JP2008121589A - Electric blower and vacuum cleaner using the electric blower - Google Patents

Electric blower and vacuum cleaner using the electric blower Download PDF

Info

Publication number
JP2008121589A
JP2008121589A JP2006307424A JP2006307424A JP2008121589A JP 2008121589 A JP2008121589 A JP 2008121589A JP 2006307424 A JP2006307424 A JP 2006307424A JP 2006307424 A JP2006307424 A JP 2006307424A JP 2008121589 A JP2008121589 A JP 2008121589A
Authority
JP
Japan
Prior art keywords
impeller
inlet
electric blower
cross
hub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006307424A
Other languages
Japanese (ja)
Other versions
JP2008121589A5 (en
JP4867596B2 (en
Inventor
Hiroyuki Kayama
博之 香山
Kazushige Nakamura
一繁 中村
Shizuka Yokote
静 横手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006307424A priority Critical patent/JP4867596B2/en
Priority to CNU2007201396980U priority patent/CN201037473Y/en
Priority to CNB2007100967749A priority patent/CN100516546C/en
Priority to EP07012832.7A priority patent/EP1923572B1/en
Priority to KR1020070066813A priority patent/KR101287250B1/en
Publication of JP2008121589A publication Critical patent/JP2008121589A/en
Publication of JP2008121589A5 publication Critical patent/JP2008121589A5/ja
Application granted granted Critical
Publication of JP4867596B2 publication Critical patent/JP4867596B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • F04D25/082Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation the unit having provision for cooling the motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/5806Cooling the drive system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Electric Suction Cleaners (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric blower for sufficiently improving impeller air blowing efficiency. <P>SOLUTION: A flow passage cross-sectional area change is continuously expanded up to an outlet 25 from an inlet 5 including a diffuser 8 of an impeller 1. Thus, a flow speed caused by a flow rate inside of the impeller 1, is continuously gradually decelerated over the whole flow passage area up to the outlet 25 from the inlet 5. Air blowing efficiency is sufficiently improved since acceleration and sudden deceleration are not repeated. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、インペラ送風効率向上を図った電動送風機およびこれを用いた電気掃除機に関するものである。   The present invention relates to an electric blower that improves impeller blowing efficiency and a vacuum cleaner using the electric blower.

従来、この種のインペラ送風効率向上を図った電動送風機はすでに提案されている(例えば、特許文献1参照)。   Conventionally, an electric blower that has improved the impeller blowing efficiency of this type has already been proposed (see, for example, Patent Document 1).

これは、図10に示すように、インペラ40が、前面シュラウド41、後面シュラウド42および両シュラウド間の複数枚のブレード43により構成されている。そして、前面シュラウド41の形状は、前面シュラウド41から後面シュラウド(基板)42までの距離が中心から外周にいく程短くなるように(a>b>c>d)前面シュラウド41を傾斜させ、かつ、前面シュラウド41の径方向の断面形状を曲線形状としている。これにより、図11(a)に示すように、インペラ40の内径から外径にかけて(流路入口から流路出口にかけて)径方向における流路の円筒断面積変化が直線的に増加し、図11(b)に示すように、流路入口から流路出口にかけて径方向の流速の変化が直線状に減少するものである。
特開2006−9669号公報
As shown in FIG. 10, the impeller 40 includes a front shroud 41, a rear shroud 42, and a plurality of blades 43 between the shrouds. The shape of the front shroud 41 is such that the front shroud 41 is inclined so that the distance from the front shroud 41 to the rear shroud (substrate) 42 decreases from the center to the outer periphery (a>b>c> d), and The cross-sectional shape in the radial direction of the front shroud 41 is a curved shape. As a result, as shown in FIG. 11A, the change in the cylindrical cross-sectional area of the flow path in the radial direction increases linearly from the inner diameter to the outer diameter of the impeller 40 (from the flow path inlet to the flow path outlet). As shown in (b), the change in the flow velocity in the radial direction decreases linearly from the channel inlet to the channel outlet.
JP 2006-9669 A

しかしながら、前記従来の構成では、吸引した気流が回転軸方向から径方向に曲がるインペラ40(特に、ハブと入口案内翼とを有するインデューサを配したインペラ)の入口部では前面シュラウド41と後面シュラウド42の距離変化と、前面シュラウド41の曲線形状だけでは十分なインペラ送風効率向上を図る流路断面積を構成することができないという課題を有していた。   However, in the conventional configuration, the front shroud 41 and the rear shroud are provided at the inlet portion of the impeller 40 (in particular, the impeller provided with an inducer having a hub and inlet guide vanes) in which the sucked airflow is bent in the radial direction from the rotation axis direction. Only the change in the distance of 42 and the curved shape of the front shroud 41 have a problem that the flow passage cross-sectional area for improving the impeller blowing efficiency cannot be configured sufficiently.

本発明は、前記従来の課題を解決するもので、十分なインペラ送風効率向上を図った電動送風機およびこれを用いた電気掃除機を提供することを目的とする。   This invention solves the said conventional subject, and it aims at providing the electric blower which aimed at sufficient impeller ventilation efficiency improvement, and a vacuum cleaner using the same.

前記従来の課題を解決するために、本発明の電動送風機は、インペラのインデューサを含めた入口から出口までの流路断面積変化を拡大させたものである。   In order to solve the above-mentioned conventional problems, the electric blower of the present invention expands the change in the flow passage cross-sectional area from the inlet to the outlet including the impeller inducer.

これによって、インペラ内部の流量に起因する流速が入口から出口までの全流路領域に渡って徐々に減速していき、加速や急減速を繰り返さないため、十分な送風効率の向上が図れるものである。   As a result, the flow velocity caused by the flow rate inside the impeller gradually decelerates over the entire flow path region from the inlet to the outlet, and acceleration and sudden deceleration are not repeated, so that sufficient ventilation efficiency can be improved. is there.

また、この電動送風機を用いた電気掃除機は、吸引性能が高く、快適な掃除ができるものである。   Moreover, the vacuum cleaner using this electric blower has high suction performance and can perform comfortable cleaning.

本発明の電動送風機およびこれを用いた電気掃除機は、十分な送風効率の向上が図れるものである。   The electric blower of the present invention and the electric vacuum cleaner using the electric blower can sufficiently improve the blowing efficiency.

第1の発明は、前面シュラウド、後面シュラウドおよび両シュラウド間の複数枚のブレードとを有するインペラと、前記インペラの入口内部に配した山型のハブおよび入口案内翼とを有するインデューサと、前記インペラの外周に位置した複数枚の静翼およびその基板とを有するエアガイドと、前記エアガイドとともにインペラを内包し中央に吸気孔を有したケーシングと、前記インペラを回転駆動させる電動機とを備え、前記インペラのインデューサを含めた入口から出口までの流路断面積変化を拡大させた電動送風機とすることにより、インペラ内部の流量に起因する流速が入口から出口までの全流路領域に渡って徐々に減速していき、加速や急減速を繰り返さないため、十分な送風効率の向上が図れるものである。   A first invention includes an impeller having a front shroud, a rear shroud, and a plurality of blades between the shrouds, a mountain-shaped hub and an inlet guide vane arranged inside the inlet of the impeller, An air guide having a plurality of stationary blades and its substrate positioned on the outer periphery of the impeller, a casing including the impeller together with the air guide and having an air intake hole in the center, and an electric motor for rotationally driving the impeller, By using an electric blower that expands the cross-sectional area change from the inlet to the outlet including the impeller inducer, the flow velocity caused by the flow rate inside the impeller extends over the entire flow path region from the inlet to the outlet. Since the vehicle gradually decelerates and does not repeat acceleration and rapid deceleration, the air blowing efficiency can be sufficiently improved.

第2の発明は、特に、第1の発明において、流路断面積変化は、略直線状であることにより、インペラ内部の流量に起因する成分の流速が、回転軸断面の流れ方向に対して一定の割合で減速していくことで急減速を発生させないものである。   In the second invention, in particular, in the first invention, the flow passage cross-sectional area change is substantially linear, so that the flow velocity of the component caused by the flow rate inside the impeller is relative to the flow direction of the rotary shaft cross section. By decelerating at a constant rate, sudden deceleration is not generated.

第3の発明は、特に、第1または第2の発明において、流路断面積変化は、インペラの入口からハブ終端部と、ハブ終端部から出口とで異なることにより、入口からハブ終端部までと、ハブ終端部から出口までを分離して設計することができ、入口側では吸引された流れが回転軸方向から径方向へ変る際に生じる剥離や渦、2次流れなどによる損失を低減する流路断面積変化を構成し、また出口側では径方向に排出するまでに生じる剥離や渦、円板回転摩擦損失などによる損失を低減する流路断面積変化を構成し、送風効率の向上を図れるものである。   According to a third aspect of the invention, in particular, in the first or second aspect of the present invention, the change in the cross-sectional area of the flow path is different from the inlet of the impeller to the hub end portion and from the hub end portion to the outlet. And can be designed separately from the hub end to the outlet, reducing the loss due to separation, vortex, secondary flow, etc. that occur when the suctioned flow changes from the rotation axis direction to the radial direction on the inlet side The flow cross-sectional area change is configured, and on the outlet side, the flow cross-sectional area change is reduced to reduce the loss due to separation, vortex, disc rotational friction loss, etc. that occurs before discharging in the radial direction, improving the blowing efficiency It can be planned.

第4の発明は、特に、第3の発明において、インペラの入口からハブ終端部までの流路断面積変化が、ハブ終端部から出口までの流路断面積変化に比べて変化率が大きい構成としたことにより、吸引された流れが回転軸方向から径方向へ変る際に生じる剥離や渦、2次流れで実際に空気が流れる面積が狭くなる場合に、流路断面積変化を略直線状に近付けることができ、インペラ内部の流量に起因する成分の流速が、回転軸断面の流れ方向に対して一定の割合で減速していくことで急減速を発生させないものである。   In the fourth aspect of the invention, in particular, in the third aspect of the invention, the change in the flow passage cross-sectional area from the impeller inlet to the hub end is larger than the change in the flow cross-sectional area from the hub end to the outlet. As a result, separation or vortex generated when the suctioned flow changes from the rotation axis direction to the radial direction, and when the area where the air actually flows in the secondary flow becomes narrower, the change in the cross-sectional area of the flow path is substantially linear. The flow velocity of the component due to the flow rate inside the impeller is decelerated at a constant rate with respect to the flow direction of the rotary shaft cross section, so that rapid deceleration is not generated.

第5の発明は、特に、第1の発明において、流路断面積変化は、インペラの入口からハブ終端部と、ハブ終端部から出口とで異なり、かつそれぞれが略直線状であり、さらにハブ終端部近傍には入口側と出口側の流路断面積変化を接続する曲線変化部を有することにより、インペラの入口部からハブ終端部、そしてハブ終端部から出口へと円滑に流路断面積を変化させ、つまり流量に起因する成分の流速を滑らかに減速させることができる。   According to a fifth aspect of the present invention, in the first aspect of the invention, the flow path cross-sectional area changes from the inlet of the impeller to the end of the hub and from the end of the hub to the outlet, and each is substantially linear. In the vicinity of the terminal end, there is a curve changing part that connects the change in the channel cross-sectional area of the inlet side and the outlet side, so that the cross-sectional area of the flow path smoothly from the impeller inlet to the hub terminal and from the hub terminal to the outlet. , That is, the flow velocity of the component due to the flow rate can be smoothly decelerated.

第6の発明は、特に、第1〜第5のいずれか1つの発明において、インペラは、前面シュラウドおよびハブの入口部に回転軸方向と平行な平行部を有することにより、インペラ入口で回転軸方向に吸引させて、全ての回転軸方向の流れを径方向の流れに円滑に変化させることができる。   According to a sixth aspect of the invention, in particular, in any one of the first to fifth aspects of the invention, the impeller includes a parallel portion parallel to the rotational axis direction at the inlet portion of the front shroud and the hub, so that the rotational shaft at the impeller inlet. By sucking in the direction, it is possible to smoothly change the flow in the direction of the rotation axis to the flow in the radial direction.

第7の発明は、特に、第1〜第6のいずれか1つの発明において、インデューサを樹脂製とし、前面シュラウド、後面シュラウドおよびブレードを板金製としたことにより、材質および製造方法の異なるインペラ入口側であるインデューサ部の流路と、出口側である板金部の流路(前面シュラウドと後面シュラウドで挟まれた流路)を個別に製作することができ、簡易にインペラを構成することができる。   According to a seventh invention, in particular, in any one of the first to sixth inventions, the inducer is made of resin, and the front shroud, the rear shroud, and the blade are made of sheet metal. The flow path of the inducer section on the inlet side and the flow path of the sheet metal section on the outlet side (flow path sandwiched between the front shroud and the rear shroud) can be individually manufactured, and the impeller can be configured easily. Can do.

第8の発明は、特に、第1〜第7のいずれか1つの発明における電動送風機を有する電気掃除機としたことにより、吸引性能が高く、快適な掃除ができる。   In particular, the eighth aspect of the invention is a vacuum cleaner having the electric blower according to any one of the first to seventh aspects of the invention, so that the suction performance is high and comfortable cleaning can be performed.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1〜図4は、本発明の実施の形態1における電動送風機を示している。
(Embodiment 1)
1 to 4 show an electric blower according to Embodiment 1 of the present invention.

図1、図2に示すように、本実施の形態における電動送風機は、前面シュラウド2、後面シュラウド3および両シュラウド2、3間の複数枚のブレード4を有するインペラ1と、インペラ1の入口5内部に配した円錐状で山型のハブ6および3次元的曲面を有しブレード4に接続された入口案内翼7を有するインデューサ8と、インペラ1の外周に位置した複数枚の静翼9およびその基板10とを有するエアガイド11と、エアガイド11とともにインペラ1を内包し中央に入口5と対向する吸気孔12を有したケーシング13と、インペラ1を回転駆動させる電動機14とを備えている。   As shown in FIGS. 1 and 2, the electric blower in the present embodiment includes an impeller 1 having a front shroud 2, a rear shroud 3, and a plurality of blades 4 between the shrouds 2 and 3, and an inlet 5 of the impeller 1. A conical and mountain-shaped hub 6 disposed inside, an inducer 8 having an inlet guide blade 7 having a three-dimensional curved surface and connected to the blade 4, and a plurality of stationary blades 9 positioned on the outer periphery of the impeller 1. And an air guide 11 having the substrate 10, a casing 13 containing the impeller 1 together with the air guide 11 and having an intake hole 12 facing the inlet 5 in the center, and an electric motor 14 for rotating the impeller 1. Yes.

そして、インペラ1のインデューサ8を含めた入口5から出口25までの流路断面積変化を連続して拡大させた構成としている。   And the flow-path cross-sectional area change from the inlet 5 including the inducer 8 of the impeller 1 to the exit 25 is set as the structure expanded continuously.

また、インペラ1を構成する前面シュラウド2、後面シュラウド3および複数枚のブレード4は、本実施の形態では、いずれも板金製であり、これら三部品はかしめ加工などにより締結されている。また、インデューサ8は樹脂製であり、板金製の三部品(前面シュラウド2、後面シュラウド3、ブレード4)を締結する際に内部に挿入し共締めされている。インデューサ8はそのハブ終端部26においてインペラ1と接続され、入口案内翼7が各ブレード4に接続されている。   Further, the front shroud 2, the rear shroud 3, and the plurality of blades 4 constituting the impeller 1 are all made of sheet metal in the present embodiment, and these three parts are fastened by caulking or the like. The inducer 8 is made of resin, and is inserted into the inside and fastened together when three parts made of sheet metal (front shroud 2, rear shroud 3, and blade 4) are fastened. The inducer 8 is connected to the impeller 1 at the hub end portion 26, and the inlet guide vane 7 is connected to each blade 4.

また、インペラ1は、後面シュラウド3およびハブ6内のボス15が電動機14の回転軸16に座金17を介してナット18にて固着されている。   In the impeller 1, a rear shroud 3 and a boss 15 in the hub 6 are fixed to a rotating shaft 16 of an electric motor 14 with a nut 18 via a washer 17.

このインペラ1において、前面シュラウド2および後面シュラウド3を含むハブ6側の回転軸16方向の断面形状(子午面形状)は、図3に示すような構成としている。   In the impeller 1, the cross-sectional shape (meridional surface shape) in the direction of the rotating shaft 16 on the hub 6 side including the front shroud 2 and the rear shroud 3 is configured as shown in FIG.

すなわち、前面シュラウド2の回転軸16方向の断面を取った時の流路側の前面側曲線19と、同じくハブ6とこのハブ6から連続した後面シュラウド3からなる流路側の後面側曲線20とに挟まれ、これら2つの曲線(前面側曲線19、後面側曲線20)の略中央を通る流路中心曲線21に垂直な多数の流路断面定義直線22を求め、この流路断面定義直線22を通り回転軸16周りに回転させた円環状の曲面をそれぞれの箇所における流路断面積とする。   That is, the front side curve 19 on the flow path side when the cross section of the front shroud 2 in the direction of the rotation axis 16 is taken, and the rear side curve 20 on the flow path side composed of the hub 6 and the rear shroud 3 continuous from the hub 6. A large number of flow path cross-sectional definition lines 22 perpendicular to a flow path center curve 21 that are sandwiched and pass through the approximate center of these two curves (the front side curve 19 and the rear side curve 20) are obtained. An annular curved surface rotated around the rotation axis 16 is defined as a flow path cross-sectional area at each location.

このそれぞれの箇所における流路断面積がインペラ1の流路中心曲線21上の入口5から出口25にかけて連続して徐々に拡大させ、図4(a)に示すように、その変化が略直線状となるようにしている。これにより、図4(b)に示すように、入口5から出口25にかけての流速の変化が直線状に減少するものである。   The cross-sectional area of the flow path at each location is gradually and continuously enlarged from the inlet 5 to the outlet 25 on the flow path center curve 21 of the impeller 1, and the change is substantially linear as shown in FIG. It is trying to become. Thereby, as shown in FIG.4 (b), the change of the flow velocity from the inlet 5 to the outlet 25 reduces linearly.

なお、流路中心曲線21は、前面側曲線19と後面側曲線20をそれぞれ同じ数だけ等分割し、それぞれ対応する分割点23を結び、この結ばれた分割線24の中点を通る曲線とする。   In addition, the flow path center curve 21 is obtained by dividing the front side curve 19 and the rear side curve 20 equally by the same number, connecting the corresponding dividing points 23, and passing through the middle point of the connected dividing line 24. To do.

以上のように構成された電動送風機について、以下その動作、作用を説明する。   About the electric blower comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

図1、図2において、電動機14に接続されたインペラ1が高速回転して(矢印A)、ケーシング13の吸気孔12から空気を吸込み(矢印B)、続いてインペラ1の入口5から空気を吸込み、この空気流は前面シュラウド2、ハブ6、そして2枚の入口案内翼7で囲まれる内部流路で回転軸16方向から径方向へ曲げられ(矢印C)、続く前面シュラウド2、後面シュラウド3、そして2枚のブレード4で囲まれる内部流路を通過し(矢印D)、インペラ1外周部から排出される。   1 and 2, the impeller 1 connected to the electric motor 14 rotates at high speed (arrow A), sucks air from the intake hole 12 of the casing 13 (arrow B), and then draws air from the inlet 5 of the impeller 1. This air flow is bent in the radial direction from the direction of the rotating shaft 16 (arrow C) in the internal flow path surrounded by the front shroud 2, the hub 6 and the two inlet guide vanes 7 (arrow C), followed by the front shroud 2, the rear shroud 3 and passes through an internal flow path surrounded by two blades 4 (arrow D), and is discharged from the outer periphery of the impeller 1.

インペラ1から排出された空気流は、エアガイド11の静翼9間を通過し、ケーシング13の外周壁に衝突後(矢印E)、またエアガイド11の裏面(矢印F)、続いて電動機14の内部を冷却しながら通過し(矢印G)、電動機14に設けた排気孔から電動機14外へ排出される(矢印H)。   The air flow discharged from the impeller 1 passes between the stationary blades 9 of the air guide 11, collides with the outer peripheral wall of the casing 13 (arrow E), the back surface of the air guide 11 (arrow F), and then the electric motor 14. Is passed through while cooling (arrow G), and is discharged out of the motor 14 through an exhaust hole provided in the motor 14 (arrow H).

そのとき、インペラ1のインデューサ8を含めた入口5から出口25までの流路断面積変化が拡大方向のみである流路形状を持つハブ6形状、前面シュラウド2形状、後面シュラウド3形状とすることにより、インペラ1内部の流量に起因する成分(回転軸16断面方向の成分)の流速が入口5から出口25までの全流路領域に渡って連続して徐々に減速していき(図4(b))、加速や急減速を繰り返さないものである。   At that time, the hub 6 shape, the front shroud 2 shape, and the rear shroud 3 shape having a flow path shape in which the flow path cross-sectional area change from the inlet 5 to the outlet 25 including the inducer 8 of the impeller 1 is only in the expansion direction. As a result, the flow velocity of the component (component in the cross-sectional direction of the rotating shaft 16) caused by the flow rate inside the impeller 1 is gradually and gradually reduced over the entire flow path region from the inlet 5 to the outlet 25 (FIG. 4). (B)), acceleration and rapid deceleration are not repeated.

以上のように、本実施の形態においては、インペラ1のインデューサ8を含めた入口5から出口25までの流路断面積変化を拡大させた構成とすることにより、インペラ1内部の流量に起因する成分(回転軸16断面方向の成分)の流速が入口5から出口25までの全流路領域に渡って徐々に減速していき、加速や急減速を繰り返さないため、十分な送風効率の向上が図れるものである。   As described above, in the present embodiment, the change in the cross-sectional area of the flow path from the inlet 5 to the outlet 25 including the inducer 8 of the impeller 1 is increased, resulting in the flow rate inside the impeller 1. The flow rate of the component (the component in the cross-sectional direction of the rotating shaft 16) gradually decelerates over the entire flow path region from the inlet 5 to the outlet 25, and acceleration and sudden deceleration are not repeated. Can be achieved.

また、流路断面積変化は、図4(b)に示すように、略直線状であることにより、インペラ1内部の流量に起因する成分(回転軸16断面方向の成分)の流速が、回転軸16断面の流れ方向に対して一定の割合で減速していくことで、急減速を発生させないものである。   Further, as shown in FIG. 4B, the flow path cross-sectional area change is substantially linear, so that the flow rate of the component due to the flow rate inside the impeller 1 (the component in the cross-sectional direction of the rotating shaft 16) is rotated. By decelerating at a constant rate with respect to the flow direction of the cross section of the shaft 16, sudden deceleration is not generated.

(実施の形態2)
次に、図5、図6に基づき、本発明の実施の形態2について説明する。電動送風機の基本構成は実施の形態1と同様であるのでその説明を省略する。
(Embodiment 2)
Next, a second embodiment of the present invention will be described with reference to FIGS. Since the basic configuration of the electric blower is the same as that of Embodiment 1, the description thereof is omitted.

本実施の形態では、図5(a)に示すように、インペラ1の流路断面積変化は、インペラの入口5からハブ終端部26と、ハブ終端部26から出口25とで異なるものである。これにより、図5(b)に示すように、インペラ1の流路中心曲線21に並行な入口5から出口25にかけての流速が変化するものである。   In the present embodiment, as shown in FIG. 5A, the change in the cross-sectional area of the flow path of the impeller 1 is different from the inlet 5 of the impeller to the hub terminal 26 and from the hub terminal 26 to the outlet 25. . Thereby, as shown in FIG. 5B, the flow velocity from the inlet 5 to the outlet 25 parallel to the flow path center curve 21 of the impeller 1 changes.

以上より、本実施の形態では、入口5からハブ終端部26までと、ハブ終端部26から出口25までを分離して設計することができ、入口5側では吸引された流れが回転軸16方向から径方向へ変る際に生じる剥離や渦、2次流れなどによる損失を低減する流路断面積変化を構成し、また出口25側では径方向に排出するまでに生じる剥離や渦、円板回転摩擦損失などによる損失を低減する流路断面積変化を構成し、送風効率の向上が図れるものである。   As described above, in the present embodiment, it is possible to design the inlet 5 to the hub end portion 26 and the hub end portion 26 to the outlet 25 separately, and the suctioned flow is in the direction of the rotation axis 16 on the inlet 5 side. Detachment or vortex generated when changing from the radial direction to the radial direction, and a cross-sectional area change that reduces loss due to secondary flow, etc. The flow passage cross-sectional area change that reduces the loss due to friction loss and the like is configured, and the air blowing efficiency can be improved.

また、本実施の形態では、インペラ1の入口5からハブ終端部26までの流路断面積変化が、ハブ終端26部から出口25までの流路断面積変化に比べて変化率が大きい構成としている。   In the present embodiment, the change in the flow passage cross-sectional area from the inlet 5 of the impeller 1 to the hub end 26 is larger than the change in the flow cross-sectional area from the hub end 26 to the outlet 25. Yes.

これにより、吸引された流れが回転軸16方向から径方向へ変る際に生じる剥離や渦、2次流れで実際に空気が流れる面積が狭くなる場合に、流路断面積変化を略直線状に近付けることができ、インペラ1内部の流量に起因する成分(回転軸16断面方向の成分)の流速が、回転軸16断面の流れ方向に対して一定の割合で減速していくことで急減速を発生させないものである。   As a result, separation or vortex generated when the sucked flow changes from the direction of the rotary shaft 16 to the radial direction, and when the area where the air actually flows in the secondary flow becomes narrow, the change in the cross-sectional area of the flow path becomes substantially linear. The flow velocity of the component (component in the cross-sectional direction of the rotating shaft 16) caused by the flow rate inside the impeller 1 is decelerated at a constant rate with respect to the flow direction of the cross-section of the rotating shaft 16, and sudden deceleration is performed. It is not generated.

また、本実施の形態では、図6(a)(b)に示すように、インペラ1の流路断面積変化は、インペラ1の入口5からハブ終端部26と、ハブ終端部26から出口25とで異なり、かつそれぞれが略直線状であり、さらにハブ終端部26近傍には入口5側と出口25側の略直線状である流路断面積変化を接続する曲線変化部27を有するものである。   Further, in the present embodiment, as shown in FIGS. 6A and 6B, the flow passage cross-sectional area of the impeller 1 changes from the inlet 5 of the impeller 1 to the hub terminal 26 and from the hub terminal 26 to the outlet 25. And each has a substantially linear shape, and further has a curve changing portion 27 in the vicinity of the hub terminal portion 26 for connecting a flow passage cross-sectional change that is substantially linear on the inlet 5 side and the outlet 25 side. is there.

これにより、インペラ1の入口5部からハブ終端部26、そしてハブ終端部26から出口25へと円滑に流路断面積を変化させ、つまり流量に起因する成分(回転軸16断面方向の成分)の流速を滑らかに減速させることができる。   As a result, the flow path cross-sectional area is smoothly changed from the inlet 5 portion of the impeller 1 to the hub terminal portion 26 and from the hub terminal portion 26 to the outlet 25, that is, a component caused by the flow rate (component in the cross-sectional direction of the rotating shaft 16). Can be smoothly decelerated.

(実施の形態3)
次に、図7に基づき、本発明の実施の形態3について説明する。電動送風機の基本構成は実施の形態1と同様であるのでその説明を省略する。
(Embodiment 3)
Next, Embodiment 3 of the present invention will be described with reference to FIG. Since the basic configuration of the electric blower is the same as that of Embodiment 1, the description thereof is omitted.

本実施の形態では、図7(a)(b)に示すように、インペラ1は、前面シュラウド2およびハブ6の入口5端部近傍に回転軸16方向と略平行な平行部28を有し、回転軸16に平行な円環状の吸気通路を構成している。   In the present embodiment, as shown in FIGS. 7A and 7B, the impeller 1 has a parallel portion 28 substantially parallel to the direction of the rotation axis 16 in the vicinity of the front shroud 2 and the inlet 5 end of the hub 6. An annular intake passage parallel to the rotating shaft 16 is formed.

これにより、インペラ1入口で回転軸16方向に吸引させることで吸引時の乱れを低減し、その後、全ての回転軸16方向の流れを径方向の流れに円滑に変化させることができる。   Thereby, the disturbance at the time of attraction | suction can be reduced by making it suck | suck to the rotating shaft 16 direction by the impeller 1 entrance, and the flow of all the rotating shafts 16 direction can be smoothly changed into the flow of radial direction after that.

(実施の形態4)
次に、図8に基づき、本発明の実施の形態3について説明する。電動送風機の基本構成は実施の形態1と同様であるのでその説明を省略する。
(Embodiment 4)
Next, Embodiment 3 of the present invention will be described with reference to FIG. Since the basic configuration of the electric blower is the same as that of Embodiment 1, the description thereof is omitted.

本実施の形態では、インペラ1を構成するインデューサ8を樹脂製とし、前面シュラウド2、後面シュラウド3およびブレード4を板金製としたものである。そして、ハブ終端部26において流路断面積を回転軸16方向と平行な断面から得る構成としている。つまり、後面シュラウド3が回転軸16と垂直な関係にある場合、ハブ終端部26での流路断面定義直線22(入口案内翼7側、ブレード4側の両者)は後面シュラウド3に対して垂直な構成としている。   In the present embodiment, the inducer 8 constituting the impeller 1 is made of resin, and the front shroud 2, the rear shroud 3, and the blade 4 are made of sheet metal. In the hub terminal portion 26, the flow path cross-sectional area is obtained from a cross section parallel to the direction of the rotation axis 16. That is, when the rear surface shroud 3 is perpendicular to the rotating shaft 16, the flow path cross-sectional definition straight line 22 (both on the inlet guide vane 7 side and the blade 4 side) at the hub end portion 26 is perpendicular to the rear surface shroud 3. It has a simple structure.

これにより、材質および製造方法の異なるインペラ1の入口5側であるインデューサ8部の流路と、出口25側である板金部の流路(前面シュラウド2と後面シュラウド3で挟まれた流路)を個別に製作することができ、簡易にインペラ1を構成することができる。   Thereby, the flow path of the inducer 8 part on the inlet 5 side of the impeller 1 of different material and manufacturing method and the flow path of the sheet metal part on the outlet 25 side (the flow path sandwiched between the front shroud 2 and the rear shroud 3) ) Can be manufactured individually, and the impeller 1 can be configured easily.

なお、上記した各実施の形態1〜4においては、入口案内翼7とブレード4の翼厚さ(板厚)を考慮し、実際に気流がスムーズに通過するように流路を構成することが望ましい。   In each of the above-described first to fourth embodiments, the flow path may be configured so that the airflow actually passes smoothly in consideration of the blade thickness (plate thickness) of the inlet guide blade 7 and the blade 4. desirable.

(実施の形態5)
図9は、本発明の実施の形態5における電気掃除機を示している。
(Embodiment 5)
FIG. 9 shows a vacuum cleaner according to Embodiment 5 of the present invention.

図に示すように、掃除機本体29内に電動送風機30を有し、吸引ノズル31から空気流とともに塵埃を吸引し、集塵室32に塵埃を蓄える。   As shown in the figure, an electric blower 30 is provided in the cleaner body 29, and dust is sucked together with the air flow from the suction nozzle 31, and dust is stored in the dust collecting chamber 32.

ここで、電動送風機30として各実施の形態1〜4で示したいずれかの電動送風機を用いることにより、吸引性能を高めることができ、さらには消費エネルギーを抑えた電気掃除機を実現することができる。   Here, by using any one of the electric blowers shown in the first to fourth embodiments as the electric blower 30, it is possible to improve the suction performance and further to realize a vacuum cleaner with reduced energy consumption. it can.

以上のように、本発明にかかる電動送風機は、十分な送風効率の向上が図れるものであるので、電気掃除機としてはもちろんのこと、他の家庭用電化機器、産業機器などの用途にも幅広く適用できる。さらには、電動送風機は同様の観点において、圧縮機、タービン、液体用ポンプにも適用可能である。   As described above, since the electric blower according to the present invention can sufficiently improve the blowing efficiency, it can be widely used not only as a vacuum cleaner but also for other household appliances and industrial equipment. Applicable. Furthermore, the electric blower can be applied to a compressor, a turbine, and a liquid pump from the same viewpoint.

本発明の実施の形態1における電動送風機の半断面図Half sectional view of electric blower in Embodiment 1 of the present invention 同電動送風機のインペラを一部切欠して示す平面図Top view showing the impeller of the electric blower with a part cut away 同電動送風機のインペラの断面図Cross section of the impeller of the electric blower (a)同電動送風機のインペラの流路中心曲線上における入口からの距離と流路中心曲線に垂直な流路断面積の関係を示すグラフ(b)同インペラの流路中心曲線上の入口からの距離と流路中心曲線に並行な流速の関係を示すグラフ(A) Graph showing the relationship between the distance from the inlet on the channel center curve of the impeller of the electric blower and the channel cross-sectional area perpendicular to the channel center curve (b) From the inlet on the channel center curve of the impeller Graph showing the relationship between the distance of the flow and the flow velocity parallel to the flow path center curve (a)本発明の実施の形態2における電動送風機のインペラの流路中心曲線上における入口からの距離と流路中心曲線に垂直な流路断面積の関係を示すグラフ(b)同インペラの流路中心曲線上の入口からの距離と流路中心曲線に並行な流速の関係を示すグラフ(A) Graph showing the relationship between the distance from the inlet on the flow path center curve of the impeller of the electric blower according to Embodiment 2 of the present invention and the flow path cross-sectional area perpendicular to the flow path center curve (b) Flow of the impeller Graph showing the relationship between the distance from the entrance on the path center curve and the flow velocity parallel to the path center curve (a)同他のインペラの流路中心曲線上における入口からの距離と流路中心曲線に垂直な流路断面積の関係を示すグラフ(b)同インペラの流路中心曲線上の入口からの距離と流路中心曲線に並行な流速の関係を示すグラフ(A) Graph showing the relationship between the distance from the inlet on the flow path center curve of the other impeller and the cross-sectional area of the flow path perpendicular to the flow path center curve (b) From the inlet on the flow path center curve of the impeller Graph showing the relationship between distance and flow velocity parallel to the flow path center curve (a)本発明の実施の形態3における電動送風機のインペラの断面図(b)同インペラの流路中心曲線上の入口からの距離と流路中心曲線に垂直な流路断面積の関係を示すグラフ(A) Cross section of impeller of electric blower in Embodiment 3 of the present invention (b) The relationship between the distance from the inlet on the flow path center curve of the impeller and the flow path cross-sectional area perpendicular to the flow path center curve is shown. Graph (a)本発明の実施の形態4における電動送風機のインペラ形状を示す分解断面図(b)同インペラの流路中心曲線上の入口からの距離と流路中心曲線に垂直な流路断面積の関係を示すグラフ(A) Exploded sectional view showing the impeller shape of the electric blower in Embodiment 4 of the present invention (b) The distance from the inlet on the flow path center curve of the impeller and the flow path cross-sectional area perpendicular to the flow path center curve Graph showing relationship 本発明の実施の形態5における電気掃除機の断面図Sectional drawing of the vacuum cleaner in Embodiment 5 of this invention 従来の電動送風機におけるインペラの断面図Cross section of impeller in conventional electric blower (a)同インペラ直径と流路円筒断面積の関係を示すグラフ(b)同インペラ直径と径方向流速の関係を示すグラフ(A) Graph showing the relationship between the impeller diameter and the flow path cylindrical cross-sectional area (b) Graph showing the relationship between the impeller diameter and the radial flow velocity

符号の説明Explanation of symbols

1 インペラ
2 前面シュラウド
3 後面シュラウド
4 ブレード
5 入口
6 ハブ
7 入口案内翼
8 インデューサ
9 静翼
10 基板
11 エアガイド
12 吸気孔
13 ケーシング
14 電動機
16 回転軸
25 出口
26 ハブ終端部
27 曲線変化部
28 平行部
30 電動送風機
DESCRIPTION OF SYMBOLS 1 Impeller 2 Front shroud 3 Rear shroud 4 Blade 5 Inlet 6 Hub 7 Inlet guide vane 8 Inducer 9 Stator vane 10 Substrate 11 Air guide 12 Intake hole 13 Casing 14 Electric motor 16 Rotating shaft 25 Outlet 26 Hub end part 27 Curve changing part 28 Parallel part 30 Electric blower

Claims (8)

前面シュラウド、後面シュラウドおよび両シュラウド間の複数枚のブレードとを有するインペラと、前記インペラの入口内部に配した山型のハブおよび入口案内翼とを有するインデューサと、前記インペラの外周に位置した複数枚の静翼およびその基板とを有するエアガイドと、前記エアガイドとともにインペラを内包し中央に吸気孔を有したケーシングと、前記インペラを回転駆動させる電動機とを備え、前記インペラのインデューサを含めた入口から出口までの流路断面積変化を拡大させた電動送風機。 An impeller having a front shroud, a rear shroud, and a plurality of blades between the shrouds, an angler hub and an inlet guide vane disposed inside the inlet of the impeller, and an outer periphery of the impeller An air guide having a plurality of stationary blades and a substrate thereof, a casing including an impeller together with the air guide and having a suction hole in the center thereof, and an electric motor that rotationally drives the impeller, an inducer of the impeller Electric blower with expanded cross-sectional area change from the included inlet to outlet. 流路断面積変化は、略直線状である請求項1に記載の電動送風機。 The electric blower according to claim 1, wherein the flow path cross-sectional area change is substantially linear. 流路断面積変化は、インペラの入口からハブ終端部と、ハブ終端部から出口とで異なる請求項1または2に記載の電動送風機。 3. The electric blower according to claim 1, wherein the change in the cross-sectional area of the flow path is different from the inlet end of the impeller to the hub end portion and from the hub end portion to the outlet. インペラの入口からハブ終端部までの流路断面積変化が、ハブ終端部から出口までの流路断面積変化に比べて変化率が大きい構成とした請求項3に記載の電動送風機。 The electric blower according to claim 3, wherein the change rate of the flow passage cross-sectional area from the inlet of the impeller to the end of the hub is larger than the change of flow cross-sectional area from the end of the hub to the outlet. 流路断面積変化は、インペラの入口からハブ終端部と、ハブ終端部から出口とで異なり、かつそれぞれが略直線状であり、さらにハブ終端部近傍には入口側と出口側の流路断面積変化を接続する曲線変化部を有する請求項1に記載の電動送風機。 The change in the cross-sectional area of the flow path differs from the impeller inlet to the hub end and from the hub end to the outlet, and is substantially linear. The electric blower according to claim 1, further comprising a curve changing portion connecting the area changes. インペラは、前面シュラウドおよびハブの入口部に回転軸方向と平行な平行部を有する請求項1〜5のいずれか1項に記載の電動送風機。 6. The electric blower according to claim 1, wherein the impeller has a parallel portion parallel to the rotation axis direction at an entrance portion of the front shroud and the hub. インデューサを樹脂製とし、前面シュラウド、後面シュラウドおよびブレードを板金製とした請求項1〜6のいずれか1項に記載の電動送風機。 The electric blower according to any one of claims 1 to 6, wherein the inducer is made of resin, and the front shroud, the rear shroud, and the blade are made of sheet metal. 請求項1〜7のいずれか1項に記載の電動送風機を有する電気掃除機。 The vacuum cleaner which has an electric blower of any one of Claims 1-7.
JP2006307424A 2006-11-14 2006-11-14 Electric blower and electric vacuum cleaner using the same Active JP4867596B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006307424A JP4867596B2 (en) 2006-11-14 2006-11-14 Electric blower and electric vacuum cleaner using the same
CNU2007201396980U CN201037473Y (en) 2006-11-14 2007-04-12 Electric motor and electric dust collector using the same
CNB2007100967749A CN100516546C (en) 2006-11-14 2007-04-12 Electric blower and electric cleaner using the same
EP07012832.7A EP1923572B1 (en) 2006-11-14 2007-06-29 Electric blower and electric cleaner using the same
KR1020070066813A KR101287250B1 (en) 2006-11-14 2007-07-04 Electric blower and electric cleaner using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006307424A JP4867596B2 (en) 2006-11-14 2006-11-14 Electric blower and electric vacuum cleaner using the same

Publications (3)

Publication Number Publication Date
JP2008121589A true JP2008121589A (en) 2008-05-29
JP2008121589A5 JP2008121589A5 (en) 2009-12-24
JP4867596B2 JP4867596B2 (en) 2012-02-01

Family

ID=38596185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006307424A Active JP4867596B2 (en) 2006-11-14 2006-11-14 Electric blower and electric vacuum cleaner using the same

Country Status (4)

Country Link
EP (1) EP1923572B1 (en)
JP (1) JP4867596B2 (en)
KR (1) KR101287250B1 (en)
CN (2) CN201037473Y (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010087152A1 (en) * 2009-01-30 2010-08-05 三洋電機株式会社 Centrifugal fan device and air conditioning device
JP2010285919A (en) * 2009-06-10 2010-12-24 Mitsubishi Heavy Ind Ltd Method of manufacturing impeller of centrifugal rotary machine and impeller of centrifugal rotary machine
JP2011058402A (en) * 2009-09-09 2011-03-24 Hitachi Appliances Inc Electric blower and electric vacuum cleaner including the same
CN104279188A (en) * 2014-10-29 2015-01-14 珠海格力电器股份有限公司 Centrifugal fan and air conditioner with same
WO2017141758A1 (en) * 2016-02-15 2017-08-24 パナソニックIpマネジメント株式会社 Electrically driven blower

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2538087A4 (en) * 2010-02-17 2015-01-21 Panasonic Corp Impeller, electric air blower using same, and electric cleaner using electric air blower
CN104279182B (en) * 2014-06-12 2018-01-30 莱克电气股份有限公司 A kind of blade wheel structure
CN104279185B (en) * 2014-06-12 2018-01-30 莱克电气股份有限公司 A kind of impeller
US11333163B2 (en) * 2016-05-25 2022-05-17 Mitsubishi Electric Corporation Electric blower, electric vacuum cleaner, and hand dryer
JP6765278B2 (en) * 2016-10-19 2020-10-07 日立グローバルライフソリューションズ株式会社 Electric blower and vacuum cleaner equipped with it
CN111173762B (en) * 2020-01-07 2021-06-25 李红 Domestic multifunctional ceiling fan

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0460196A (en) * 1990-06-29 1992-02-26 Matsushita Electric Ind Co Ltd Motor-driven blower
JPH08193598A (en) * 1995-01-18 1996-07-30 Matsushita Electric Ind Co Ltd Motor-driven blower
JP2001032792A (en) * 1999-07-21 2001-02-06 Matsushita Electric Ind Co Ltd Electric blower, and vacuum cleaner
JP2006009669A (en) * 2004-06-24 2006-01-12 Nidec Shibaura Corp Centrifugal blower
JP2006144805A (en) * 2006-03-01 2006-06-08 Matsushita Electric Ind Co Ltd Electric blower

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE958147C (en) * 1955-05-01 1957-02-14 Siemens Ag Paddle wheel for blowers, especially for vacuum cleaners
GB8611643D0 (en) * 1986-05-13 1986-06-18 Sauter R J Centrifugal impellers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0460196A (en) * 1990-06-29 1992-02-26 Matsushita Electric Ind Co Ltd Motor-driven blower
JPH08193598A (en) * 1995-01-18 1996-07-30 Matsushita Electric Ind Co Ltd Motor-driven blower
JP2001032792A (en) * 1999-07-21 2001-02-06 Matsushita Electric Ind Co Ltd Electric blower, and vacuum cleaner
JP2006009669A (en) * 2004-06-24 2006-01-12 Nidec Shibaura Corp Centrifugal blower
JP2006144805A (en) * 2006-03-01 2006-06-08 Matsushita Electric Ind Co Ltd Electric blower

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010087152A1 (en) * 2009-01-30 2010-08-05 三洋電機株式会社 Centrifugal fan device and air conditioning device
JP2010196694A (en) * 2009-01-30 2010-09-09 Sanyo Electric Co Ltd Centrifugal blower and air conditioning device
CN102301144A (en) * 2009-01-30 2011-12-28 三洋电机株式会社 Centrifugal fan device and air conditioning device
US8967975B2 (en) 2009-01-30 2015-03-03 Panasonic Intellectual Property Management Co., Ltd. Centrifugal air blower and air conditioner
JP2010285919A (en) * 2009-06-10 2010-12-24 Mitsubishi Heavy Ind Ltd Method of manufacturing impeller of centrifugal rotary machine and impeller of centrifugal rotary machine
JP2011058402A (en) * 2009-09-09 2011-03-24 Hitachi Appliances Inc Electric blower and electric vacuum cleaner including the same
CN104279188A (en) * 2014-10-29 2015-01-14 珠海格力电器股份有限公司 Centrifugal fan and air conditioner with same
WO2017141758A1 (en) * 2016-02-15 2017-08-24 パナソニックIpマネジメント株式会社 Electrically driven blower
JPWO2017141758A1 (en) * 2016-02-15 2018-10-11 パナソニックIpマネジメント株式会社 Electric blower

Also Published As

Publication number Publication date
EP1923572A2 (en) 2008-05-21
JP4867596B2 (en) 2012-02-01
EP1923572B1 (en) 2015-07-29
EP1923572A3 (en) 2010-10-20
CN100516546C (en) 2009-07-22
CN101182851A (en) 2008-05-21
KR101287250B1 (en) 2013-07-17
CN201037473Y (en) 2008-03-19
KR20080043684A (en) 2008-05-19

Similar Documents

Publication Publication Date Title
JP4867596B2 (en) Electric blower and electric vacuum cleaner using the same
JP2008121589A5 (en)
TWI394895B (en) Centrifugal fans and air fluid machinery using the centrifugal fan
JP3507758B2 (en) Multi-wing fan
JP5522306B1 (en) Centrifugal fan
JP6636150B2 (en) Electric blowers and vacuum cleaners
KR20070101642A (en) Turbo fan
KR100421382B1 (en) Turbo fan
JP2010190136A (en) Electric blower and electric vacuum cleaner using the same
JP2009041373A (en) Turbo compressor
KR100725813B1 (en) Centrifugal fan
JP4980415B2 (en) Electric vacuum cleaner
JP2007154685A (en) Turbo fan and air conditioner using the same
JP4910809B2 (en) Centrifugal blower
EP1726832B1 (en) Turbo fan and blade thereof
JP5246006B2 (en) Electric blower and electric vacuum cleaner using the same
JP2003035293A (en) Impeller for centrifugal blower and centrifugal blower equipped therewith
JP2011064096A (en) Electric blower and vacuum cleaner using the same
KR20060089870A (en) Turbo fan
EP3315786A1 (en) Turbofan and air conditioner in which same is used
JP5272862B2 (en) Electric blower and electric vacuum cleaner using the same
KR100459191B1 (en) turbo fan
KR20090005215U (en) Turbofan and air conditioner having the same
KR100469259B1 (en) Blade of turbo fan
KR100437027B1 (en) A turbo fan

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091110

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091110

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111031

R151 Written notification of patent or utility model registration

Ref document number: 4867596

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3