notches at the boundary (FL) between the weld metal part (WM) and the weld heat affected zone (HAZ) and the weld heat affected zone (HAZ) for a test piece having a thickness of 70 mm. Analysis of crack opening stress distribution at each position distant from the notch tip in the crack propagation direction when CTOD (Crack Tip Opening Displacement) at 0.05 mm is 0.05 mm An example of the results is shown.

この図から、(iv)板厚が50mmを超え70mm程度になると、板厚方向での拘束度(力)が著しく増大し、溶接金属部(WM)の強度が母材(BM)や溶接熱影響部(HAZ)の強度よりも高いと(WM−Hの場合)、局所応力が溶接金属部(WM)と溶接熱影響部(HAZ)との境界部(FL)で著しく増大することが解る(図中、□[WM−H]及び黒四角印[WM−L]、参照)。   From this figure, (iv) When the plate thickness exceeds 50 mm and reaches about 70 mm, the degree of restraint (force) in the plate thickness direction increases remarkably, and the strength of the weld metal part (WM) increases to the base material (BM) and welding heat. It is understood that when the strength of the affected zone (HAZ) is higher (in the case of WM-H), the local stress is remarkably increased at the boundary (FL) between the weld metal zone (WM) and the weld heat affected zone (HAZ). (Refer to □ [WM-H] and black square mark [WM-L] in the figure).

一方、溶接金属部(WM)の強度が、母材(BM)や溶接熱影響部(HAZ)の強度よりも高い場合(WM−Hの場合)であっても、溶接熱影響部(HAZ)では、局所的な応力は増大せず、溶接金属部(WM)の強度が低い場合(WM−Lの場合)とほぼ同じになる。   On the other hand, even if the strength of the weld metal part (WM) is higher than that of the base material (BM) or the weld heat affected zone (HAZ) (in the case of WM-H), the weld heat affected zone (HAZ). Then, the local stress does not increase, and is almost the same as when the strength of the weld metal part (WM) is low (in the case of WM-L).

このことから、δc値が低下する理由は、溶接金属部(WM)の強度が、母材(BM)や溶接熱影響部(HAZ)の強度よりも高い場合(WM−Hの場合)に、溶接金属部(WM)と溶接熱影響部(HAZ)との境界部(FL)で、局所的な応力が増大するためであると考えられる。   From this, the reason why the δc value decreases is when the strength of the weld metal part (WM) is higher than the strength of the base material (BM) or the weld heat affected zone (HAZ) (in the case of WM-H). It is thought that this is because local stress increases at the boundary (FL) between the weld metal part (WM) and the weld heat affected zone (HAZ).

即ち、上記解析の結果、本発明者は、(v)溶接金属部(WM)と溶接熱影響部(HAZ)との境界部(FL)での局所応力の著しい増大を抑制し、δc値を向上させるためには、溶接金属部(WM)の強度をできるだけ低くすることが必要であることを見出した。   That is, as a result of the above analysis, the present inventor (v) suppresses a significant increase in local stress at the boundary portion (FL) between the weld metal portion (WM) and the weld heat affected zone (HAZ), and increases the δc value. In order to improve, it discovered that it was necessary to make the intensity | strength of a weld metal part (WM) as low as possible.

しかしながら、溶接金属部の硬さを低下させると、溶接金属部(WM)の焼入れ性を確保することができないため、粗大なフェライトが生成し、その結果、CTOD値が低下することを見出した。   However, it has been found that when the hardness of the weld metal part is lowered, the hardenability of the weld metal part (WM) cannot be ensured, so that coarse ferrite is generated and, as a result, the CTOD value is lowered.

ここで、上記解析結果を基に、溶接金属部の硬さ[Hv(WM) ]を種々変化させて、FL部のCTOD値δcを測定し、δc値を“溶接金属部の硬さ[Hv(WM)]/母材の硬さ[Hv(BM)]”に対してプロットした結果、図1中「●」に示すように、溶接金属部の硬さ[Hv(WM)]を母材の硬さ[Hv(BM)]の220%以下に抑制すれば、局所的な応力の増大による破壊靭性値δcの低下を防止できることを知見した。   Here, based on the above analysis results, the hardness [Hv (WM)] of the weld metal part is changed variously, the CTOD value δc of the FL part is measured, and the δc value is set to “the hardness of the weld metal part [Hv (WM)] / Hardness [Hv (BM)] ”of the base metal, and as a result of plotting the hardness [Hv (WM)] of the weld metal part as shown by“ ● ”in FIG. It was found that if the hardness [Hv (BM)] is suppressed to 220% or less, the fracture toughness value δc can be prevented from decreasing due to an increase in local stress.

δc値は高いほど望ましいが、ノルウェー海事協会(DNV)等の規格では、設計温度にて0.1〜0.2mm程度の値が要求されていることを踏まえ、本発明において目標とするδc値は、0.15mm以上とした。   The higher the δc value, the better, but the standard such as the Norwegian Maritime Association (DNV) requires a value of about 0.1 to 0.2 mm at the design temperature, and the target δc value in the present invention. Was 0.15 mm or more.

なお、従来法による電子ビーム溶接継手において、破壊靭性値δcを、―20℃で0.15mm以上を安定的に確保することは難しかった。   In the electron beam welded joint by the conventional method, it was difficult to stably ensure the fracture toughness value δc at −20 ° C. of 0.15 mm or more.

このように、溶接金属部の硬さ[Hv(WM)]を、母材の硬さ[Hv(BM)]より低くすることにより、FL部のδcは向上するが、溶接金属部の硬さ[Hv(WM)]を過度に低下させると、溶接金属部のδc値が低下し、その結果、電子ビーム溶接継手の破壊靭性値δcを確保することができない。   Thus, by making the hardness [Hv (WM)] of the weld metal part lower than the hardness [Hv (BM)] of the base material, the δc of the FL part is improved, but the hardness of the weld metal part is increased. When [Hv (WM)] is excessively decreased, the δc value of the weld metal portion is decreased, and as a result, the fracture toughness value δc of the electron beam welded joint cannot be ensured.

本発明者の検討の結果、図1中、○印で示すように、溶接金属部の硬さ[Hv(WM)]を母材の硬さ[Hv(BM)]の110%以上確保すれば、溶接金属部において、所要のCTOD値を確保できることを見出した。   As a result of the study by the present inventor, as shown by a circle in FIG. 1, if the hardness [Hv (WM)] of the weld metal part is 110% or more of the hardness [Hv (BM)] of the base metal, It was found that the required CTOD value can be secured in the weld metal part.

HAZ軟化幅とFL部のCTOD値との関係に及ぼす溶接金属部と母材の硬さ比、γ粒径の影響を図2に示す。HAZ幅が広くなるほど,FL部のCTOD値が向上する傾向を示す。   FIG. 2 shows the influence of the hardness ratio of the weld metal part and the base metal and the γ grain size on the relationship between the HAZ softening width and the CTOD value of the FL part. As the HAZ width increases, the CTOD value of the FL portion tends to improve.

これは,HAZ軟化により強度マッチングの影響が緩和されているためであり、HAZ幅は3mm以上が望ましい。   This is because the influence of strength matching is mitigated by the HAZ softening, and the HAZ width is desirably 3 mm or more.

また、本発明者は、溶接金属部に接する溶接溶融線(FL)における局所応力の発生ないし分布は、溶接金属部の硬さに支配されるが、FLに接しているHAZ領域において“軟化している領域”が大きい場合には、FLの局所応力が緩和される傾向にあることを見出した。   Further, the present inventor has found that the occurrence or distribution of local stress in the weld melt line (FL) in contact with the weld metal part is governed by the hardness of the weld metal part, but “softens” in the HAZ region in contact with the FL. It has been found that when the “region” is large, the local stress of FL tends to be relaxed.

図2に示す実験結果によれば、HAZ軟化幅が広くなるほど上記緩和現象が認められ、3mm以上存在した場合に、特に顕著となるので、HAZ軟化幅は3mm以上とすることが好ましい。   According to the experimental results shown in FIG. 2, the above-mentioned relaxation phenomenon is recognized as the HAZ softening width becomes wider, and particularly when 3 mm or more is present, the HAZ softening width is preferably 3 mm or more.

HAZ部の硬さが母材の硬さより低くなる程、原理的にFL部の局所応力は低減するが、本発明者の実験結果によれば、FL部の局所応力低減効果が明確に認められるのは、HAZ部の硬さが、母材の硬さよりも5%以上低くなっている場合であった。   In principle, the local stress of the FL part decreases as the hardness of the HAZ part becomes lower than the hardness of the base material. However, according to the results of experiments by the inventors, the local stress reduction effect of the FL part is clearly recognized. This was the case where the hardness of the HAZ part was 5% or more lower than the hardness of the base material.

それ故、本発明においては、熱影響を受けていない母材部の硬さの95%以下の硬さに軟化している溶接熱影響部領域の幅を3mm以上とすることが好ましい。   Therefore, in the present invention, it is preferable to set the width of the weld heat affected zone region softened to 95% or less of the hardness of the base material portion not affected by heat to 3 mm or more.

また,溶接熱影響部領域の幅が10mm以上となると継手強度確保や疲労強度の観点から軟化部に歪が集中する懸念があるので、10mm以下とすることが好ましい。   Further, when the width of the weld heat affected zone is 10 mm or more, there is a concern that strain is concentrated on the softened portion from the viewpoint of securing the joint strength and fatigue strength.

溶接継手において所定のCTOD値δcを確保するためには、溶接継手の最脆弱部である溶接溶融線(FL)において局所応力が増大しないようにすることが肝要であることは前述したが、同時に、FL近傍での微視的な耐脆性破壊発生特性を向上させることも重要である。   As described above, in order to ensure the predetermined CTOD value δc in the welded joint, it is important to prevent the local stress from increasing in the weld melt line (FL) which is the most fragile part of the welded joint. It is also important to improve the microscopic brittle fracture resistance in the vicinity of FL.

FL近傍で脆性破壊が発生するメカニズムを調査、検討した結果、旧オーステナイト周辺に生成する初析フェライトや、旧オーステナイト内部にラス状に生成する上部ベーナイトやフェライトサイドプレート等が破壊の起点となることを突き止めた。   As a result of investigating and investigating the mechanism of brittle fracture occurring near the FL, pro-eutectoid ferrite formed around the former austenite, upper bainite and ferrite side plates formed in the lath form inside the former austenite, etc. I found out.

この上部ベーナイトやフェライトが璧開破壊するときの破面単位は,オーステナイト相の粒径に依存するので、旧オーステナイト粒径を小さく抑制することにより、上部ベーナイトやフェライトの寸法を小さくして、耐脆性破壊発生特性を改善することができることを知見した。   The fracture surface unit when the upper bainite or ferrite undergoes open fracture depends on the grain size of the austenite phase. It was found that the brittle fracture occurrence characteristics can be improved.

また、本発明者の検討の結果、“溶接金属部の硬さ[Hv(WM)]/母材の硬さ[Hv(BM)]”が、本発明で規定する220%に近づくと、溶接金属とHAZ部との強度マッチング及び組織の影響による破壊靭性値δcの低下が無視できなくなる。   Further, as a result of the study by the present inventor, when “hardness of weld metal part [Hv (WM)] / hardness of base material [Hv (BM)]” approaches 220% defined in the present invention, welding is performed. The decrease in fracture toughness value δc due to the strength matching between the metal and the HAZ part and the influence of the structure cannot be ignored.

したがって、このような条件においても、安定して、継ぎ手の破壊靭性値δcを確保するために、溶接溶融線(FL)と接する溶接熱影響(HAZ)部の旧オーステナイト粒径を100μm以下とし、旧オーステナイト粒径の粗大化を抑制することが好ましい(図2、参照)。   Therefore, even under such conditions, in order to stably secure the fracture toughness value δc of the joint, the prior austenite grain size of the weld heat affected zone (HAZ) in contact with the weld fusion line (FL) is set to 100 μm or less, It is preferable to suppress the coarsening of the prior austenite grain size (see FIG. 2).

また、電子ビーム溶接時に電子ビームの照射領域が大きくなると、鋼板に与える入熱量が過大となり、FL部の組織が粗大化してしまい、安定してFL部の破壊靭性値δcを確保する上で好ましくない。   Also, if the electron beam irradiation area becomes large during electron beam welding, the amount of heat input to the steel sheet becomes excessive, the structure of the FL part becomes coarse, and it is preferable for stably securing the fracture toughness value δc of the FL part. Absent.

また、RPEBW溶接を用いて電子ビーム溶接継手を作製する場合は、真空チャンバー内で、高真空状態で電子溶接(EBW溶接)により作製した溶接継手に比べ、溶接金属の幅が増大する傾向にある。   Moreover, when producing an electron beam welded joint using RPEBW welding, the width of the weld metal tends to increase compared to a welded joint produced by electron welding (EBW welding) in a high vacuum state in a vacuum chamber. .

このため、本発明では、RPEBW溶接を用いた場合でも、電子ビーム溶接継手の破壊靭性値δcを安定して確保するために、溶接金属部の幅を、母材部の板厚の20%以下とするのが好ましい。   For this reason, in the present invention, even when RPEBW welding is used, in order to stably secure the fracture toughness value δc of the electron beam welded joint, the width of the weld metal portion is 20% or less of the thickness of the base metal portion. Is preferable.

本発明で用いる溶接構造体の高強度鋼板は、公知の成分組成の溶接用構造用鋼から製造したものでよい。例えば、質量%で、C:0.02〜0.20%、Si:0.01〜1.0%、Mn:0.3〜2.0%、Al:0.001〜0.20%、N:0.02%以下、P:0.01%以下、S:0.01%以下を基本成分とし、母材強度や継手靭性の向上等、要求される性質に応じて、Ni、Cr、Mo、Cu、W、Co、V、Nb、Ti、Zr、Ta、Hf、REM、Y、Ca、Mg、Te、Se、Bの内の1種又は2種以上を含有する鋼が好ましい。   The high-strength steel sheet of the welded structure used in the present invention may be manufactured from a structural steel for welding having a known component composition. For example, in mass%, C: 0.02 to 0.20%, Si: 0.01 to 1.0%, Mn: 0.3 to 2.0%, Al: 0.001 to 0.20%, N: 0.02% or less, P: 0.01% or less, S: 0.01% or less as basic components, depending on required properties such as improvement of base material strength and joint toughness, Ni, Cr, Steel containing at least one of Mo, Cu, W, Co, V, Nb, Ti, Zr, Ta, Hf, REM, Y, Ca, Mg, Te, Se, and B is preferred.

鋼板の板厚は特に限定されないが、本課題が顕在化するのは、板厚が50mm超の高強度鋼板である。   The plate thickness of the steel plate is not particularly limited, but it is a high-strength steel plate having a plate thickness of more than 50 mm that manifests this problem.

また、電子ビーム溶接金属部(溶融部)の破壊靭性δc値を確保するために、開先部分に、Ni元素等を含むインサートメタルを使用する場合でも、本発明に規定する特性を有していればよく、特に成分組成が、特定の成分組成に限定されるものではない。   Further, in order to ensure the fracture toughness δc value of the electron beam weld metal part (melted part), even when an insert metal containing Ni element or the like is used in the groove part, it has the characteristics specified in the present invention. The component composition is not particularly limited to a specific component composition.

例えば、溶接材料の化学成分として、C:0.01〜0.06%、Si:0.2〜1.0%、Mn:0.5〜2.5%、Ni:0〜4.0%、Mo:0〜0.30%、Al:0〜0.3%、Mg:0〜0.30%、Ti:0.02〜0.25%、B:0〜0.050%が望ましいが、溶接材料の化学成分は、鋼材の化学成分を考慮して、適宜、選択すればよい。   For example, as a chemical component of the welding material, C: 0.01 to 0.06%, Si: 0.2 to 1.0%, Mn: 0.5 to 2.5%, Ni: 0 to 4.0% , Mo: 0 to 0.30%, Al: 0 to 0.3%, Mg: 0 to 0.30%, Ti: 0.02 to 0.25%, B: 0 to 0.050% are desirable. The chemical component of the welding material may be appropriately selected in consideration of the chemical component of the steel material.

電子ビーム溶接は、例えば、板厚80mmの場合、電圧175V、電流120mA、溶接速度125mm/分程度の条件で行なう。通常、10-3mbar以下の高真空下で溶接するが、簡易的な設備でも施工できる低真空度、例えば、1mbar程度の真空下で溶接した継手であっても、本発明の範囲内である。 For example, when the plate thickness is 80 mm, the electron beam welding is performed under the conditions of a voltage of 175 V, a current of 120 mA, and a welding speed of about 125 mm / min. Usually, welding is performed under a high vacuum of 10 −3 mbar or less, but even a joint that is welded under a low degree of vacuum that can be constructed with simple equipment, for example, a vacuum of about 1 mbar, is within the scope of the present invention. .

以下、本発明を、実施例に基いて説明するが、実施例における条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、該一条件例に限定されるものではない。   Hereinafter, the present invention will be described based on examples, but the conditions in the examples are one condition example adopted to confirm the feasibility and effects of the present invention, and the present invention is the one condition example. It is not limited to.

本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件ないし条件の組合せを採用し得るものである。   The present invention can adopt various conditions or combinations of conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

(実施例1)
板厚50〜100mmの厚鋼板を準備し、溶接継手の特徴及び性能を試験、調査した。その結果を表1に示す。溶接は、電子ビーム溶接である。
Example 1
Thick steel plates having a thickness of 50 to 100 mm were prepared, and the characteristics and performance of welded joints were tested and investigated. The results are shown in Table 1. The welding is electron beam welding.

表2に、溶接に用いた鋼種の化学成分(mass%)を示す。また、表3に、溶接に用いたインサートメタルの化学成分(mass%)を示す。   Table 2 shows the chemical components (mass%) of the steel types used for welding. Table 3 shows chemical components (mass%) of the insert metal used for welding.

Hv(BM)は、10kgの圧痕により測定した母材の板厚方向における硬さの平均値である。Hv(WM)は、溶接金属部の板厚中央部において、10kgの圧痕により測定した硬さの値である。   Hv (BM) is an average value of the hardness in the thickness direction of the base material measured by an indentation of 10 kg. Hv (WM) is a hardness value measured with a 10 kg indentation at the center of the plate thickness of the weld metal part.

ビード幅は、溶接金属部の表面、裏面、及び、板厚中心の3点で測定した平均値である。   The bead width is an average value measured at three points of the front surface, the back surface, and the center of the plate thickness of the weld metal part.

HAZ軟化幅は、母材の硬さより5%軟化したHAZ領域を、溶接溶融線から母材方向へ測定した時の領域の幅である。   The HAZ softening width is a width of a region when a HAZ region softened by 5% from the hardness of the base material is measured from the weld melt line toward the base material.

HAZの旧γ粒径は、溶接溶融線に接するHAZ部での旧オーステナイト粒を、円相当径で表記したものである。   The prior γ grain size of HAZ is a representation of the prior austenite grains in the HAZ part in contact with the weld melting line, with an equivalent circle diameter.

溶接継手の性能に関し、δc(mm)は、前述のCTOD試験において、−10℃の試験温度で求めた値である。   Regarding the performance of the welded joint, δc (mm) is a value obtained at a test temperature of −10 ° C. in the CTOD test described above.

継手引張強度(MPa)は、NKU1号試験片を作製して、継手引張試験を行った結果であり、破断した強度を示すものである。   The joint tensile strength (MPa) is a result of producing a NKU No. 1 test piece and conducting a joint tensile test, and indicates a fracture strength.

表1に示すように、本発明例のNo.1〜17は、各種条件が本発明で規定する範囲内にあるものであり、δc値が十分な値を示している。   As shown in Table 1, No. of the present invention example. Nos. 1 to 17 indicate that various conditions are within the range defined by the present invention, and the δc value is a sufficient value.

これらの発明例の中で、No.1〜14は、Hv(WM)/Hv(BM)、及び、ビード幅/板厚、HAZ軟化幅が本発明で規定する範囲内であるため、溶接継手のHAZ部のδc値及び継手引張強度ともに、十分な値を示している。   Among these invention examples, no. 1 to 14 are Hv (WM) / Hv (BM), and the bead width / plate thickness and the HAZ softened width are within the ranges specified in the present invention. Therefore, the δc value of the HAZ part of the welded joint and the joint tensile strength Both show sufficient values.

なお、本発明例No.14は、HAZ軟化幅が、本発明で規定する好ましい範囲より小さいので、本発明例であるNo.1〜13と比較して、δc値は若干低いものの、0.1mm以上の良好な値である。   In addition, this invention example No. No. 14 is an example of the present invention because the HAZ softening width is smaller than the preferred range defined in the present invention. Although the δc value is slightly lower than 1 to 13, it is a good value of 0.1 mm or more.

本発明例No.15は、Hv(WM)/Hv(BM)の好ましい範囲より低いため、溶接金属部の焼入れ性が不足して、初析フェライトの生成を抑制できなかったものであり、HAZ部のδc特性は、本発明例No.1〜14と比較して、低いレベルとなっている。   Invention Example No. 15 is lower than the preferred range of Hv (WM) / Hv (BM), so the hardenability of the weld metal part is insufficient and the formation of proeutectoid ferrite could not be suppressed. The δc characteristic of the HAZ part is Invention Example No. Compared with 1-14, it is a low level.

本発明例No.16及び17は、ビード幅/板厚が、本発明で規定する好ましい範囲より高いため、溶接金属部の領域が大きく、母材よりも硬さの高い溶接金属によるマッチングの影響がより顕著であるため、HAZ部、FL部のδc値が、本発明例No.1〜14と比較して低いレベルとなっている。   Invention Example No. In Nos. 16 and 17, since the bead width / plate thickness is higher than the preferable range defined in the present invention, the area of the weld metal portion is large, and the influence of matching by the weld metal having a hardness higher than that of the base metal is more remarkable. Therefore, the δc values of the HAZ part and FL part are the same as those of the present invention example No. It is a low level compared with 1-14.

これに対して、比較例No.18、20〜22、24は、Hv(WM)/Hv(BM)が、本発明で規定する範囲を超えているため、溶接金属部のδc値は十分であるが、HAZ部、FL部のδc値が低いものである。   In contrast, Comparative Example No. 18, 20 to 22 and 24, Hv (WM) / Hv (BM) exceeds the range defined in the present invention, so the δc value of the weld metal part is sufficient, but the HAZ part and FL part The Δc value is low.

また、比較例19と23は、Hv(WM)/Hv(BM)が、本発明で規定する範囲を下回っているため、十分な焼入れ性を確保できず、溶接金属部のδc値が低いものである。   In Comparative Examples 19 and 23, Hv (WM) / Hv (BM) is below the range defined in the present invention, so that sufficient hardenability cannot be ensured and the δc value of the weld metal part is low. It is.

したがって、本発明は、YPが355MPa以上の高強度鋼で、かつ、板厚が50mm以上と厚手の領域でのδc値確保に適用されるものである。   Therefore, the present invention is applied to secure a δc value in a high strength steel having a YP of 355 MPa or more and a thickness of 50 mm or more.

Figure 2007021532
Figure 2007021532

Figure 2007021532
Figure 2007021532

Figure 2007021532
Figure 2007021532

本発明によれば、高強度でかつ板厚の大きい高強度鋼板の電子ビーム溶接継手において、万一、溶接欠陥が存在したり、疲労亀裂が発生、成長しても、脆性破壊が発生し難いので、溶接構造体が破壊するような致命的な損傷、損壊を防止することができる。   According to the present invention, in an electron beam welded joint of a high-strength steel plate having a high strength and a large plate thickness, even if a weld defect exists or a fatigue crack is generated or grows, brittle fracture is unlikely to occur. Therefore, it is possible to prevent a fatal damage or damage that causes the welded structure to break.

よって、本発明は、溶接構造体の安全性を顕著に高めるという顕著な効果を奏し、産業上の利用価値の高い発明である。   Therefore, the present invention has a remarkable effect of significantly increasing the safety of the welded structure, and is an invention having high industrial utility value.

溶接金属及びHAZ、FL部のδc値に及ぼす溶接金属部と母材の硬さの影響を示す図である。It is a figure which shows the influence of the hardness of a weld metal part and a base material which has on the (delta) c value of a weld metal and HAZ, FL part. HAZ軟化幅とHAZ、FL部のCTOD値との関係に及ぼす溶接金属部と母材の硬さ比、γ粒経の影響を示す図である。It is a figure which shows the influence of the hardness ratio of a weld metal part and a base material, and (gamma) grain size on the relationship between the HAZ softening width | variety and the CTOD value of HAZ and FL part. 板厚70mmの試験片につき、溶接金属部(WM)と溶接熱影響部(HAZ)との境界部(FL)、及び、溶接熱影響部(HAZ)にノッチを設け、ノッチ先端でのCTOD(Crack Tip Opening Displacement:亀裂端開口変位)が0.05mmになる場合のノッチ先端から亀裂進展方向に離れた各位置における亀裂開口応力分布を、FEM(3次元有限要素法)で解析した結果の一例を示す図である。A test piece having a thickness of 70 mm is provided with notches in the boundary (FL) between the weld metal part (WM) and the weld heat affected zone (HAZ) and the weld heat affected zone (HAZ), and CTOD ( Example of FEM (three-dimensional finite element method) analysis of crack opening stress distribution at each position distant from the notch tip in the crack propagation direction when Crack Tip Opening Displacement is 0.05 mm FIG.

Claims (6)

溶接構造体の突合せ溶接継手において、
(a)溶接金属部の硬さが母材部の硬さの110%超220%以下である
ことを特徴とする耐脆性破壊発生特性に優れた電子ビーム溶接継手。
In butt weld joints of welded structures,
(A) An electron beam welded joint excellent in brittle fracture resistance, characterized in that the hardness of the weld metal part is more than 110% and less than 220% of the hardness of the base metal part.
溶接構造体の突合せ溶接継手において、
(a)溶接金属部の硬さが母材部の硬さの110%超220%以下であり、かつ
(b)溶接金属部の幅が母材部の板厚の20%以下である
ことを特徴とする耐脆性破壊発生特性に優れた電子ビーム溶接継手。
In butt weld joints of welded structures,
(A) The hardness of the weld metal part is more than 110% and less than or equal to 220% of the hardness of the base metal part, and (b) the width of the weld metal part is 20% or less of the plate thickness of the base metal part. An electron beam welded joint with excellent brittle fracture resistance.
溶接構造体の突合せ溶接継手において、
(a)溶接金属部の硬さが母材部の硬さの110%超220%以下であり、
(b)溶接金属部の幅が母材部の板厚の20%以下であり、かつ、
(c)熱影響を受けていない母材部の硬さの95%以下の硬さに軟化している溶接影響部領域の幅が3mm以上である
ことを特徴とする耐脆性破壊発生特性に優れた電子ビーム溶接継手。
In butt weld joints of welded structures,
(A) the hardness of the weld metal part is more than 110% and 220% or less of the hardness of the base metal part,
(B) the width of the weld metal part is 20% or less of the thickness of the base metal part, and
(C) Excellent resistance to occurrence of brittle fracture, characterized in that the width of the weld-affected zone softened to 95% or less of the hardness of the base metal that is not affected by heat is 3 mm or more. Electron beam welded joint.
溶接構造体の突合せ溶接継手において、
(a)溶接金属部の硬さが母材の硬さの110%超220%以下であり、
(c)熱影響を受けていない母材部の硬さの95%以下の硬さに軟化している溶接熱影響部領域の幅が3mm以上であり、かつ、
(d)溶接溶融線と接する溶接影響部(HAZ)の旧オーステナイト粒径が100μm以下である
ことを特徴とする耐脆性破壊発生特性に優れた電子ビーム溶接継手。
In butt weld joints of welded structures,
(A) the hardness of the weld metal part is more than 110% and less than or equal to 220% of the hardness of the base material;
(C) the width of the weld heat affected zone region softened to a hardness of 95% or less of the hardness of the base material portion not affected by heat is 3 mm or more, and
(D) An electron beam welded joint excellent in brittle fracture resistance, characterized in that the prior austenite grain size of the weld affected zone (HAZ) in contact with the weld melting line is 100 μm or less.
溶接構造体の突合せ溶接継手において、
(a)溶接金属部の硬さが母材部の硬さの110%超220%以下であり、
(b)溶接金属部の幅が母材部の板厚の20%以下であり、
(c)熱影響を受けていない母材部の硬さの95%以下の硬さに軟化している溶接影響部領域の幅が3mm以上であり、かつ、
(d)溶接溶融線と接する溶接影響部の旧オーステナイト粒径が100μm以下である
ことを特徴とする耐脆性破壊発生特性に優れた電子ビーム溶接継手。
In butt weld joints of welded structures,
(A) the hardness of the weld metal part is more than 110% and 220% or less of the hardness of the base metal part,
(B) the width of the weld metal part is 20% or less of the thickness of the base metal part,
(C) the width of the weld affected area softened to 95% or less of the hardness of the base metal part not affected by heat is 3 mm or more, and
(D) An electron beam welded joint excellent in brittle fracture resistance, characterized in that the prior austenite grain size of the weld-affected zone in contact with the weld melt line is 100 μm or less.
前記溶接構造体が板厚50mm超の高強度鋼板を突合せ溶接したものであることを特徴とする請求項1〜5のいずれかに記載の耐脆性破壊発生特性に優れた電子ビーム溶接継手。   The electron beam welded joint having excellent brittle fracture resistance according to any one of claims 1 to 5, wherein the welded structure is obtained by butt welding a high-strength steel plate having a thickness of more than 50 mm.
JP2005207261A 2005-07-15 2005-07-15 Electron beam welded joint with excellent brittle fracture resistance Expired - Fee Related JP5098139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005207261A JP5098139B2 (en) 2005-07-15 2005-07-15 Electron beam welded joint with excellent brittle fracture resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005207261A JP5098139B2 (en) 2005-07-15 2005-07-15 Electron beam welded joint with excellent brittle fracture resistance

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012038953A Division JP5472342B2 (en) 2012-02-24 2012-02-24 Electron beam welded joint with excellent brittle fracture resistance

Publications (2)

Publication Number Publication Date
JP2007021532A true JP2007021532A (en) 2007-02-01
JP5098139B2 JP5098139B2 (en) 2012-12-12

Family

ID=37782960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005207261A Expired - Fee Related JP5098139B2 (en) 2005-07-15 2005-07-15 Electron beam welded joint with excellent brittle fracture resistance

Country Status (1)

Country Link
JP (1) JP5098139B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012070358A1 (en) 2010-11-22 2012-05-31 新日本製鐵株式会社 Electron beam welded joint, steel material for electron beam welding, and manufacturing method thereof
WO2012070353A1 (en) 2010-11-22 2012-05-31 新日本製鐵株式会社 Electron-beam welded joint, steel material for electron-beam welding, and manufacturing method therefor
WO2012070354A1 (en) 2010-11-22 2012-05-31 新日本製鐵株式会社 Electron-beam welded joint, steel material for electron-beam welding, and manufacturing method therefor
WO2012070359A1 (en) 2010-11-22 2012-05-31 新日本製鐵株式会社 Electron beam welded joint, steel material for use in electron beam welded joint, and manufacturing method thereof
WO2012070355A1 (en) 2010-11-22 2012-05-31 新日本製鐵株式会社 Electron-beam welded joint, steel material for electron-beam welding, and manufacturing method therefor
US8623154B2 (en) 2010-04-30 2014-01-07 Nippon Steel & Sumitomo Metal Corporation Electron-beam welded joint, steel for electron-beam welding, and manufacturing method
US10500817B2 (en) 2010-04-30 2019-12-10 Nippon Steel Corporation Electron-beam welded joint, steel for electron-beam welding, and method of manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07265941A (en) * 1994-03-30 1995-10-17 Nisshin Steel Co Ltd Manufacture of welded tube excellent in workability by rolless tube manufacturing method
JP2005144552A (en) * 2003-10-22 2005-06-09 Nippon Steel Corp High heat input butt-welded joint excellent in resistance to brittle fracture generation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07265941A (en) * 1994-03-30 1995-10-17 Nisshin Steel Co Ltd Manufacture of welded tube excellent in workability by rolless tube manufacturing method
JP2005144552A (en) * 2003-10-22 2005-06-09 Nippon Steel Corp High heat input butt-welded joint excellent in resistance to brittle fracture generation

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8623154B2 (en) 2010-04-30 2014-01-07 Nippon Steel & Sumitomo Metal Corporation Electron-beam welded joint, steel for electron-beam welding, and manufacturing method
US10500817B2 (en) 2010-04-30 2019-12-10 Nippon Steel Corporation Electron-beam welded joint, steel for electron-beam welding, and method of manufacturing the same
WO2012070358A1 (en) 2010-11-22 2012-05-31 新日本製鐵株式会社 Electron beam welded joint, steel material for electron beam welding, and manufacturing method thereof
WO2012070353A1 (en) 2010-11-22 2012-05-31 新日本製鐵株式会社 Electron-beam welded joint, steel material for electron-beam welding, and manufacturing method therefor
WO2012070354A1 (en) 2010-11-22 2012-05-31 新日本製鐵株式会社 Electron-beam welded joint, steel material for electron-beam welding, and manufacturing method therefor
WO2012070359A1 (en) 2010-11-22 2012-05-31 新日本製鐵株式会社 Electron beam welded joint, steel material for use in electron beam welded joint, and manufacturing method thereof
WO2012070355A1 (en) 2010-11-22 2012-05-31 新日本製鐵株式会社 Electron-beam welded joint, steel material for electron-beam welding, and manufacturing method therefor
EP2594657A1 (en) * 2010-11-22 2013-05-22 Nippon Steel & Sumitomo Metal Corporation Electron beam welded joint, steel material for use in electron beam welded joint, and manufacturing method thereof
KR20130080048A (en) 2010-11-22 2013-07-11 신닛테츠스미킨 카부시키카이샤 Electron-beam welded joint, steel material for electron-beam welding, and manufacturing method therefor
EP2594657A4 (en) * 2010-11-22 2014-04-23 Nippon Steel & Sumitomo Metal Corp Electron beam welded joint, steel material for use in electron beam welded joint, and manufacturing method thereof

Also Published As

Publication number Publication date
JP5098139B2 (en) 2012-12-12

Similar Documents

Publication Publication Date Title
JP4995348B2 (en) Butt weld joint and manufacturing method thereof
JP4828667B2 (en) Butt welded joint of welded structure and method of manufacturing the same
JP5000784B2 (en) Butt weld joint using high energy density beam
JP5098139B2 (en) Electron beam welded joint with excellent brittle fracture resistance
KR101192815B1 (en) Joint welded by electron beam with excellent unsusceptibility to brittle fracture
JP4528089B2 (en) Large heat input butt welded joints for ship hulls with brittle fracture resistance
JP5171007B2 (en) Electron beam welded joint with excellent brittle fracture resistance
JP2011246805A (en) Electronic-beam welding joint and steel for electronic-beam welding, and manufacturing method therefor
JP2011246804A (en) Electronic-beam welding joint and steel for electronic-beam welding, and manufacturing method therefor
EP2594657B1 (en) Electron beam welded joint, steel material for use in electron beam welded joint, and manufacturing method thereof
JP4319886B2 (en) Large heat input butt weld joint with brittle fracture resistance
JP5472342B2 (en) Electron beam welded joint with excellent brittle fracture resistance
JP5170354B1 (en) Beam welding joint and beam welding method
EP2644732B1 (en) Electron-beam welded joint, steel material for electron-beam welding, and manufacturing method therefor
JP4719118B2 (en) Electron beam welded joint with excellent brittle fracture resistance
JP2008087031A (en) Welded joint having excellent resistance to generation of brittle fracture
JP2008087030A (en) Electron beam welded joint having excellent resistance to generation of brittle fracture
JP5273301B2 (en) Electron beam welding joint and steel for electron beam welding
JP2011246808A (en) Electron beam welded joint, electron beam welding steel material, and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120910

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5098139

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees