JP2007157637A - Reinforcement type solid polymer electrolyte membrane and its manufacturing method - Google Patents

Reinforcement type solid polymer electrolyte membrane and its manufacturing method Download PDF

Info

Publication number
JP2007157637A
JP2007157637A JP2005354917A JP2005354917A JP2007157637A JP 2007157637 A JP2007157637 A JP 2007157637A JP 2005354917 A JP2005354917 A JP 2005354917A JP 2005354917 A JP2005354917 A JP 2005354917A JP 2007157637 A JP2007157637 A JP 2007157637A
Authority
JP
Japan
Prior art keywords
membrane
polymer electrolyte
electrolyte
solid polymer
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005354917A
Other languages
Japanese (ja)
Inventor
Yasunari Nochi
康徳 能地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005354917A priority Critical patent/JP2007157637A/en
Publication of JP2007157637A publication Critical patent/JP2007157637A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reinforcement type solid polymer electrolyte membrane B allowing a large quantity of electrolyte resin 4 to be filled in pores even for a porous reinforcing membrane 1 having a further small pore diameter, and thereby capable of securing large mechanical strength while securing desired proton conductivity and gas impermeability, and to provide its manufacturing method. <P>SOLUTION: An electrolyte solution 5 obtained by dissolving the electrolyte resin 4 in an aprotic polarity solvent 3a is impregnated into the porous reinforcement membrane 1. This reinforcement type solid polymer electrolyte membrane B is prepared by evaporating the aprotic polarity solvent 3a by drying it after the impregnation. Even if the porous reinforcing membrane has a pore diameter not greater than 0.45 μm, sufficient impregnation into the pores of the electrolyte resin becomes possible. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は固体高分子型燃料電池で用いられる補強型固体高分子電解質膜およびその製造方法に関する。   The present invention relates to a reinforced solid polymer electrolyte membrane used in a solid polymer fuel cell and a method for producing the same.

燃料電池の1つとして固体高分子型燃料電池(PEFC)が知られている。固体高分子型燃料電池は、図3に示すように、膜電極接合体(MEA)15を主要な構成要素とし、それを燃料(水素)ガス流路および空気ガス流路を備えたセパレータ14,14で挟持して、単セルと呼ばれる1つの燃料電池20を形成している。膜電極接合体15は、イオン交換膜である電解質膜11の一方側にアノード側の電極触媒層12aと拡散層13aを積層し、他方の側にカソード側の電極触媒層12bと拡散層13bを積層した構造を有する。   A polymer electrolyte fuel cell (PEFC) is known as one of the fuel cells. As shown in FIG. 3, the polymer electrolyte fuel cell includes a membrane electrode assembly (MEA) 15 as a main component, and a separator 14 having a fuel (hydrogen) gas flow path and an air gas flow path, 14, one fuel cell 20 called a single cell is formed. The membrane electrode assembly 15 has an anode side electrode catalyst layer 12a and a diffusion layer 13a laminated on one side of an electrolyte membrane 11 which is an ion exchange membrane, and a cathode side electrode catalyst layer 12b and a diffusion layer 13b on the other side. It has a laminated structure.

膜電極接合体15を構成する電解質膜11には、プロトン伝導性が高いこと、機械的強度が高いこと、ガス不透過性であること、が求められる。一方、固体高分子型燃料電池において用いられる電解質膜は通常10μmから200μm程度の厚さであり、十分な強度を有しないことから、特許文献1に記載のように、多孔質PTFE膜のような細孔を有する多孔質補強膜を用い、そこに電解質溶液を含浸させることが行われる。電解質溶液としては、特許文献2に記載のように、電解質を、プロトン系極性溶媒である、水と1−プロパノールまたはエタノールのアルコール系溶媒に溶解したものが、通常使用されている。   The electrolyte membrane 11 constituting the membrane electrode assembly 15 is required to have high proton conductivity, high mechanical strength, and gas impermeability. On the other hand, an electrolyte membrane used in a polymer electrolyte fuel cell is usually about 10 μm to 200 μm in thickness and does not have sufficient strength. Therefore, as described in Patent Document 1, a porous PTFE membrane is used. A porous reinforcing membrane having pores is used and impregnated with an electrolyte solution. As an electrolyte solution, as described in Patent Document 2, a solution obtained by dissolving an electrolyte in water and 1-propanol or ethanol alcohol solvent, which is a protonic polar solvent, is usually used.

特許文献3には、電解質溶液として、電解質であるパーフルオロカーボンスルホン酸樹脂を親水性且つ高沸点性質を有する極性溶媒を含有する溶媒に溶解させた高分子電解質溶液と、それを多孔質膜に含浸させてガス拡散電極とすることが記載されている。
特開平8−329962号公報 特開2003−249244号公報 特開2004−164854号公報
In Patent Document 3, as an electrolyte solution, a polymer electrolyte solution in which perfluorocarbon sulfonic acid resin as an electrolyte is dissolved in a solvent containing a polar solvent having a hydrophilic property and a high boiling point property, and a porous membrane are impregnated with the polymer electrolyte solution The gas diffusion electrode is described.
JP-A-8-329962 JP 2003-249244 A JP 2004-164854 A

燃料電池において固体高分子電解質膜の耐久性の向上が課題となっており、これら耐久性を向上させる手段の一つとして、さらに機械的強度を上げることが求められる。多孔質の補強膜に電解質樹脂を含浸させた補強型固体高分子電解質膜において、高い強度を得るには、素材が同じ場合には気孔率(細孔率)が小さい方がよい。一方、補強型固体高分子電解質膜のプロトン伝導性およびガス不透過性は、多孔質補強膜の細孔内に含浸している電解質樹脂の量に左右される。従って、同等のプロトン伝導性およびガス不透過性を備えた補強型固体高分子電解質膜を得ようとする場合、径の小さい細孔の中に、より多くの電解質樹脂が充填されていれば、より機械的強度の大きい電解質膜となり、耐久性も向上する。   Improvement of the durability of the solid polymer electrolyte membrane in a fuel cell is an issue, and it is required to further increase the mechanical strength as one of means for improving the durability. In a reinforced solid polymer electrolyte membrane in which a porous reinforcing membrane is impregnated with an electrolyte resin, in order to obtain high strength, it is better that the porosity (porosity) is small when the materials are the same. On the other hand, the proton conductivity and gas impermeability of the reinforced solid polymer electrolyte membrane depend on the amount of electrolyte resin impregnated in the pores of the porous reinforced membrane. Therefore, when trying to obtain a reinforced solid polymer electrolyte membrane having equivalent proton conductivity and gas impermeability, if more electrolyte resin is filled in pores with a small diameter, The electrolyte membrane has a higher mechanical strength and the durability is improved.

従来の、例えば多孔質PTFE膜を補強層とする補強型固体高分子電解質膜において、前記のように、含浸させる電解質溶液には、溶媒として一般的に水と1−プロパノールまたはエタノールのようなアルコール系溶媒(プロトン性極性溶媒)を使用したものが用いられている。アルコール系溶媒はPTFEのような多孔質補強膜に濡れ易い利点があるが、沸点が100℃以下と低く揮発しやすいために、多孔質補強膜の細孔内で電解質樹脂の置換速度に差が生じる。そのため、細孔径が小さい場合には、細孔内に電解質樹脂が十分に含浸することができない。従って、アルコール系溶媒を用いている限り、所要のプロトン伝導性を得るために、細孔径を大きくする必要があり(現在では、細孔径が0.45μmを超える多孔質PTFE膜が多孔質補強膜として通常用いられている)、結果として、機械的強度の向上という面では、十分なものとはいえなかった。また、十分なガス不透過性を得るのも困難であった。   In a conventional reinforced solid polymer electrolyte membrane having, for example, a porous PTFE membrane as a reinforcing layer, the electrolyte solution to be impregnated generally contains water and an alcohol such as 1-propanol or ethanol as described above. A solvent using a system solvent (protic polar solvent) is used. Alcohol-based solvents have the advantage of being easily wetted by porous reinforcing membranes such as PTFE. However, since the boiling point is as low as 100 ° C. or less and volatilizes easily, there is a difference in the substitution rate of the electrolyte resin within the pores of the porous reinforcing membrane. Arise. Therefore, when the pore diameter is small, the electrolyte resin cannot be sufficiently impregnated in the pores. Therefore, as long as an alcohol-based solvent is used, it is necessary to increase the pore size in order to obtain the required proton conductivity (currently, porous PTFE membranes having a pore size exceeding 0.45 μm are porous reinforcing membranes). As a result, it was not sufficient in terms of improving the mechanical strength. It was also difficult to obtain sufficient gas impermeability.

本発明は、上記のような事情に鑑みてなされたものであり、より小さな細孔径である多孔質補強膜に対しても、細孔内に多くの量の電解質樹脂を充填できるようにし、それにより、所要のプロトン伝導性とガス不透過性を確保しながら、大きな機械的強度をも確保できるようにした補強型固体高分子電解質膜およびその製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and allows a large amount of electrolyte resin to be filled in pores even for a porous reinforcing membrane having a smaller pore diameter. Accordingly, it is an object of the present invention to provide a reinforced solid polymer electrolyte membrane and a method for producing the same, which can ensure high mechanical strength while ensuring required proton conductivity and gas impermeability.

本発明者らは、上記の課題を解決すべく多くの実験と研究を行うことにより、電解質樹脂を溶解する溶媒としてアルコール系溶媒(プロトン性極性溶媒)ではなく、前記特許文献3に記載されるような沸点の高い非プロトン性極性溶媒を用いて電解質溶液を作り、それを多孔質PTFE膜のような多孔質補強膜に含浸させる場合に、細孔径が十分に小さい場合であっても、細孔内にほぼ完全に電解樹脂を充填させ得ることができ、大きな機械的強度の持つ補強型固体高分子電解質膜が得られることを知見した。   The present inventors have conducted many experiments and studies to solve the above-mentioned problems, and are described in Patent Document 3 instead of an alcohol solvent (protic polar solvent) as a solvent for dissolving the electrolyte resin. When an electrolyte solution is made using an aprotic polar solvent having a high boiling point and impregnated in a porous reinforcing membrane such as a porous PTFE membrane, even if the pore diameter is sufficiently small, It has been found that the electrolytic resin can be almost completely filled in the pores, and a reinforced solid polymer electrolyte membrane having a large mechanical strength can be obtained.

本発明は、上記知見に基づくものであり、本発明による多孔質補強膜を備えた補強型固体高分子電解質膜の製造方法は、電解質樹脂を非プロトン性極性溶媒に溶解させた後、該電解質樹脂を溶解した電解質溶液を多孔質の補強膜に含浸させることを特徴とする。   The present invention is based on the above knowledge, and a method for producing a reinforced solid polymer electrolyte membrane having a porous reinforcing membrane according to the present invention is obtained by dissolving an electrolyte resin in an aprotic polar solvent, A porous reinforcing membrane is impregnated with an electrolyte solution in which a resin is dissolved.

本発明による方法では、非プロトン性極性溶媒を用いており、電解質溶液中での電解質樹脂の分散性が向上する。また、非プロトン性極性溶媒の沸点は、一般に、アルコール系溶媒の沸点よりも高い。そのために、該電解質溶液を多孔質補強膜に含浸させると、溶媒の揮発速度が抑えられることから、電解質樹脂の多孔質補強膜細孔内への置換と含浸が円滑に進行する。そのために、細孔径が小さい場合でも、その中に所望量の電解質樹脂を充填することができる。結果として、所定のプロトン伝導性とガス不拡散性を備えながら、高い機械的強度を持つ補強型固体高分子電解質膜が得られる。   In the method according to the present invention, an aprotic polar solvent is used, and the dispersibility of the electrolyte resin in the electrolyte solution is improved. The boiling point of the aprotic polar solvent is generally higher than that of the alcohol solvent. For this reason, when the porous reinforcing membrane is impregnated with the electrolyte solution, the volatilization rate of the solvent is suppressed, so that substitution and impregnation of the electrolyte resin into the pores of the porous reinforcing membrane proceeds smoothly. Therefore, even when the pore diameter is small, a desired amount of electrolyte resin can be filled therein. As a result, a reinforced solid polymer electrolyte membrane having high mechanical strength while having predetermined proton conductivity and gas non-diffusibility can be obtained.

本発明による方法によれば、後の実施例に示すように、細孔径が0.45μm以下、例えば、0.1〜0.2μmである多孔質補強膜であっても、実用に十分に耐え得るプロトン伝導性を備えた補強型固体高分子電解質膜を製造することができる。   According to the method of the present invention, as shown in the following examples, even a porous reinforcing membrane having a pore diameter of 0.45 μm or less, for example, 0.1 to 0.2 μm, can sufficiently withstand practical use. A reinforced solid polymer electrolyte membrane having proton conductivity can be produced.

本発明において、多孔質補強膜としては、ポリエチレン多孔質膜、ポリプロピレン多孔質膜、ポリイミド多孔質膜、ポリテトラフルオロエチレン(PTFE)多孔質膜のようなものを用いることができるが、安定性が高いこと、より大きな機械的強度を備えることの理由から、多孔質PTFE膜は特に好ましい。   In the present invention, the porous reinforcing membrane may be a polyethylene porous membrane, a polypropylene porous membrane, a polyimide porous membrane, a polytetrafluoroethylene (PTFE) porous membrane, etc. Porous PTFE membranes are particularly preferred for reasons of high and greater mechanical strength.

本発明において、非プロトン性極性溶媒としては、沸点が高いジメチルスルホキシド(CH−S(=O)−CH:DMSO)、ジメチルホルムアミド(H−C(=O)N(CH:DMF)を挙げることができるが、中でも、沸点が189℃と高く、より小径の細孔(後の実施例に示すように、細孔径0.1〜0.2μm)を持つ多孔質補強層に対して、所望の電解質樹脂の充填が可能なことから、ジメチルスルホキシド(DMSO)は特に好ましい。 In the present invention, examples of the aprotic polar solvent include dimethyl sulfoxide (CH 3 —S (═O) —CH 3 : DMSO), dimethylformamide (HC—═O) N (CH 3 ) 2 having a high boiling point: DMF), among others, a porous reinforcing layer having a boiling point as high as 189 ° C. and pores with smaller diameters (pore diameters of 0.1 to 0.2 μm as shown in the following examples) On the other hand, dimethyl sulfoxide (DMSO) is particularly preferable because it can be filled with a desired electrolyte resin.

本発明において、電解質樹脂は、従来知られたイオン交換基を有しかつ溶媒に溶解可能な高分子電解質を適宜用いることができる。例として、米国デュポン社製ナフィオン溶液が挙げられる。使用に当たっては、市販の電解質溶液から溶液を揮発させて固形分を例えば70〜90%程度まで高めたものに対して、上記した非プロトン性極性溶媒を添加して適宜の固形分を持つ電解質溶液とする。   In the present invention, as the electrolyte resin, a conventionally known polymer electrolyte having an ion exchange group and soluble in a solvent can be appropriately used. An example is Nafion solution manufactured by DuPont, USA. In use, an electrolyte solution having an appropriate solid content by adding the above-mentioned aprotic polar solvent to a solution obtained by evaporating the solution from a commercially available electrolyte solution and increasing the solid content to, for example, about 70 to 90%. And

本発明は、上記した製造方法で好適に製造される補強型固体高分子電解質膜として、細孔径0.45μm以下(0を含まない)の多孔質補強膜に電解質樹脂が含浸されていることを特徴とする補強型固体高分子電解質膜をも開示する。好ましくは、多孔質補強膜は多孔質PTFE膜である。この補強型固体高分子電解質膜は、上記のようにして多孔質補強膜に電解質樹脂を非プロトン性極性溶媒中に溶解した電解質溶液を含浸させた後、乾燥して非プロトン性極性溶媒を飛ばすことにより得ることができる。   According to the present invention, as a reinforced solid polymer electrolyte membrane suitably manufactured by the above-described manufacturing method, a porous reinforcing membrane having a pore diameter of 0.45 μm or less (excluding 0) is impregnated with an electrolyte resin. A featured reinforced solid polymer electrolyte membrane is also disclosed. Preferably, the porous reinforcing membrane is a porous PTFE membrane. In this reinforced solid polymer electrolyte membrane, the porous reinforcing membrane is impregnated with an electrolyte solution in which an electrolyte resin is dissolved in an aprotic polar solvent as described above, and then dried to drive off the aprotic polar solvent. Can be obtained.

本発明を図面を参照してさらに説明する。図1aは従来の製造方法による補強型固体高分子電解質膜Aの製造過程を模式的に説明するものであり、図1bは本発明による製造方法によって補強型固体高分子電解質膜Bが製造される過程を模式的に説明している。図1aにおいて、1は多孔質PTFE膜のような多孔質補強膜であり、例えば平均直径が0.45μm程度以下である多数の細孔2を有している。気孔率が等しい場合、径の大きな細孔を備える多孔質膜と比較して、より径の小さい細孔を備える多孔質膜は高い機械的強度を持つ。5は電解質溶液であり、水+アルコール系溶媒のようなプロトン性極性溶媒3の中に電解質樹脂が溶解している。   The present invention will be further described with reference to the drawings. FIG. 1a schematically illustrates a production process of a reinforced solid polymer electrolyte membrane A according to a conventional production method, and FIG. 1b illustrates a reinforced solid polymer electrolyte membrane B produced by the production method according to the present invention. The process is schematically explained. In FIG. 1 a, 1 is a porous reinforcing membrane such as a porous PTFE membrane, and has a large number of pores 2 having an average diameter of about 0.45 μm or less, for example. When the porosity is the same, the porous membrane having smaller diameter pores has higher mechanical strength than the porous membrane having larger diameter pores. 5 is an electrolyte solution in which an electrolyte resin is dissolved in a protic polar solvent 3 such as water + alcohol solvent.

多孔質補強膜1を電解質溶液5に含浸して、細孔2中に電解質樹脂4を充填することとなるが、前記したように、アルコール系溶媒は沸点が100℃以下と低く揮発しやすいために、多孔質補強膜1の細孔2内で電解質樹脂4の置換速度に差が生じるために、細孔2の径が0.45μm程度以下である多孔質補強膜1の場合には、細孔2内に電解質樹脂4が十分に含浸することができない。   The porous reinforcing membrane 1 is impregnated with the electrolyte solution 5 and the electrolyte resin 4 is filled in the pores 2. However, as described above, the alcohol solvent has a boiling point as low as 100 ° C. or less and easily volatilizes. In addition, since there is a difference in the substitution rate of the electrolyte resin 4 in the pores 2 of the porous reinforcing membrane 1, in the case of the porous reinforcing membrane 1 in which the diameter of the pores 2 is about 0.45 μm or smaller, The pores 2 cannot be sufficiently impregnated with the electrolyte resin 4.

それを乾燥させて溶媒3を飛ばすことにより、補強型固体高分子電解質膜Aが形成されるが、細孔2内の電解質樹脂4の充填量は不十分であり、機械的強度は満足するとしても、満足すべきプロトン伝導性とガス不透過性を得ることはできない。   The reinforced solid polymer electrolyte membrane A is formed by drying and drying the solvent 3, but the filling amount of the electrolyte resin 4 in the pores 2 is insufficient and the mechanical strength is satisfactory. However, satisfactory proton conductivity and gas impermeability cannot be obtained.

図1bに示す本発明による製造法では、溶媒として例えば150℃以上である沸点の高い非プロトン性極性溶媒3a(例えば、DMSO,DMF)を使用しており、電解質溶液5a中での電解質樹脂4の分散性が向上する。また、本発明者らの実験では、補強膜1そのものの膨潤も観察された。そのために、電解質溶液5aに多孔質補強膜1を含浸させると、溶媒3aの揮発速度が抑えられることから、電解質樹脂4の細孔2内への置換と含浸が円滑に進行する。   In the production method according to the present invention shown in FIG. 1b, an aprotic polar solvent 3a (for example, DMSO, DMF) having a high boiling point of, for example, 150 ° C. or higher is used, and the electrolyte resin 4 in the electrolyte solution 5a is used. The dispersibility of is improved. In the experiments by the present inventors, swelling of the reinforcing film 1 itself was also observed. Therefore, when the porous reinforcing membrane 1 is impregnated in the electrolyte solution 5a, the volatilization rate of the solvent 3a is suppressed, so that substitution and impregnation of the electrolyte resin 4 into the pores 2 proceed smoothly.

それを乾燥させて溶媒3aを飛ばすことにより、補強型固体高分子電解質膜Bが形成されるが、細孔2内に電解質樹脂4は十分に充填されており、所望の機械的強度を保持しながら、満足すべきプロトン伝導性とガス不透過性を得ることができる。   The reinforced solid polymer electrolyte membrane B is formed by drying and evaporating the solvent 3a. However, the electrolyte resin 4 is sufficiently filled in the pores 2 and maintains a desired mechanical strength. However, satisfactory proton conductivity and gas impermeability can be obtained.

以下、実施例により本発明を説明する。
[実施例1]
NafionDE2020(商標名)溶液(側鎖末端H型)EW値1100,固形分20%をエバポレータで溶媒である水、アルコールを揮発させ固形分70%〜90%にまで上げる。これは、溶媒を完全に揮発させると再溶液化ができなくなるためである。
Hereinafter, the present invention will be described by way of examples.
[Example 1]
Nafion DE2020 (trade name) solution (side chain terminal H type) EW value 1100, solid content 20% is evaporated to water and alcohol as a solvent by an evaporator and the solid content is increased to 70% to 90%. This is because if the solvent is completely volatilized, it cannot be re-solutionized.

固形分80%程度の前記Nafion溶液に非プロトン性極性溶媒であるジメチルスルホキシド(以下DMSOと記す)を添加し、固形分15%となるように調整して電解質溶液とした。   Dimethyl sulfoxide (hereinafter abbreviated as DMSO), which is an aprotic polar solvent, was added to the Nafion solution having a solid content of about 80%, and adjusted to a solid content of 15% to obtain an electrolyte solution.

多孔質PTFE補強膜として、住友電工製PTFE多孔質膜、細孔径0.1μm、気孔率60%、膜圧30μmを使用した。ガラスシャーレに前記電解質溶液を2ml流し込み均一に伸ばした後、5cm×5cmにカットした多孔質PTFE補強膜を乗せ、さらに、その上に同じ電解質溶液を2ml流し込み均一に伸ばした。それを乾燥機にて140℃の温度で1時間乾燥させて補強型固定高分子電解質膜を得た。   As the porous PTFE reinforcing membrane, a PTFE porous membrane manufactured by Sumitomo Electric Industries, a pore diameter of 0.1 μm, a porosity of 60%, and a membrane pressure of 30 μm was used. After 2 ml of the electrolyte solution was poured into a glass petri dish and uniformly spread, a porous PTFE reinforcing membrane cut to 5 cm × 5 cm was placed thereon, and further 2 ml of the same electrolyte solution was poured onto the glass petri dish to uniformly extend. It was dried in a dryer at a temperature of 140 ° C. for 1 hour to obtain a reinforced fixed polymer electrolyte membrane.

[実施例2]
実施例1と同じ、NafionDE2020溶液(側鎖末端H型)EW値1100,固形分20%に、DMSOを固形分15%となるように後添加し、混合して電解質溶液を調整した。以下、実施例1と同様にして、補強型固定高分子電解質膜を得た。
[Example 2]
The same electrolyte solution was prepared by adding DMSO to a Nafion DE2020 solution (side chain terminal H type) EW value of 1100, solid content of 20%, and solid content of 20%, and mixing to a solid content of 15%. Thereafter, in the same manner as in Example 1, a reinforced fixed polymer electrolyte membrane was obtained.

[実施例3]
実施例1と同じ、NafionDE2020溶液(側鎖末端H型)EW値1100,固形分20%に、DMSOを固形分15%となるように後添加し、混合して電解質溶液を調整した。
[Example 3]
The same electrolyte solution was prepared by adding DMSO to a Nafion DE2020 solution (side chain terminal H type) EW value of 1100, solid content of 20%, and solid content of 20%, and mixing to a solid content of 15%.

多孔質PTFE補強膜として、住友電工製PTFE多孔質膜、細孔径0.45μm、気孔率80%、膜圧30μmを使用した。ガラスシャーレに前記電解質溶液を2ml流し込み均一に伸ばした後、5cm×5cmにカットした多孔質PTFE補強膜を乗せ、さらに、その上に同じ電解質溶液を2ml流し込み均一に伸ばした。それを乾燥機にて140℃の温度で1時間乾燥させて補強型固定高分子電解質膜を得た。   As the porous PTFE reinforcing membrane, a PTFE porous membrane manufactured by Sumitomo Electric Industries, a pore diameter of 0.45 μm, a porosity of 80%, and a membrane pressure of 30 μm was used. After 2 ml of the electrolyte solution was poured into a glass petri dish and uniformly spread, a porous PTFE reinforcing membrane cut to 5 cm × 5 cm was placed thereon, and further 2 ml of the same electrolyte solution was poured onto the glass petri dish to uniformly extend. It was dried in a dryer at a temperature of 140 ° C. for 1 hour to obtain a reinforced fixed polymer electrolyte membrane.

[比較例1]
実施例1と同じ、NafionDE2020溶液(側鎖末端H型)EW値1100,固形分20%に、1−プロパノールで固形分15%になるように後添加し、混合して電解質溶液を調整した。その溶液を用いて、以下、実施例1と同様にして、補強型固定高分子電解質膜を得た。
[Comparative Example 1]
The same Nafion DE2020 solution (side chain terminal H type) EW value 1100 as in Example 1 was added to a solid content of 20% so that the solid content was 15% with 1-propanol and mixed to prepare an electrolyte solution. Using the solution, a reinforced fixed polymer electrolyte membrane was obtained in the same manner as in Example 1 below.

[比較試験]
[試験1]伝導度試験
実施例1,2および比較例1での各補強型固定高分子電解質膜を用いて、飽和含水状態での伝導度を測定した。その結果を表1に示す。
[Comparison test]
[Test 1] Conductivity test Using each of the reinforced fixed polymer electrolyte membranes in Examples 1 and 2 and Comparative Example 1, the conductivity in a saturated water-containing state was measured. The results are shown in Table 1.

Figure 2007157637
Figure 2007157637

表1に示すように、同じ多孔質PTFE補強膜を用いたものでありながら、実施例1,2の補強型固定高分子電解質膜は、比較例1のものと比較して高い伝導度を示しており、本発明の方法で製造した補強型固定高分子電解質膜では、補強膜の細孔内への電解質樹脂の含浸性が改善されていることがわかる。   As shown in Table 1, the reinforced fixed polymer electrolyte membranes of Examples 1 and 2 showed higher conductivity than that of Comparative Example 1 while using the same porous PTFE reinforcing membrane. In the reinforced fixed polymer electrolyte membrane produced by the method of the present invention, it can be seen that the impregnation property of the electrolyte resin into the pores of the reinforced membrane is improved.

[試験2]強度試験
実施例2の補強型固定高分子電解質膜と実施例3の補強型固定高分子電解質膜について、同じ条件で応力−伸び試験を行った。その結果を図2に示した。図2において、曲線P1は実施例2の補強型固定高分子電解質膜のものであり、曲線P2は実施例3の補強型固定高分子電解質膜のものである。
[Test 2] Strength test The reinforced fixed polymer electrolyte membrane of Example 2 and the reinforced fixed polymer electrolyte membrane of Example 3 were subjected to a stress-elongation test under the same conditions. The results are shown in FIG. In FIG. 2, the curve P1 is that of the reinforced fixed polymer electrolyte membrane of Example 2, and the curve P2 is that of the reinforced fixed polymer electrolyte membrane of Example 3.

図2に示すように、補強膜の厚さが同じ(30μm)であっても、細孔径が0.1μmである実施例2の補強型固定高分子電解質膜は、細孔径が0.45μmである実施例3の補強型固定高分子電解質膜よりも機械的強度が向上している。   As shown in FIG. 2, even though the thickness of the reinforcing membrane is the same (30 μm), the reinforced fixed polymer electrolyte membrane of Example 2 having a pore size of 0.1 μm has a pore size of 0.45 μm. The mechanical strength is improved as compared with the reinforced fixed polymer electrolyte membrane of Example 3.

このことと、試験1の結果から、より径の小さい細孔内にも電解質樹脂を良好に含浸することができる本発明による製造方法によれば、機械的強度、プロトン伝導性、ガス不透過性を共に満足する補強型固定高分子電解質膜が得られることが示される。   From this and the result of Test 1, according to the production method according to the present invention that can satisfactorily impregnate the electrolyte resin even in pores with smaller diameters, mechanical strength, proton conductivity, gas impermeability It is shown that a reinforced fixed polymer electrolyte membrane satisfying both of the above can be obtained.

従来の製造方法による補強型固体高分子電解質膜の製造過程を模式的に説明する図(図1a)と、本発明による製造方法によって補強型固体高分子電解質膜が製造される過程を模式的に説明する図(図1b)。FIG. 1A schematically illustrates a manufacturing process of a reinforced solid polymer electrolyte membrane according to a conventional manufacturing method (FIG. 1a), and schematically illustrates a process of manufacturing a reinforced solid polymer electrolyte membrane according to the manufacturing method of the present invention. FIG. 1B is an explanatory diagram. 本発明により製造される2つの補強型固定高分子電解質膜の応力−伸び曲線図。The stress-elongation curve figure of two reinforcement type | mold fixed polymer electrolyte membranes manufactured by this invention. 固体高分子型燃料電池の一例を示す図。The figure which shows an example of a polymer electrolyte fuel cell.

符号の説明Explanation of symbols

A,B…補強型固体高分子電解質膜、1…多孔質PTFE膜(補強膜)、2…細孔、3…プロトン性極性溶媒、3a…非プロトン性極性溶媒、4…電解質樹脂、5,5a…電解質溶液   A, B ... reinforced solid polymer electrolyte membrane, 1 ... porous PTFE membrane (reinforced membrane), 2 ... pore, 3 ... protic polar solvent, 3a ... aprotic polar solvent, 4 ... electrolyte resin, 5, 5a ... electrolyte solution

Claims (6)

多孔質補強膜を備えた固体高分子電解質膜の製造方法であって、電解質樹脂を非プロトン性極性溶媒に溶解させた後、該電解質樹脂を溶解した電解質溶液を多孔質の補強膜に含浸させることを特徴とする補強型固体高分子電解質膜の製造方法。   A method for producing a solid polymer electrolyte membrane having a porous reinforcing membrane, wherein an electrolyte resin is dissolved in an aprotic polar solvent, and then the porous reinforcing membrane is impregnated with an electrolyte solution in which the electrolyte resin is dissolved A method for producing a reinforced solid polymer electrolyte membrane, comprising: 多孔質補強膜として細孔径が0.45μm以下である多孔質補強膜を用いることを特徴とする請求項1に記載の補強型固体高分子電解質膜の製造方法。   The method for producing a reinforced solid polymer electrolyte membrane according to claim 1, wherein a porous reinforcing membrane having a pore diameter of 0.45 µm or less is used as the porous reinforcing membrane. 多孔質補強膜が多孔質PTFE膜であることを特徴とする請求項2に記載の補強型固体高分子電解質膜の製造方法。   The method for producing a reinforced solid polymer electrolyte membrane according to claim 2, wherein the porous reinforcing membrane is a porous PTFE membrane. 非プロトン性極性溶媒がジメチルスルホキシド(DMSO)またはジメチルホルムアミド(DMF)であることを特徴とする請求項1ないし3のいずれかに記載の補強型固体高分子電解質膜の製造方法。   The method for producing a reinforced solid polymer electrolyte membrane according to any one of claims 1 to 3, wherein the aprotic polar solvent is dimethyl sulfoxide (DMSO) or dimethylformamide (DMF). 細孔径0.45μm以下(0を含まない)の多孔質補強膜に電解質樹脂が含浸されていることを特徴とする補強型固体高分子電解質膜。   A reinforced solid polymer electrolyte membrane, wherein a porous reinforcing membrane having a pore diameter of 0.45 μm or less (excluding 0) is impregnated with an electrolyte resin. 多孔質補強膜が多孔質PTFE膜であることを特徴とする請求項5に記載の補強型固体高分子電解質膜。   6. The reinforced solid polymer electrolyte membrane according to claim 5, wherein the porous reinforcing membrane is a porous PTFE membrane.
JP2005354917A 2005-12-08 2005-12-08 Reinforcement type solid polymer electrolyte membrane and its manufacturing method Pending JP2007157637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005354917A JP2007157637A (en) 2005-12-08 2005-12-08 Reinforcement type solid polymer electrolyte membrane and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005354917A JP2007157637A (en) 2005-12-08 2005-12-08 Reinforcement type solid polymer electrolyte membrane and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007157637A true JP2007157637A (en) 2007-06-21

Family

ID=38241719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005354917A Pending JP2007157637A (en) 2005-12-08 2005-12-08 Reinforcement type solid polymer electrolyte membrane and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007157637A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009005156A1 (en) * 2007-07-02 2009-01-08 Toyota Jidosha Kabushiki Kaisha Electrolyte membrane and fuel cell employing it
WO2009116630A1 (en) * 2008-03-21 2009-09-24 旭硝子株式会社 Membrane electrode assembly for solid polymer fuel cell, and solid polymer fuel cell
JP2010170823A (en) * 2009-01-22 2010-08-05 Toyota Motor Corp Complex type electrolyte membrane for fuel cell
JP2012146674A (en) * 2012-03-16 2012-08-02 Toyota Motor Corp Electrolyte membrane, and fuel cell comprising the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075050A (en) * 2000-08-31 2002-03-15 Nitto Denko Corp Proton-conductive membrane and proton-conductive film obtained therefrom
JP2004247182A (en) * 2003-02-14 2004-09-02 Ube Ind Ltd Electrolyte film for fuel cell, electrolyte film/electrode junction, fuel cell, and manufacturing method of electrolyte film for fuel cell
JP2005082757A (en) * 2003-09-10 2005-03-31 Jsr Corp Polyarylene copolymer having sulfonic acid group, method for producing the same, polymeric solid electrolyte, proton conductive film and electrode for battery
JP2005327500A (en) * 2004-05-12 2005-11-24 Toyota Motor Corp Manufacturing method of solid polymer electrolyte, solid polymer electrolyte membrane and fuel cell
JP2006059551A (en) * 2004-08-17 2006-03-02 Asahi Kasei Chemicals Corp Polymetric solid electrolyte membrane having reinforcing material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075050A (en) * 2000-08-31 2002-03-15 Nitto Denko Corp Proton-conductive membrane and proton-conductive film obtained therefrom
JP2004247182A (en) * 2003-02-14 2004-09-02 Ube Ind Ltd Electrolyte film for fuel cell, electrolyte film/electrode junction, fuel cell, and manufacturing method of electrolyte film for fuel cell
JP2005082757A (en) * 2003-09-10 2005-03-31 Jsr Corp Polyarylene copolymer having sulfonic acid group, method for producing the same, polymeric solid electrolyte, proton conductive film and electrode for battery
JP2005327500A (en) * 2004-05-12 2005-11-24 Toyota Motor Corp Manufacturing method of solid polymer electrolyte, solid polymer electrolyte membrane and fuel cell
JP2006059551A (en) * 2004-08-17 2006-03-02 Asahi Kasei Chemicals Corp Polymetric solid electrolyte membrane having reinforcing material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009005156A1 (en) * 2007-07-02 2009-01-08 Toyota Jidosha Kabushiki Kaisha Electrolyte membrane and fuel cell employing it
JP2009016074A (en) * 2007-07-02 2009-01-22 Toyota Motor Corp Electrolyte membrane, and fuel cell using the same
CN102569855A (en) * 2007-07-02 2012-07-11 丰田自动车株式会社 Electrolyte membrane and fuel cell employing it
US8835076B2 (en) 2007-07-02 2014-09-16 Toyota Jidosha Kabushiki Kaisha Electrolyte membrane and fuel cell using the same
WO2009116630A1 (en) * 2008-03-21 2009-09-24 旭硝子株式会社 Membrane electrode assembly for solid polymer fuel cell, and solid polymer fuel cell
US9118043B2 (en) 2008-03-21 2015-08-25 Asahi Glass Company, Limited Membrane/electrode assembly for polymer electrolyte fuel cells and polymer electrolyte fuel cell
JP2010170823A (en) * 2009-01-22 2010-08-05 Toyota Motor Corp Complex type electrolyte membrane for fuel cell
JP2012146674A (en) * 2012-03-16 2012-08-02 Toyota Motor Corp Electrolyte membrane, and fuel cell comprising the same

Similar Documents

Publication Publication Date Title
Liu et al. Nafion/PTFE composite membranes for fuel cell applications
US10236527B2 (en) Porous Nafion membrane and method for preparing the same
EP1648047B1 (en) Polymer electrolyte for a direct oxidation fuel cell, method of preparing the same, and direct oxidation fuell cell comprising the same
US7939216B2 (en) Polymer electrolyte membrane, method of preparing the same and fuel cell employing the same
JP2013503436A (en) POLYMER ELECTROLYTE MEMBRANE FOR FUEL CELL AND METHOD FOR PRODUCING THE SAME
JP2012069536A (en) Polymer electrolyte film for direct oxidation type fuel cell, manufacturing method therefor, and direct oxidation type fuel cell system including the same
KR102415739B1 (en) Asymmetric electrolyte membrane, membrane electrode assembly comprising the same, water electrolysis apparatus comprising the same and method for manufacturing the same
US20060003214A1 (en) Polymer electrolyte membrane for fuel cell and method for preparing the same
JP5557430B2 (en) PROTON CONDUCTIVE POLYMER ELECTROLYTE MEMBRANE, PROCESS FOR PRODUCING THE SAME, MEMBRANE-ELECTRODE ASSEMBLY USING THE SAME, AND POLYMER ELECTROLYTE FUEL CELL
Li et al. Composite membranes of PVDF nanofibers impregnated with Nafion for increased fuel concentrations in direct methanol fuel cells
US8227147B2 (en) Advanced membrane electrode assemblies for fuel cells
KR101109143B1 (en) Preparation method of composite membranes crosslinked with anhydrous electrolyte and polymer electrolyte fuel cell systems using the same
JP2007157637A (en) Reinforcement type solid polymer electrolyte membrane and its manufacturing method
CN112717731A (en) Ion conductive film and preparation method thereof
Fu et al. Sulfonated polysulfone with 1, 3-1H-dibenzimidazole-benzene additive as a membrane for direct methanol fuel cells
CN211530098U (en) Composite proton exchange membrane and fuel cell
JP2006269266A (en) Compound solid polyelectrolyte membrane having reinforcement material
Scott Membrane electrode assemblies for polymer electrolyte membrane fuel cells
KR102130873B1 (en) Reinforced membrane, membrane electrode assembly and fuel cell comprising the same, and method for manufacturing thereof
JP4821946B2 (en) Electrolyte membrane and method for producing the same
KR102125412B1 (en) Method for manufacturing hydrocarbon based reinforced polymer electrolyte membrane for fuel cell and reinforced polymer electrolyte membrane manufactured thereby
JP2008204928A (en) Solid polymer electrolyte membrane, and fuel cell using it
Mehdipour-Ataei et al. Polymer electrolyte membranes for direct methanol fuel cells
JP2005339991A (en) Polyelectrolyte film, and solid polymer fuel cell and direct methanol type fuel cell using the same
JP2007149461A (en) Ink for electrode of polymer electrolyte fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120110