JP2007159078A - 無線通信システム及び無線通信方法並びに無線通信装置 - Google Patents

無線通信システム及び無線通信方法並びに無線通信装置 Download PDF

Info

Publication number
JP2007159078A
JP2007159078A JP2005380850A JP2005380850A JP2007159078A JP 2007159078 A JP2007159078 A JP 2007159078A JP 2005380850 A JP2005380850 A JP 2005380850A JP 2005380850 A JP2005380850 A JP 2005380850A JP 2007159078 A JP2007159078 A JP 2007159078A
Authority
JP
Japan
Prior art keywords
transmission
phase
wireless communication
transmission data
quadrature components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005380850A
Other languages
English (en)
Other versions
JP4683480B2 (ja
Inventor
Tetsuhiko Miyatani
宮谷 徹彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to JP2005380850A priority Critical patent/JP4683480B2/ja
Priority to KR20060112443A priority patent/KR100818284B1/ko
Publication of JP2007159078A publication Critical patent/JP2007159078A/ja
Application granted granted Critical
Publication of JP4683480B2 publication Critical patent/JP4683480B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/01Equalisers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

【課題】 位相変動によるユーザ間干渉を低減させて通信品質を向上させ得る無線通信システム及び無線通信方法並びに無線通信装置を提案する。
【解決手段】 各無線通信装置のうち送信側では、情報信号を拡散変調処理して得られる送信データと同一の送信データを少なくとも2回繰り返して送信した後、当該送信データにおける互いに直交する同相及び直交成分を、再送信する際に予め設定した周期で入れ替え、各無線通信装置のうち受信側では、送信側から送信される送信データについて、設定された周期と同一の周期で同相及び直交成分を入れ替えた後、当該同相及び直交成分が入れ替えられた受信データと、当該同相及び直交成分が入れ替えられなかった受信データとを加算し、位相変動を相殺するようにした。
【選択図】図1

Description

本発明は、無線通信システム及び無線通信方法並びに無線通信装置に関し、特に移動体通信システムに適用して好適なものである。
近年、CIBS−CDMA(Chip−Interleaved Block Spread−Code Division Multiple Access)方式やIFMDA(Interleaved Frequency Division Multiple Access)方式など、送信情報データの繰り返し送信を基本とした無線通信方式の提案が数多くなされている。これらは、マルチユーザ環境においてDS−CDMA(Direct Sequence−CDMA)方式などの既存の多元接続方式よりも優れた通信品質を有する。以下、これをCIBS−CDMA方式を例に説明する。
図12は、従来のCIBS−CDMA方式を適用した無線通信システム1における送信側2及び受信側3の基本構成を示す。この図12に示すように、CIBS−CDMA方式では、送信側2において、拡散処理した送信データをインタリーブし、受信側3において、受信データをデインタリーブする点に特徴を有する。これらインタリーブ及びデインタリーブは、マルチパス起因で生じるマルチパスユーザ干渉を各ユーザのシンボル間干渉に変換するため、送信データや受信データの順序を入れ替えるものである。
図13は、このようなCIBS−CDMA方式の送信側2において行われる拡散処理及びインタリーブ処理の内容を概念的に示したものである。CIBS−CDMA方式では、送信側2において、送信データに対して所定周期毎に誤り訂正符号化処理を施し、かくして得られた各シンボル(Data#0,Data#1,Data#2,……)に対して、拡散部4(図12)において、そのユーザに割り当てられた当該ユーザに固有の直交識別子である直交符号(例えばOVSF:Orthogonal Variable Spreading Factor code)(#0〜#SF−1)を順次乗算する(拡散処理)。
またCIBS−CDMA方式では、このようにして得られた各シンボルのデータを、インタリーバ5(図12)において、1シンボル分のチップが図中「Write in」で示す方向に並び、かつシンボル毎のチップが図中「Read out」で示す方向に並ぶようにメモリに順次書き込み、この後所定数のシンボルを1グループとして、グループ毎に図中「Read out」で示す方向にチップ単位でデータを読み出すようにして、送信データのデータ並びを入れ替える(インタリーブ処理)。この際、かかるデータの読み出しは、グループ毎に複数回行われる。これにより送信データが繰り返し送信されることとなる。
なお、拡散処理時に使用する直交符号は、直交符号間の完全直交性が満たされるものであれば、どのような系列のものであっても良い。また、図13において、GIはグループ間の干渉を低減するためのガードインターバルを示す。このようなガードインターバルは、1グループ間隔で挿入される。
一方、受信側3では、図12に示すように、デインタリーブ処理部6において、受信データについて、各シンボルの直交符号が図中「Read out」で示す方向に並び、かつ各シンボルのデータが図中「Write in」で示す方向に並ぶようにメモリに順次書き込み、この後所定数のシンボルを1グループとして、グループ毎に直交符号単位で図中「Read out」で示す方向にデータを読み出すようにして、受信データのデータ並びをインタリーブされる前の元のデータ並びに入れ替える(デインタリーブ処理)。また受信側3では、このようにして得られた元のデータ並びの受信データに対して、逆拡散処理部7において逆拡散処理を施す。
このようなCIBS−CDMA方式によれば、例えば図12との対応部分に同一符号を付した図14に示すように、直接波(振幅h1)と反射波(振幅h2)とが加算された結果、D0,D1,D2,……という送信データのシンボルがX1,X2,X3,……というシンボルになってシンボル間干渉が発生するが、符号系列C10,C11,C12,……自体は変化しないため、直交符号間の直交性が満たされる、つまりマルチパス環境下においてもユーザ間干渉が生じないという利点がある(特許文献1参照)。なお、この図14においては、直接波に対して反射波が1チップ分遅延した状態を示している。またマルチユーザ環境においても、直交符号間の直交性が満たされる様子を図15に示す。
特表2002−516519
しかしながら、かかる従来のCIBS−CDMA方式によると、伝送路の時間変動の影響を受け易いという問題があった。これは、送信側において送信データをインタリーブ処理し、受信側において受信データをデインタリーブ処理することによって、原理的に、デインタリーバにおける列間の時間間隔が伸び、結果として読み出しの際には、時間変動が実際の変動よりも大きく反映させられるためである。この様子を図16に示す。
CIBS−CDMA方式を例に取り、より詳しく説明する。CIBS−CDMA方式は、ユーザ間の直交性を、直交符号により得ている。今、2ユーザ環境を考え、ユーザ#1が+1、+1、+1、+1、ユーザ#2が+1、+1、−1、−1、という、4チップからなる直交符号が割り与えられている場合を想定する(チップとは、符号1ビット分を指す)。この場合、受信側では、各ユーザの直交符号を受信信号に乗算し、4チップ区間の積分を行い、各ユーザの送信情報を得る。明らかに、ユーザ#1,2間の符号の違いは、第3,4チップ目の極性である。この第3,4チップ目の極性が変化してしまうと、ユーザ間の区別がつかない、つまり、ユーザ間の干渉が発生する(第1,2チップ目が変化しても同様)。
上記仮定において、図16の様に、インタリーバの深さで90度、つまり、1/4周期となる様な伝送路の時間変動が発生したとする(言い換えれば、4列送信すると1周期となってしまう変動)。この場合、受信側のデインタリーブ処理によって、順番が入れ替わり、逆拡散部へ送付される信号は、1チップ毎に90度変化する信号となってしまう。つまり、高速な位相変化が生じている。この結果、第3チップ目以降は、既に180度を越える位相変化が生じている為、極性反転が発生する。伝送路は、各ユーザで独立である為、この状態は、もはや、各ユーザの識別不能、つまり通信不能であることを示している。
なお、この例では、理解を助けるために高速な変動を想定したが、実際の運用では、ここまで高速な変動になることはない。しかし、原理的にインタリーバ/デインタリーバ処理により、時間間隔が圧縮され、伝送路時間変動が高速になってしまう問題は変わりない。
上述のとおり、マルチユーザ干渉が発生しないというCIBS−CDMA方式やIFDMA方式においても、上記時間変動(Doppler Spreadとも呼ぶ)によってユーザ間の直交性が崩れてしまい、通信品質が劣化してしまうという問題があり、実質的な運用には適さないと考えられていた。実際に計算機シミュレーションを実施すると、時速300〔km/h〕で走行する新幹線等の高速移動環境では、通信不能という結論である(図17参照)。
図17では、拡散率16に対して、ユーザ数が16であるため、一般に言われる最大容量(Full−Load)の状態である。伝送路は、エコーが1つだけの状態を仮定しており、全ユーザが非同期である上りリンク(移動局から基地局への伝送)を想定している。図より、時速150〔km/h〕までは、2ブランチ受信ダイバーシチが適用できれば、誤り訂正符号の導入による誤り率改善効果が得られる目安の4×10−2以下が達成できているのに対して、300〔km/h〕の走行速度では、達成できていないことがわかる。
本発明は以上の点を考慮してなされたもので、位相変動によるユーザ間干渉を低減させて通信品質を向上させ得る無線通信システム及び無線通信方法並びに無線通信装置を提案しようとするものである。
かかる課題を解決するため本発明では、複数の無線通信装置間で情報信号を拡散変調処理して送受信する無線通信方法において、各無線通信装置のうち送信側では、情報信号を拡散変調処理して得られる送信データと同一の送信データを少なくとも2回繰り返して送信した後、当該送信データにおける互いに直交する同相及び直交成分を、再送信する際に予め設定した周期で入れ替え、各無線通信装置のうち受信側では、送信側から送信される送信データについて、設定された周期と同一の周期で同相及び直交成分を入れ替えた後、当該同相及び直交成分が入れ替えられた受信データと、当該同相及び直交成分が入れ替えられなかった受信データとを加算する。
この結果この無線通信システムによれば、受信側にて互いに直交する同相及び直交成分が入れ替えられた受信データは、同相及び直交成分の入れ替えを実行しない奇数番目の信号に対して、伝送路時間変動による位相変動が、逆回転となる。つまり、互いに直交する同相及び直交成分の入れ替えを実行しない通常の奇数番目の受信データの信号ベクトルと、当該入れ替えを実行した偶数番目の受信データの信号ベクトルは、本来のベクトルの向きに対して、互いに逆方向に回転していることになり、これらのベクトルの和を演算することによって、位相変動を相殺させることが可能となる。
また本発明において、受信側では、送信側から送信される送信データについて、伝送路又は送受信機間で生じた位相変動を補償する。この結果この無線通信システムによれば、上述のように位相変動を振幅変動に変換するようにして、位相変動を相殺させることが可能となることに加えて、位相変動を補償することにより、偶数番目、奇数番目のベクトルが互いに逆方向になる際に、位相角が大きく成り過ぎ、レベル低下が顕著になることを避けることが可能になる。
さらに本発明において、送信側では、情報信号を拡散変調処理して得られる送信データを符号分割多重処理して、当該送信データに含まれる情報数が少なくとも半減するように補償する。この結果この無線通信方法によれば、初期位相や位相変動によりレベル低下が発生しうる状態でも、レベル低下を最低限に抑え、かつ、残留した位相変動は、互いに直交する同相及び直交成分の入れ替え処理により除去することができる。
本発明によれば、伝送路の位相変動による通信品質劣化を抑圧し、通信品質を向上させ得る無線通信システム及び無線通信方法並びに無線通信装置を実現できる。これは、ある所定の通信品質を達成するに当たり、電波が受信側に到達するまでに必要な所要送信電力を低減することが可能となり、システム全体としての省電力化を図ることもできる。
以下図面について、本発明の一実施の形態を詳述する。
(1)第1の実施の形態
(1−1)本実施の形態による無線通信方式
図1は、CIBS−CDMA方式に本発明を適用した無線通信システム10の送信側11及び受信側12の基本構成を示すものである。上述した従来のCIBS−CDMA方式による無線通信システム1(図12)との比較における本実施の形態によるCIBS−CDMA方式の特徴の1つは、送信側11において送信データに対してI(Inphase:同相),Q(Quadrature−phase:直交)平面上のI,Q成分の入れ替え処理(以下、これをIQ入れ替え処理という。)を施し、受信側12において受信データに対しても、IQ入れ替え処理を実行し、その後、加算処理を施す点にある。
IQ入れ替え処理を実行する意味は、その位相変動にある。以下、数式にて表現する。T時間周期(Tは例えばシンボル時間で、T=16t)で変化する送信複素信号をX(t)とすると、X(t)は、次式、
Figure 2007159078
のように表される。
ここで、Itx(t)は、送信情報の同相成分であり、Qtx(t)は、送信情報の直交成分である。この(1)式は、指数表現を用いて、次式、
Figure 2007159078
とも表現できる。(1)式及び(2)式は、表現方法が異なるだけで、全く同じである。ここで、||は絶対値記号、|α(t)|は振幅 (=√(I2+Q2))、θ(t)は、送信情報によって変化する角度情報(e.g.,atan(Q,I))である。
ここで、I,Q信号の入れ替えを実施する。(1)式は、次式、
Figure 2007159078
のように変化する。ここで、ISM()とは、IQ入れ替え処理を示す関数である。(3)式を(1)式に近づける様に変形すると、次式、
Figure 2007159078
と表現できる。指数表現をすれば、次式、
Figure 2007159078
と表現できる。(5)式より、IQ入れ替え処理というのは、入れ替えを実行しない信号に対して、90度の位相シフト(=jの乗算)と、位相角の進行方向が逆回転になることを意味することがわかる。
次に、伝送路もしくは、送受信機間の位相変化による位相変動項を付加する。指数表現では、位相変動を乗算にて表現できる為、位相変動をθch(t)とすると、この影響を受けた受信信号y(t)は、次式、
Figure 2007159078
となる。この信号を受信し、受信機側でもIQ入れ替え処理を行うと、IQ入れ替え処理であるISM()関数は、jの位相シフトと、位相回転方向の逆転であったため、次式、
Figure 2007159078
のようになる。この(6)式が意味するのは、IQ入れ替え処理が実行されない送信情報が復元できると同時に、伝送路位相シフトが逆方向となっていることである。
この結果、IQ入れ替え処理を実施した信号と実施しない信号の和を得ると、次式、
Figure 2007159078
のようになる。
ここで、送信情報信号を示すα(t)とθ(t)は、共に、T時間経過する前とする。したがって、y(t)および、y(t+1)の時間では変化せず、同一とみなせる。また、微少時間であれば、θch(t)とθch(t+1)はほぼ変化無いと考えられ、虚数成分は相殺され、(8)式の結果となる。(8)式より、ISM()を実行したものと実行しないものの和は、実数軸へ射影されて、位相変動項が消え、振幅変動しか発生していないことがわかる。以上の様子を図示すると、図2のように表される。
この結果は、前記従来技術の問題で述べた、位相変動にてユーザ識別子(=直交符号)に生じる極性変化を避けることが可能であることを示している。(8)式では、振幅変動は残存するため完全なユーザ間直交信号処理ではないものの、前記CIBS−CDMAやIFDMAなどの無線通信アクセス方式では大きな効果が生まれる。
なお、(8)式において、初期位相項が生じた場合の対応は、請求項2の説明にて後述する。
本発明が目的とするのは、前記CIBSやIFDMAもしくはその変形等のアクセス方式における多ユーザ環境でのユーザ間直交性の向上である。これらのCDMAに基づくアクセス方式では、従来のDS−CDMA(現在のFOMAやcdmaWIN(共に商標名)と呼ばれる第3世代の移動通信方式)とは異なり、ユーザ間の完全直交を目指すものである。ユーザ間の完全直交を目指す場合、従来のDS−CDMAの様に、ユーザ信号抽出(=逆拡散処理)後の信号処理によって位相補償することは不完全であり、ユーザ信号抽出前にユーザ間識別子(CIBS−CDMAであれば直交符号、IFDMAであれば、直交周波数)の完全直交性を満たさなければならない。
この場合、伝送路の位相変動や送受信機間の位相変動を逆拡散処理前に補償しなければならない。ユーザ抽出前の位相変動に対する補償手段としては、遅延検波と呼ばれる方法が一般的である。一例を挙げれば、遅延検波では、一般に1シンボル前の信号との共役複素乗算が行われ、伝送路の位相変動を低減するものである。以下に数式を用いて説明する。受信信号をs(t)、s(t+1)とすれば、遅延検波信号は、次式、
Figure 2007159078
のように表される。
Figure 2007159078
理を行い、差分に送信情報を載せることとする。(9)式から明らかな様に、伝送路の位相変動が消失もしくは、低減される。この利点から、第2世代の移動通信では、遅延検波が一般的に使用されていた。
ところが、この遅延検波には問題がある。まず、多値変調技術の適用が難しく、また、特性劣化が顕著である。(9)式からも明らかな様に、位相項に送信情報を与える為、16QAMと呼ばれる様な振幅にも情報が存在する多値変調技術では、顕著な特性劣化が存在する。
次の問題点としては、遅延検波は、基本的に1ユーザ環境を想定したものであるため、ユーザ抽出前の適用には問題がある。(9)式におけるs(t)を、次式、
Figure 2007159078
のようにNユーザ環境に適用すると、容易にわかるように、共役複素乗算の際に、クロスタームが発生し、雑音とみなせる信号が増大してしまう。
以上の結果から、遅延検波は、実質に逆拡散前のユーザ間直交化には適用できず、位相補償手段がこれまで存在していなかった。
しかしながら、本実施の形態によるCIBS−CDMA方式によれば、理想受信信号(=送信信号)(図3(A))に位相変動が生じている場合でも(図3(B))、図4のように振幅変動に置き換えることによって、ユーザ間直交化を補助することができる。
また、(8)式からも明らかなように、振幅項|α(t)|が任意に適用できる為、先に述べた振幅変動を伴う16QAM伝送にも適用することができる。16QAM変調は、次世代の高速移動通信(=単位時間当たりのビット伝送量の増加が求められる)では必須であり、ユーザ抽出前に、この多値変調が適用できつつ、位相変動が抑えられると言う効果は非常に大きい。
(1−2)本実施の形態による無線通信システム
次に、かかる本実施の形態によるCIBS−CDMA方式を適用した無線通信システムの具体的な構成について説明する。なお、本説明では、理解を助ける為に、IQ入れ替え処理の実行タイミングを、後述する上位管理局からの指示にて得ることを前提としているが、これはあくまで一例であり、送受信機間で一意に決まっていれば、不要である。
図5は、本実施の形態による無線通信システムを示すものである。この無線通信システム20は、複数の携帯通信装置21(10)又は複数の基地局22及び上位制御局23から構成されている。
携帯通信装置21は、図6に示すように構成されており、ユーザの発話音声をマイクロホン30により集音し、得られた音声信号S1を信号処理部31に入力する。信号処理部31は、供給される音声信号S1に対してアナログ/ディジタル変換等の所定の信号処理を施した後に、これをディジタル音声信号S2としてQPSK変調部32に入力する。またQPSK変調部32は、供給されるディジタル音声信号S2をQPSK変調し、得られたQPSK変調信号S3を拡散処理部33に送出する。
このとき直交符号発生部34には、上位制御局23(図5)により指定された拡散率SF及びそのユーザに割り当てられた直交符号のコード番号が直交符号指定情報D1として送受信部39から与えられる。そして直交符号発生部34は、この直交符号指定情報D1に基づいて対応する拡散率SFの対応する直交符号を発生させ、これを拡散処理部33に送出する。
かくして拡散処理部33は、この直交符号とQPSK変調信号S3とを乗算するようにして当該QPSK変調信号S2を拡散処理し、得られた拡散処理信号S4をIQ入れ替え処理部35に送出する。またIQ入れ替え処理部35は、供給される拡散信号S4に対して図1にて上述したIQ入れ替え処理を施し、得られた信号S5ををインタリーバ36に送出する。
このときIQ入れ替え指示部37には、上位制御局23(図5)により指定されるIQ入れ替えタイミング指定情報D2として送受信部39から与えられる。そしてIQ入れ替え指示部37は、このIQ入れ替えタイミング指定情報D2に基づいて、指定されたタイミングを拡散処理信号S5に同期して繰り返し発生させ、これらをIQ入れ替え処理部35に送出する。
かくしてIQ入れ替え処理部35は、例えば送受信部39の制御のもとに、拡散処理部33から与えられる拡散信号S4に対して、IQ入れ替え指示部37から与えられるタイミングにて、IQ入れ替え処理を実行する。そしてIQ入れ替え処理部35は、得られた入れ替え信号S5をインタリーバ36に送出する。インタリーバ36では、従来技術と同様に、拡散信号と実質的に送出する信号との時間関係を、所定のルールにて変更し、ガードインターバル挿入部38へ送出する。
ガードインターバル挿入部38は、スクランブル信号S6の所定シンボル分毎にガードインターバルを順次挿入し、得られたGI挿入スクランブル信号S7を送受信部39に送出する。また送受信部39は、このGI挿入信号S7に対して帯域を制限するための所定のフィルタ処理及びGI挿入スクランブル信号S7の周波数を上げるアップコンバート処理等の所定の信号処理を施し、かくして得られた送信信号S8をアンテナ40を介して発信する。
一方、携帯通信装置21(図5)においては、通話相手側から基地局22を中継して送信される送信信号S10をアンテナ40を介して送受信部39において受信する。そして送受信部39は、この送信信号S10に対してダウンコンバート処理等の所定の信号処理を施し、得られた受信信号S11をガードインターバル除去部41に送信する。
また送受信部39は、これとは別に上位制御局23から基地局22を介して送信される上述の直交符号指定情報D1を直交符号発生部34に送信すると共に、当該上位制御局23から基地局22を介して送信される上述のIQ入れ替えタイミング指定情報D2をIQ入れ替え指示部37に送信する。
ガードインターバル除去部41は、与えられる受信信号S11からガードインターバルを除去し、得られたGI除去受信信号S13をデインタリーバ43に送出する。デインタリーバ43は、供給されるインタリーブ信号S13を図1について上述したようにデインタリーブ処理し、得られたデインタリーブ信号S14をIQ入れ替え復号処理部45に送出する。
IQ入れ替え指示部44は、上述のように送受信部39から与えられるIQ入れ替え実施タイミング指定情報D2に基づいて、指定された時刻にIQ入れ替え指示信号を繰り返し発生させ、これをIQ入れ替え復号処理部45に送出する。
かくしてIQ入れ替え復号処理部45は、例えば送受信部39の制御のもとに、デインタリーバ43から与えられる信号S14に対して、IQ入れ替え指示部44から与えられるタイミングにて、デインタリーブ信号S14をIQ入れ替え復号処理する。IQ入れ替え復号処理とは、図1や(8)式及びその説明にて詳述した様に、送信側と同一のIQ入れ替え処理を行った後に、例えば偶数番目と奇数番目の信号を加算するものである。これらの処理の後、IQ入れ替え復号処理部45は、この結果として得られた復号信号S15を逆拡散処理部46に送出する。
このとき直交符号発生部47は、上述のように送受信部39から与えられる直交符号指定情報D1に基づいて、そのユーザに割り当てられた直交符号を発生させ、これを逆拡散処理部46に送出する。かくして逆拡散処理部46は、直交符号発生部47から与えられる直交符号を拡散信号S15に乗算するようにして、当該拡散信号S15を逆拡散処理し、得られたQPSK変調信号S16をQPSK復調部48に送信する。
QPSK復調部48は、供給されるQPSK変調信号S16に対してQPSK復号処理を施し、得られたディジタル音声信号S17を信号処理部49に送出する。また信号処理部49は、供給されるディジタル音声信号S17に対してディジタル/アナログ変換処理等の所定の信号処理を施し、得られた音声信号S18をスピーカ50に送出する。これによりこの音声信号S18に基づく音声がスピーカ50から出力される。
このようにして携帯通信装置21においては、ユーザの音声を通話相手側に送信する一方、通話相手側から送信される音声をスピーカ50から出力し得るようになされている。
一方、図7は、上位制御局23(図5)内に設けられた、携帯通信装置21間の通信を制御する通信制御装置60の構成を示すものである。この図7からも明らかなように、通信制御装置60は、この通信制御装置60全体の動作制御を司るCPU(Central Processing Unit)61と、各種制御プログラムが格納されたROM(Read Only Memory)62と、CPU61のワークメモリとしてのRAM(Random Access Memory)63と、各種アプリケーションソフトウェアが格納されたフラッシュROM等の記憶装置64と、CPU61が各基地局22(図5)と電話回線や無線通信回線を介して通信を行うためのインタフェースとしての通信処理部65とがバス66を介して相互に接続されることにより構成されている。
(1−3)本実施の形態の動作及び効果
以上の構成において、送信側でIQ入れ替え処理を行い送信し、受信側では、IQ入れ替え処理を実行すると共に、それらを加算処理する。
そしてこのような無線通信方式によれば、受信側においてIQ入れ替え処理を実行した信号と実行しない信号との和を演算することによって、位相変動環境下における位相変動を消失させることができる。この結果、ユーザ識別子である拡散符号(=±1にて実現)に対する位相変動を振幅変動に置き換えることが可能となり、ユーザ間直交性の向上を図ることができる。
従って、本実施の形態による無線通信方式を適用することによって、CIBS−CDMA方式の弱点である位相変動を低減することができるため、従来の無線通信方式よりもその通信品質を改善することができる。
そして、このように通信品質を改善することによって、電波が受信側に到達するまでに必要な所要送信電力を低減することが可能となる。これは、携帯通信装置21がら基地局22への上り回線を考えれば、携帯通信装置21のバッテリを長時間もたせることを意味し、下り回線で考えれば、インフラ設備の省電力化が図れることを意味する。また省電力化を特に必要としないアプリケーションであれば、その分電波到達距離が延伸、つまりサービスエリアが拡大されることを意味し、いずれにしても有効な効果を得ることができる。
(2)第2の実施の形態
(2−1)本実施の形態による無線通信方式
第1の実施の形態においては、本発明を初期位相が考慮されていない、もしくは、位相変化が激しくない環境に適用する場合について説明した。位相変化が激しい場合には、本発明の構成では、振幅レベルの低下を招き、改善効果が少なくなる。しかし、この場合においても、一般的な位相補償手段を効果的に配置することで、劣化を防ぐことが可能となる。本第2の実施の形態では、本発明の効果的な実現例を開示するものである。
図6との対応部分に同一符号を付した図8は、本発明第2の実施例の携帯通信装置70を示すものである。図8から明らかな様に、異なる部分は、周波数領域等化部(FDE:Frequency−domain equalization)71の存在である。周波数領域等化部71とは、伝送路で生じた振幅・位相変動を、周波数領域で補償するものである。従来から存在する技術で、マルチパス環境下で効果を発揮するものである。
周波数領域等化部71は、供給されるGI除去受信信号S12に対して、ビット誤り率特性を改善するための最小平均二乗誤差(MMSE:Minimum mean square error)規範に基づく所定の周波数領域等化処理を施し、得られた等化後の信号S13をディンタリーバ43に送出する。一般的には、抽出するユーザの伝送路に特化した補償係数を与える。したがって、複数ユーザが加算されて入力する基地局受信では、ターゲットユーザの振幅・位相補償は実施できても、他ユーザには全く無関係な係数を与える為、他ユーザの振幅・位相は反って擾乱される。
先に述べた様に、本発明では、位相変動量に応じて振幅変化が発生する。したがって、上述の周波数領域等化部71によって、大きな位相変動を与えられた他ユーザ信号は、振幅レベルが低減する。振幅が低減すると言うことは、ターゲットユーザへの影響が少なくなることを意味する。位相変化はランダム変数である為、常時振幅レベルが低減するとは断言できないものの、本発明は位相変化が生じると必ずレベルが低減する為、他ユーザによる干渉量は、本発明を使用しない場合を最悪のケースとし、必ずそれよりも通信品質が良くなる。
一方、ターゲットユーザに対しては、上記周波数領域等化部71が作用し、マルチパス補償を行うと共に、位相補償も実施する。つまり、周波数領域等化部71通過後のターゲットユーザの信号は、初期位相および、位相変動がある程度補償された信号となる。この結果、本発明を適用すると、FDEにて補償しきれなかった残留位相変化が補償できるこをになる。
上述した様に、本発明を適用する際、受信処理においては、IQ入れ替え復号処理部45の前段に位相補償(望ましくは、振幅補償も)を実施することが望ましい。また、上記一例では、周波数領域等化器71を示したが、本説明内容を満たす位相補償技術であれば何でも良く、例えば、従来から存在する、時間領域での等化器を用いても良い。
(2−2)本実施の形態による無線通信システムの構成
図8において、第2の実施の形態による無線通信システムを示す。この無線通信システムは、伝送路変動補償方式として、上述した周波数領域等化器71が適用されている点を除いて第1の実施の形態による無線通信システムと同様に構成されている。
図6との対応部分に同一符号を付して示す図8は、かかる本実施の形態による無線通信システムにおける携帯通信装置の具体的な構成を示すものである。この図8からも明らかなように、図6との相違点は、受信系にある。受信系では、アンテナ40より受信した無線帯域の受信信号を、送受信部39にて、ベースバンド帯へダウンコンバートし、ガードインターバル除去部41に送出される。
ガードインターバル除去部41は、与えられる受信信号S11からガードインターバルを除去し、得られたGI除去受信信号S12を周波数領域等化部(FDE)71に送出する。
周波数領域等化部72は、供給されるGI除去受信信号S12に対して、ビット誤り率特性を改善するための最小平均二乗誤差(MMSE)規範に基づく所定の周波数領域等化処理を施し、得られたスクランブル信号S13をデインタリーバ43に送出する。
デインタリーバ43は、周波数等化処理された信号S13に対して、無線通信システム(送受信にて)で一意に決定付けられているデインタリーブ処理を施し、得られたデインタリーブ信号S14をIQ入れ替え復号処理部45に送出する。
IQ入れ替え復号処理部45では、前述した第1の実施例と同じく、IQ入れ替え処理が実行されているタイミングをIQ入れ替え指示部44より指定され、その指定されたタイミングで受信信号S14のIQ信号を入れ替える。
その後、IQ入れ替え処理を実行しなかった信号とIQ入れ替え処理を実行した信号との和を演算して得られた信号S15を、逆拡散処理部46へ送出する。
このとき直交符号発生部47は、上述のように送受信部39から与えられる直交符号指定情報D1に基づいて、そのユーザに割り当てられた直交符号を発生させ、これを逆拡散処理部46に送出する。かくして逆拡散処理部46は、直交符号発生部47から与えられる直交符号を拡散信号S15に乗算するようにして、当該拡散信号S15を逆拡散処理し、得られたQPSK変調信号S16をQPSK復調部48に送信する。
QPSK復調部48は、供給されるQPSK変調信号S16に対してQPSK復号処理を施し、得られたディジタル音声信号S17を信号処理部49に送出する。また信号処理部49は、供給されるディジタル音声信号S17に対してディジタル/アナログ変換処理等の所定の信号処理を施し、得られた音声信号S18をスピーカ50に送出する。これによりこの音声信号S18に基づく音声がスピーカ50から出力される。
このようにして携帯通信装置70においては、ユーザの音声を通話相手側に送信する一方、通話相手側から送信される音声をスピーカ50から出力し得るようになされている。
ここで、図7に、上位制御局22(図5)内に設けられた、携帯通信装置21間の通信を制御する通信制御装置80の構成を示す。この通信制御装置80は、第1の実施の形態による通信制御装置60と同様に構成されている。
(2−3)本実施の形態の動作及び効果
以上の構成において、この無線通信システムも、送信側にてIQ入れ替え処理を所定のタイミングで実行すると共に、受信側でも同一のタイミングにてIQ入れ替え処理を実行し、入れ替え実行した信号と入れ替え実行しない信号との和を演算する。
ただし、受信側でのIQ入れ替え処理の実行前に、伝送路もしくは、送受信機間の位相変動を補正する周波数領域等化器(FDE)71が存在する。この周波数領域等化器は、抽出しようとするユーザの位相変動(および振幅変動)を補正するものであり、この補正によって、IQ入れ替え処理にて生じる振幅減衰を最低限にすることができる。また、周波数領域等化器71が補償し損ねた残留位相変動は、IQ入れ替え処理による位相−振幅変換にて位相が補償される。さらに、周波数領域等化器71が他ユーザに与える位相変動は、IQ入れ替え処理によって振幅が低減され、他ユーザ干渉量の低減に寄与することができる。
従って、本実施の形態による無線通信方式を適用することによって、CIBS−CDMA方式の弱点であろ位相変動を低減することができるため、従来の無線通信方式よりもその通信品質を改善することができる。
図9に、本発明第2の実施例を計算機シミュレーションにて評価した結果を掲載する。図9では、従来技術におけるCIBS−CDMAと、本発明第2の実施例を実施したCIBS−CDMAとの比較である。図から明らかに、前記従来技術で問題視した通信品質の目安である4x10−2が達成できており、誤り訂正符号を併用すれば通信可能な状態となっており、その効果が確認できる。
このように通信品質を改善することによって、電波が受信側に到達するまでに必要な所要送信電力を低減することが可能となる。これは、携帯通信装置21から基地局22への上り回線を考えれば、携帯通信装置21のバッテリを長時間もたせることを意味し、下り回線で考えれば、インフラ設備の省電力化が図れることを意味する。また省電力化を特に必要としないアプリケーションであれば、その分電波到達距離が延伸されることを意味し、いずれにしても有効な効果を得ることができる。
(3)第3の実施の形態
なお上述の第1及び第2の実施の形態においては、同一の信号を送信することにより、単位時間当たりの送信情報ビット数が低減する。これを補うのが、本発明第3の実施の形態である。
本発明第3の実施例のイメージを図10(c)に示す。ここで、図10(a)〜(c)は、送信側インタリーバの機能的概念の一例を示している。図10(a)は、本発明第1もしくは第2の実施例におけるIQ入れ替え処理の実行イメージを表す。図10(b)は、別な概念からのアプローチとして、IQ入れ替え処理の実行を拡散符号方向へ適用したものである。図10(c)では、多重する信号同士の区別は、符号を用いることを前提としている。
例えば、送信データD0〜D3では、+1、+1、D4〜D7では、+1、−1である。最初のD0〜D3(もしくはD4〜D7)を一まとめとすれば、2種類の送信ブロックが存在している為、それぞれのブロックに上記+1、+1(もしくは+1、−1)を割り当てる。受信側では、それらの符号を用いて、逆拡散を行う。なお、図10(c)においては、理解を助ける為に図示しており、実際の信号は加算された状態でインタリーバへ供給される為、インタリーバの内部にてD0〜D3とD4〜D7との区別をすることはできない。
図1との対応部分に同一符号を付した図11に、本発明請求項3における無線通信システム90の一構成例を示す。図1と比較して異なるのは、IQ入れ替え処理による送信情報ビットが半減したことを補う工夫がなされているところである。以下、図1と比較しながら説明する。
図1において、送信する情報信号“Data”は、従来技術のCIBS−CDMAと比較して半減する為、図11では、送信側91内においてData#1、Data#2と記載している。従来技術のCIBS−CDMAにおけるData量を1とすると、図1におけるData量は0.5であり、図11におけるData#1,Data#2もそれぞれ0.5である。したがって、図11では、従来技術と同じだけの送信情報を送信していることになる。
送信側91において、拡散部93A、93Bは、ユーザ識別子であるため、Data#1,Data#2それぞれに同一拡散符号を乗算する。その後、Data#1とData#2の区別のために、符号多重を行う。ここで、加算器94A、94Bは符号多重を実施しており、加算器94A、94Bへの入力が“+”か“−”かによって、+1を乗算した、−1を乗算したことに相当させている。したがって、図11では、Data#2が+1、−1の符号で拡散されており、Data#1が+1、+1の符号で拡散されている例である。これら拡散された信号が、加算器94A、94Bにて加算され、一方はIQ入れ替え処理部95にて、IQ入れ替えが実行される。インタリーバ96から受信側92内のデインタリーバ97までの動作は、前記請求項1,2と同一である為割愛する。
デインタリーバ97の出力は、IQ入れ替え処理がなされているもの、いないもので、処理系等が異なる。これは、Data#1,Data#2それぞれに拡散符号が乗算されている為である。逆拡散処理は、加算器98A、98Bにて実施されている。送信側の加算器と同じく、減算、加算を効果的に組み替えることによって、−1、+1を乗算したことと等価にしている。以上の方法によって、送信データの半減を防ぐことができる。
本発明は携帯電話システムなどの移動体通信システムに適用できる。
第1の実施の形態による無線通信方式の説明に供するブロック図である。 本実施の形態によるCIBS−CDMA方式におけるIQ入れ替え処理の説明に供する概念図である。 従来のCIBS−CDMA方式における受信信号に位相変動が生じた状態を表すコンスタレーション図である。 本実施の形態によるCIBS−CDMA方式におけるIQ入れ替え処理後の状態を表すコンスタレーション図である。 本実施の形態による無線通信システムの概略構成を示す略線図である。 第1の実施の形態による携帯電話装置の構成を示すブロック図である。 通信制御装置の概略構成を示すブロック図である。 第2の実施の形態による携帯電話装置の構成を示すブロック図である。 第2の実施の形態における計算機シミュレーションによる評価結果を表す図表である。 本実施の形態による送信側インタリーバの機能的説明に供する概念図である。 第3の実施の形態による無線通信方式の説明に供するブロック図である。 従来のCIBS−CDMA方式の無線通信システムの概要構成に供するブロック図である。 従来のCIBS−CDMA方式の送信側において行われる拡散処理及びインタリーブ処理の内容を概念的に示す概念図である。 従来のCIBS−CDMA方式におけるマルチユーザ干渉の説明に供する概念図である。 従来のCIBS−CDMA方式におけるマルチユーザ干渉の説明に供する概念図である。 従来のCIBS−CDMA方式における送信側にてインタリーブ処理を実行し、受信側にてデインタリーブ処理を実行した場合の説明に供する概念図である。 従来のCIBS−CDMA方式による誤り率特性の説明に供する図表である。
符号の説明
10,90……無線通信システム、11,91……送信側、12,92……受信側、35……IQ入れ替え処理部、37,44……IQ入れ替え指示部、45……IQ入れ替え復号処理部、71……周波数領域等化部、21……携帯通信装置、22……基地局、23……上位制御局、60……通信制御装置、61……CPU。

Claims (9)

  1. 情報信号を拡散変調処理して送受信する複数の無線通信装置を有する無線通信システムにおいて、
    各前記無線通信装置のうち送信側では、
    前記情報信号を拡散変調処理して得られる送信データと同一の送信データを少なくとも2回繰り返して送信する繰り返し送信手段と、
    前記繰り返し送信手段の前段又は後段に設けられ、前記送信データにおける互いに直交する同相及び直交成分を、再送信する際に予め設定した周期で入れ替える第1の入れ替え手段と
    を備え、
    各前記無線通信装置のうち受信側では、
    前記繰り返し送信手段から送信される送信データについて、前記第1の入れ替え手段で設定された周期と同一の周期で前記同相及び直交成分を入れ替える第2の入れ替え手段と、
    前記第2の入れ替え手段により前記同相及び直交成分が入れ替えられた受信データと、当該第2の入れ替え手段により前記同相及び直交成分が入れ替えられなかった受信データとを加算する加算手段と
    を備えることを特徴とする無線通信システム。
  2. 前記受信側において、
    前記第2の入れ替え手段の前段に設けられ、伝送路又は送受信機間で生じた位相変動を補償する伝送路補償手段
    を備えることを特徴とする請求項1に記載の無線通信システム。
  3. 前記送信側において、
    前記第1の入れ替え手段の前段に設けられ、前記情報信号を拡散変調処理して得られる送信データを符号分割多重処理する符号分割多重処理手段
    を備え、当該送信データに含まれる情報数が少なくとも半減するように補償する
    ことを特徴とする請求項1又は請求項2に記載の無線通信システム。
  4. 複数の無線通信装置間で情報信号を拡散変調処理して送受信する無線通信方法において、
    各前記無線通信装置のうち送信側では、
    前記情報信号を拡散変調処理して得られる送信データと同一の送信データを少なくとも2回繰り返して送信した後、当該送信データにおける互いに直交する同相及び直交成分を、再送信する際に予め設定した周期で入れ替え、
    各前記無線通信装置のうち受信側では、
    前記送信側から送信される送信データについて、前記設定された周期と同一の周期で前記同相及び直交成分を入れ替えた後、当該同相及び直交成分が入れ替えられた受信データと、当該同相及び直交成分が入れ替えられなかった受信データとを加算する
    ことを特徴とする無線通信方法。
  5. 前記受信側では、
    前記送信側から送信される送信データについて、伝送路又は送受信機間で生じた位相変動を補償する
    ことを特徴とする請求項4に記載の無線通信方法。
  6. 前記送信側では、
    前記情報信号を拡散変調処理して得られる送信データを符号分割多重処理して、当該送信データに含まれる情報数が少なくとも半減するように補償する
    ことを特徴とする請求項4又は請求項5に記載の無線通信方法。
  7. 情報信号を拡散変調処理して送受信する無線通信装置において、
    前記情報信号を拡散変調処理して得られる送信データと同一の送信データを少なくとも2回繰り返して送信する繰り返し送信手段と、
    前記繰り返し送信手段の前段又は後段に設けられ、前記送信データにおける互いに直交する同相及び直交成分を、再送信する際に予め設定した周期で入れ替える第1の入れ替え手段と
    を有する送信系と、
    前記繰り返し送信手段から送信される送信データについて、前記第1の入れ替え手段で設定された周期と同一の周期で前記同相及び直交成分を入れ替える第2の入れ替え手段と、
    前記第2の入れ替え手段により前記同相及び直交成分が入れ替えられた受信データと、当該第2の入れ替え手段により前記同相及び直交成分が入れ替えられなかった受信データとを加算する加算手段と
    を有する受信系と
    を備えることを特徴とする無線通信装置。
  8. 前記受信系において、
    前記第2の入れ替え手段の前段に設けられ、伝送路又は送受信機間で生じた位相変動を補償する伝送路補償手段
    を備えることを特徴とする請求項7に記載の無線通信装置。
  9. 前記送信系において、
    前記第1の入れ替え手段の前段に設けられ、前記情報信号を拡散変調処理して得られる送信データを符号分割多重処理する符号分割多重処理手段
    を備え、当該送信データに含まれる情報数が少なくとも半減するように補償する
    ことを特徴とする請求項7又は請求項8に記載の無線通信装置。
JP2005380850A 2005-12-06 2005-12-06 無線通信システム及び無線通信方法並びに無線通信装置 Expired - Fee Related JP4683480B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005380850A JP4683480B2 (ja) 2005-12-06 2005-12-06 無線通信システム及び無線通信方法並びに無線通信装置
KR20060112443A KR100818284B1 (ko) 2005-12-06 2006-11-14 무선 통신 장치, 방법 및 시스템

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005380850A JP4683480B2 (ja) 2005-12-06 2005-12-06 無線通信システム及び無線通信方法並びに無線通信装置

Publications (2)

Publication Number Publication Date
JP2007159078A true JP2007159078A (ja) 2007-06-21
JP4683480B2 JP4683480B2 (ja) 2011-05-18

Family

ID=38242800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005380850A Expired - Fee Related JP4683480B2 (ja) 2005-12-06 2005-12-06 無線通信システム及び無線通信方法並びに無線通信装置

Country Status (2)

Country Link
JP (1) JP4683480B2 (ja)
KR (1) KR100818284B1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2098825A2 (en) 2008-03-06 2009-09-09 Aisin AW Co., Ltd. Destination search support device and destination search support program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998057437A1 (fr) * 1997-06-09 1998-12-17 Toyo Communication Equipment Co., Ltd. Procede de demodulation de signal de donnees avec correction mutuelle des formes d'onde de trame
JP2002199037A (ja) * 2000-12-27 2002-07-12 Matsushita Electric Ind Co Ltd 無線送信装置、無線受信装置および多値変調通信システム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100717682B1 (ko) * 2005-08-22 2007-05-11 한국전자통신연구원 인터리브된 주파수 분할 다중 접속 방식의 신호 생성 장치및 방법, 그리고 신호 수신 장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998057437A1 (fr) * 1997-06-09 1998-12-17 Toyo Communication Equipment Co., Ltd. Procede de demodulation de signal de donnees avec correction mutuelle des formes d'onde de trame
JP2002199037A (ja) * 2000-12-27 2002-07-12 Matsushita Electric Ind Co Ltd 無線送信装置、無線受信装置および多値変調通信システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2098825A2 (en) 2008-03-06 2009-09-09 Aisin AW Co., Ltd. Destination search support device and destination search support program

Also Published As

Publication number Publication date
JP4683480B2 (ja) 2011-05-18
KR20070059954A (ko) 2007-06-12
KR100818284B1 (ko) 2008-04-01

Similar Documents

Publication Publication Date Title
JP5084051B2 (ja) 送受信装置、送受信システムおよび送受信方法
JP4263749B2 (ja) 高データ速度cdma無線通信システム
JP4564070B2 (ja) レガシーシステムの相互動作性によるパイロット推定におけるマルチパス干渉の低減
KR100814155B1 (ko) 시간 역전 시공 블록 송신기 다이버시티 인코딩을 하는코드 분할 다중 접속 무선 시스템
TWI242945B (en) Mobile station, base station, and program for and method of wireless transmission
US7254197B2 (en) Apparatus and method for canceling interference signals in a receiver for a packet data communication system
KR100922938B1 (ko) 통신 시스템에서 데이터 수신 방법 및 장치
US20030152051A1 (en) High data rate CDMA wireless communication system
US20090141834A1 (en) Receiver and receiving method for rf signals
US8369380B2 (en) Transmitter, receiver, and mobile communication system
US20210314878A1 (en) Method for improving the performance of an uplink non-orthogonal multiple access method
KR20100089063A (ko) 승산 네트워크 코딩
JP4401413B2 (ja) 送受信装置及び送受信方法
US20010026578A1 (en) Code division multiple access transmitter and receiver
JP4683480B2 (ja) 無線通信システム及び無線通信方法並びに無線通信装置
KR20030030640A (ko) 다중레벨 변조방식을 지원하는 이동통신 시스템의복조방법 및 장치
JP4805044B2 (ja) 無線通信システムにおける無線通信方法及びその基地局装置並びに受信プログラム
JP3429716B2 (ja) M系列直交変調を用いた無線通信システムにおける復調方法および装置
JP4907133B2 (ja) 無線通信システム及び無線通信方法並びに通信装置
Jong Hak et al. Self-encoded multiple access multiuser convolutional codes in uplink and downlink cellular systems
US20050129095A1 (en) Apparatus and method for canceling multipath interference in a mobile communication system
KR20010113149A (ko) 멀티코드 이동통신시스템에서 왜곡 보상장치 및 방법
Mishra et al. Evaluation of BER in CDMA with Parallel Interference Cancellation
JP2006174501A (ja) 受信装置および受信方法
JP2005039796A (ja) Cdma通信装置およびcdma通信方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees