JP2007158265A - Superconducting coil - Google Patents

Superconducting coil Download PDF

Info

Publication number
JP2007158265A
JP2007158265A JP2005355318A JP2005355318A JP2007158265A JP 2007158265 A JP2007158265 A JP 2007158265A JP 2005355318 A JP2005355318 A JP 2005355318A JP 2005355318 A JP2005355318 A JP 2005355318A JP 2007158265 A JP2007158265 A JP 2007158265A
Authority
JP
Japan
Prior art keywords
coil
layer portion
flow layer
superconducting
backflow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005355318A
Other languages
Japanese (ja)
Other versions
JP4813884B2 (en
Inventor
Masatoshi Yoshikawa
正敏 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005355318A priority Critical patent/JP4813884B2/en
Publication of JP2007158265A publication Critical patent/JP2007158265A/en
Application granted granted Critical
Publication of JP4813884B2 publication Critical patent/JP4813884B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a superconducting coil capable of suppressing a generation of quenching by applying a required load or less to a drum portion of spool to which the superconducting wire is wound when non-energizing, and by preventing a superconducting wire from moving outward in radial direction when energizing. <P>SOLUTION: The superconducting coil comprises: a formal flow layer portion which generates a magnetic field of specific direction, and receives electromagnetic force outward in a radial direction of the superconducting coil by the magnetic field simultaneously; and an opposite flow layer portion receiving the electromagnetic force inward in the direction of the superconducting coil by the magnetic field of the specific direction in such a way that current flows in a circumferential direction opposite to this formal flow layer portion. The superconducting coil is constituted by arranging the opposite flow layer portion at an outer diameter side of the formal flow layer portion. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、極低温下で励磁される超電導コイルに関するものである。   The present invention relates to a superconducting coil excited at an extremely low temperature.

従来、超電導コイルは、液体ヘリウム等の極低温冷媒を使用する超電導マグネット等に使用されている。この超電導コイルとしては、巻枠に超電導線材を巻き付けることによって形成されたものが一般に知られている。この種の超電導コイルは、例えば、円筒状の巻枠に超電導線材を軸方向にソレノイド状に巻き付けて巻枠の軸方向端部で折り返し、すでに巻き付けられた超電導線材に対して外径側から重なるようにさらに軸方向に巻き付け、これを繰り返すことによって形成可能であり、これにより巻枠の径方向に前記超電導線材が複数層配置された構成となる。   Conventionally, superconducting coils are used in superconducting magnets that use cryogenic refrigerants such as liquid helium. As this superconducting coil, a coil formed by winding a superconducting wire around a winding frame is generally known. In this type of superconducting coil, for example, a superconducting wire is wound around a cylindrical winding frame like a solenoid in the axial direction, folded back at the axial end of the winding frame, and overlapped from the outer diameter side to the already wound superconducting wire. Thus, it can be formed by further winding in the axial direction and repeating this, thereby providing a configuration in which a plurality of layers of the superconducting wire are arranged in the radial direction of the winding frame.

この超電導コイルの超電導線材に電流を流すと、その中心部分に軸方向の磁場が発生するが、このとき、前記磁場と通電電流との相互作用により超電導線材に径方向外向きの電磁力(ローレンツ力)が作用する。この電磁力に起因して超電導線材が初期の巻線状態から変位する、いわゆるワイヤーモーションが発生すると、その摩擦熱によって超電導線材の一部の温度が臨界温度を超え、電気抵抗が生ずるおそれがある。このようにして電気抵抗をもつ常伝導部分が発生すると、当該部分に電流が流れることにより自己発熱が誘発され、最終的には超電導コイル全体が常伝導状態に転位する、いわゆるクエンチ現象が生ずることになる。また、前記電磁力に起因して超電導線材に歪みが生じることにより、その超電導線材の特性に影響が与えられる恐れがある。   When an electric current is passed through the superconducting wire of the superconducting coil, an axial magnetic field is generated at the central portion thereof. At this time, an electromagnetic force (Lorentz) is applied to the superconducting wire due to the interaction between the magnetic field and the energizing current. Force) acts. When a so-called wire motion occurs in which the superconducting wire is displaced from the initial winding state due to this electromagnetic force, the temperature of a part of the superconducting wire may exceed the critical temperature due to the frictional heat, and electric resistance may be generated. . When a normal conducting part having electrical resistance is generated in this way, self-heating is induced by current flowing through the part, and eventually a so-called quench phenomenon occurs in which the entire superconducting coil is shifted to the normal conducting state. become. In addition, when the superconducting wire is distorted due to the electromagnetic force, the characteristics of the superconducting wire may be affected.

そこで、例えば下記特許文献1には、超電導コイルの外周側に、この超電導線材よりも熱収縮率の大きな部材で形成したバインド線を巻回したものが開示されている。この特許文献1に開示された超電導コイルが液体ヘリウム等で冷却されると、超電導線とバインド線とで熱収縮率が異なることから、超電導線材よりも前記バインド線の方が径方向内向きに大きく収縮するため、超電導線材が径方向内向きに強く抑えられる。したがって、この超電導コイルに通電して励磁した場合であっても、前記超電導線材が径方向外向きに変位する動きは、このバインド線によって抑えられる。
特開平4−134808号公報
In view of this, for example, Patent Document 1 below discloses that a bind wire formed of a member having a thermal contraction rate larger than that of the superconducting wire is wound around the outer periphery of the superconducting coil. When the superconducting coil disclosed in Patent Document 1 is cooled with liquid helium or the like, the thermal contraction rate differs between the superconducting wire and the binding wire, so the binding wire is more radially inward than the superconducting wire. Since it contracts greatly, the superconducting wire is strongly suppressed inward in the radial direction. Therefore, even when this superconducting coil is energized and excited, the movement of the superconducting wire displaced outward in the radial direction is suppressed by this bind wire.
JP-A-4-134808

しかし、上記の従来の方法では、超電導コイルに通電して励磁する前から、超電導線材に常に径方向内向きの力が作用しているため、この径方向内向きの力に抗するために巻枠の径方向の剛性を高める必要がある。すなわち、超電導線材を巻き付ける巻枠の胴部が前記径方向内向きの力を受けて変形してしまうことのないように、例えば、その胴部の肉厚を径方向に厚く形成する必要があった。また、励磁前の状態では、巻枠に巻き付けられた超電導線材に、常に径方向内向きに強い力が加えられるため、超電導線材の特性に影響する場合があった。   However, in the above-described conventional method, since an inward force in the radial direction always acts on the superconducting wire before the superconducting coil is energized and excited, the winding is performed to resist the inward force in the radial direction. It is necessary to increase the radial rigidity of the frame. That is, for example, it is necessary to increase the thickness of the body portion in the radial direction so that the body portion of the winding frame around which the superconducting wire is wound is not deformed by receiving the inward force in the radial direction. It was. Further, in the state before excitation, a strong force is always applied inward in the radial direction to the superconducting wire wound around the winding frame, which may affect the characteristics of the superconducting wire.

本発明は、上記の問題点に鑑みてなされたものであり、超電導線材を巻き付ける巻枠の胴部に必要以上の負荷をかけず、前記超電導線材が径方向外向きに変位する動きを抑えることができる超電導コイルを提供することを目的としている。   The present invention has been made in view of the above-described problems, and suppresses the movement of the superconducting wire that is displaced radially outward without applying an unnecessary load to the body of the winding frame around which the superconducting wire is wound. It is an object to provide a superconducting coil that can be used.

上記課題を解決するために、本発明の超電導コイルは、円筒状外周面を有する巻枠と、この巻枠の外周面上に超電導線材がソレノイド状に巻き付けられることにより、前記超電導線材からなる複数のコイル層が径方向に積層された状態で形成されたコイル部と、を備え、前記超電導線材に電流が流れることにより、前記巻枠の軸方向に沿って特定方向の磁場を発生させる超電導コイルにおいて、前記コイル部は、一又は複数の前記コイル層からなり、このコイル層を形成する超電導線材に電流が流れることにより、前記特定方向の磁場を発生させるとともにその磁場により前記超電導コイルの径方向外向きに電磁力を受ける正流層部と、一又は複数のコイル層からなり、このコイル層を形成する超電導線材に前記正流層部と周方向逆向きに電流が流れるとともに、この電流と前記特定方向の磁場とにより前記超電導コイルの径方向内向きに電磁力を受ける逆流層部と、を有しており、前記正流層部の外径側に前記逆流層部が配置されていることを特徴としている。   In order to solve the above-described problems, a superconducting coil according to the present invention includes a winding frame having a cylindrical outer peripheral surface, and a plurality of superconducting wire rods formed by winding a superconducting wire in a solenoid shape on the outer peripheral surface of the winding frame. A superconducting coil that generates a magnetic field in a specific direction along the axial direction of the winding frame when a current flows through the superconducting wire. The coil portion is composed of one or a plurality of the coil layers, and a current flows through the superconducting wire forming the coil layer, thereby generating a magnetic field in the specific direction and the radial direction of the superconducting coil by the magnetic field. It consists of a forward flow layer that receives an electromagnetic force outward and one or more coil layers. The superconducting wire that forms this coil layer is electrically charged in the opposite direction to the forward flow layer. And a backflow layer that receives an electromagnetic force inward in the radial direction of the superconducting coil by the current and the magnetic field in the specific direction, and the backflow on the outer diameter side of the forward flow layer It is characterized in that the layer portion is arranged.

この構成によれば、正流層部の外径側に逆流層部を備えているため、この逆流層部により、前記正流層部が径方向外向きに変位するのを抑制することができる。すなわち、前記正流層部に電流が流れて特定方向の磁場が発生すると、この特定方向の磁場と正流層部を流れる電流との相互作用により、前記正流層部は径方向外向きに電磁力を受けるが、逆流層部には、前記正流層部に流れる電流と周方向逆向きの電流が流れるため、前記特定方向の磁場と逆流層部を流れる電流との相互作用により、この逆流層部は径方向内向きに電磁力を受ける。したがって、この電磁力が作用することによる正流層部の径方向外向きへの変位は、逆流層部の径方向内向きに変位しようとする力によって抑制される。   According to this configuration, since the backflow layer portion is provided on the outer diameter side of the forward flow layer portion, the backflow layer portion can suppress the forward flow layer portion from being displaced radially outward. . That is, when a current flows in the positive flow layer portion and a magnetic field in a specific direction is generated, the positive flow layer portion is directed radially outward due to the interaction between the magnetic field in the specific direction and the current flowing in the positive flow layer portion. Although the electromagnetic force is received, in the backflow layer portion, the current flowing in the forward flow layer portion and the current in the reverse direction of the circumferential direction flow. Therefore, due to the interaction between the magnetic field in the specific direction and the current flowing in the backflow layer portion, The backflow layer receives electromagnetic force inward in the radial direction. Therefore, the outward displacement in the radial direction of the normal flow layer portion due to the action of the electromagnetic force is suppressed by a force that attempts to displace the reverse flow layer portion in the radial direction.

また、超電導コイルに通電していない非使用状態では磁場は発生せず、正流層部にも逆流層部にも電磁力は作用しないため、径方向内向きの力が巻枠の胴部に作用することはない。したがって、バインド線でコイル部の径方向外向きの変位を抑える従来の方法のように、非使用状態で巻枠の胴部に強い径方向内向きの力が作用することはなく、巻枠の胴部の肉厚を径方向に厚く形成する必要がない。   Also, when the superconducting coil is not energized, a magnetic field is not generated, and electromagnetic force does not act on the forward flow layer or the reverse flow layer, so a radially inward force is applied to the body of the reel. There is no effect. Therefore, unlike the conventional method of suppressing the radial outward displacement of the coil portion with the bind wire, a strong radial inward force does not act on the body portion of the winding frame in a non-use state. There is no need to increase the thickness of the body in the radial direction.

なお、逆流層部の通電により前記特定方向の磁場を打ち消す向きの磁場が形成されるが、前記特定方向の磁場が十分な強さを有するように正流層部と逆流層部との比を設定しておけば、逆流層部に径方向内向きの力を発生させることができる。   In addition, although the magnetic field of the direction which cancels the magnetic field of the said specific direction is formed by electricity supply of a reverse flow layer part, the ratio of a normal flow layer part and a reverse flow layer part is made so that the magnetic field of the said specific direction has sufficient strength. If set, a radially inward force can be generated in the backflow layer.

具体的には、前記コイル部に配置される前記逆流層部を形成するコイル層数は、前記コイル部を形成する全コイル層数の30%未満であることが好ましい。   Specifically, it is preferable that the number of coil layers forming the backflow layer portion disposed in the coil portion is less than 30% of the total number of coil layers forming the coil portion.

また、本発明の超電導コイルの具体的な態様としては、前記正流層部における超電導線材の巻回方向は、前記逆流層部における超電導線材の巻回方向と、それぞれ互いに周方向逆向きに構成され、少なくとも1組の互いに隣接する前記正流層部と前記逆流層部とが連続する1本の超電導線材で形成され、前記正流層部に流れる電流と前記逆流層部に流れる電流とが互いに周方向逆向きに流れるように構成されたものが好ましい。   Further, as a specific aspect of the superconducting coil of the present invention, the winding direction of the superconducting wire in the forward flow layer is configured to be opposite to the winding direction of the superconducting wire in the backflow layer. And at least one set of the adjacent current flow layer portion and the reverse flow layer portion formed of one continuous superconducting wire, and a current flowing in the forward flow layer portion and a current flowing in the reverse flow layer portion are Those configured to flow in opposite directions in the circumferential direction are preferable.

この構成によれば、1本の超電導線材を用いて互いに隣接する正流層部と逆流層部とが形成されるため、回路構成が容易となり超電導コイルの構成を簡略化することができる。また両層間に接続部位がないため、接続信頼性も向上する。   According to this configuration, the normal flow layer portion and the reverse flow layer portion which are adjacent to each other are formed using one superconducting wire, so that the circuit configuration is facilitated and the configuration of the superconducting coil can be simplified. Moreover, since there is no connection part between both layers, connection reliability is also improved.

また、別の様態として、前記正流層部における超電導線材と、前記逆流層部における超電導線材とは、それぞれ周方向において同じ向きに巻回されており、隣接する前記正流層部と逆流層部との始端同士、又は終端同士が連結され、互いに連結していない終端又は始端から電流が供給されていることにより、前記正流層部に流れる電流と前記逆流層部に流れる電流とが互いに周方向逆向きに流れるように構成してもよい。   Moreover, as another aspect, the superconducting wire in the forward flow layer portion and the superconducting wire in the reverse flow layer portion are wound in the same direction in the circumferential direction, respectively, and the adjacent forward flow layer portion and the reverse flow layer are wound. The current flowing in the forward flow layer portion and the current flowing in the reverse flow layer portion are mutually connected by connecting currents from the terminal ends or the start ends not connected to each other. You may comprise so that it may flow in the circumferential direction reverse direction.

この構成によれば、1つの電源から正流層部と逆流層部とに電流を供給することができるため、回路構成が容易となって超電導コイルの構成を簡略化することができる。   According to this configuration, current can be supplied from one power source to the forward flow layer portion and the reverse flow layer portion, so that the circuit configuration is facilitated and the configuration of the superconducting coil can be simplified.

さらに、別の様態として、前記正流層部及び逆流層部に電流を供給する電源がそれぞれ別々に設けられ、前記正流層部に流れる電流と前記逆流層部に流れる電流とが互いに周方向逆向きに流れるように、これら正流層部及び逆流層部に対して前記電源が接続されている構成としてもよい。   Furthermore, as another aspect, power supplies for supplying current to the forward flow layer portion and the reverse flow layer portion are separately provided, and the current flowing in the forward flow layer portion and the current flowing in the reverse flow layer portion are circumferentially connected to each other. The power source may be connected to the forward flow layer portion and the reverse flow layer portion so as to flow in the opposite direction.

また、前記逆流層部の位置は、適宜設定可能であるが、好ましくは、前記コイル部の径方向中間位置よりも外径側に配置されているのが好ましい。   Further, the position of the backflow layer portion can be set as appropriate, but it is preferable that the backflow layer portion be disposed on the outer diameter side of the intermediate position in the radial direction of the coil portion.

この構成によれば、逆流層部がコイル部の中心軸から径方向に離れて配置されているため、逆流層部に電流が流れることにより発生する特定方向と逆向きの磁場が、特定方向の磁場に与える影響を弱めることができる。   According to this configuration, since the backflow layer is disposed away from the central axis of the coil portion in the radial direction, a magnetic field in a direction opposite to the specific direction generated by current flowing through the backflow layer is The influence on the magnetic field can be weakened.

一方、前記コイル部の最内層は、前記正流層部であることが好ましい。   On the other hand, it is preferable that the innermost layer of the coil portion is the positive flow layer portion.

この構成によれば、正流層部は、巻枠の中心軸に最も近い位置に配置されるため、特定方向の磁場をより強く発生させることができる。   According to this configuration, the tangential layer portion is disposed at a position closest to the central axis of the winding frame, so that a magnetic field in a specific direction can be generated more strongly.

また、前記コイル部の最外層は、前記逆流層部であることが好ましい。   Moreover, it is preferable that the outermost layer of the said coil part is the said backflow layer part.

この構成によれば、超電導線材が径方向外向きに変位するのを最外層に位置する逆流層部によって抑制されるため、コイル部全体が径方向外向きに変位すること(膨らむこと)を防止することができる。   According to this configuration, since the superconducting wire is prevented from being displaced radially outward by the backflow layer located in the outermost layer, the entire coil portion is prevented from being displaced radially outward (inflated). can do.

また、前記コイル部は、複数の逆流層部を有しており、各逆流層部間には正流層部が配置されている構成としてもよい。   Moreover, the said coil part is good also as a structure which has a some backflow layer part and the normal flow layer part is arrange | positioned between each backflow layer part.

この構成によれば、逆流層部が分散配置されていて、これらの逆流層部がその位置でそれぞれ正流層部が外径側に変位するのを抑えることができるため、例えば、これらの逆流層部の厚みの総和と同じ厚みの単一の逆流層部を設ける場合よりも、効果的な正流層部の押さえ込みができる。   According to this configuration, the backflow layer portions are dispersedly arranged, and these backflow layer portions can suppress displacement of the normal flow layer portion to the outer diameter side at each position. The forward flow layer portion can be more effectively pressed down than when a single reverse flow layer portion having the same thickness as the total thickness of the layer portions is provided.

本発明の超電導コイルによれば、超電導コイルに通電する前の状態では径方向内向きの力が発生せず、通電時には径方向内向きの力を発生させて、超電導線材が径方向外向きに変位するのを抑えることができる。   According to the superconducting coil of the present invention, a radially inward force is not generated in the state before energizing the superconducting coil, and a radially inward force is generated during energization so that the superconducting wire is directed radially outward. Displacement can be suppressed.

以下、本発明の実施の形態について図面を参照しながら説明する。ここで、図1は、本発明の超電導コイルを示す概略断面図、図2は図1の右側部分を拡大した概略断面図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Here, FIG. 1 is a schematic cross-sectional view showing the superconducting coil of the present invention, and FIG. 2 is an enlarged schematic cross-sectional view of the right portion of FIG.

超電導コイル1は、図1に示すように、超電導線材3を巻き付けるための巻枠2と、この巻枠2に超電導線材3が巻き付けられて形成されるコイル部4とを備えている。   As shown in FIG. 1, the superconducting coil 1 includes a winding frame 2 around which the superconducting wire 3 is wound, and a coil portion 4 formed by winding the superconducting wire 3 around the winding frame 2.

前記巻枠2は、円筒形状の胴部2aと、この胴部2aの軸方向両端部から径方向に延びるつば部2bとを有している。前記胴部2aには、径方向外側に円筒状外周面2cが形成されており、この円筒状外周面2c上に超電導線材3が巻き付けられている。   The winding frame 2 has a cylindrical body portion 2a and a flange portion 2b extending in the radial direction from both axial end portions of the body portion 2a. A cylindrical outer peripheral surface 2c is formed on the body portion 2a on the outer side in the radial direction, and the superconducting wire 3 is wound on the cylindrical outer peripheral surface 2c.

前記コイル部4は、前記巻枠2の胴部2aの一方端から他方端まで超電導線材3がソレノイド状に巻き付けられて形成されるコイル層4aによって形成されており、このコイル層4aによって形成される正流層部5と逆流層部6とが、コイル部4の内径側からこの順に交互に積層されて構成されている。図2に示す例では、前記正流層部5と逆流層部6とが各2個所ずつ配置されている。   The coil portion 4 is formed by a coil layer 4a formed by winding the superconducting wire 3 in a solenoid shape from one end to the other end of the body portion 2a of the winding frame 2, and is formed by the coil layer 4a. The normal flow layer portion 5 and the reverse flow layer portion 6 are alternately stacked in this order from the inner diameter side of the coil portion 4. In the example shown in FIG. 2, the forward flow layer portion 5 and the reverse flow layer portion 6 are arranged in two places.

前記正流層部5は、図2に示す例では、超電導線材3をコイル部4の紙面上方側の軸方向端部(上方端部という)から見て、反時計回り(左回り)に巻回されたコイル層4aを径方向に8層積層させることにより形成されたものであり、そのコイル層4aを構成する超電導線材3に電流が流れることにより、特定方向の磁場を発生させるものである。したがって、正流層部5は、超電導コイル1の通電時において、この特定方向の磁場によって径方向外向きの電磁力を受ける。   In the example shown in FIG. 2, the normal flow layer portion 5 is wound counterclockwise (counterclockwise) when the superconducting wire 3 is viewed from the axial end (referred to as the upper end) on the upper side of the coil portion 4 in the drawing. The coil layer 4a is formed by laminating eight layers of the coil layer 4a in the radial direction, and a current flows through the superconducting wire 3 constituting the coil layer 4a to generate a magnetic field in a specific direction. . Therefore, the positive flow layer portion 5 receives a radially outward electromagnetic force by the magnetic field in the specific direction when the superconducting coil 1 is energized.

また、前記逆流層部6は、超電導線材3をコイル部4の上方端部から見て、反時計回り(左回り)に巻回されたコイル層4aを径方向に2層積層させることにより形成されたものである。そして、このコイル層4aを構成する超電導線材3に前記正流層部5とは周方向逆向きの電流が流れることにより、前記特定方向とは逆向きの磁場を発生させるが、正流層部5により発生する磁場が強くなるように設定されているため、超電導コイル1全体として前記特定方向の磁場が形成される。したがって、逆流層部6は、この特定方向の磁場によって径方向内向きの電磁力を受ける。   The backflow layer 6 is formed by laminating two layers of the coil layer 4a wound counterclockwise (counterclockwise) in the radial direction when the superconducting wire 3 is viewed from the upper end of the coil 4. It has been done. The superconducting wire 3 constituting the coil layer 4a generates a magnetic field in the direction opposite to the specific direction by flowing a current in the direction opposite to the circumferential direction of the forward flow layer portion 5, but the forward flow layer portion. Since the magnetic field generated by 5 is set to be strong, the superconducting coil 1 as a whole forms a magnetic field in the specific direction. Therefore, the backflow layer 6 receives a radially inward electromagnetic force by the magnetic field in the specific direction.

ここで、このようなコイル部4の形成方法について説明する。まず、最内径側に位置する正流層部5を形成する。すなわち、巻枠2の胴部2aにおける上方端部側から円筒状外周面2c上に、超電導線材3を反時計回りに巻き付けて正流層部5の最内径側に位置する第1番目のコイル層4aを形成する。そして、胴部2aの軸方向端部(下方端部)で折り返し、すでに巻き付けられた第1番目のコイル層4aに対して外径側から重なるように、さらに軸方向に巻き付けて第2番目のコイル層4aを形成する。この巻回操作を8回繰り返して第8番目のコイル層4aまで形成することによって正流層部5が形成される。   Here, the formation method of such a coil part 4 is demonstrated. First, the forward flow layer portion 5 located on the innermost diameter side is formed. That is, the first coil located on the innermost diameter side of the forward flow layer portion 5 by winding the superconducting wire 3 counterclockwise from the upper end side of the body portion 2a of the winding frame 2 onto the cylindrical outer peripheral surface 2c. Layer 4a is formed. Then, it is folded back at the axial end portion (lower end portion) of the body portion 2a, and further wound in the axial direction so as to overlap the already wound first coil layer 4a from the outer diameter side. The coil layer 4a is formed. By repeating this winding operation eight times to form the eighth coil layer 4a, the forward flow layer portion 5 is formed.

次に、すでに形成された正流層部5の外径側に逆流層部6を形成する。巻枠2のつば部2bには、このつば部2bの厚さ方向に貫通する貫通口(不図示)が形成されており、この貫通口から、前記正流層部5の第8番目のコイル層4aの終端部分を一旦外側(巻枠2の軸方向外側)に取り出し、さらに別の貫通口から軸方向内側に戻して、今度は超電導線材3を上方端部から見て時計回りに巻き付ける。すなわち、前記第8番目のコイル層4a上に超電導線材3を時計回りに巻き付けることによって、逆流層部6の内径側に位置する第1番目のコイル層4aを形成する。このように、つば部2bの貫通口を通じて超電導線材3の一部を巻枠2の外側に位置させることによって、超電導線材3の巻回方向を逆転させている。したがって、正流層部5と逆流層部6とは、切断されることなく1本の超電導線材3で形成される。そして、逆流層部6の第1番目のコイル層4aを形成した後、同様にして、この第1番目のコイル層4a上に第2番目のコイル層4aを形成することによって、逆流層部6が形成される。   Next, the backflow layer 6 is formed on the outer diameter side of the already formed normal flow layer 5. A through-hole (not shown) that penetrates in the thickness direction of the collar portion 2 b is formed in the collar portion 2 b of the winding frame 2, and the eighth coil of the forward flow layer portion 5 extends from the through-hole. The end portion of the layer 4a is once taken out to the outside (axially outside the winding frame 2) and returned to the inside in the axial direction from another through hole, and this time the superconducting wire 3 is wound clockwise as viewed from the upper end. That is, the first coil layer 4a located on the inner diameter side of the backflow layer 6 is formed by winding the superconducting wire 3 clockwise on the eighth coil layer 4a. In this way, the winding direction of the superconducting wire 3 is reversed by positioning a part of the superconducting wire 3 outside the winding frame 2 through the through-hole of the collar portion 2b. Therefore, the normal flow layer portion 5 and the reverse flow layer portion 6 are formed by one superconducting wire 3 without being cut. Then, after the first coil layer 4a of the backflow layer portion 6 is formed, similarly, the backflow layer portion 6 is formed by forming the second coil layer 4a on the first coil layer 4a. Is formed.

さらに、同様にして、前記逆流層部6の終端部分をつば部2bの貫通口から一旦外側に取り出した後、また別の貫通口から内側に戻して、前記逆流層部6よりも外径側に位置する正流層部5を形成する。このようにして、巻回方向の異なるコイル層4aを形成する場合には、すでに巻枠2に巻き付けられて形成されたコイル層4aの終端部分を、つば部2bの貫通口を通じて軸方向外側に経由させて巻回方向を逆転させる。この操作を繰り返すことによって、図2に示すように正流層部5及び逆流層部6をそれぞれ2つずつ備えるコイル部4を形成する。すなわち、本実施形態におけるコイル部4は、連続する一本の超電導線材3で形成されている。   Further, similarly, after the end portion of the backflow layer portion 6 is once taken out from the through-hole of the collar portion 2b, it is returned to the inside through another through-hole, and the outer diameter side than the backflow layer portion 6. The positive flow layer portion 5 is formed. In this way, when the coil layer 4a having a different winding direction is formed, the terminal portion of the coil layer 4a that has already been wound around the winding frame 2 is moved outward in the axial direction through the through hole of the collar portion 2b. Reverse the winding direction via By repeating this operation, as shown in FIG. 2, the coil part 4 provided with two each of the normal flow layer part 5 and the reverse flow layer part 6 is formed. That is, the coil part 4 in this embodiment is formed with one continuous superconducting wire 3.

このように形成されたコイル部4を有する本実施形態における超電導コイル1に通電すると、コイル部4を形成する超電導線材3に電流が流れる。例えば、最内径側に位置する正流層部5の始端側から電流を流すと、各コイル層4aの巻回方向に電流が流れ、正流層部5には上方端部から見て反時計回りに、逆流層部6には時計回りに電流が流れる。すなわち、図2において、正流層部5では紙面表側から裏側に貫通する向き(Xを丸で囲った記号で示す)に電流が流れ、逆流層部6では紙面裏側から表側に向う向き(黒丸を丸で囲った記号で示す)に電流が流れる。そして、各コイル層4aに電流が流れることにより、図2における超電導コイル1には、巻枠2の中心軸に沿った軸方向上向き(図2における矢印7aの方向)の磁場が発生する。   When the superconducting coil 1 in this embodiment having the coil part 4 formed in this way is energized, a current flows through the superconducting wire 3 forming the coil part 4. For example, when a current is passed from the start end side of the forward flow layer portion 5 located on the innermost diameter side, a current flows in the winding direction of each coil layer 4a, and the forward flow layer portion 5 is counterclockwise when viewed from the upper end portion. Around, a current flows clockwise through the backflow layer 6. That is, in FIG. 2, current flows in the direction flowing through from the front side of the paper surface to the back side (X is indicated by a symbol surrounded by a circle) in the forward flow layer portion 5, and the direction flowing from the back side of the paper surface to the front side (black circle). Current flows in the circle). When a current flows through each coil layer 4a, a magnetic field is generated in the superconducting coil 1 in FIG. 2 that is axially upward (in the direction of the arrow 7a in FIG. 2) along the central axis of the winding frame 2.

すなわち、正流層部5により軸方向上向きの磁場が発生するとともに、逆流層部6により軸方向下向きの磁場が発生するが、正流層部5が巻枠2の内径側に位置しており、さらにコイル層4aが逆流層部6よりも多く形成されていることにより、正流層部5から発生される磁場は、逆流層部6で発生する磁場よりも相対的に強く発生する。したがって、逆流層部6により発生する磁場は、正流層部5による磁場により打ち消され、超電導コイル1全体として軸方向上向きの磁場(特定方向の磁場)が形成される。   That is, the forward flow layer portion 5 generates an upward magnetic field in the axial direction and the reverse flow layer portion 6 generates a downward magnetic field in the axial direction. However, the forward flow layer portion 5 is located on the inner diameter side of the reel 2. In addition, since the coil layer 4 a is formed more than the backflow layer portion 6, the magnetic field generated from the forward flow layer portion 5 is generated relatively stronger than the magnetic field generated in the backflow layer portion 6. Therefore, the magnetic field generated by the backflow layer 6 is canceled out by the magnetic field generated by the forward flow layer 5, and an axially upward magnetic field (a magnetic field in a specific direction) is formed as the entire superconducting coil 1.

そして、正流層部5によって発生する軸方向上向きの磁場(特定方向の磁場)によって、正流層部5は径方向外向きに電磁力を受け、逆流層部6は、径方向内向きに電磁力を受ける。すなわち、図2に示すように、巻枠2の内径側及び外径側に位置する正流層部5は、特定方向の磁場によって矢印7bで示す方向(径方向外向き)に電磁力を受けるため、これらの正流層部5は、前記電磁力により径方向外向きに変位しようとする。一方、逆流層部6は、図2に示すように、特定方向の磁場により、矢印7cで示す方向(径方向内向き)の電磁力を受けるため、径方向内向きに変位しようとする。この逆流層部6の径方向外側に変位しようとする力により、正流層部5の径方向外向きに変位しようとする力が相殺され、正流層部5の径方向外向きの動きは抑制される。   Then, the axially upward magnetic field (magnetic field in a specific direction) generated by the forward flow layer 5 receives the electromagnetic force in the radially outward direction, and the reverse flow layer 6 becomes inward in the radial direction. Receives electromagnetic force. That is, as shown in FIG. 2, the forward flow layer portions 5 positioned on the inner diameter side and the outer diameter side of the winding frame 2 receive electromagnetic force in the direction indicated by the arrow 7b (radially outward) by the magnetic field in a specific direction. Therefore, these positive flow layer portions 5 tend to be displaced radially outward by the electromagnetic force. On the other hand, as shown in FIG. 2, the backflow layer 6 receives an electromagnetic force in the direction indicated by the arrow 7 c (radially inward) by a magnetic field in a specific direction, and therefore tends to be displaced inward in the radial direction. The force to move outward in the radial direction of the reverse flow layer portion 6 cancels out the force to move outward in the radial direction of the forward flow layer portion 5, and the outward movement of the forward flow layer portion 5 in the radial direction It is suppressed.

このように、本発明の超電導コイル1では、各コイル層4aに電流が流れると、正流層部5によって形成された磁場により、正流層部5は径方向外向きに膨らむように変形しようとするが、逆流層部6が径方向内向きに収縮しようとするため、正流層部5の径方向外向きへの変位は抑制される。そして、逆流層部6の径方向内向きの力は、正流層部5の径方向外向きの力によって相殺されるため、巻枠2の胴部2aに必要以上の負荷をかけずに正流層部5の動きを抑えることができる。また、通電する前の状態では磁場は形成されず、逆流層部6による径方向内向きの力が発生しないため、巻枠2の胴部2aに径方向内向きの力が作用することはない。したがって、従来の方法のように、通電前からコイル部4にバインド線等で径方向内向きの力を与えることによって、コイル部4が径方向外側に膨らむことを防止する場合に比べて、超電導線材3を巻き付ける巻枠2の胴部2aに対し、径方向内向きに必要以上の負荷をかけることなく、クエンチ現象の発生を抑制することができる。   Thus, in the superconducting coil 1 of the present invention, when a current flows through each coil layer 4a, the positive current layer portion 5 is deformed so as to expand outward in the radial direction by the magnetic field formed by the positive current layer portion 5. However, since the backflow layer portion 6 tends to shrink inward in the radial direction, the displacement of the forward flow layer portion 5 in the radially outward direction is suppressed. Since the radially inward force of the backflow layer portion 6 is offset by the radially outward force of the forward flow layer portion 5, the forward force is applied to the body portion 2a of the winding frame 2 without applying a load more than necessary. The movement of the fluidized bed portion 5 can be suppressed. In addition, a magnetic field is not formed in a state before energization, and no radial inward force is generated by the backflow layer 6, so that no radial inward force acts on the body 2 a of the reel 2. . Therefore, as in the conventional method, the superconductivity is compared with the case where the coil portion 4 is prevented from bulging radially outward by applying a radially inward force to the coil portion 4 with a binding wire or the like before energization. The occurrence of the quenching phenomenon can be suppressed without applying an unnecessary load on the body 2a of the winding frame 2 around which the wire 3 is wound inward in the radial direction.

また、巻枠2の胴部2aに必要以上の力がかからないため、特定方向に形成する磁場の強さが同じ場合であれば、バインド線等を用いる従来の方法に比べて、巻枠2の胴部2aの厚さを径方向に薄く形成したものを用いることができる。   In addition, since an excessive force is not applied to the body portion 2a of the reel 2, if the strength of the magnetic field formed in a specific direction is the same, the reel 2 can be compared with a conventional method using a bind line or the like. What formed the thickness of the trunk | drum 2a thinly in the radial direction can be used.

なお、超電導線材3の巻数は増えるが、上述のように巻枠2の胴部2aを重厚にする必要がなく、また、従来のような樹脂バインダ等の使用を不要、もしくは減らすことができるため、総じてコンパクトな構造を維持することができる。   Although the number of turns of the superconducting wire 3 is increased, it is not necessary to make the body portion 2a of the winding frame 2 heavy as described above, and the use of a conventional resin binder or the like is unnecessary or can be reduced. In general, a compact structure can be maintained.

また、上記実施形態では、正流層部5と逆流層部6とを1本の超電導線材3で形成する場合について説明したが、正流層部5と逆流層部6とをそれぞれ別々の超電導線材3で形成し、それぞれ連結する構成としてもよい。   Moreover, although the said embodiment demonstrated the case where the normal flow layer part 5 and the reverse flow layer part 6 were formed with one superconducting wire 3, the normal flow layer part 5 and the reverse flow layer part 6 were each made into separate superconductivity. It is good also as a structure which forms with the wire rod 3 and each connects.

また、上記実施形態では、正流層部5と逆流層部6とを互いに巻回方向について周方向逆向きである場合について説明したが、互いに周方向において同方向に巻回したものであってもよい。図3に示す例では、内径側に位置する正流層部5と、その外径側に配置された逆流層部6とが、周方向において同じ方向に巻回されている。具体的には、巻枠2の胴部2aの上方端部から超電導線材3を反時計回りに巻回して正流層部5を形成し、この正流層部5の外周面上に超電導線材3を反時計回りに巻回して逆流層部6を形成する。そして、正流層部5の終端と逆流層部6の終端とを接続線9bで連結し、正流層部5の始端と逆流層部6の始端とを電源8に接続線9aで連結接続する。このような接続構成をすることによって、単一の電源を用いた簡単な回路構成によって、正流層部5に流れる電流の向きと逆流層部6に流れる電流の向きとが周方向逆向きにすることができる。なお、図3の例では、正流層部5と逆流層部6との終端同士を連結し、正流層部5及び逆流層部の始端から電流を供給する場合について示したが、正流層部5と逆流層部との始端同士を連結し、正流層部5及び逆流層部6の終端から電流を供給するものであってもよい。   Moreover, although the said embodiment demonstrated the case where the normal flow layer part 5 and the reverse flow layer part 6 were mutually reverse in the circumferential direction about the winding direction, they were mutually wound in the same direction in the circumferential direction. Also good. In the example shown in FIG. 3, the normal flow layer portion 5 located on the inner diameter side and the reverse flow layer portion 6 disposed on the outer diameter side are wound in the same direction in the circumferential direction. Specifically, the superconducting wire 3 is wound counterclockwise from the upper end of the body portion 2 a of the winding frame 2 to form the normal flow layer portion 5, and the superconducting wire is formed on the outer peripheral surface of the positive flow layer portion 5. 3 is wound counterclockwise to form the backflow layer 6. Then, the end of the forward flow layer portion 5 and the end of the reverse flow layer portion 6 are connected by a connection line 9b, and the start end of the forward flow layer portion 5 and the start end of the reverse flow layer portion 6 are connected to the power source 8 by a connection line 9a. To do. With such a connection configuration, the direction of the current flowing in the forward flow layer portion 5 and the direction of the current flowing in the reverse flow layer portion 6 are reversed in the circumferential direction by a simple circuit configuration using a single power source. can do. In the example of FIG. 3, the case where the ends of the normal flow layer portion 5 and the reverse flow layer portion 6 are connected to each other and current is supplied from the start ends of the normal flow layer portion 5 and the reverse flow layer portion is shown. The starting ends of the layer portion 5 and the backflow layer portion may be connected to each other, and current may be supplied from the end of the forward flow layer portion 5 and the backflow layer portion 6.

また、上記実施形態では、単一の電源を用いた例について説明したが、正流層部5及び逆流層部6を別々の電源を用いて、互いに周方向逆向きに電流を流す構成にしてもよい。例えば、図4に示す例では、内径側に位置する正流層部5と、その外径側に配置された逆流層部6とが、周方向において同じ方向に巻回されており、それぞれ別々の電源が設けられている。具体的には、巻枠2の胴部2aの上方端部から超電導線材3を反時計回りに巻回して正流層部を形成し、この正流層部5の外周面上に超電導線材3を反時計回りに巻回して逆流層部6を形成する。そして、正流層部5の始端を電源8aの正極に、正流層部5の終端を電源8aの負極にそれぞれ接続線9aによって接続する。また、逆流層部6の始端を電源8bの負極に、逆流層部6の終端を電源8bの正極にそれぞれ接続線9bによって接続する。このような回路構成にすることにより、正流層部5に流れる電流の向きと逆流層部6に流れる電流の向きとを周方向逆向きにすることができる。なお、図4の例では、正流層部5と逆流層部6との巻回方向を同じ向きにしているが、互いに逆向きになるように巻回したものであってもよい。ただし、正流層部5と逆流層部6とに互いに周方向逆向きの電流が流れるように各層に接続する電源との接続形態を調整する必要がある。   In the above embodiment, an example using a single power source has been described. However, the forward flow layer portion 5 and the reverse flow layer portion 6 are configured to flow currents in opposite directions in the circumferential direction using different power sources. Also good. For example, in the example shown in FIG. 4, the normal flow layer portion 5 located on the inner diameter side and the reverse flow layer portion 6 disposed on the outer diameter side are wound in the same direction in the circumferential direction, and are separated from each other. There is a power supply. Specifically, the superconducting wire 3 is wound counterclockwise from the upper end of the body portion 2 a of the winding frame 2 to form a normal flow layer portion, and the superconducting wire 3 is formed on the outer peripheral surface of the positive flow layer portion 5. Is wound counterclockwise to form the backflow layer 6. Then, the start end of the positive flow layer portion 5 is connected to the positive electrode of the power source 8a, and the end of the positive flow layer portion 5 is connected to the negative electrode of the power source 8a through the connection line 9a. Further, the starting end of the backflow layer 6 is connected to the negative electrode of the power supply 8b, and the end of the backflow layer 6 is connected to the positive electrode of the power supply 8b through the connection line 9b. With such a circuit configuration, the direction of the current flowing in the forward flow layer portion 5 and the direction of the current flowing in the reverse flow layer portion 6 can be reversed in the circumferential direction. In addition, in the example of FIG. 4, although the winding direction of the normal flow layer part 5 and the backflow layer part 6 is made into the same direction, it may be wound so that it may become a mutually reverse direction. However, it is necessary to adjust the connection form with the power supply connected to each layer so that the currents in the circumferential direction reverse to each other flow in the forward flow layer portion 5 and the reverse flow layer portion 6.

また、上記実施形態では、コイル部4の径方向中間位置よりも内径側に配置している逆流層部6を含んでいるが、配置される逆流層部6すべてをコイル部4の径方向中間位置よりも外径側に配置する構成としてもよい。この場合には、逆流層部6によって発生する磁場が、正流層部5によって発生する特定方向の磁場に与える影響を小さくすることができる。   Moreover, in the said embodiment, although the backflow layer part 6 arrange | positioned inside the radial direction intermediate position of the coil part 4 is included, all the backflow layer parts 6 arrange | positioned are the radial direction intermediate | middle of the coil part 4. It is good also as a structure arrange | positioned on the outer diameter side rather than a position. In this case, the influence of the magnetic field generated by the backflow layer 6 on the magnetic field in a specific direction generated by the forward flow layer 5 can be reduced.

また、上記実施形態では、正流層部5と逆流層部6とをこの順に2つずつ配置する例について説明したが、図5に示すように、正流層部5と逆流層部6とを1つずつ設けて、コイル部4の最外層を逆流層部6とする構成としてもよい。この場合には、逆流層部6が巻枠2の中心軸から径方向外側に離れた位置に形成されているため、逆流層部6によって発生する磁場が、正流層部5によって発生する磁場に与える影響を小さくすることができるとともに、最外層に逆流層部6を備えているため、この逆流層部6のみでコイル部4全体が径方向外向きに膨らむのを抑えることができる。   Moreover, in the said embodiment, although the example which arrange | positions two each of the normal flow layer part 5 and the reverse flow layer part 6 in this order was demonstrated, as shown in FIG. It is good also as a structure which provides one each and makes the outermost layer of the coil part 4 into the backflow layer part 6. FIG. In this case, since the backflow layer 6 is formed at a position radially outward from the central axis of the winding frame 2, the magnetic field generated by the backflow layer 6 is changed to the magnetic field generated by the forward flow layer 5. Since the backflow layer portion 6 is provided in the outermost layer, the entire coil portion 4 can be prevented from bulging outward in the radial direction only by the backflow layer portion 6.

また、コイル部4に配置される逆流層部6を形成するコイル層4aの層数は、コイル部4を形成する全コイル層数に対して少ない方が好ましく、その割合は、全コイル層数の30%未満、より好ましくは25%未満としてもよい。この場合には、正流層部5によって発生する磁場への影響を少なくして強い特定方向の磁場を発生する超電導コイル1とすることができる。   In addition, the number of coil layers 4a forming the backflow layer portion 6 arranged in the coil portion 4 is preferably smaller than the total number of coil layers forming the coil portion 4, and the ratio is the total number of coil layers. Less than 30%, more preferably less than 25%. In this case, the superconducting coil 1 that generates a strong magnetic field in a specific direction with less influence on the magnetic field generated by the positive current layer 5 can be obtained.

なお、正流層部5と逆流層部6とを形成する超電導線材3の線材種については、同一のものであってもよいし異なるものであってもよい。また、複数の正流層部5又は逆流層部6を備えている場合には、正流層部5同士、あるいは逆流層部6同士の線材種をそれぞれ変えたものであってもよい。   Note that the wire type of the superconducting wire 3 that forms the forward flow layer portion 5 and the reverse flow layer portion 6 may be the same or different. Moreover, when the several normal flow layer part 5 or the backflow layer part 6 is provided, the wire material type | molds of the normal flow layer parts 5 or the reverse flow layer parts 6 may each be changed.

本発明の超電導コイルを示す概略断面図である。It is a schematic sectional drawing which shows the superconducting coil of this invention. 本発明の一実施形態における超電導コイルの要部を拡大した断面図である。It is sectional drawing to which the principal part of the superconducting coil in one Embodiment of this invention was expanded. 他の実施形態における超電導コイルの要部を拡大した断面図である。It is sectional drawing to which the principal part of the superconducting coil in other embodiment was expanded. 他の実施形態における超電導コイルの要部を拡大した断面図である。It is sectional drawing to which the principal part of the superconducting coil in other embodiment was expanded. 他の実施形態における超電導コイルの要部を拡大した断面図である。It is sectional drawing to which the principal part of the superconducting coil in other embodiment was expanded.

符号の説明Explanation of symbols

1 超電導コイル
2 巻枠
2a 胴部
3 超電導線材
4 コイル部
4a コイル層
5 正流層部
6 逆流層部
DESCRIPTION OF SYMBOLS 1 Superconducting coil 2 Winding frame 2a Body part 3 Superconducting wire 4 Coil part 4a Coil layer 5 Forward flow layer part 6 Backflow layer part

Claims (9)

円筒状外周面を有する巻枠と、
この巻枠の外周面上に超電導線材がソレノイド状に巻き付けられることにより、前記超電導線材からなる複数のコイル層が径方向に積層された状態で形成されたコイル部と、
を備え、前記超電導線材に電流が流れることにより、前記巻枠の軸方向に沿って特定方向の磁場を発生させる超電導コイルにおいて、
前記コイル部は、
一又は複数の前記コイル層からなり、このコイル層を形成する超電導線材に電流が流れることにより、前記特定方向の磁場を発生させるとともにその磁場により前記超電導コイルの径方向外向きに電磁力を受ける正流層部と、
一又は複数の前記コイル層からなり、このコイル層を形成する超電導線材に前記正流層部と周方向逆向きに電流が流れるとともに、この電流と前記特定方向の磁場とにより前記超電導コイルの径方向内向きに電磁力を受ける逆流層部と、
を有しており、
前記正流層部の外径側に前記逆流層部が配置されていることを特徴とする超電導コイル。
A winding frame having a cylindrical outer peripheral surface;
A coil part formed in a state where a plurality of coil layers made of the superconducting wire are laminated in a radial direction by winding the superconducting wire in a solenoid shape on the outer peripheral surface of the winding frame;
In a superconducting coil that generates a magnetic field in a specific direction along the axial direction of the winding frame by causing a current to flow through the superconducting wire,
The coil portion is
A current flows through the superconducting wire that forms one or a plurality of the coil layers, thereby generating a magnetic field in the specific direction and receiving an electromagnetic force radially outward of the superconducting coil by the magnetic field. A positive flow layer,
A current flows in the circumferential direction opposite to the forward flow layer portion through the superconducting wire that forms one or a plurality of the coil layers, and the diameter of the superconducting coil is determined by the current and the magnetic field in the specific direction. A backflow layer receiving electromagnetic force inwardly in the direction,
Have
The superconducting coil, wherein the backflow layer is disposed on the outer diameter side of the forward flow layer.
前記正流層部における超電導線材の巻回方向は、前記逆流層部における超電導線材の巻回方向と、それぞれ互いに周方向逆向きに構成され、少なくとも1組の互いに隣接する前記正流層部と前記逆流層部とが連続する1本の超電導線材で形成され、前記正流層部に流れる電流と前記逆流層部に流れる電流とが互いに周方向逆向きに流れるように構成されていることを特徴とする請求項1に記載の超電導コイル。   The winding direction of the superconducting wire in the normal flow layer portion is configured to be opposite to the winding direction of the superconducting wire in the reverse flow layer portion, respectively in the circumferential direction, and at least one set of the positive flow layer portions adjacent to each other. The backflow layer is formed of a single continuous superconducting wire, and the current flowing in the forward flow layer and the current flowing in the backflow layer are configured to flow in opposite directions in the circumferential direction. The superconducting coil according to claim 1, wherein the coil is a superconducting coil. 前記正流層部における超電導線材と、前記逆流層部における超電導線材とは、それぞれ周方向において同じ向きに巻回されており、隣接する前記正流層部と逆流層部との始端同士、又は終端同士が連結され、互いに連結していない終端又は始端から電流が供給されていることにより、前記正流層部に流れる電流と前記逆流層部に流れる電流とが互いに周方向逆向きに流れるように構成されていることを特徴とする請求項1に記載の超電導コイル。   The superconducting wire in the forward flow layer portion and the superconducting wire in the reverse flow layer portion are wound in the same direction in the circumferential direction, respectively, and the adjacent ends of the forward flow layer portion and the reverse flow layer portion, or Since the ends are connected and current is supplied from the ends or the start ends that are not connected to each other, the current flowing in the forward flow layer portion and the current flowing in the reverse flow layer portion flow in opposite directions in the circumferential direction. The superconducting coil according to claim 1, wherein the superconducting coil is configured as follows. 前記正流層部及び逆流層部に電流を供給する電源がそれぞれ別々に設けられ、前記正流層部に流れる電流と前記逆流層部に流れる電流とが互いに周方向逆向きに流れるように、これら正流層部及び逆流層部に対して前記電源が接続されていることを特徴とする請求項1に記載の超電導コイル。   Power supplies for supplying current to the forward flow layer portion and the reverse flow layer portion are separately provided, so that the current flowing in the forward flow layer portion and the current flowing in the reverse flow layer portion flow in opposite directions in the circumferential direction. The superconducting coil according to claim 1, wherein the power source is connected to the forward flow layer portion and the reverse flow layer portion. 前記逆流層部は、前記コイル部の径方向中間位置よりも外径側に配置されていることを特徴とする請求項1から4のいずれかに記載の超電導コイル。   5. The superconducting coil according to claim 1, wherein the backflow layer portion is disposed on an outer diameter side of a radial intermediate position of the coil portion. 前記コイル部の最内層は、前記正流層部であることを特徴とする請求項1から5のいずれかに記載の超電導コイル。   The superconducting coil according to any one of claims 1 to 5, wherein the innermost layer of the coil portion is the positive flow layer portion. 前記コイル部の最外層は、前記逆流層部であることを特徴とする請求項1から6のいずれかに記載の超電導コイル。   The superconducting coil according to any one of claims 1 to 6, wherein the outermost layer of the coil portion is the backflow layer portion. 前記コイル部は、複数の逆流層部を有しており、各逆流層部間には正流層部が配置されていることを特徴とする請求項1から7のいずれかに記載の超電導コイル。   The superconducting coil according to any one of claims 1 to 7, wherein the coil portion has a plurality of backflow layer portions, and a forward flow layer portion is disposed between the backflow layer portions. . 前記コイル部に配置される前記逆流層部を形成するコイル層数は、前記コイル部を形成する全コイル層数の30%未満であることを特徴とする請求項1から8のいずれかに記載の超電導コイル。   The number of coil layers forming the backflow layer portion disposed in the coil portion is less than 30% of the total number of coil layers forming the coil portion. Superconducting coil.
JP2005355318A 2005-12-08 2005-12-08 Superconducting coil Expired - Fee Related JP4813884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005355318A JP4813884B2 (en) 2005-12-08 2005-12-08 Superconducting coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005355318A JP4813884B2 (en) 2005-12-08 2005-12-08 Superconducting coil

Publications (2)

Publication Number Publication Date
JP2007158265A true JP2007158265A (en) 2007-06-21
JP4813884B2 JP4813884B2 (en) 2011-11-09

Family

ID=38242162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005355318A Expired - Fee Related JP4813884B2 (en) 2005-12-08 2005-12-08 Superconducting coil

Country Status (1)

Country Link
JP (1) JP4813884B2 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60244006A (en) * 1984-04-30 1985-12-03 オクスフォード メディカル リミテッド Magnet unit and method of using same
JPH0256408A (en) * 1989-06-24 1990-02-26 Kanebo Ltd Dental resin forming and reparative material
JPH0258306A (en) * 1988-08-24 1990-02-27 Matsushita Electric Ind Co Ltd Voltage-dependent nonlinear resistor and manufacture thereof
JPH0378213A (en) * 1989-08-22 1991-04-03 Mitsubishi Heavy Ind Ltd Superconducting coil structure
JPH03141619A (en) * 1989-07-17 1991-06-17 Shimadzu Corp Magnet for generating magnetic field uniform in wide region
JPH045665A (en) * 1990-04-23 1992-01-09 Ricoh Co Ltd Recorder
JPH04186885A (en) * 1990-11-21 1992-07-03 Mitsubishi Heavy Ind Ltd Permanent current switch
JPH06151985A (en) * 1992-11-13 1994-05-31 Mitsubishi Electric Corp Permanent current switch
JPH06325932A (en) * 1993-05-13 1994-11-25 Hitachi Ltd Superconducting coil
JPH07240310A (en) * 1994-03-01 1995-09-12 Mitsubishi Electric Corp Superconducting magnet for nuclear magnetic resonance analyzer
JPH1145807A (en) * 1997-05-30 1999-02-16 Toshiba Corp Superconducting magnet device
JP2005026629A (en) * 2003-07-03 2005-01-27 Kobe Steel Ltd Magnetic field generating apparatus and its driving method
JP2006095022A (en) * 2004-09-29 2006-04-13 Hitachi Medical Corp Super-conductive magnet apparatus and magnetic resonance imaging apparatus using the same

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60244006A (en) * 1984-04-30 1985-12-03 オクスフォード メディカル リミテッド Magnet unit and method of using same
JPH0258306A (en) * 1988-08-24 1990-02-27 Matsushita Electric Ind Co Ltd Voltage-dependent nonlinear resistor and manufacture thereof
JPH0256408A (en) * 1989-06-24 1990-02-26 Kanebo Ltd Dental resin forming and reparative material
JPH03141619A (en) * 1989-07-17 1991-06-17 Shimadzu Corp Magnet for generating magnetic field uniform in wide region
JPH0378213A (en) * 1989-08-22 1991-04-03 Mitsubishi Heavy Ind Ltd Superconducting coil structure
JPH045665A (en) * 1990-04-23 1992-01-09 Ricoh Co Ltd Recorder
JPH04186885A (en) * 1990-11-21 1992-07-03 Mitsubishi Heavy Ind Ltd Permanent current switch
JPH06151985A (en) * 1992-11-13 1994-05-31 Mitsubishi Electric Corp Permanent current switch
JPH06325932A (en) * 1993-05-13 1994-11-25 Hitachi Ltd Superconducting coil
JPH07240310A (en) * 1994-03-01 1995-09-12 Mitsubishi Electric Corp Superconducting magnet for nuclear magnetic resonance analyzer
JPH1145807A (en) * 1997-05-30 1999-02-16 Toshiba Corp Superconducting magnet device
JP2005026629A (en) * 2003-07-03 2005-01-27 Kobe Steel Ltd Magnetic field generating apparatus and its driving method
JP2006095022A (en) * 2004-09-29 2006-04-13 Hitachi Medical Corp Super-conductive magnet apparatus and magnetic resonance imaging apparatus using the same

Also Published As

Publication number Publication date
JP4813884B2 (en) 2011-11-09

Similar Documents

Publication Publication Date Title
JP4186872B2 (en) Four-layer segment sequential joining stator coil and manufacturing method thereof
JP2008205466A (en) Magnetic parts
JP5724984B2 (en) Rotating electric machine stator
US9413200B2 (en) Stator and electric motor using same
US20100013341A1 (en) Electric machine with stepped winding structure
JP3600580B2 (en) Stator structure of reciprocating motor
US10574111B2 (en) Rotating electric machine with lane-changed coils
US20110241471A1 (en) Rotor of electric rotating machine
JP2010110128A (en) Permanent magnet rotating electrical machine
US20150228393A1 (en) High-Voltage Transformer Apparatus with Adjustable Leakage
US20120062347A1 (en) Transformer
KR20050110698A (en) Stator of an electrical machine
JP4813884B2 (en) Superconducting coil
JP4541977B2 (en) Armature and brushless motor
JP4490177B2 (en) Stator winding and method for manufacturing stator winding
JP5378029B2 (en) Displacement method of conductive coil and conductive coil
JP5405327B2 (en) Single-phase transformer and power distribution system using the same
KR20080020510A (en) A motor and a method for winding coil
JP2010245183A (en) Coupling coil and arc welder provided with the same
JP2012114230A (en) Superconducting coil
JP2002050523A (en) Transformer and its manufacturing method
JPWO2009104221A1 (en) Reactor
WO2023163136A1 (en) Coil body, armature, and rotary electric machine
US9972433B2 (en) Multiple winding transformer
JP7372128B2 (en) Electric motor and electric motor manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110825

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees