JP2007159382A - Fine droplet mist producing motor for salt production application - Google Patents

Fine droplet mist producing motor for salt production application Download PDF

Info

Publication number
JP2007159382A
JP2007159382A JP2006077655A JP2006077655A JP2007159382A JP 2007159382 A JP2007159382 A JP 2007159382A JP 2006077655 A JP2006077655 A JP 2006077655A JP 2006077655 A JP2006077655 A JP 2006077655A JP 2007159382 A JP2007159382 A JP 2007159382A
Authority
JP
Japan
Prior art keywords
motor
output shaft
fine mist
radial
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006077655A
Other languages
Japanese (ja)
Inventor
Masakatsu Takayasu
正勝 高安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NUCHIMASU KK
Original Assignee
NUCHIMASU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NUCHIMASU KK filed Critical NUCHIMASU KK
Priority to JP2006077655A priority Critical patent/JP2007159382A/en
Publication of JP2007159382A publication Critical patent/JP2007159382A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Motor Or Generator Frames (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fine droplet mist producing motor, pertaining to technology to ensure longevity thereof, when evaporating water content to produce salt by causing sea water to be dispersed into a fine mist state, and applying warm wind to hot wind, that ensures longevity of a high speed driving motor for thus causing sea water into the state of mist. <P>SOLUTION: A fine droplet mist producing motor is constructed such that a salt-proof covering means for enclosing an output shaft of a motor for producing fine mist of sea water is provided, and compressedair is supplied into the interior of the sealed space in which the motor itself is accommodated. A shielding means with larger diameter than the outer diameter of the motor output shaft is designed to be provided on the outer perimeter of the motor included in the salt-proof covering means. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、海水を微細霧状にして温風ないし熱風を当てることにより水分を蒸発させて製塩する際の微細霧発生用モータの長寿命化技術に関する。 The present invention relates to a technique for extending the life of a motor for generating fine mist when salt is formed by evaporating moisture by applying warm air or hot air in the form of fine mist to seawater.

本発明の発明者は、特許第3250738 号において、放射状空洞を有する水車型の羽根車で海水を飛散させることによって微細霧状にした状態で温風ないし熱風を吹き付けて瞬時に塩の結晶を得る製塩法を提案した。この技術によって製造した食塩は、海水中のミネラル分が豊富に含まれていて健康維持に有効という理由から高い評価を受けており、国内はもちろん外国にも普及しつつある。 The inventor of the present invention, in Japanese Patent No. 3250738, obtains salt crystals instantly by spraying warm air or hot air in a fine mist state by scattering seawater with a water wheel type impeller having a radial cavity. A salt production method was proposed. Salt produced by this technology has received a high evaluation because it contains abundant minerals in seawater and is effective in maintaining health, and it is becoming popular not only in Japan but also abroad.

このような高い需要に対応すべく、さらに高品質の塩をより安価に量産するために、高速回転する駆動モータの長寿命化を実現する必要がある。そこで、本発明の発明者は、特願2004−152347において、海水の微細霧発生用のモータの出力軸を包囲する防塩カバー手段を設けると共に、モータ自体は密閉空間に収納し、前記出力軸の外周にシール手段を設けて、出力軸の外側の隙間から塩分が進入するのを防止する構造を提案した。 In order to meet such a high demand, it is necessary to realize a long life of the drive motor that rotates at high speed in order to mass-produce high-quality salt at a lower cost. In view of this, the inventors of the present invention, in Japanese Patent Application No. 2004-152347, provided salt-proof cover means for enclosing the output shaft of a motor for generating fine mist of seawater, and the motor itself was housed in a sealed space. A structure has been proposed in which a sealing means is provided on the outer periphery to prevent salt from entering from a gap outside the output shaft.

このように、微細霧発生用のモータの出力軸を包囲する防塩カバー手段を設けているので、塩分がモータ軸に到達するのを阻止でき、塩分がモータ軸に沿って、モータ内部まで浸入するのを抑制できる。しかも、前記出力軸の外周にオイルシーラーなどのシール手段を設けてあるので、出力軸の外側の隙間から塩分が進入するのをより効果的に抑制できる。
特許第3250738 特願2004−152347
In this way, the salt-proof cover means that surrounds the output shaft of the motor for generating fine mist is provided, so that salt content can be prevented from reaching the motor shaft, and salt content penetrates into the motor along the motor shaft. Can be suppressed. In addition, since sealing means such as an oil sealer is provided on the outer periphery of the output shaft, it is possible to more effectively suppress salt from entering from the gap outside the output shaft.
Patent No. 3250738 Patent application 2004-152347

前記のような構造によって細霧発生用モータの長寿命化はある程度は改善されるが、モータ出力軸に水分や塩分が付着するのは阻止できないため、モータ軸の外周面からモータ内部に塩分が浸入することを確実に避けることは困難であり、細霧発生用の回転盤を高速回転させる高価な高速高精度モータの場合は、より確実に塩分の浸入を阻止して、軸受けグリースや軸受けより内側のモータ機構部の劣化を遅らせる必要がある。また、微細霧発生部で飛び散ったりモータ側に迂回する細霧を抑制すると共にモータ軸受け部の負荷による劣化をも抑制する必要がある。 Although the above-mentioned structure improves the life of the fine fog generating motor to some extent, it is impossible to prevent moisture and salt from adhering to the motor output shaft. It is difficult to reliably avoid intrusion, and in the case of an expensive high-speed high-precision motor that rotates the rotating disk for generating fine mist at a high speed, the intrusion of salt is prevented more reliably than the bearing grease or bearing. It is necessary to delay the deterioration of the inner motor mechanism. In addition, it is necessary to suppress the fine mist that is scattered at the fine mist generating portion or detouring to the motor side, and also to suppress the deterioration due to the load of the motor bearing portion.

本発明の技術的課題は、このような問題に着目し、海水を微細な霧状にするための高速駆動モータをより確実に長寿命化可能とすることにある。 The technical problem of the present invention is to pay attention to such a problem and to more reliably extend the life of a high-speed drive motor for making seawater into a fine mist.

本発明の技術的課題は次のような手段によって解決される。請求項1は、海水の微細霧発生用のモータの出力軸を包囲する防塩カバー手段を設けると共に、該モータ自体は密閉空間に収納し、該密閉空間の内部に圧縮空気を供給する構造としたことを特徴とする微細霧発生モータである。このように、微細霧発生モータの出力軸を包囲する防塩カバー手段を設けてあるので、微細霧室から塩分がモータ出力軸に到来するのを抑制できる。しかも、該モータ自体は密閉空間に収納し、該密閉空間の内部に圧縮空気を供給するため、密閉空間中が前記防塩カバー中より高圧となる結果、防塩カバー手段中の塩分が軸穴と出力軸間の隙間から密閉空間中に進入するのを抑止できる。そのため、モータ内部や軸受け部に塩分が入り込んで腐食・劣化などの塩害を受けるのを防止できる。 The technical problem of the present invention is solved by the following means. According to a first aspect of the present invention, there is provided a salt-proof cover means for enclosing the output shaft of a motor for generating fine mist of seawater, the motor itself is housed in a sealed space, and compressed air is supplied into the sealed space. This is a fine mist generating motor. Thus, since the salt prevention cover means surrounding the output shaft of the fine mist generating motor is provided, it is possible to suppress salt from reaching the motor output shaft from the fine mist chamber. In addition, since the motor itself is housed in a sealed space and compressed air is supplied to the inside of the sealed space, the sealed space has a higher pressure than that in the salt-proof cover. And entering the sealed space from the gap between the output shafts. For this reason, it is possible to prevent salt damage from entering the motor or the bearing portion and causing salt damage such as corrosion and deterioration.

請求項2は、前記防塩カバー手段中のモータ出力軸の外周に、モータ出力軸の外径より大径の遮断手段を設けてあることを特徴とする請求項1に記載の微細霧発生モータである。請求項1のように、モータの入っている密閉空間の内部に圧縮空気を供給するため、その圧力によって、モータ出力軸と軸受けとの隙間から塩分が入り込むのを抑制できるが、請求項2のように、防塩カバー手段中のモータ出力軸の外周に、モータ出力軸の外径より大径の遮断手段を設けてあるため、塩分が液状になって出力軸の表面に沿ってモータ側に伝わるのを遮断し阻止できる。 According to a second aspect of the present invention, the fine mist generating motor according to claim 1, wherein a blocking means having a diameter larger than the outer diameter of the motor output shaft is provided on the outer periphery of the motor output shaft in the salt prevention cover means. It is. Since the compressed air is supplied to the inside of the sealed space containing the motor as in claim 1, the pressure can suppress the salt from entering from the gap between the motor output shaft and the bearing. As described above, since the blocking means having a diameter larger than the outer diameter of the motor output shaft is provided on the outer periphery of the motor output shaft in the salt-proof cover means, the salinity becomes liquid and moves toward the motor side along the surface of the output shaft. It can block and prevent transmission.

請求項3は、前記防塩カバー手段中においてモータ出力軸に攪拌ファンを設け、しかも前記攪拌ファンと軸受けの間に1以上の圧縮空気送入口を設けたことを特徴とする請求項1または請求項2に記載の微細霧発生モータである。このように、モータ出力軸に攪拌ファンを設け、この攪拌ファンと軸受けの間に1以上の圧縮空気送入口を設けてあるので、防塩カバー手段の内部の塩分は圧縮空気によってモータ出力軸の先端側に圧送され、密閉空間に入り込むのをより確実に阻止できる。しかも、攪拌ファンによって、防塩カバー手段の内部が攪拌されて、防塩カバー手段内の圧力が均一化され、圧縮空気の送入口を複数か所に設けたことと相まって、防塩カバー手段中を満遍なく高圧にして、塩分の浸入をより確実に阻止できる。 According to a third aspect of the present invention, a stirring fan is provided on the motor output shaft in the salt prevention cover means, and one or more compressed air inlets are provided between the stirring fan and the bearing. Item 3. The fine mist generating motor according to Item 2. As described above, since the motor output shaft is provided with the stirring fan and one or more compressed air inlets are provided between the stirring fan and the bearing, the salt content in the salt prevention cover means is reduced by the compressed air. It is pumped to the tip side and can be more reliably prevented from entering the sealed space. Moreover, the inside of the salt prevention cover means is agitated by the agitating fan, the pressure inside the salt prevention cover means is made uniform, and coupled with the provision of compressed air inlets at a plurality of locations, the salt prevention cover means The pressure can be evenly increased to prevent the infiltration of salt.

請求項4は、前記密閉空間中のモータカバーの内部に圧縮空気を供給する構造としたことを特徴とする請求項1、請求項2または請求項3に記載の微細霧発生モータである。このように、前記密閉空間中のモータカバーの内部に圧縮空気を供給するため、モータカバーの内部の圧力が高まり、その結果、モータカバーの内部に塩分が入り込んでモータ機構部や軸受け部に塩害を与えるのをより確実に防止できる。 According to a fourth aspect of the present invention, there is provided the fine mist generating motor according to any one of the first, second, and third aspects, wherein compressed air is supplied into the motor cover in the sealed space. Thus, since compressed air is supplied to the inside of the motor cover in the sealed space, the pressure inside the motor cover increases, and as a result, salt enters the inside of the motor cover, causing salt damage to the motor mechanism part and the bearing part. Can be more reliably prevented.

海水の微細霧による製塩室は、微細霧に常時温風を当てているため常に圧力が高い状態になって、微細霧発生モータの内部は相対的に負圧状態となって、製塩室の海水の微細霧や塩水が入り込み易いが、以上のように各送入口から圧縮空気を送入して高圧状態に維持することによって、モータ内部への微細霧や塩水の浸入を効果的に防止できる。 The salt mist chamber with fine mist of seawater is always in a high pressure state because hot air is constantly applied to the fine mist, and the inside of the fine mist generating motor is in a relatively negative pressure state. However, fine mist and salt water can be effectively prevented from entering the motor by supplying compressed air from each inlet and maintaining the high pressure state as described above.

請求項5は、海水の微細霧発生用のモータの出力軸を包囲する防塩カバー手段となるシールハウジングに、前記出力軸の外周に向けて圧縮空気を噴射するための放射方向の小孔を設け、各放射状小孔の外端を圧縮空気源に連通可能としたことを特徴とする請求項1に記載の微細霧発生モータである。このように、モータの出力軸を包囲するシールハウジングに、出力軸の外周に向けて圧縮空気を噴射する放射状小孔を設け、各放射状小孔の外端を圧縮空気源に連通可能としてあるため、圧縮空気源から供給された圧縮空気が各放射状小孔の内端からモータ出力軸に向けて噴射されるので、塩分や水分、粉塵などの異物が外部からモータ出力軸の軸受けやモータ内部に進入してモータを劣化させるのを阻止できる。 According to a fifth aspect of the present invention, a small radial hole for injecting compressed air toward the outer periphery of the output shaft is provided in a seal housing serving as a salt-proof cover means that surrounds the output shaft of a motor for generating fine fog of seawater. 2. The fine mist generating motor according to claim 1, wherein an outer end of each of the radial small holes is provided to be able to communicate with a compressed air source. As described above, the seal housing that surrounds the output shaft of the motor is provided with radial small holes for injecting compressed air toward the outer periphery of the output shaft, and the outer ends of the radial small holes can be communicated with the compressed air source. Compressed air supplied from the compressed air source is jetted from the inner end of each radial hole toward the motor output shaft, so that foreign matter such as salt, moisture, and dust can be externally applied to the bearing of the motor output shaft and inside the motor. It is possible to prevent the motor from entering and deteriorating.

請求項6は、前記のシールハウジングに、リング状の空洞からなるコンデンサ室を前記出力軸を囲むように形成し、前記放射状小孔の各外端と圧縮空気源との間に介在させてあることを特徴とする請求項5に記載の微細霧発生モータである。このように、前記シールハウジングに、リング状の空洞からなるコンデンサ室を前記出力軸を囲むように形成し、前記放射状小孔の各外端と圧縮空気源との間に介在させてあるので、コンデンサ室で一旦蓄積蓄圧された圧縮空気が均一にモータ出力軸の外周に噴射される。コンデンサ室は、モータ出力軸を囲むようにリング状の空洞になっているので、シールハウジング中にコンパクトに形成できる。 According to a sixth aspect of the present invention, a capacitor chamber composed of a ring-shaped cavity is formed in the seal housing so as to surround the output shaft, and is interposed between each outer end of the radial small hole and a compressed air source. The fine mist generating motor according to claim 5. Thus, in the seal housing, a capacitor chamber composed of a ring-shaped cavity is formed so as to surround the output shaft, and is interposed between each outer end of the radial small hole and a compressed air source. The compressed air once accumulated and accumulated in the capacitor chamber is uniformly injected to the outer periphery of the motor output shaft. Since the capacitor chamber is a ring-shaped cavity so as to surround the motor output shaft, it can be compactly formed in the seal housing.

請求項7は、前記放射状小孔の内端を出力軸の先端側に向けて傾斜させることによって、放射状小孔からの噴出空気流が出力軸の先端側に噴出する構造とし、しかも放射状小孔の内端を前記出力軸の回転方向に向けて傾斜させることによって、放射状小孔からの噴出空気流が出力軸の回転方向と同じ向きの渦流状の循環流となる構造としたことを特徴とする請求項5または請求項6に記載の微細霧発生モータである。このように、前記放射状小孔の内端を出力軸の先端側に向けて傾斜させることによって、放射状小孔からの噴出空気流が出力軸の先端側に噴出する構造にしてあるので、モータ出力軸の先端側から進入してくる異物を効果的に阻止できる。また、放射状小孔の内端を前記出力軸の回転方向に向けて傾斜させてあるので、放射状小孔からの噴出空気流が出力軸の回転方向と同じ向きの渦流状の循環流となり、その結果、モータ出力軸の外周で圧縮空気流が途切れたり、不均一となることはなく、前記のモータ出力軸の先端方向の噴射流と相まって、異物の進入をより確実に阻止できる。 According to a seventh aspect of the present invention, the inner end of the radial small hole is inclined toward the distal end side of the output shaft so that the air flow ejected from the radial small hole is ejected toward the distal end side of the output shaft. Inclined toward the rotation direction of the output shaft, the air flow ejected from the radial small holes becomes a vortex-like circulation flow in the same direction as the rotation direction of the output shaft. The fine mist generating motor according to claim 5 or 6. As described above, since the inner end of the radial small hole is inclined toward the distal end side of the output shaft, the air flow ejected from the radial small hole is ejected toward the distal end side of the output shaft. Foreign matter entering from the tip side of the shaft can be effectively prevented. Further, since the inner end of the radial small hole is inclined toward the rotation direction of the output shaft, the air flow ejected from the radial small hole becomes a vortex-like circulation flow in the same direction as the rotation direction of the output shaft, As a result, the compressed air flow is not interrupted or non-uniformly around the outer periphery of the motor output shaft, and the entry of foreign matter can be more reliably prevented in combination with the jet flow in the tip direction of the motor output shaft.

請求項8は、モータ駆動される海水の微細霧発生用の高速回転板を凹曲面とし、その中央部に海水を供給する構造としたことを特徴とする微細霧発生モータである。従来の細霧発生用の高速回転円盤は、中央の海水供給口から外気と共に海水を遠心力で吸入して各放射状空洞を通過して放出するため、海水供給部側が負圧になることでモータ軸受け部にスラスト方向の負荷が生じて軸受け部を損傷する。ところが、本発明のように微細霧発生用の高速回転板を凹曲面とし、その中央部に海水を供給する構造にすると、遠心力で外気を吸入して放出する放射状空洞が存在しないので、モータ軸受け部にスラスト方向の負荷が生じない。その結果、モータ軸受け部の損傷による寿命低下を抑制できる。 An eighth aspect of the present invention is a fine mist generating motor characterized in that a high-speed rotating plate for generating fine mist of seawater driven by a motor is formed as a concave curved surface and seawater is supplied to the center thereof. A conventional high-speed rotating disk for generating fine mist sucks seawater from the central seawater supply port together with outside air by centrifugal force and discharges it through each radial cavity. A load in the thrust direction is generated on the bearing portion, and the bearing portion is damaged. However, if the high-speed rotating plate for generating fine mist is a concave curved surface as in the present invention and seawater is supplied to the center thereof, there is no radial cavity that sucks and discharges outside air by centrifugal force. No thrust load is generated at the bearing. As a result, it is possible to suppress a decrease in life due to damage of the motor bearing portion.

また、従来の放射状空洞を有する高速回転盤の場合は、遠心力による海水の放出力に加えて、大量に吸い込む空気の流れが、遠心力で加速されている微細粒子の速さに加算されてパワーアップするため、背部から温風を当てた際に海水の微細霧が円滑に製塩室中央に圧送されず、つまり前方に流れずに飛び散って、前記のようにモータ出力軸側に迂回する成分が発生する。ところが、本発明のような凹曲面状の高速回転板にした場合は、従来の水車型の高速回転盤の各放射状空洞が遠心力で大量の空気を吸い込んで加速していたのと違って、このような放射方向の加速流は発生しないので、温風吹き付けに起因する飛び散りやモータ出力軸側への迂回成分を低減でき、塩害によるモータ寿命の低下も抑制される。 In addition, in the case of a high-speed rotating disk having a conventional radial cavity, in addition to the discharge of seawater by centrifugal force, the flow of air sucked in a large amount is added to the speed of fine particles accelerated by centrifugal force. In order to power up, when hot air is applied from the back, the fine mist of seawater is not smoothly pumped to the center of the saltmaking chamber, that is, it scatters without flowing forward and bypasses the motor output shaft as described above Will occur. However, in the case of a concave curved high-speed rotating plate like the present invention, unlike each radial cavity of a conventional waterwheel type high-speed rotating disk sucked a large amount of air by centrifugal force and accelerated, Since such an acceleration flow in the radial direction does not occur, scattering due to hot air blowing and a detour component toward the motor output shaft can be reduced, and a reduction in motor life due to salt damage is also suppressed.

請求項9は、前記高速回転板の凹曲面の少なくとも外周側に放射状の案内溝及び/又は凸条を多数設けてなることを特徴とする請求項8に記載の微細霧発生モータである。このように、前記高速回転板の凹曲面に放射状の案内溝及び/又は凸条を多数設けてあると、凹曲面に沿って遠心力で次第により薄い膜状になりながら拡がっていく海水の膜が多数の放射状の案内溝に入って分散される。あるいは、凸条に沿って分散される。その結果、高速回転で凹曲面の外周から放出されて振り切られる際に無数の微細霧となって飛散することになり、微細霧を効果的に発生できる。なお、放射状の案内溝及び/又は凸条は、高速回転板の外周側だけに設ければ足りる。外径の大きい外周側には、放射状の案内溝及び/又は凸条をより多く形成できるので、従来の放射状羽根で仕切る放射状空洞より多数形成でき、海水の分散効率も大きい。 A ninth aspect of the present invention is the fine mist generating motor according to the eighth aspect, wherein a large number of radial guide grooves and / or protrusions are provided on at least the outer peripheral side of the concave curved surface of the high-speed rotating plate. As described above, when a large number of radial guide grooves and / or ridges are provided on the concave curved surface of the high-speed rotating plate, the seawater film expands while gradually forming a thin film shape by centrifugal force along the concave curved surface. Are dispersed in a number of radial guide grooves. Alternatively, it is dispersed along the ridges. As a result, when it is released from the outer periphery of the concave curved surface at a high speed rotation and shaken off, it becomes an infinite number of fine mists and scatters, and the fine mists can be generated effectively. The radial guide grooves and / or ridges need only be provided on the outer peripheral side of the high-speed rotating plate. Since more radial guide grooves and / or ridges can be formed on the outer peripheral side having a large outer diameter, a larger number of radial cavities can be formed than conventional radial wings, and the dispersion efficiency of seawater is high.

請求項10は、前記高速回転板の凹曲面外周に、幅の小さな網その他の微細間隔の分離手段を設けてなることを特徴とする請求項8又は請求項9に記載の微細霧発生モータである。このように、高速回転板の凹曲面外周に、幅の小さな網その他の微細間隔の分離手段を多数設けてあると、凹曲面に沿って遠心力で広がって来た膜状の海水が凹曲面外周に到達した時点で網目状の多数の微細間隔の分離手段で無数に分離分散されながら、高速回転板の回転力で高頻度で振り切られながら、微細霧となって凹曲面の外周から飛散する。 10. The fine mist generating motor according to claim 8 or 9, wherein a separation means having a narrow net or other fine interval is provided on the outer periphery of the concave surface of the high-speed rotating plate. is there. In this way, when a large number of separation means with a narrow net and other fine intervals are provided on the outer periphery of the concave curved surface of the high-speed rotating plate, the membrane-like seawater that has spread by centrifugal force along the concave curved surface When it reaches the outer circumference, it is separated and dispersed innumerably by a large number of mesh-like separation means, and it is spun off frequently by the rotational force of the high-speed rotating plate, and it becomes a fine mist and scatters from the outer circumference of the concave curved surface. .

請求項9のように案内用の溝や凸条を設けたり、請求項10のように外周に微細間隔に分離手段を設ける構成は、従来の水車型の放射状空洞と違って容易に無数に形成できるので、比較的低い回転数でも、また遠心力が比較的小さくても、分散効率が高く、円滑に微細霧を発生できる。その結果、微細霧発生モータは比較的低速回転が可能となり、軸受けの磨耗劣化が少なく、より長寿命化できる。 Unlike the conventional water wheel type radial cavity, the structure in which the guide grooves and the ridges are provided as in claim 9 and the separating means in the outer periphery as in claim 10 is easily formed innumerably. Therefore, even when the rotational speed is relatively low and the centrifugal force is relatively small, the dispersion efficiency is high, and fine mist can be generated smoothly. As a result, the fine mist generating motor can be rotated at a relatively low speed, and the wear deterioration of the bearing is small and the life can be extended.

請求項11は、前記高速回転板の凹曲面の半径方向の中間位置にドーナツ状の板を設けて、このドーナツ状板と前記凹曲面との間に多数の放射状羽根を挟んで多数の放射状空洞を形成してなることを特徴とする請求項8、請求項9または請求項10に記載の微細霧発生モータである。このように、前記高速回転板の凹曲面の半径方向の中間位置にドーナツ状の板を設けて、このドーナツ状板と前記凹曲面との間に多数の放射状羽根を挟んで多数の放射状空洞を形成してあるため、従来の水車型の放射状空洞を凹曲面の半径方向の中間位置だけに設けた格好となる。その結果、高速回転板を立てて使用する場合に、凹曲面の中央に供給された海水は、凹曲面の半径方向の中間位置に設けた放射状羽根によって効果的かつ均一に全周に分散される。その後は、凹曲面に沿って膜状に伸ばされながら外周端に達し、全周均一な微細霧となって振り切られる。また、凹曲面の半径方向の中間位置だけに、吸入力と放出力の大きな放射状空洞が有るので、凹曲面の前方で淀んでいる微細霧を効果的に各放射状空洞に吸入して外端から放出できるので、温風吹き付けに起因する凹曲面前方における微細霧の淀みも解消される。 In the eleventh aspect, a donut-shaped plate is provided at an intermediate position in the radial direction of the concave curved surface of the high-speed rotating plate, and a large number of radial cavities are sandwiched between the donut-shaped plate and the concave curved surface. The fine mist generating motor according to claim 8, 9 or 10. In this way, a donut-shaped plate is provided at the radial intermediate position of the concave curved surface of the high-speed rotating plate, and a large number of radial cavities are sandwiched between the donut-shaped plate and the concave curved surface. Since it is formed, a conventional water wheel type radial cavity is provided only at the intermediate position in the radial direction of the concave curved surface. As a result, when the high-speed rotating plate is used upright, the seawater supplied to the center of the concave curved surface is effectively and uniformly distributed over the entire circumference by the radial blades provided at the intermediate position in the radial direction of the concave curved surface. . Thereafter, the film reaches the outer peripheral edge while being stretched in a film shape along the concave curved surface, and is shaken off as a uniform fine mist all around. In addition, since there are radial cavities with large suction and output at only the intermediate position in the radial direction of the concave curved surface, the fine mist muddy in front of the concave curved surface is effectively sucked into each radial cavity from the outer end. Since it can discharge | release, the stagnation of the fine mist in front of the concave curved surface resulting from hot air blowing is also eliminated.

請求項12は、前記高速回転板の凹曲面の中央部寄りにおいて、海水の流入部を囲むように放射方向の羽根板を設けてあることを特徴とする請求項8、請求項9、請求項10または請求項11に記載の微細霧発生モータである。このように、前記高速回転板の凹曲面の中央部寄りにおいて、海水の流入部を囲むように放射方向の羽根板を設けてあるので、高速回転板を立てて使用する場合に、凹曲面中央に供給された海水は、放射方向の羽根板の回転によって、直ちに効果的かつ均一に全周に分散されてから、凹曲面に沿って膜状に伸ばされるため、凹曲面外周から均一に微細霧が発生可能となる。 In a twelfth aspect of the present invention, radial blades are provided so as to surround the inflow portion of the seawater near the center of the concave curved surface of the high-speed rotating plate. 10 or a fine mist generating motor according to claim 11. Thus, since the radial blades are provided so as to surround the inflow portion of seawater near the center of the concave surface of the high-speed rotating plate, the center of the concave surface is used when the high-speed rotating plate is used upright. The seawater supplied to is immediately and effectively dispersed uniformly around the circumference by the rotation of the blades in the radial direction, and then stretched into a film along the concave curved surface. Can occur.

請求項1のように、微細霧発生モータの出力軸を包囲する防塩カバー手段を設けてあるので、微細霧室から塩分がモータ出力軸に到来するのを抑制できる。しかも、該モータ自体を収納した密閉空間の内部に圧縮空気を供給するため、密閉空間中が前記防塩カバー手段中より高圧となる結果、防塩カバー手段中の塩分が軸穴と出力軸間の隙間から密閉空間中に進入するのを抑止できる。そのため、モータ内部や軸受け部に塩分が入り込んで腐食・劣化などの塩害を受けるのを防止できる。 Since the saltproof cover means surrounding the output shaft of the fine mist generating motor is provided as in the first aspect, it is possible to suppress salt from reaching the motor output shaft from the fine mist chamber. Moreover, since compressed air is supplied to the inside of the sealed space in which the motor itself is housed, the sealed space has a higher pressure than in the salt-proof cover means, so that the salt content in the salt-proof cover means is between the shaft hole and the output shaft. Can be prevented from entering the sealed space through the gap. For this reason, it is possible to prevent salt damage from entering the motor or the bearing portion and causing salt damage such as corrosion and deterioration.

請求項1のようにモータの入っている密閉空間の内部に圧縮空気を供給するため、その圧力によって、モータ出力軸と軸受けとの隙間から塩分が入り込むのを抑制できるが、請求項2のように、防塩カバー手段中のモータ出力軸の外周に、モータ出力軸の外径より大径の遮断手段を設けてあるため、塩分が液状になって出力軸の表面に沿ってモータ側に伝わるのを遮断し阻止できる。 Since compressed air is supplied to the inside of the sealed space containing the motor as in claim 1, salt pressure can be prevented from entering from the gap between the motor output shaft and the bearing by the pressure, but as in claim 2. Further, since the blocking means having a diameter larger than the outer diameter of the motor output shaft is provided on the outer periphery of the motor output shaft in the salt prevention cover means, the salt content becomes liquid and is transmitted to the motor side along the surface of the output shaft. Can be blocked and blocked.

請求項3のように、モータ出力軸に攪拌ファンを設け、この攪拌ファンと軸受けの間に1以上の圧縮空気送入口を設けてあるので、防塩カバー手段の内部の塩分は圧縮空気でモータ出力軸の先端側に圧送され、密閉空間に入り込むのをより確実に阻止できる。しかも、攪拌ファンによって、防塩カバー手段の内部が攪拌されて、防塩カバー手段内の圧力が均一化され、圧縮空気の送入口を複数か所に設けたことと相まって、防塩カバー手段中を満遍なく高圧にして、塩分の浸入をより確実に阻止できる。 According to the third aspect of the present invention, the motor output shaft is provided with a stirring fan, and one or more compressed air inlets are provided between the stirring fan and the bearing. It is pumped to the tip side of the output shaft, and can be more reliably prevented from entering the sealed space. Moreover, the inside of the salt prevention cover means is agitated by the agitating fan, the pressure inside the salt prevention cover means is made uniform, and coupled with the provision of compressed air inlets at a plurality of locations, the salt prevention cover means The pressure can be evenly increased to prevent the infiltration of salt.

請求項4のように、前記密閉空間中のモータカバーの内部に圧縮空気を供給するため、モータカバーの内部の圧力が高まり、その結果、モータカバーの内部に塩分が入り込んでモータ機構部や軸受け部に塩害を与えるのをより確実に防止できる。 Since compressed air is supplied to the inside of the motor cover in the sealed space as in claim 4, the pressure inside the motor cover increases, and as a result, salt enters the inside of the motor cover and the motor mechanism and bearings. It is possible to more reliably prevent salt damage to the part.

海水の微細霧による製塩室は、微細霧に常時温風を当てているため常に圧力が高い状態になって、微細霧発生モータの内部は相対的に負圧状態となって、製塩室の海水の微細霧や塩水が入り込み易いが、以上のように各送入口から圧縮空気を送入して高圧状態に維持することによって、モータ内部への微細霧や塩水の浸入を効果的に防止できる。 The salt mist chamber with fine mist of seawater is always in a high pressure state because hot air is constantly applied to the fine mist, and the inside of the fine mist generating motor is in a relatively negative pressure state. However, fine mist and salt water can be effectively prevented from entering the motor by supplying compressed air from each inlet and maintaining the high pressure state as described above.

請求項5のように、モータの出力軸を包囲するシールハウジングに、出力軸の外周に向けて圧縮空気を噴射する放射状小孔を設け、各放射状小孔の外端を圧縮空気源に連通可能としてあるため、圧縮空気源から供給された圧縮空気が各放射状小孔の内端からモータ出力軸に向けて噴射されるので、塩分や水分、粉塵などの異物が外部からモータ出力軸の軸受けやモータ内部に進入してモータを劣化させるのを阻止できる。 As in claim 5, a radial small hole for injecting compressed air toward the outer periphery of the output shaft is provided in the seal housing that surrounds the output shaft of the motor, and the outer end of each radial small hole can communicate with the compressed air source Therefore, compressed air supplied from the compressed air source is jetted from the inner end of each radial small hole toward the motor output shaft, so that foreign matter such as salt, moisture, and dust is externally It is possible to prevent the motor from entering the motor and deteriorating.

請求項6のように、前記シールハウジングに、リング状の空洞からなるコンデンサ室を前記出力軸を囲むように形成し、前記放射状小孔の各外端と圧縮空気源との間に介在させてあるので、コンデンサ室で一旦蓄積蓄圧された圧縮空気が均一にモータ出力軸の外周に噴射される。コンデンサ室は、モータ出力軸を囲むようにリング状の空洞になっているので、シールハウジング中にコンパクトに形成できる。 According to a sixth aspect of the present invention, a capacitor chamber composed of a ring-shaped cavity is formed in the seal housing so as to surround the output shaft, and is interposed between each outer end of the radial small hole and a compressed air source. Therefore, the compressed air once accumulated and accumulated in the capacitor chamber is uniformly injected to the outer periphery of the motor output shaft. Since the capacitor chamber is a ring-shaped cavity so as to surround the motor output shaft, it can be compactly formed in the seal housing.

請求項7のように、前記放射状小孔の内端を出力軸の先端側に向けて傾斜させて、放射状小孔からの噴出空気流が出力軸の先端側に噴出する構造にしてあるので、モータ出力軸の先端側から進入してくる異物を効果的に阻止できる。また、放射状小孔の内端を前記出力軸の回転方向に向けて傾斜させてあるので、放射状小孔からの噴出空気流が出力軸の回転方向と同じ向きの渦流状の循環流となり、その結果、モータ出力軸の外周で圧縮空気流が途切れたり、不均一となることはなく、前記のモータ出力軸の先端方向の噴射流と相まって、異物の進入をより確実に阻止できる。 Since the inner end of the radial small hole is inclined toward the distal end side of the output shaft as in claim 7, the jet air flow from the radial small hole is ejected to the distal end side of the output shaft. Foreign matter entering from the tip side of the motor output shaft can be effectively prevented. Further, since the inner end of the radial small hole is inclined toward the rotation direction of the output shaft, the air flow ejected from the radial small hole becomes a vortex-like circulation flow in the same direction as the rotation direction of the output shaft, As a result, the compressed air flow is not interrupted or non-uniformly around the outer periphery of the motor output shaft, and the entry of foreign matter can be more reliably prevented in combination with the jet flow in the tip direction of the motor output shaft.

請求項8のように、微細霧発生用の高速回転板を凹曲面とし、その中央部に海水を供給する構造にすると、従来のように遠心力で外気を吸入して放出する放射状空洞が存在しないので、モータ軸受け部にスラスト方向の負荷が生じない。その結果、モータ軸受け部の損傷による寿命低下を抑制できる。また、従来の放射状空洞を有する高速回転盤の場合は、遠心力による海水の放出力に加えて、大量に吸い込む空気の流れが、遠心力で加速されている微細粒子の速さに加算されてパワーアップするため、背部から温風を当てた際に海水の微細霧が円滑に製塩室中央に圧送されず、つまり前方に流れずに飛び散って、前記のようにモータ出力軸側に迂回する成分が発生する。ところが、請求項8のような凹曲面状の高速回転板にした場合は、従来の水車型の高速回転盤の各放射状空洞が遠心力で大量の空気を吸い込んで加速していたのと違って、このような放射方向の加速流は発生しないので、温風吹き付けに起因する飛び散りやモータ出力軸側への迂回成分を低減でき、塩害によるモータ寿命の低下も抑制される。 If the high-speed rotating plate for generating fine mist is a concave curved surface and seawater is supplied to the central part thereof as in claim 8, there is a radial cavity that sucks and discharges outside air by centrifugal force as in the prior art. As a result, no thrust load is generated at the motor bearing. As a result, it is possible to suppress a decrease in life due to damage of the motor bearing portion. In addition, in the case of a high-speed rotating disk having a conventional radial cavity, in addition to the discharge of seawater by centrifugal force, the flow of air sucked in a large amount is added to the speed of fine particles accelerated by centrifugal force. In order to power up, when hot air is applied from the back, the fine mist of seawater is not smoothly pumped to the center of the saltmaking chamber, that is, it scatters without flowing forward and bypasses the motor output shaft as described above Will occur. However, in the case of the concave curved high-speed rotating plate as in claim 8, each radial cavity of the conventional water wheel type high-speed rotating disk is accelerated by sucking a large amount of air by centrifugal force. Since such an acceleration flow in the radial direction is not generated, scattering caused by blowing hot air and a detour component toward the motor output shaft can be reduced, and a reduction in motor life due to salt damage is also suppressed.

請求項9のように、前記高速回転板の凹曲面に放射状の案内溝及び/又は凸条を多数設けてあると、凹曲面に沿って遠心力で次第により薄い膜状になりながら拡がっていく海水の膜が多数の放射状の案内溝に入って分散される。あるいは、凸条に沿って分散される。その結果、高速回転で凹曲面の外周から放出されて振り切られる際に無数の微細霧となって飛散することになり、微細霧を効果的に発生できる。外径の大きい外周側には、放射状の案内溝及び/又は凸条をより多く形成できるので、従来の放射状羽根で仕切る放射状空洞より多数形成でき、海水の分散効率も大きい。 If a large number of radial guide grooves and / or ridges are provided on the concave curved surface of the high-speed rotating plate as in claim 9, the film gradually expands along the concave curved surface with a centrifugal force. Seawater membranes are dispersed in a number of radial guide grooves. Alternatively, it is dispersed along the ridges. As a result, when it is released from the outer periphery of the concave curved surface at a high speed rotation and shaken off, it becomes an infinite number of fine mists and scatters, and the fine mists can be generated effectively. Since more radial guide grooves and / or ridges can be formed on the outer peripheral side having a large outer diameter, a larger number of radial cavities can be formed than conventional radial wings, and the dispersion efficiency of seawater is high.

請求項10のように、高速回転板の凹曲面外周に、幅の小さな網その他の微細間隔の分離手段を多数設けてあるので、凹曲面に沿って遠心力で広がって来た膜状の海水が凹曲面外周に到達した時点で網目状の多数の微細間隔の分離手段で無数に分離分散されながら、高速回転板の回転力で高頻度で振り切られながら、微細霧となって凹曲面の外周から飛散する。 Since a large number of separation means with a small width and other fine intervals are provided on the outer periphery of the concave curved surface of the high-speed rotating plate as in claim 10, membrane-like seawater that has spread by centrifugal force along the concave curved surface When it reaches the outer periphery of the concave curved surface, it is separated and dispersed innumerably by a large number of mesh-like separation means, and the outer periphery of the concave curved surface becomes a fine mist while being frequently shaken off by the rotational force of the high-speed rotating plate. Scatter from.

請求項9のように案内用の溝や凸条を設けたり、請求項10のように外周に微細間隔に分離手段を設ける構成は、従来の水車型の放射状空洞と違って容易に無数に形成できるので、比較的低い回転数でも、また遠心力が比較的小さくても、分散効率が高く、円滑に微細霧を発生できる。その結果、微細霧発生モータは比較的低速回転が可能となり、軸受けの磨耗劣化が少なく、より長寿命化できる。 Unlike the conventional water wheel type radial cavity, the structure in which the guide grooves and the ridges are provided as in claim 9 and the separating means in the outer periphery as in claim 10 is easily formed innumerably. Therefore, even when the rotational speed is relatively low and the centrifugal force is relatively small, the dispersion efficiency is high, and fine mist can be generated smoothly. As a result, the fine mist generating motor can be rotated at a relatively low speed, and the wear deterioration of the bearing is small and the life can be extended.

請求項11のように、前記高速回転板の凹曲面の半径方向の中間位置に設けたドーナツ状板と前記凹曲面との間に多数の放射状羽根を挟んで多数の放射状空洞を形成してあるため、従来の水車型の放射状空洞を凹曲面の半径方向の中間位置だけに設けた格好となる。その結果、高速回転板を立てて使用する場合に、凹曲面の中央に供給された海水は、凹曲面の半径方向の中間位置に設けた放射状羽根によって効果的かつ均一に全周に分散される。その後、凹曲面を外周端まで移動し、全周均一な微細霧となって振り切られる。また、凹曲面の半径方向の中間位置だけに、吸入力と放出力の大きな放射状空洞が有るので、凹曲面の前方で淀んでいる微細霧を効果的に各放射状空洞に吸入して外端から放出するので、温風吹き付けに起因する凹曲面前方における微細霧の淀みも解消される。 As in claim 11, a large number of radial cavities are formed between a donut-shaped plate provided at a radial intermediate position of the concave curved surface of the high-speed rotating plate and a large number of radial blades between the concave curved surface. Therefore, the conventional water wheel type radial cavity is provided only at the intermediate position in the radial direction of the concave curved surface. As a result, when the high-speed rotating plate is used upright, the seawater supplied to the center of the concave curved surface is effectively and uniformly distributed over the entire circumference by the radial blades provided at the intermediate position in the radial direction of the concave curved surface. . Thereafter, the concave curved surface is moved to the outer peripheral end, and is shaken off as a uniform fine mist all around. In addition, since there are radial cavities with large suction and output at only the intermediate position in the radial direction of the concave curved surface, the fine mist muddy in front of the concave curved surface is effectively sucked into each radial cavity from the outer end. Since it discharges, the stagnation of fine mist in front of the concave curved surface due to the hot air blowing is also eliminated.

請求項12のように、前記高速回転板の凹曲面の中央部寄りにおいて、海水の流入部を囲むように放射方向の羽根板を設けてあるので、高速回転板を立てて使用する場合に、凹曲面中央に供給された海水は、放射方向の羽根板の回転によって、直ちに効果的かつ均一に全周に分散されてから、凹曲面に沿って膜状に伸ばされるため、凹曲面外周から均一に微細霧が発生可能となる。 As in claim 12, near the central portion of the concave surface of the high-speed rotating plate, since a radial blade is provided so as to surround the inflow portion of seawater, when the high-speed rotating plate is used upright, Seawater supplied to the center of the concave curved surface is immediately and effectively distributed uniformly around the entire circumference by the rotation of the blades in the radial direction, and then stretched into a film along the concave curved surface. Fine mist can be generated.

次に本発明による海水の微細霧発生モータが実際上どのように具体化されるか実施形態を説明する。図1(1)は本発明による微細霧発生モータの第1実施形態を示す縦断面図であり、駆動モータMの出力軸1の先端に高速回転盤2が固定されている。この高速回転盤2の断面構造は図1(2)のように、2枚の円板31、32間に放射方向の案内羽根3を多数設けて多数の放射状空洞3c…に仕切ることで、水車状に形成されている。 Next, an embodiment of how the fine mist generation motor for seawater according to the present invention is actually realized will be described. FIG. 1A is a longitudinal sectional view showing a first embodiment of a fine mist generating motor according to the present invention, and a high-speed rotating disk 2 is fixed to the tip of an output shaft 1 of a drive motor M. FIG. As shown in FIG. 1 (2), the high-speed rotating disk 2 has a sectional structure in which a large number of radial guide vanes 3 are provided between two disks 31 and 32 and partitioned into a plurality of radial cavities 3c. It is formed in a shape.

モータ出力軸1の反対側の中央部は、円板32、放射状羽根3を除去して開口33とし、該開口33中に、海水供給管4で海水SWを供給しながら、高速回転盤2を例えば毎分1万回転といった高速回転させると、遠心力による負圧で矢印a1方向に海水を吸い込んで、外周から矢印a2方向に吐き出す際に、各案内羽根3で分散されるため、高速回転盤2から放出され振り切られる時点では微細霧5となって飛散する。矢印a2方向に飛散した微細霧5に背部から矢印a3方向の温風が吹き付けられることによって、製塩室の中央に送られ、微細霧中の水分が蒸発して塩の結晶が生成される。 The central part on the opposite side of the motor output shaft 1 is formed with an opening 33 by removing the disk 32 and the radial blades 3. The seawater SW is supplied to the opening 33 through the seawater supply pipe 4 and the high-speed rotating disk 2 is installed. For example, when rotating at a high speed of 10,000 revolutions per minute, seawater is sucked in the direction of arrow a1 by negative pressure due to centrifugal force, and is dispersed by each guide blade 3 when discharged from the outer periphery in the direction of arrow a2. When it is released from 2 and shaken out, it becomes a fine mist 5 and scatters. When hot air in the direction of arrow a3 is blown from the back to the fine mist 5 scattered in the direction of arrow a2, it is sent to the center of the salt making chamber, and the moisture in the fine mist evaporates to produce salt crystals.

モータMは密閉ケーシング6の中に内蔵されており、この密閉ケーシング6の前面壁61から円筒状の防塩カバー7を突出させ、モータMの出力軸1を包囲している。この防塩カバー7の先端と、高速回転盤2との間隔Gはできるだけ狭くして、海水の微細霧や塩分が出力軸1側に入り込み難いようにする。密閉ケーシング6の前面壁61に設けた軸穴8は、その軸方向の長さLを可能な限り長く、少なくとも前面壁61の厚さより大きくして、出力軸1との間に生じる隙間8を長くしている。その結果、出力軸1の先端側から密閉ケーシング6の内部に塩分や水分が入り込もうとする際の抵抗を高めている。また、軸穴8の外側において、出力軸1に円板状の遮断板9を設けてある。そして、防塩カバー7の内径>遮断円板9の外径>軸穴8の内径>出力軸1の外径、という寸法関係になっている。その結果、出力軸1の外周を伝って塩分を含んだ液体が軸穴8側に浸入するのを阻止できる。一方、密閉ケーシング6には、その内部の密閉空間中に圧縮空気を供給するめたの送入口10を設けてある。 The motor M is built in the hermetic casing 6, and the cylindrical salt-proof cover 7 is projected from the front wall 61 of the hermetic casing 6 to surround the output shaft 1 of the motor M. The gap G between the tip of the salt-proof cover 7 and the high-speed rotating disk 2 is made as small as possible so that the fine mist and salt content of seawater do not easily enter the output shaft 1 side. The shaft hole 8 provided in the front wall 61 of the hermetic casing 6 has a length L in the axial direction as long as possible and at least larger than the thickness of the front wall 61 so that a gap 8 generated between the shaft hole 8 and the output shaft 1 is formed. It is long. As a result, the resistance when salt or moisture tries to enter the sealed casing 6 from the front end side of the output shaft 1 is increased. Further, a disc-shaped blocking plate 9 is provided on the output shaft 1 outside the shaft hole 8. The dimensional relationship of the inner diameter of the saltproof cover 7> the outer diameter of the blocking disc 9> the inner diameter of the shaft hole 8> the outer diameter of the output shaft 1 is established. As a result, it is possible to prevent the liquid containing salt from entering the shaft hole 8 side along the outer periphery of the output shaft 1. On the other hand, the sealed casing 6 is provided with an inlet 10 for supplying compressed air into the sealed space inside.

モータMの始動に際しては、始動と同時に又は始動の前に送入口10から圧縮空気を密閉ケーシング6の内部に送入して、密閉ケーシング6の内部を外気よりも高圧にしておく。その結果、軸穴8と出力軸1との間の微小隙間から圧縮空気が遮断板9側に吹き出すことになり、隙間8から塩分なとが入り込むのを阻止できる。また、軸穴8の長さLが密閉ケーシング6の前面壁61の厚さより大いため、隙間8から塩分が入り込む際の抵抗が増え、塩分の浸入阻止がより効果的となる。 When starting the motor M, compressed air is sent into the sealed casing 6 from the inlet 10 at the same time as or before starting, and the inside of the sealed casing 6 is kept at a higher pressure than the outside air. As a result, compressed air is blown out from the minute gap between the shaft hole 8 and the output shaft 1 toward the blocking plate 9, and salt can be prevented from entering from the gap 8. Further, since the length L of the shaft hole 8 is larger than the thickness of the front wall 61 of the sealed casing 6, the resistance when salt enters from the gap 8 is increased, and the salt entry is more effectively prevented.

軸穴8との隙間から吹きだした圧縮空気は、防塩カバー7と高速回転盤2との隙間Gから外部に吹き出すため、霧状その他の塩分がこの隙間Gから防塩カバー7の内部に入り込むのを抑制できる。万一、液体の状態で出力軸1の表面を伝わって軸穴8中に入り込もうとしても、軸穴8の手前に遮断板9が有るため、大径の遮断板9を乗り越えて軸穴8側まで到達することは極めて困難であり、出力軸1の表面を伝って塩分が軸穴8の内部に入り込むのを効果的に阻止できる。また、軸穴8内の隙間から吹き出した圧縮空気は、遮断板9に当たってその外周側に移動するため、この際の風圧によって、塩分を含んだ液体が遮断板9を越えて軸穴8側に移動するのを効果的に抑制できる。 The compressed air blown out from the gap with the shaft hole 8 is blown out through the gap G between the salt-proof cover 7 and the high-speed rotating disk 2, so that mist and other salt enter the inside of the salt-proof cover 7 through the gap G. Can be suppressed. In the unlikely event that a liquid is transmitted along the surface of the output shaft 1 and enters the shaft hole 8, the blocking plate 9 is located in front of the shaft hole 8. It is extremely difficult to reach the side, and salt can be effectively prevented from entering the shaft hole 8 along the surface of the output shaft 1. Further, since the compressed air blown out from the gap in the shaft hole 8 hits the blocking plate 9 and moves to the outer peripheral side, the wind pressure at this time causes the salt-containing liquid to pass over the blocking plate 9 to the shaft hole 8 side. It is possible to effectively suppress movement.

図2に示すように、前記遮断板9と高速回転盤2の間において、出力軸1に攪拌ファンfを設けてある。また、防塩カバー7には、例えば90度間隔に4個の圧縮空気送入口11を設けてある。この送入口11は、攪拌ファンfと前記遮断板9との間に設けてあるが、遮断板9の外径が大きくなければ、密閉ケーシング前面壁61寄りに設けてもよい。その結果、送入口10から送入された圧縮空気が軸穴8と出力軸1間の隙間から吹き出すのに加えて、防塩カバー7の送入口11からも圧縮空気が送入される。これらの圧縮空気は、防塩カバー7の内部を高圧にした後、攪拌ファンfと防塩カバー7との間を通過して、防塩カバー7先端の隙間Gから外部に吹き出す。このとき、攪拌ファンfの回転によって、防塩カバー7の内部が攪拌され、圧縮空気送入口11の存在しない領域も含めて、防塩カバー7内の全体が均一に高圧に維持されるので、塩分が隙間Gから防塩カバー7中に入り込んだり、万一入り込んだとしても、軸穴8側に移動するのをより確実に防止できる。 As shown in FIG. 2, a stirring fan f is provided on the output shaft 1 between the blocking plate 9 and the high-speed rotating disk 2. The saltproof cover 7 is provided with four compressed air inlets 11 at intervals of 90 degrees, for example. The inlet 11 is provided between the stirring fan f and the blocking plate 9, but may be provided closer to the front wall 61 of the sealed casing as long as the outer diameter of the blocking plate 9 is not large. As a result, in addition to the compressed air sent from the inlet 10 blowing out from the gap between the shaft hole 8 and the output shaft 1, the compressed air is also sent from the inlet 11 of the salt prevention cover 7. These compressed airs make the inside of the salt-proof cover 7 high in pressure, then pass between the stirring fan f and the salt-proof cover 7 and blow out to the outside through the gap G at the tip of the salt-proof cover 7. At this time, the inside of the salt-proof cover 7 is stirred by the rotation of the stirring fan f, and the entire inside of the salt-proof cover 7 is maintained at a high pressure uniformly including the area where the compressed air inlet 11 does not exist. Even if salt enters the anti-salt cover 7 from the gap G, or even if it enters, it can be reliably prevented from moving to the shaft hole 8 side.

モータMは、モータを構成する機構部をモータカバーMcで覆っているのが普通である。本発明では、このモータカバーMcの中にも圧縮空気を供給すべく、送入口12を設けて、密閉ケーシング6の外に導出してある。そして、このモータカバーMcの内部にも圧縮空気を供給して充満させることによって、モータカバーMcの軸受け部からモータ機構部に塩分が浸入したり、軸受け部のグリースなどが塩害を受けて劣化するのを防止している。 In general, the motor M covers a mechanism part constituting the motor with a motor cover Mc. In the present invention, in order to supply compressed air also into the motor cover Mc, the inlet 12 is provided and led out of the sealed casing 6. Then, by supplying compressed air to the inside of the motor cover Mc to fill it, salt enters from the bearing portion of the motor cover Mc to the motor mechanism portion, or grease or the like of the bearing portion deteriorates due to salt damage. Is preventing.

このように、圧縮空気送入口10、11、12の少なくとも3か所に圧縮空気を供給しているが、圧縮空気を供給開始するタイミングは、まず送入口12からモータカバーMcの中に圧縮空気を供給して満たしてから、送入口10から密閉ケーシング6中に圧縮空気を供給し充満させる。そして、最後に各送入口11から防塩カバー7中に圧縮空気を供給するが、防塩カバー7の内部全体の圧力を一定にすべく攪拌ファンfを作動させるために、モータMを始動させる。以上のように、圧縮空気は、モータカバーMcの内部と、密閉ケーシング6の内部と、防塩カバー7中の軸穴8寄りの3か所に供給できるが、このように3か所に供給する場合は、それぞれの空気圧の高さは、モータカバーMc内>密閉ケーシング6内>防塩カバー7の軸穴8側、となるように設定することが望ましい。以上の圧縮空気送入口10、11、12は必ずしもこれらの全部を装備する必要はなく、いずれか1又は2か所を設けるだけでもよい。なお、図示例では、案内羽根3による放射状空洞3cつきの水車状の高速回転盤2を示したが、図3〜図9のような凹曲面状の高速回転板を用いても同じ効果が得られる。 As described above, compressed air is supplied to at least three of the compressed air inlets 10, 11, and 12. The timing for starting the supply of compressed air is first from the inlet 12 into the motor cover Mc. Is supplied and filled, and then compressed air is supplied into the sealed casing 6 from the inlet 10 to be filled. Finally, compressed air is supplied from each inlet 11 into the salt-proof cover 7, but the motor M is started to operate the stirring fan f so as to keep the pressure inside the salt-proof cover 7 constant. . As described above, compressed air can be supplied to the inside of the motor cover Mc, the inside of the hermetic casing 6, and the three locations near the shaft hole 8 in the salt-proof cover 7, but in this way, the three locations are supplied. When doing so, it is desirable to set the height of each air pressure so that the inside of the motor cover Mc> the inside of the hermetic casing 6> the shaft hole 8 side of the salt prevention cover 7. The above compressed air inlets 10, 11, and 12 do not necessarily need to be equipped with all of these, and only one or two of them may be provided. In the illustrated example, the water wheel-shaped high-speed rotating disk 2 with the radial cavity 3c by the guide vanes 3 is shown. However, the same effect can be obtained by using a concave-curved high-speed rotating disk as shown in FIGS. .

海水の微細霧による製塩室では、高速回転盤2の背部から矢印a3方向の温風を常時微細霧5に当てているため、常に圧力が高い状態になって、微細霧発生モータMの内部は相対的に負圧状態となっている。その結果、製塩室の海水の微細霧や塩水が入り込み易いが、以上のように各送入口10、11、12から圧縮空気を送入して高圧状態に維持することによって、モータカバーMc内部への微細霧や塩水の浸入を未然に防止できる。 In the salt making room using fine mist of seawater, the hot air in the direction of arrow a3 is constantly applied to the fine mist 5 from the back of the high-speed rotating disk 2, so that the pressure is always high, and the inside of the fine mist generating motor M is Relatively negative pressure. As a result, although fine mist and salt water of seawater in the salt making room are likely to enter, the compressed air is supplied from each of the inlets 10, 11, and 12 and maintained at a high pressure state as described above to enter the motor cover Mc. Infiltration of fine mist and salt water can be prevented.

以上は軸受け部やモータ機構部などの塩害による劣化を抑制する構造であるが、図3は、軸受けに作用する負荷を軽減することによる軸受けの劣化抑制構造であり、微細霧発生用の高速回転板13の中心位置における縦断面図である。この高速回転板13は、アルミニウムその他の金属や合成樹脂製の円板を球面状に形成したものであり、球体の一部を円形に取り出した形状である。そして、その凹曲面13iの中央Cに、海水供給管4で海水SWを供給しながら、高速回転板13をモータMによって例えば毎分1万回転といった高速回転をさせる。その結果、中央Cに供給された海水SWは、遠心力によって、高速回転板の凹曲面13iに沿って外周側に送られ、最後に外周端から振り飛ばされる。 The above is a structure that suppresses deterioration due to salt damage such as the bearing part and the motor mechanism part. FIG. 3 is a structure that suppresses deterioration of the bearing by reducing the load acting on the bearing, and is a high-speed rotation for generating fine fog. FIG. 6 is a longitudinal sectional view at the center position of a plate 13. The high-speed rotating plate 13 is a circular plate made of aluminum or other metal or synthetic resin, and has a shape in which a part of a sphere is taken out in a circular shape. Then, the high-speed rotating plate 13 is rotated at a high speed such as 10,000 rotations per minute by the motor M while supplying the seawater SW to the center C of the concave curved surface 13i by the seawater supply pipe 4. As a result, the seawater SW supplied to the center C is sent to the outer peripheral side along the concave curved surface 13i of the high-speed rotating plate by centrifugal force, and finally shaken off from the outer peripheral end.

このとき、高速回転板の高速回転力によって外周から振り切られるため、海水の微細霧5となる。また、高速回転板13は、海水供給側が凹曲面になっていて窪んでいるため、凹曲面13iに付着している海水が遠心力で拡散する際に、遠心力で凹曲面に密着する力が海水に作用するので、海水は凹曲面13iに確実に密着し保持されながら外周に送られる。その結果、高速回転板から確実に遠心力を受けて、外周から放出される。高速回転によって高頻度で振り切られて放出されるので、微細霧5となって飛散する。また、面積のより大きい外周側に遠心力で移動するにつれて徐々により薄い膜状に押し伸ばされるので、最終的にはより細かい微細霧5となって飛散する。 At this time, since it is shaken off from the outer periphery by the high-speed rotational force of the high-speed rotating plate, it becomes a fine mist 5 of seawater. In addition, since the seawater supply side of the high-speed rotating plate 13 has a concave curved surface and is recessed, when seawater adhering to the concave curved surface 13i diffuses by centrifugal force, the force that adheres to the concave curved surface by centrifugal force is exerted. Since it acts on seawater, the seawater is sent to the outer periphery while being securely attached and held on the concave curved surface 13i. As a result, the centrifugal force is reliably received from the high-speed rotating plate and discharged from the outer periphery. Since it is shaken off and released with high frequency by high-speed rotation, it becomes a fine mist 5 and scatters. Moreover, since it is gradually stretched into a thinner film as it moves to the outer peripheral side having a larger area by centrifugal force, it eventually scatters as a finer fine mist 5.

図4は、図3の高速回転板13の平面図であり、凹曲面13iの外周寄りに無数の案内溝14を放射状に形成してある。そのため、凹曲面13iに沿って外周側に押し出される海水の膜は各案内溝14中に流れ込み、案内溝14中を遠心力で外周側に押し流されて、外周から飛散する。そのため、凹曲面13iに付着している海水膜は、多数の案内溝14で分散されることになり、その結果、微細霧となって外周から飛散する。したがって、この案内溝14は、可能な限り多い方がよい。案内溝14の放射方向の長さは特に限定しないが、外周寄りに設ければ、より多くの溝を形成できる。なお、案内溝は直線状でなく、14cのように、高速回転中の海水膜が遠心力を効果的に受けて流れやすい方向に湾曲しているのがよい。 FIG. 4 is a plan view of the high-speed rotating plate 13 shown in FIG. 3, in which innumerable guide grooves 14 are radially formed near the outer periphery of the concave curved surface 13i. Therefore, the seawater film pushed to the outer peripheral side along the concave curved surface 13i flows into each guide groove 14, and is swept away from the outer periphery by centrifugal force in the guide groove 14 to the outer peripheral side. Therefore, the seawater film adhering to the concave curved surface 13i is dispersed in the many guide grooves 14, and as a result, it becomes a fine mist and scatters from the outer periphery. Therefore, the guide grooves 14 should be as many as possible. The length of the guide groove 14 in the radial direction is not particularly limited, but more grooves can be formed if provided near the outer periphery. In addition, the guide groove is not linear, and it is preferable that the seawater film rotating at high speed is curved in a direction in which it can easily flow due to the centrifugal force as in 14c.

前記の案内溝14、14cに代えて、凸状も有効である。図5(1)は、図4の溝14、14cの断面形状であり、(2)は逆に凸状16を設けた場合の断面形状である。溝に代えて、放射状の凸条16にした場合は、凸条16が壁となって、凸条16に沿って海水膜が流れるので、案内溝と同様なガイド作用が得られる。しかし、溝のみ又は凸条のみを形成するのは困難であり、円板に刃物で溝を加工する際に、(3)のように、その溝14(14c)の両側に凸条16が盛り上がるのが通常である。刃物の当て方などを工夫することによって、(4)のように溝14(14c)の片側だけに凸条16が盛り上がるようにもできる。このように、案内溝を形成する際に付随的に凸条が形成されてもよいし、特別に凸条のみを形成してもよい。 A convex shape is also effective in place of the guide grooves 14 and 14c. FIG. 5 (1) shows the cross-sectional shape of the grooves 14 and 14c of FIG. 4, and (2) shows the cross-sectional shape when the convex shape 16 is provided. When the radial ridge 16 is used instead of the groove, the ridge 16 serves as a wall, and the seawater film flows along the ridge 16, so that the same guide action as that of the guide groove is obtained. However, it is difficult to form only the grooves or only the ridges, and when the grooves are machined into the disk with a blade, the ridges 16 rise on both sides of the groove 14 (14c) as shown in (3). It is normal. By devising how to apply the blade, the ridge 16 can be raised only on one side of the groove 14 (14c) as shown in (4). In this way, when the guide groove is formed, a ridge may be incidentally formed, or only the ridge may be formed specially.

図6は、案内溝14や凸条16に代えて、外周端に無数の分離手段を設けた例である。例えば、細く短いピアノ線を高速回転板13の外周に立てた状態で一体化させてある。図6(1)はメッシュの細かい網を用いて分離手段を設ける例を示す側面図であり、高速回転板13の外周に網15を巻き付けた状態でロウ付け又は接着して固定する。次いで、前記凹曲面13iの外周側から例えば1mm程度の長さだけ突出した状態で残るように、鎖線A−A位置で鋏でカットすると、図6(2)のように、凹曲面13iの外周端において、無数の線材15wが一定の微小間隔で立った状態に固定された構成となる。なお、A−A位置でカットするのが困難な場合は、網目を例えば2〜3個分残した状態でカットしてもよい。あるいは、初めから網目数個分の幅の小さい網を高速回転板13の外周に巻き付けてロウ付け又は接着し固定してもよい。 FIG. 6 shows an example in which an infinite number of separating means are provided at the outer peripheral edge instead of the guide groove 14 and the ridge 16. For example, a thin and short piano wire is integrated on the outer periphery of the high-speed rotating plate 13. FIG. 6 (1) is a side view showing an example in which the separating means is provided using a mesh with fine mesh. The mesh 15 is wound around the outer periphery of the high-speed rotating plate 13 and fixed by brazing or bonding. Next, when it is cut with scissors at the position of the chain line AA so as to remain in a state of projecting, for example, a length of about 1 mm from the outer peripheral side of the concave curved surface 13i, the outer periphery of the concave curved surface 13i as shown in FIG. At the end, an infinite number of wires 15w are fixed in a state of standing at a constant minute interval. In addition, when it is difficult to cut at the A-A position, the cut may be performed with, for example, two to three meshes remaining. Alternatively, a net having a small width corresponding to several meshes may be wound around the outer periphery of the high-speed rotating plate 13 from the beginning and brazed or adhered to be fixed.

この状態において、高速回転板13が高速回転すると、凹曲面13iの中央に供給された海水が遠心力で外周に向かって拡散され、薄い膜となった状態で、外周の無数の線材15w…に当たって無数に分散され、各線材15w…の間から放出される。このとき、高速回転板13の高速回転によって高頻度で放出され、かつ繰り返し振り切られるため、微細霧となって飛散する。このように、高速回転板13の外周に微細間隔で無数の線材15w…を設けると、高速回転によって振り切られて発生する微細霧も容易に実現できるので、従来の水車型の放射状空洞3cの高速回転で海水を分散させて微細霧にする構造と違って、さほど高速回転でなくても、かつ遠心力が比較的小さくても、外周から微細霧5を円滑に発生可能となる。さほど高速回転にする必要がなくなると、モータの軸受けの寿命はさらに長くなる。なお、図5のような案内溝14、14cや凸条16の場合にも同様な効果を奏する。 In this state, when the high-speed rotating plate 13 rotates at a high speed, the seawater supplied to the center of the concave curved surface 13i is diffused toward the outer periphery by centrifugal force and hits the innumerable wires 15w on the outer periphery in a thin film state. It is dispersed innumerably and discharged from between the wires 15w. At this time, the high-speed rotating plate 13 is released at a high frequency by the high-speed rotation and is repeatedly shaken off, so that it is scattered as a fine mist. As described above, by providing countless wire rods 15w at fine intervals on the outer periphery of the high-speed rotating plate 13, it is possible to easily realize fine mist generated by swinging off by high-speed rotation. Therefore, the high-speed of the conventional water wheel type radial cavity 3c can be realized. Unlike the structure in which seawater is dispersed to form a fine mist by rotation, the fine mist 5 can be generated smoothly from the outer periphery even if the rotation is not so high and the centrifugal force is relatively small. If it is not necessary to rotate at such a high speed, the life of the bearing of the motor is further increased. In addition, the same effect is produced also in the case of the guide grooves 14 and 14c and the protrusion 16 as shown in FIG.

以上のように、高速回転板13は、図1のように多数の案内羽根3による放射状空洞3cを有する水車構造と違って、高速回転板13の中央に遠心力による矢印a1方向の吸引圧を生じないため、モータ軸のスラスト方向の外力を受けず、モータ軸受けに負担がかかって、軸受けの寿命が短くなるといった問題が解消される。放射状空洞からなる水車構造と違って、円板状の高速回転板13は、外周からの微細霧の飛散力が強過ぎないので、背部からの温風吹き付けに起因する海水細霧のモータ出力軸側への飛散迂回も減少する。なお、図3はモータ軸が鉛直方向を向いているが、図1、図2のように水平にして、高速回転板13を立てて使用できることは言うまでもない。 As described above, the high-speed rotating plate 13 has a suction pressure in the direction of the arrow a1 due to centrifugal force at the center of the high-speed rotating plate 13, unlike the water wheel structure having the radial cavities 3c formed by many guide vanes 3 as shown in FIG. Since this does not occur, the problem that the external force of the motor shaft in the thrust direction is not received, a load is applied to the motor bearing, and the life of the bearing is shortened is solved. Unlike the water wheel structure composed of radial cavities, the disk-shaped high-speed rotating plate 13 does not have a strong spray force of fine mist from the outer periphery, so that the motor output shaft of seawater fine mist caused by blowing hot air from the back Splash detours to the side are also reduced. In FIG. 3, the motor shaft is oriented vertically, but it goes without saying that the high-speed rotating plate 13 can be used upright as shown in FIGS.

このように、図3のモータMの出力軸1を水平にすることによって高速回転板13を立てて使用する場合は、海水供給管4から出た海水SWは、高速回転板13の前面中央から流れ落ちて無駄になり、供給された海水SW全体を円滑に微細霧5として活用できなくなる恐れがある。そこで、図7のように、高速回転板13の凹曲面13iの半径方向の中間位置に放射状空洞31cを設けたり、図8、図9のように中央側に放射方向の羽根板を設けるのが効果的である。 As described above, when the high-speed rotating plate 13 is used upright by leveling the output shaft 1 of the motor M in FIG. 3, the seawater SW that has come out of the seawater supply pipe 4 is drawn from the front center of the high-speed rotating plate 13. There is a risk that it will flow down and become useless, and the supplied seawater SW as a whole cannot be smoothly used as the fine mist 5. Therefore, as shown in FIG. 7, a radial cavity 31c is provided at a radial intermediate position of the concave curved surface 13i of the high-speed rotating plate 13, or a radial blade is provided on the center side as shown in FIGS. It is effective.

図7の場合は、案内羽根31が破線で示されていることからも分かるように、凹曲面13iの半径方向の中間位置にドーナツ状の板17が有り、このドーナツ状板17と凹曲面13iとの間に多数の案内羽根31…を挟んで固定することによって、多数の放射状空洞31cを形成してある。その結果、高速回転板13が図1のように立った状態で回転した場合、凹曲面13iの中央部Cに供給された海水SWは、放射状案内羽根31…の高速回転によって高速回転板13の全周に均一に分散されながら放射状空洞31cの外端から放出される。 In the case of FIG. 7, as can be seen from the fact that the guide vane 31 is indicated by a broken line, there is a donut-shaped plate 17 at the radial intermediate position of the concave curved surface 13 i, and this donut-shaped plate 17 and the concave curved surface 13 i. A large number of radial cavities 31c are formed by sandwiching and fixing a large number of guide vanes 31 therebetween. As a result, when the high-speed rotating plate 13 rotates while standing as shown in FIG. 1, the seawater SW supplied to the central portion C of the concave curved surface 13 i is caused by the high-speed rotation of the radial guide vanes 31. It is emitted from the outer end of the radial cavity 31c while being uniformly distributed over the entire circumference.

したがって、半径途中の放射状空洞31c…が高速回転すると、水車型の高速回転盤2と同じ原理で、空気と共に海水SWを遠心力で吸い込んで放射方向に放出するので、以後は、凹曲面13iに沿って遠心力で押し伸ばされて徐々に薄い膜となり、最終的に外周端から振り切られて微細霧5となる。図3からも明らかなように、微細霧5が凹曲面13iの前面に回り込んで停滞する恐れがあるが、こうして凹曲面13i前面で淀んでいる微細霧は、前記のような放射状空洞31cの遠心力による、前記矢印a1方向の吸引力で吸い込んで、各放射状空洞31cの外端から放出する効果も奏する。 Therefore, when the radial cavities 31c in the middle of the radius rotate at high speed, the seawater SW is sucked together with the air by centrifugal force and released in the radial direction on the same principle as the high speed rotating disk 2 of the water wheel type. Along with the centrifugal force, the film is gradually stretched to become a thin film, and finally shaken off from the outer peripheral edge to become a fine mist 5. As is clear from FIG. 3, the fine mist 5 may stagnate around the front surface of the concave curved surface 13i, and thus the fine mist muddy on the front surface of the concave curved surface 13i is formed in the radial cavity 31c as described above. There is also an effect that the suction is performed by the centrifugal force due to the suction force in the direction of the arrow a1 and the gas is discharged from the outer end of each radial cavity 31c.

前記のように、海水SWを空気と共に吸い込む関係上、海水SWが供給される高速回転板13の中央部C寄りに放射状案内羽根31…の内端を配置する必要があるが、放射状案内羽根31…やドーナツ状板17の外周位置は、高速回転板13の半径の1/2位置より中央C寄りに配置することが望ましい。つまり、ドーナツ状板17の半径を、高速回転板13の半径の1/2より小さくするのが望ましい。遠心力による吸引力が従来のように大き過ぎないように、しかも放射状空洞31cから放出された海水を凹曲面13iに沿って膜状に押し伸ばすのに充分な半径方向の経路を確保するためである。ドーナツ状板17の半径方向の幅Wは、高速回転板13の半径の1/2を越えない寸法で足りる。放射状空洞31cによる遠心力による吸引力が大き過ぎないようにするためである。なお、高速回転板13の外径は、25〜40cm程度が適している。 As described above, because the seawater SW is sucked together with the air, it is necessary to dispose the inner ends of the radial guide vanes 31... Near the central portion C of the high-speed rotating plate 13 to which the seawater SW is supplied. It is desirable that the outer peripheral position of the doughnut-shaped plate 17 is arranged closer to the center C than the half position of the radius of the high-speed rotating plate 13. That is, it is desirable to make the radius of the donut-shaped plate 17 smaller than ½ of the radius of the high-speed rotating plate 13. In order to ensure a sufficient radial path to stretch the seawater discharged from the radial cavity 31c into a membrane along the concave curved surface 13i so that the suction force due to centrifugal force is not too large as in the prior art. is there. The width W in the radial direction of the doughnut-shaped plate 17 is sufficient if it does not exceed 1/2 of the radius of the high-speed rotating plate 13. This is to prevent the suction force due to the centrifugal force by the radial cavity 31c from being too large. The outer diameter of the high speed rotating plate 13 is suitably about 25 to 40 cm.

このように、凹曲面13iの半径途中に放射状空洞31c…を設けた場合は、その外径が小さくなるので、従来の水車型の高速回転盤2のように遠心力による吸引力が強過ぎるという問題が解消される。これに対し、図8、図9は、凹曲面13iの中央部C寄りに例えば6枚の羽根板18を放射方向(又は放射状)に固定してある。この場合は水車型の放射状空洞31c…にしないので、羽根板18の前方は露出させたままでよい。いま、凹曲面13iの中央部Cに図1のように供給管4から供給された海水SWは、高速回転している放射方向の羽根板18…で全周に分散されるので、凹曲面13iの全面に均一に分散された状態で、外周側に次第により薄い膜状になりながら拡散流出し、微細霧5となる。 Thus, when the radial cavity 31c... Is provided in the middle of the radius of the concave curved surface 13i, the outer diameter becomes small, so that the suction force due to the centrifugal force is too strong as in the conventional high speed rotating disk 2 of the water turbine type. The problem is solved. On the other hand, in FIG. 8 and FIG. 9, for example, six blades 18 are fixed in the radial direction (or radial direction) near the central portion C of the concave curved surface 13i. In this case, since the radial cavities 31c of the water wheel type are not used, the front of the slat 18 may be left exposed. Now, the seawater SW supplied from the supply pipe 4 to the central portion C of the concave curved surface 13i as shown in FIG. 1 is dispersed all around by the radial blades 18 ... rotating at high speed. In a state of being uniformly dispersed over the entire surface of the film, it diffuses and flows out while gradually becoming a thinner film on the outer peripheral side, and becomes a fine mist 5.

このように凹曲面13iの中央部C寄りにおいて、海水SWの流入部を囲むように設けた放射状羽根板18…は、多数設ける必要はなく、約10枚以内でも足りる。形状も、単純な長方形状で足りる。なお、このような凹曲面13iの中央部C寄りの放射状羽根板18…を設けた状態において、図7のように外周側のみに水車型の案内羽根31…を設ける構造を併用することも可能であり、より効果的となる。また、図7〜図9の構造は、図4〜図6の構成と併用することもできる。 Thus, it is not necessary to provide a large number of radial blades 18 provided so as to surround the inflow portion of the seawater SW near the central portion C of the concave curved surface 13i. A simple rectangular shape is sufficient. In the state where the radial blades 18 near the central portion C of the concave curved surface 13i are provided, it is possible to use a structure in which the water wheel type guide blades 31 are provided only on the outer peripheral side as shown in FIG. And become more effective. Moreover, the structure of FIGS. 7-9 can also be used together with the structure of FIGS.

図12〜図14は、図2の実施形態の改良型のエアーシール構造であり、図10、図11のモータ軸に適用した例である。図10は通常のモータの側面図、図11は該モータの正面図で、モータの出力軸1と軸受け側との間の隙間から塩分や水分などの異物が進入するのを阻止するために、改良型のエアーシール構造を実装すると、図12〜図14のようになる。図12はモータ出力軸1の軸芯方向の縦断面図であり、モータケーシング6の前面壁M61と出力軸1との間にエアーシール用のシールハウジング20を設けて、前面壁M61側に固定してある。 12 to 14 show an improved air seal structure of the embodiment shown in FIG. 2, which is an example applied to the motor shaft shown in FIGS. 10 and 11. FIG. 10 is a side view of a normal motor, and FIG. 11 is a front view of the motor. In order to prevent foreign matter such as salt and moisture from entering from a gap between the output shaft 1 of the motor and the bearing side, When an improved air seal structure is mounted, it becomes as shown in FIGS. FIG. 12 is a longitudinal sectional view of the motor output shaft 1 in the axial direction. An air seal seal housing 20 is provided between the front wall M61 of the motor casing 6 and the output shaft 1, and is fixed to the front wall M61 side. It is.

このシールハウジング20には、リング状の空洞からなるコンデンサ室21が開いており、圧縮空気供給用の空気流入口22が外周部に開けてある。コンデンサ室21と出力軸外周の環状のエアーシール空間23との間は、多数の放射方向の小孔24…で連通している。この放射状小孔24…は、出力軸1(の軸芯)に対し角度αだけ傾けることによって、矢印a4で示す噴射流を出力軸1の先端方向に向けてある。その結果、出力軸1先端側からエアーシール空間23側に進入しようとするガス類や塩分、水分、粉塵などの異物の進入を噴射流で効果的に阻止できる。したがって、異物がモータの内部や軸受け部などに進入することはない。なお、シールハウジング20の放射状小孔24…の出口周辺の面は、放射状小孔24…に対しほぼ直角になっているが、矢印a4で示す噴射流が出力軸1の先端方向にガイドされるように、多少立てた出口面にしてもよい。 In the seal housing 20, a capacitor chamber 21 made of a ring-shaped cavity is opened, and an air inlet 22 for supplying compressed air is opened in the outer peripheral portion. The condenser chamber 21 and the annular air seal space 23 on the outer periphery of the output shaft communicate with each other through a large number of small holes 24 in the radial direction. The radial small holes 24... Are inclined by an angle α with respect to the output shaft 1 (the core thereof), thereby directing the jet flow indicated by the arrow a4 toward the distal end of the output shaft 1. As a result, it is possible to effectively prevent the entry of foreign substances such as gases, salt, moisture, and dust that are about to enter the air seal space 23 side from the front end side of the output shaft 1 by the jet flow. Therefore, foreign matter does not enter the inside of the motor or the bearing portion. The surface around the outlet of the radial small holes 24 of the seal housing 20 is substantially perpendicular to the radial small holes 24, but the jet flow indicated by the arrow a4 is guided in the distal direction of the output shaft 1. As such, the exit surface may be slightly raised.

各部の寸法関係を示すと、エアーシール空間23の内径>シールハウジング20の軸受け孔の内径>出力軸1の外径、ということになる。出力軸1の外径とシールハウジング20の軸受け孔の内径との寸法差すなわち隙間は例えば約1mm以下が適しているが、特に限定はされない。また、エアーシール空間23の内径と前記軸受け孔の内径との寸法差すなわちエアーシール空間23の半径方向の寸法は約1〜2mm程度が適しているが、特に限定はされない。なお、出力軸1の根元のフランジ1fは必ずしも必要ない。 When showing the dimensional relationship of each part, the inner diameter of the air seal space 23> the inner diameter of the bearing hole of the seal housing 20> the outer diameter of the output shaft 1. The dimensional difference between the outer diameter of the output shaft 1 and the inner diameter of the bearing hole of the seal housing 20, that is, the gap is preferably about 1 mm or less, but is not particularly limited. The dimensional difference between the inner diameter of the air seal space 23 and the inner diameter of the bearing hole, that is, the radial dimension of the air seal space 23 is about 1 to 2 mm, but is not particularly limited. The flange 1f at the base of the output shaft 1 is not always necessary.

空気流入口22−コンデンサ室21−放射状小孔24…−エアーシール空間23−出力軸1の経路で断面にしたのが、図13、図14であり、放射方向の小孔24…の外端はコンデンサ室21と連通し、内端はエアーシール空間23と連通している。図13は右回転用であり、各放射状小孔24…の内端が、出力軸1の回転方向である右方向に向くように角度βだけ傾けてある。その結果、各放射状小孔24…から噴出した噴射流は、出力軸1の回転方向と同じく右向きの流れとなって、出力軸1の外側のエアーシール空間23中で途切れることなく渦流状に循環している。そのため、外部から水分や粉塵などの異物がエアーシール空間23中を通過して、モータ内部に進入することは不可能となる。 FIGS. 13 and 14 are cross sections taken along the path of the air inlet 22 -capacitor chamber 21 -radial small hole 24 -air seal space 23 -output shaft 1, and the outer end of the radial small hole 24 ... Communicates with the capacitor chamber 21, and the inner end communicates with the air seal space 23. FIG. 13 is for right rotation, and the inner ends of the radial small holes 24 are inclined by an angle β so as to face the right direction that is the rotation direction of the output shaft 1. As a result, the jet flow ejected from each of the small radial holes 24 becomes a rightward flow similar to the rotation direction of the output shaft 1 and circulates in a vortex flow without interruption in the air seal space 23 outside the output shaft 1. is doing. Therefore, it is impossible for foreign matter such as moisture and dust from the outside to pass through the air seal space 23 and enter the motor.

図14の左回転用は、各放射状小孔24…の内端が、出力軸1の回転方向である左方向に向くように角度−βだけ傾けてある。その結果、各放射状小孔24…から噴出した噴射流は、出力軸1の回転方向と同じく左向きの流れとなって、出力軸1の外側のエアーシール空間23中で渦流状に循環している。そのため、モータ出力軸1と固定部分との隙間からガス類や水分、油類などの異物が浸入して、ベアリングの劣化、破損及び、コイルの絶縁劣化を来すのをより確実に防止できる。また、コンデンサ室21に一旦充満して蓄圧された後に、各放射状小孔24…から出力軸1に圧縮空気を噴射して、圧縮空気でシールが行われるため、出力軸1の回転部分とハウジングとの摩擦熱が発生しない。また、モータの停止状態でも、圧縮空気の供給によって、異物の浸入を阻止できる。なお、各放射状小孔24…からの圧縮空気の排出圧を増やすことにより、水中や高気圧の条件下でも使用可能である。 For the left rotation in FIG. 14, the inner ends of the radial small holes 24 are inclined by an angle −β so as to face the left direction that is the rotation direction of the output shaft 1. As a result, the jet flow ejected from each of the radial small holes 24 is a leftward flow similar to the rotation direction of the output shaft 1 and circulates in a vortex in the air seal space 23 outside the output shaft 1. . Therefore, foreign matters such as gases, moisture, oils and the like enter through the gap between the motor output shaft 1 and the fixed portion, and it is possible to more reliably prevent the bearing from being deteriorated and damaged and the coil from being deteriorated in insulation. Further, after the capacitor chamber 21 is once filled and accumulated, compressed air is injected from the radial small holes 24 to the output shaft 1 and sealing is performed with the compressed air. Therefore, the rotating portion of the output shaft 1 and the housing No frictional heat is generated. Further, even when the motor is stopped, the entry of foreign matter can be prevented by supplying compressed air. In addition, by increasing the discharge pressure of the compressed air from each of the radial small holes 24, it can be used even under water or at high atmospheric pressure.

以上のように、本発明の微細霧発生モータは、微細霧発生用モータの軸受けやモータ内部が塩害やスラスト方向の機械的負荷によって劣化するのを抑制して、高速駆動するモータを長寿命化できるので、高価な製塩装置のランニングコストを低減して、より安価なミネラル塩を供給可能となる。 As described above, the fine mist generation motor of the present invention extends the life of a motor that drives at high speed by suppressing the deterioration of the bearing of the fine mist generation motor and the motor interior due to salt damage and mechanical loads in the thrust direction. Therefore, it is possible to reduce the running cost of an expensive salt making apparatus and supply a cheaper mineral salt.

(1)は、本発明による微細霧発生モータの第1実施形態を示す縦断面図、(2)は(1)図中の水車型の高速回転盤の縦断面図である。(1) is a longitudinal sectional view showing a first embodiment of a fine mist generating motor according to the present invention, and (2) is a longitudinal sectional view of a water turbine type high-speed rotating disk in FIG. 本発明による微細霧発生モータの第2実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows 2nd Embodiment of the fine mist generating motor by this invention. 円板状の高速回転板からなる微細霧発生装置の縦断面図である。It is a longitudinal cross-sectional view of the fine fog generator which consists of a disk-shaped high-speed rotary plate. 図3の高速回転板の平面図で、直線状の又は湾曲した案内溝を設けた実施形態である。FIG. 4 is a plan view of the high-speed rotating plate in FIG. 3, and is an embodiment in which a linear or curved guide groove is provided. 図4に示す案内溝と凸条の各種断面形状を示す断面図である。FIG. 5 is a cross-sectional view showing various cross-sectional shapes of the guide groove and the ridge shown in FIG. 4. 外周端に無数の分離手段を有する高速回転板の製法を示す側面図で、(1)は製作途中、(2)は完成状態である。It is a side view which shows the manufacturing method of the high-speed rotary plate which has an infinite number of isolation | separation means in an outer peripheral end, (1) is in the middle of manufacture, (2) is a completion state. 高速回転板の凹曲面の半径方向途中に放射状空洞を設けた実施形態の平面図である。It is a top view of embodiment which provided the radial cavity in the radial direction middle of the concave curved surface of the high-speed rotation board. 中央寄りに放射方向の羽根板を設けた実施形態の斜視図である。It is a perspective view of an embodiment which provided a slat in the radial direction near the center. 図8の実施形態の正面図である。It is a front view of embodiment of FIG. 通常のモータの側面図である。It is a side view of a normal motor. 図10のモータの正面図である。It is a front view of the motor of FIG. シールハウジングのモータ出力軸の軸芯方向の縦断面図である。It is a longitudinal cross-sectional view of the axial center direction of the motor output shaft of a seal housing. 空気流入口−コンデンサ室−放射状小孔−エアーシール空間−出力軸の経路におけるシールハウジングの断面図(右回転用)である。It is sectional drawing (for right rotation) of the seal housing in the path | route of an air inflow port-capacitor chamber-radial small hole-air seal space-output shaft. 空気流入口−コンデンサ室−放射状小孔−エアーシール空間−出力軸の経路におけるシールハウジングの断面図(左回転用)である。It is sectional drawing (for left rotation) of the seal housing in the path | route of an air inflow port-capacitor chamber-radial small hole-air seal space-output shaft.

符号の説明Explanation of symbols

1 モータの出力軸
2 高速回転盤
3 案内羽根
3c 放射状空洞
4 海水供給管
C 中央部
5 微細霧
6 密閉ケーシング
61 前面壁
7 防塩カバー
8 軸穴
9 遮断円板
Mc モータカバー
10・11・12 圧縮空気送入口
13 高速回転板
13i 凹曲面
14・14c 案内溝
15 網
15w 線材
16 凸条
17 ドーナツ状板
31 案内羽根
31c 放射状空洞
18 放射方向の羽根板
20 シールハウジング
21 コンデンサ室
22 圧縮空気の流入口
23 エアーシール空間
24 放射状小孔
1 Motor output shaft
2 High-speed rotating disk 3 Guide vane
3c Radial cavity 4 Seawater supply pipe
C Central part 5 Fine fog
6 Sealed casing
61 Front wall
7 Salt protection cover
8 Shaft hole
9 Blocking disc
Mc Motor cover 10, 11, 12 Compressed air inlet
13 High-speed rotating plate 13i Concave curved surface 14, 14c Guide groove 15 Net 15w Wire material 16 Convex line 17 Donut-shaped plate
31 guide vane
31c Radial cavity 18 Radial blade 20 Seal housing 21 Capacitor chamber 22 Compressed air inlet 23 Air seal space 24 Radial hole

Claims (12)

海水の微細霧発生用のモータの出力軸を包囲する防塩カバー手段を設けると共に、該モータ自体は密閉空間に収納し、該密閉空間の内部に圧縮空気を供給する構造としたことを特徴とする微細霧発生モータ。 A salt-proof cover means is provided to surround the output shaft of a motor for generating fine mist of seawater, and the motor itself is housed in a sealed space, and compressed air is supplied into the sealed space. A fine mist generating motor. 前記防塩カバー手段中のモータ出力軸の外周に、モータ出力軸の外径より大径の遮断手段を設けてなることを特徴とする請求項1に記載の微細霧発生モータ。 The fine mist generating motor according to claim 1, wherein a blocking means having a diameter larger than the outer diameter of the motor output shaft is provided on the outer periphery of the motor output shaft in the salt prevention cover means. 前記防塩カバー手段中においてモータ出力軸に攪拌ファンを設け、しかも前記攪拌ファンと軸穴の間に1以上の圧縮空気送入口を設けたことを特徴とする請求項1または請求項2に記載の微細霧発生モータ。 The stirring salt fan is provided in the motor output shaft in the salt prevention cover means, and one or more compressed air inlets are provided between the stirring fan and the shaft hole. Fine mist generation motor. 前記密閉空間中のモータカバー手段の内部に圧縮空気を供給する構造としたことを特徴とする請求項1、請求項2または請求項3に記載の微細霧発生モータ。 4. The fine mist generating motor according to claim 1, wherein compressed air is supplied to the inside of the motor cover means in the sealed space. 海水の微細霧発生用のモータの出力軸を包囲する防塩カバー手段となるシールハウジングに、前記出力軸の外周に向けて圧縮空気を噴射するための放射方向の小孔を設け、各放射状小孔の外端を圧縮空気源に連通可能としたことを特徴とする請求項1に記載の微細霧発生モータ。 A small hole in the radial direction for injecting compressed air toward the outer periphery of the output shaft is provided in a seal housing that serves as a salt-proof cover means that surrounds the output shaft of a motor for generating fine mist of seawater. 2. The fine mist generating motor according to claim 1, wherein the outer end of the hole can communicate with a compressed air source. 前記のシールハウジングに、リング状の空洞からなるコンデンサ室を前記出力軸を囲むように形成し、前記放射状小孔の各外端と圧縮空気源との間に介在させてあることを特徴とする請求項5に記載の微細霧発生モータ。 A capacitor chamber formed of a ring-shaped cavity is formed in the seal housing so as to surround the output shaft, and is interposed between each outer end of the radial small hole and a compressed air source. The fine mist generating motor according to claim 5. 前記の放射状小孔の内端を出力軸の先端側に向けて傾斜させることによって、放射状小孔からの噴出空気流が出力軸の先端側に噴出する構造とし、しかも放射状小孔の内端を前記出力軸の回転方向に向けて傾斜させることによって、放射状小孔からの噴出空気流が出力軸の回転方向と同じ向きの渦流状の循環流となる構造としたことを特徴とする請求項5または請求項6に記載の微細霧発生モータ。 By inclining the inner end of the radial small hole toward the distal end side of the output shaft, the air flow ejected from the radial small hole is ejected to the distal end side of the output shaft, and the inner end of the radial small hole is 6. The structure according to claim 5, wherein the air flow ejected from the radial small hole becomes a vortex-like circulation flow in the same direction as the rotation direction of the output shaft by being inclined toward the rotation direction of the output shaft. Or the fine mist generating motor of Claim 6. モータ駆動される海水の微細霧発生用の高速回転板を凹曲面とし、その中央部に海水を供給する構造としたことを特徴とする微細霧発生モータ。 A fine mist generating motor characterized in that a high-speed rotating plate for generating fine mist of seawater driven by a motor is formed into a concave curved surface and seawater is supplied to the central portion thereof. 前記高速回転板の凹曲面の少なくとも外周側に放射状の案内溝及び/又は凸条を多数設けてなることを特徴とする請求項8に記載の微細霧発生モータ。 The fine mist generating motor according to claim 8, wherein a large number of radial guide grooves and / or ridges are provided on at least the outer peripheral side of the concave curved surface of the high-speed rotating plate. 前記高速回転板の凹曲面外周に、幅の小さい網その他の微細間隔の分離手段を設けてなることを特徴とする請求項8又は請求項9に記載の微細霧発生モータ。 The fine mist generating motor according to claim 8 or 9, wherein a separation means having a narrow net or other fine interval is provided on the outer periphery of the concave curved surface of the high-speed rotating plate. 前記高速回転板の凹曲面の半径方向の中間位置にドーナツ状の板を設けて、このドーナツ状板と前記凹曲面との間に多数の放射状羽根を挟んで多数の放射状空洞を形成してなることを特徴とする請求項8、請求項9または請求項10に記載の微細霧発生モータ。 A donut-shaped plate is provided at a radial intermediate position of the concave curved surface of the high-speed rotating plate, and a large number of radial cavities are formed between the donut-shaped plate and the concave curved surface with a large number of radial blades interposed therebetween. The fine mist generating motor according to claim 8, 9, or 10. 前記高速回転板の凹曲面の中央部寄りにおいて、海水の流入部を囲むように放射方向の羽根を設けてあることを特徴とする請求項8、請求項9、請求項10または請求項11に記載の微細霧発生モータ。 The radial blades are provided near the central portion of the concave curved surface of the high-speed rotating plate so as to surround the inflow portion of the seawater, according to claim 8, 9, 10, or 11. The fine mist generating motor described.
JP2006077655A 2005-09-26 2006-03-20 Fine droplet mist producing motor for salt production application Pending JP2007159382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006077655A JP2007159382A (en) 2005-09-26 2006-03-20 Fine droplet mist producing motor for salt production application

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005278611 2005-09-26
JP2005326741 2005-11-10
JP2006077655A JP2007159382A (en) 2005-09-26 2006-03-20 Fine droplet mist producing motor for salt production application

Publications (1)

Publication Number Publication Date
JP2007159382A true JP2007159382A (en) 2007-06-21

Family

ID=38243004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006077655A Pending JP2007159382A (en) 2005-09-26 2006-03-20 Fine droplet mist producing motor for salt production application

Country Status (1)

Country Link
JP (1) JP2007159382A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101844827B1 (en) * 2015-02-10 2018-04-04 (주)오씨아드 Method of extracting calcium salt, natrium salt, magnesium salt and potassium salt from seawater, and its products

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101844827B1 (en) * 2015-02-10 2018-04-04 (주)오씨아드 Method of extracting calcium salt, natrium salt, magnesium salt and potassium salt from seawater, and its products

Similar Documents

Publication Publication Date Title
JP5757997B2 (en) Filter mechanism
JP2008121589A (en) Electric blower and vacuum cleaner using the electric blower
JP5707086B2 (en) Drainage pump
JP2007154856A (en) Water entering prevention structure of blower
JP5422277B2 (en) Drainage pump
FI76922C (en) TILLSATSMUNSTYCKE FOER DAMMSUGARE.
JP2007159382A (en) Fine droplet mist producing motor for salt production application
JP3890303B2 (en) Integrated air conditioner
CA2453912A1 (en) Emission control device and method of operation thereof
US4815930A (en) Cavitating centrifugal pump
US20070297894A1 (en) Regenerative Vacuum Generator for Aircraft and Other Vehicles
JP4952463B2 (en) Centrifugal compressor
JP3761785B2 (en) Apparatus and method for ultrafine powder fluid
KR102005552B1 (en) Turbo blower with Cooling Apparatus
JP2003236357A (en) Stirring blade for fine bubble producing apparatus and fine bubble producing apparatus
JP4104965B2 (en) Underwater aeration equipment
JPH0979171A (en) Drainage pump
RU2518769C1 (en) Turbopump for two fluids
JP2008012390A (en) Mist generator
RU2056370C1 (en) Cavitation aerator working membr
JP2008132445A (en) Fine mist generator
JP4088502B2 (en) Fluid pump
CN108290125A (en) Centrifuge aerator
US1556656A (en) Centrifugal pump
JP4777685B2 (en) Blower casing and centrifugal blower