JP2007159350A - 高電圧発生法及び高電圧発生装置 - Google Patents

高電圧発生法及び高電圧発生装置 Download PDF

Info

Publication number
JP2007159350A
JP2007159350A JP2005354685A JP2005354685A JP2007159350A JP 2007159350 A JP2007159350 A JP 2007159350A JP 2005354685 A JP2005354685 A JP 2005354685A JP 2005354685 A JP2005354685 A JP 2005354685A JP 2007159350 A JP2007159350 A JP 2007159350A
Authority
JP
Japan
Prior art keywords
high voltage
voltage generator
vacuum
generator
generation method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005354685A
Other languages
English (en)
Inventor
Kazuo Saito
和雄 斎藤
Masami Ikeyama
雅美 池山
Haruo Masuda
晴穂 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005354685A priority Critical patent/JP2007159350A/ja
Publication of JP2007159350A publication Critical patent/JP2007159350A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Rectifiers (AREA)

Abstract

【課題】荷電粒子加速器や成膜装置等の高電圧を必要とする機器に使用することが可能な高電圧発生方法及びその装置を提供する。
【解決手段】高電圧発生装置、高電圧発生部を有する高電圧発生装置を使用して高電圧を発生させる際に、高真空場を絶縁体として利用する。
【効果】高電圧発生装置、及び高電圧発生部を有する機器のコンパクト化、低コスト化を実現できる。
【選択図】図1

Description

本発明は、数キロボルトないし数メガボルトの高電圧を発生する高電圧発生方法、及びその装置に関するものであり、更に詳しくは、高真空場を絶縁体(空間)として利用した高電圧発生方法、その高電圧発生装置、及び該装置を高電圧発生部として利用した機器に関するものである。
本発明は、高真空場を絶縁体(空間)として利用することにより、高電圧発生装置のコンパクト化、低コスト化を実現するとともに、それにより、例えば、高電圧を必要とする、高エネルギーの電子ビームやイオンビームを発生するための荷電粒子加速器、イオン工学的手法をベースとした成膜装置、電子顕微鏡、及び分析機器類等の機器のコンパクト化、低コスト化を実現することを可能とする高電圧発生手段に関する新技術・新製品を提供するものである。
高エネルギーの電子ビームやイオンビームを発生するための粒子加速器やイオン工学的手法をベースとした成膜装置等では、数キロボルト(以下、kVと略す)から数メガボルト(以下、MVと略す)の直流ないしパルス状高電圧が必要とされる場合がある。高電圧を発生する機構は、トランスによる昇圧、倍電圧整流やコッククロフトウォルトン回路等の多段縦続整流回路、及びベルト発電機等の機械的運動を伴った静電昇圧法があり、これらのいくつかを組み合わせた装置が粒子加速器等の電源として用いられている(非特許文献1参照)。
従来、多くの場合、高電圧発生装置は、充分な空間を持った大気中(特許文献1参照)、高圧の絶縁ガスを満たした容器中(特許文献2参照)、又は絶縁油脂等が満たされた液体中(特許文献3参照)に電源回路を置くか、あるいは回路部品中に絶縁性の樹脂を浸透させること(特許文献4参照)で高い絶縁性を保っている。前の2つの方法では、必然的に装置の規模が大きくならざるを得ず、また、後の2つの方法では、装置修理等のメンテナンスの際に、絶縁物質の除去・洗浄等、余分な工程が必要とされる。更に、発生した高電圧は、電源部よりケーブル等により大気中を経て真空装置に導かれるが、この際、ケーブルや高電圧を真空中に導入するための導入機器類は、高電圧を絶縁するための仕様を満たしていなければならず、コストを上げる要因となっていた。
一方、高真空の空間は、使い方により優秀な絶縁体(空間)となることは周知の事実であり、高真空が機器類の絶縁に使用されている事例がある。例えば、真空容器に用いられる高電圧導入装置において、沿面放電の発生と、アーク放電を生じた場合のガスの発生の防止を可能とする、真空絶縁層を形成する高真空容器用高電圧導入装置(特許文献5参照)が提案されている。また、SFガス等の絶縁媒体の代わりに高真空絶縁を適用して、絶縁性能を向上させて適用の拡大を図るとともに、電気機器の複合化により全体形状の縮小化を図る真空絶縁開閉装置(特許文献6参照)が提案されている。しかし、これらの従来技術は、真空を特定の機器の絶縁に使用したに過ぎず、従来、真空を高電圧発生装置の絶縁に使用した事例はない。
高電圧発生装置において、仮に、真空中で高電圧を発生することができれば、真空空間を絶縁体(空間)として利用できるため、高電圧発生装置のコンパクト化、低コスト化が実現可能となる。更に、それが可能であれば、高真空中で稼働する、高電圧を必要とする機器へ電源供給を行う場合に、同一真空容器内に高電圧発生部を置くことができるため、絶縁ケーブルやコネクタ等の多くの部品が省略され、装置全体のコンパクト化と大幅な低コスト化が実現可能となる。
特開2005−135818号公報 特開2004−288877号公報 特開2002−198234号公報 特開平9−129451号公報 特開平8−306497号公報 特開2003−257292号公報 熊谷寛夫編「加速器」実験物理学講座28、共立出版、第6章及び7章(第81〜183頁)、1982年
このような状況の中で、本発明者は、上記従来技術に鑑みて、高圧電源装置をコンパクト化、低コスト化するとともに、荷電粒子加速器や成膜装置等の高電圧を必要とする機器のコンパクト化とコスト低減を可能とする高圧電源発生方法及びその装置を開発することを目標として鋭意研究を重ねた結果、高真空場を高電圧発生装置の絶縁体(空間)として利用することにより所望の高圧電源発生方法及びその装置を構築できることを見出し、更に研究を重ねて、本明を完成するに至った。
本発明は、高真空場を絶縁体として利用して、コンパクト化及び低コスト化を実現した、新しい高電圧発生方法及びその装置を提供することを目的とするものである。また、本発明は、高電圧を必要とする機器、例えば、荷電粒子加速器や成膜装置の高電圧発生部に、上記高電圧発生装置を組み込むことで、それらの装置のコンパクト化、低コスト化を実現する新しい高電圧発生手段を提供することを目的とするものである。また、本発明は、修理、メンテナンスの際に、絶縁物の除去、洗浄等の余分の工程を必要としない高電圧発生装置を提供することを目的とするものである。更に、本発明は、絶縁ケーブル、コネクタ等の多くの部品の省略を可能とした、高電圧発生装置、荷電粒子加速器や成膜装置等の機器を提供することを目的とするものである。
上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)高電圧発生部を有する高電圧発生装置において、高真空場を絶縁体(空間)として利用し、該高真空場に高電圧発生部の電源回路部を設置したことを特徴とする高電圧発生装置。
(2)高真空場の真空圧力が、10−4Pa以下である上記(1)に記載の高電圧発生装置。
(3)高電圧発生部の電源回路部が、多段縦続整流回路、高圧トランス、又は静電発電機で構成される上記(1)に記載の高電圧発生装置。
(4)コッククロフトウォルトン型高電圧発生回路から構成される多段縦続整流回路部を真空容器中に設置した上記(3)に記載の高電圧発生装置。
(5)高電圧を必要とする機器の高電圧発生装置である上記(1)に記載の高電圧発生装置。
(6)高電圧を必要とする機器が、荷電粒子加速器、成膜装置、電子顕微鏡、又は分析機器類である上記(5)に記載の高電圧発生装置。
(7)高電圧発生部を有する高電圧発生装置を使用して高電圧を発生させる際に、高真空場を絶縁体(空間)として利用することを特徴とする高電圧発生方法。
(8)高真空場の真空圧力が、10−4Pa以下である上記(7)に記載の高電圧発生方法。
(9)高電圧発生部の電源回路部に、多段縦続整流回路、高圧トランス、又は静電発電機を用いる上記(7)に記載の高電圧発生方法。
(10)コッククロフトウォルトン型高電圧発生回路から構成される多段縦続整流回路部を真空容器中に設置して高電圧を発生させる上記(9)に記載の高電圧発生方法。
(11)高電圧を必要とする機器の高電圧発生装置を使用して高電圧を発生させる上記(7)に記載の高電圧発生方法。
(12)高電圧を必要とする機器が、荷電粒子加速器、成膜装置、電子顕微鏡、又は分析機器類である上記(11)に記載の高電圧発生方法。
次に、本発明について更に詳細に説明する。
本発明は、高電圧発生部を有する高電圧発生装置において、高真空場を絶縁体(空間)として利用し、該高真空場に高電圧発生部の電源回路を設置した高電圧発生装置により高電圧を発生させる高電圧発生方法の点、高真空場を絶縁体として利用した高電圧発生装置の点、及びこの高電圧発生装置を電圧発生部に組み込んだ高電圧を必要とする機器の点、に特徴を有するものである。
本発明は、従来の高電圧発生装置を含む任意の高電圧発生装置に適用することが可能であり、例えば、数kV〜数MVの高電圧を発生するためのコッククロフトウォルトン(以下、コッククロフトと記載することがある)装置や高圧トランス、静電発電機等の高圧電源装置に適用することが可能である。また、本発明は、高電圧を必要とする機器の高電圧発生部として適用することが可能である。
本発明を実施する際の高真空場の真空圧力は、残留ガスによる放電等の影響の少ない10−4Pa以下が好適である。また、本発明では、上記高電圧発生部の電源回路部は、好適には、例えば、多段縦続整流回路、高圧トランス、又は静電発電機で構成され、例えば、コッククロフトウォルトン型高電圧回路から構成される多段縦続整流回路部を真空容器中に設置することが例示される。真空中で使用する部品類は、この真空度を保つために、放出ガスの少ない部品を選ぶ必要がある。
本発明の高電圧発生装置は、例えば、高エネルギーの電子ビームやイオンビームを発生するための荷電粒子加速器や、イオン工学的手法をベースとした成膜装置等の高電圧を必要とする機器の高電圧発生部として使用することができる。本発明で、高電圧を必要とする機器とは、例えば、イオンビーム蒸着装置、イオンプレーティング装置、スパッタリング装置等の成膜装置、また、イオン注入装置、電子線照射装置、イオンビーム分析装置等の荷電粒子加速器、電子顕微鏡、分析機器等が挙げられる。更に具体的には、光電子倍増管、比例計数管、走査型電子顕微鏡の電子線加速器、X線照射装置のX線発生器等が例示される。
本発明では、例えば、高電圧発生装置の高電圧発生回路部は、真空容器内に収容されるが、上述の高電圧が必要とされる機器においては、好適には、真空装置が具備している真空チャンバ内に高電圧発生回路部を設置することが例示される。例えば、電子線照射装置では、高真空のチャンバ内に置かれたフィラメントを加熱して高真空場で電子線の形成が行われるが、例えば、本発明の高電圧発生装置の高電圧発生回路部を、上記真空チャンバ内に設置することが可能であり、これにより、電子線照射装置のコンパクト化や、コスト低減を達成することが可能となり、更に、高電圧発生装置と電子線照射装置を結ぶ、高圧ケーブルや高圧電流導入器等の部品の省略が可能となる。
また、電子線照射法は、高エネルギーの電子ビームを、高真空場で、高電圧を印加することにより発生させ、この電子ビームを物質の表面に照射して、その特性を改善し、新しい機能を付加する技術であるが、本発明の高電圧発生装置を、電子線照射装置の高真空チャンバ内に組み込むことができ、それによって、電子線照射装置のコンパクト化、低コスト化を達成することが可能となる。
また、本発明の高電圧発生装置を組み込んだ高電圧を必要とする機器の他の例として、イオン注入装置が挙げられる。イオン注入法は、高真空場中で、原子あるいは分子を、イオン化して、数kV〜数MVの高電圧で加速して試料表面に打ち込み添加する技術であり、この装置の高真空チャンバ内に本発明の高電圧発生装置を組み込むことにより、装置のコンパクト化、コスト低減が可能となる。
本発明では、高真空場を絶縁体として利用することにより、該装置自体のコンパクト化、コスト削減が達成される。更に、高電圧発生装置を、高電圧を必要とする機器の高電圧発生部に組み込むことにより、絶縁関連装置及び部品の簡略化を可能とし、これにより、これらの装置のコンパクト化、低コスト化が実現可能となる。本発明は、例えば、イオンビーム蒸着装置、イオンプレーティング装置、スパッタリング装置、イオン注入装置、電子線照射装置、イオンビーム分析装置、更に具体的には、光電子倍増管、比例計数管、走査型電子顕微鏡の電子線加速器、X線照射装置のX線発生器等の機器の高電圧発生部のコンパクト化、低コスト化を可能とする。
本発明により、(1)高真空場を絶縁体(空間)として利用した、高電圧発生方法及びその装置を提供できる、(2)高電圧発生装置のコンパクト化が実現される、(3)高電圧を必要とする機器と高電圧発生部を同一真空容器内に設置することができる、(4)装置修理等のメンテナンスの際に、絶縁物の除去、洗浄等の余分の工程を必要としない高電圧発生装置を提供することができる、(5)高電圧を必要とする機器における絶縁ケーブルやコネクタ等の多くの部品が省略され、機器のコンパクト化、低コスト化が実現できる、(6)荷電粒子加速器や、成膜機器等の装置のコスト低減をはかることができる、という効果が奏される。
次に、本発明を実施例に基づいて具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。
以下に説明する高電圧発生装置は、数kV〜数MVの高電圧を発生するためのコッククロフト装置や静電発電機等の高圧電源装置に適用できる高圧電源装置の一例であり、真空度は、残留ガスによる放電等の影響の少ない10−4Pa以下とし、真空中で使用する部品類は、この真空度を保つために放出ガスの少ない物を選んだ。すなわち、本実施例では、高周波電源で稼働する20段のコッククロフト装置を採用し、該装置中の多段縦続整流回路部を真空容器中に設置して高電圧発生装置を構築した。この部分を含む本高電圧発生装置の回路図を図1に示す。コッククロフトウォルトン回路は、コンデンサと整流素子を組み合わせて多段直列接続した整流昇圧回路であり、トランスの二次巻線に形成される交流電圧が半波ごとに整流されて、コンデンサと整流素子とを組み合わせた多段直列回路により整流電圧が加算され、多段直列回路の最終段より直流高電圧が取り出される。
図1に示すコッククロフトウォルトン型高電圧発生回路は、RFトランスとRF発振器からなるRF電源を有し、そのトランスの1対の出力端子のそれぞれに互いに並列の2群の縦続回路を形成するようにn段階で直列に接続されているコンデンサC〜Cn−1の回路と、コンデンサC〜Cの回路と、このコンデンサの両回路同士で互いに1対の接点間を、順次交互に接続する整流素子D〜Dから構成される回路からなる。このコッククロフトウォルトン回路では、充電用のトランスの出力電圧ピーク値の2N倍の直流電圧が発生する。
本実施例において、多段縦続整流回路部は、複数個の高電圧ダイオード、高電圧コンデンサ、接続電極、及び絶縁体等からなり、比較的入手の容易な部品の中から真空中で使用可能なものを選んで使用した。この多段縦続整流回路部の断面図を図2に示し、実体写真を図3に示す。
高周波(RF)電源は、高周波発生回路及び高周波トランスからなり、周波数約50kHz、出力電圧0.1〜1.0kV台の交流を発生し、高真空容器中の入力電極に供給された。高周波電源からの出力電圧Vは、駆動電圧Vinにより調整した。多段縦続整流回路部の入った真空容器内部は、ターボ分子ポンプにて10−5Pa台になるまで排気した後、電源を入れ、入力電圧 Vinを徐々に上昇させた。
図4に、駆動電圧Vinと高電圧電極の電圧(出力電圧V)の関係を、多段縦続整流回路部を真空に引いた場合と、大気圧の場合とを比較して示した。その結果、真空中では、高周波電源の入力電圧Vinの上昇に従い、出力電圧が単調に増加し、最高電圧は22kVであった。これに対して、大気中では、出力電圧の値が真空中に比して低い値を示し、16kV以上にしようとすると、出力電圧が不安定となり、一定の値を示さなかった。
上記の原因は、高電圧電極と接地側の間の大気を介したコロナ放電によるものであった。高真空中ではコロナ放電がないために正常な高電圧発生を行うことができた。なお、真空中での放電としては、真空アーク放電と電子の電界放出による放電が考えられるが、本実施例の電極配置と発生電圧値の範囲ではこの現象は起こらなかった。
以上詳述したように、本発明は、高真空場を絶縁体(空間)として利用して高電圧を発生させる高電圧発生方法、高電圧発生装置、及び該装置を高電圧発生部に利用した機器に係るものであり、本発明では、高真空場を絶縁体として利用することにより、高電圧発生装置の構造を簡素化し、しかも、安定した出力電圧を得ることを可能とし、更に、該高電圧発生装置を高電圧発生部として利用することで高電圧を必要とする機器のコンパクト化、低コスト化を可能とするものである。
本発明の高電圧発生装置は、コンパクト化が可能で、しかも、高電圧を安定して供給することが可能であり、例えば、原子物理実験装置、X線回折装置、X線画像診断装置、質量分析装置等の各種の実験機器、計測機器、又は健康診断機器の高電圧発生部として使用することが可能であり、本発明は、これらの機器のコンパクト化、低コスト化を実現するものとして有用である。
コッククロフトウォルトン型高電圧発生回路図の一例を示す。 20段のコッククロフトウォルトン型の高電圧発生装置の概要を示す。 コッククロフトウォルトン型高電圧発生装置の実体写真を示す。 20段のコッククロフトウォルトン型の高電圧電源装置による高電圧発生実験における、真空中と大気中での出力電圧の違いを示す。
符号の説明
(図1の符号)
〜C:コンデンサ
〜D:整流器
:高電圧測定用高抵抗
:電圧測定用抵抗
in:駆動電圧
:出力電圧
A:電流計
V:電圧計
(図2の符号)
〜C20:コンデンサ
〜D20:ダイオード

Claims (12)

  1. 高電圧発生部を有する高電圧発生装置において、高真空場を絶縁体(空間)として利用し、該高真空場に高電圧発生部の電源回路部を設置したことを特徴とする高電圧発生装置。
  2. 高真空場の真空圧力が、10−4Pa以下である請求項1に記載の高電圧発生装置。
  3. 高電圧発生部の電源回路部が、多段縦続整流回路、高圧トランス、又は静電発電機で構成される請求項1に記載の高電圧発生装置。
  4. コッククロフトウォルトン型高電圧発生回路から構成される多段縦続整流回路部を真空容器中に設置した請求項3に記載の高電圧発生装置。
  5. 高電圧を必要とする機器の高電圧発生装置である請求項1に記載の高電圧発生装置。
  6. 高電圧を必要とする機器が、荷電粒子加速器、成膜装置、電子顕微鏡、又は分析機器類である請求項5に記載の高電圧発生装置。
  7. 高電圧発生部を有する高電圧発生装置を使用して高電圧を発生させる際に、高真空場を絶縁体(空間)として利用することを特徴とする高電圧発生方法。
  8. 高真空場の真空圧力が、10−4Pa以下である請求項7に記載の高電圧発生方法。
  9. 高電圧発生部の電源回路部に、多段縦続整流回路、高圧トランス、又は静電発電機を用いる請求項7に記載の高電圧発生方法。
  10. コッククロフトウォルトン型高電圧発生回路から構成される多段縦続整流回路部を真空容器中に設置して高電圧を発生させる請求項9に記載の高電圧発生方法。
  11. 高電圧を必要とする機器の高電圧発生装置を使用して高電圧を発生させる請求項7に記載の高電圧発生方法。
  12. 高電圧を必要とする機器が、荷電粒子加速器、成膜装置、電子顕微鏡、又は分析機器類である請求項11に記載の高電圧発生方法。
JP2005354685A 2005-12-08 2005-12-08 高電圧発生法及び高電圧発生装置 Pending JP2007159350A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005354685A JP2007159350A (ja) 2005-12-08 2005-12-08 高電圧発生法及び高電圧発生装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005354685A JP2007159350A (ja) 2005-12-08 2005-12-08 高電圧発生法及び高電圧発生装置

Publications (1)

Publication Number Publication Date
JP2007159350A true JP2007159350A (ja) 2007-06-21

Family

ID=38242978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005354685A Pending JP2007159350A (ja) 2005-12-08 2005-12-08 高電圧発生法及び高電圧発生装置

Country Status (1)

Country Link
JP (1) JP2007159350A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010104085A (ja) * 2008-10-21 2010-05-06 Shindengen Electric Mfg Co Ltd 高電圧発生装置
JP2019193433A (ja) * 2018-04-25 2019-10-31 清 金川 超高圧電源装置
CN113315346A (zh) * 2021-06-29 2021-08-27 成都锐明合升科技有限责任公司 一种高绝缘性能的微型高压电源

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003257292A (ja) * 2002-03-01 2003-09-12 Tokyo Electric Power Co Inc:The 真空絶縁開閉装置
JP2005135818A (ja) * 2003-10-31 2005-05-26 Ulvac Japan Ltd 荷電粒子加速器および高電圧発生回路の絶縁方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003257292A (ja) * 2002-03-01 2003-09-12 Tokyo Electric Power Co Inc:The 真空絶縁開閉装置
JP2005135818A (ja) * 2003-10-31 2005-05-26 Ulvac Japan Ltd 荷電粒子加速器および高電圧発生回路の絶縁方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010104085A (ja) * 2008-10-21 2010-05-06 Shindengen Electric Mfg Co Ltd 高電圧発生装置
JP2019193433A (ja) * 2018-04-25 2019-10-31 清 金川 超高圧電源装置
CN113315346A (zh) * 2021-06-29 2021-08-27 成都锐明合升科技有限责任公司 一种高绝缘性能的微型高压电源

Similar Documents

Publication Publication Date Title
RU2603352C2 (ru) Ускоритель для заряженных частиц
RU2567373C2 (ru) Высоковольтный источник постоянного напряжения и ускоритель частиц
NO180099B (no) Partikkelakselerator
Egorov et al. A high-repetition rate pulsed electron accelerator
US4210813A (en) Ionizing radiation generator
Poloskov et al. Submicrosecond electron accelerator based on pulsed transformer
JP2007159350A (ja) 高電圧発生法及び高電圧発生装置
Song et al. A compact low jitter high power repetitive long-pulse relativistic electron beam source
Seifert et al. Measurement and numerical simulation of discharge characteristics in air at medium frequency voltages
RU2551364C2 (ru) Высоковольтный источник постоянного напряжения и ускоритель частиц
WO1989001713A1 (en) Metal vapor laser
Fahril et al. Integrated high voltage generator with ATmega 328 microcontroller using flyback transformer
Tsygankov et al. Oxide-coated al cathode for decreasing electron leakage and increasing electrical strength of vacuum insulation in the nanosecond pulse range
Hutsel et al. Charged-particle emission and self-biasing of a piezoelectric transformer plasma source
Haque Modeling supercritical fluids and fabricating electret films to address dielectric challenges in high-power-density systems
Gissis et al. GLIDER—A pulsed-current generator for laboratory astrophysics X-ray absorption experiments
Panicker Ionization of air by corona discharge
Cleland et al. A new high-power electron accelerator
JP2010057254A (ja) 高電圧発生装置
Dewangan et al. Simulation and Analysis on Stage Capacitor Bank of Symmetrical Cockroft Walton Multiplier Column for 1 MeV, 100 kW DC Accelerator
Sillerud et al. Characterization of chemical contaminants and their spectral properties from an atmospheric pressure ns-pulsed microdischarge in neon
Balcerak et al. Topology of a high voltage pulse generator using parasitic parameters of autotransformers for non-thermal plasma generation
Zhao et al. Review on recent development in insulation research under short-pulse conditions
Bell et al. Lightning arc drawings-dielectric barrier discharges for artwork
van Heesch et al. Supercritical fluids for high-power switching

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110314

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110314

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110906

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110913

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20120406