JP2008204928A - Solid polymer electrolyte membrane, and fuel cell using it - Google Patents

Solid polymer electrolyte membrane, and fuel cell using it Download PDF

Info

Publication number
JP2008204928A
JP2008204928A JP2007043129A JP2007043129A JP2008204928A JP 2008204928 A JP2008204928 A JP 2008204928A JP 2007043129 A JP2007043129 A JP 2007043129A JP 2007043129 A JP2007043129 A JP 2007043129A JP 2008204928 A JP2008204928 A JP 2008204928A
Authority
JP
Japan
Prior art keywords
polymer electrolyte
solid polymer
electrolyte membrane
membrane
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007043129A
Other languages
Japanese (ja)
Inventor
Toshiyuki Kobayashi
稔幸 小林
Shin Morishima
慎 森島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2007043129A priority Critical patent/JP2008204928A/en
Publication of JP2008204928A publication Critical patent/JP2008204928A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid polymer electrolyte membrane having excellent durability. <P>SOLUTION: This solid polymer electrolyte membrane has solid polymer electrolyte layers, and a porous base material sandwiched between the solid polymer electrolyte layers, and is characterized in that the solid polymer electrolyte membrane has the porous base material having at least two layers, and the thickness of the layer on a fuel electrode side is larger than that of the layer on an air electrode side. In addition, it is preferable that the porous base material comprises the two layers, and the solid polymer electrolyte membrane(s) is/are formed between them or on both their sides, and thereby this excellent solid polymer electrolyte membrane excelling in durability can be provided. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、固体高分子電解質膜及びそれを用いた燃料電池に関する。   The present invention relates to a solid polymer electrolyte membrane and a fuel cell using the same.

イオン交換膜を電解質膜として用いる固体高分子形燃料電池(PEFC)やダイレクトメタノール型燃料電池(DMFC)は、低温で作動し、出力密度が高く、小型化が可能であることから、近年、特に注目され、家庭用分散電源,業務用分散電源,自動車用電源,携帯用電源等に適用すべく、開発が急ピッチで進められている。   In recent years, polymer electrolyte fuel cells (PEFC) and direct methanol fuel cells (DMFC) that use ion exchange membranes as electrolyte membranes operate at low temperatures, have high output density, and can be miniaturized. Attention has been focused on, and development is proceeding at a rapid pace to be applied to household distributed power supplies, commercial distributed power supplies, automobile power supplies, portable power supplies and the like.

燃料電池用の電解質膜としては、一般にフッ素系のポリパーフロロカーボンスルホン酸電解質膜が市販されている。その代表的なものとして、ナフィオン(Nafion,登録商標:米国Dupont社製),アシプレックス(Aciplex 、登録商標:旭化成工業株式会社製),フレミオン(Flemion、登録商標:旭硝子株式会社製)等がある。   Generally as a fuel cell electrolyte membrane, a fluorine-based polyperfluorocarbonsulfonic acid electrolyte membrane is commercially available. Representative examples include Nafion (Nafion, registered trademark: manufactured by Dupont, USA), Aciplex (registered trademark: manufactured by Asahi Kasei Kogyo Co., Ltd.), Flemion (registered trademark: manufactured by Asahi Glass Co., Ltd.), and the like. .

DMFCやPEFCの普及を図るためには、高効率化,高出力密度化等による性能向上及び低コスト化が必須である。   In order to popularize DMFC and PEFC, it is essential to improve performance and reduce costs by increasing efficiency and increasing output density.

このようなポリパーフロロカーボンスルホン酸電解質膜は、フッ素化学プロセスが必須であり、用途が食塩電解や燃料電池応用に限られたスーパーファインケミカル材料である。   Such a polyperfluorocarbon sulfonic acid electrolyte membrane is a super fine chemical material in which a fluorine chemical process is essential and its use is limited to salt electrolysis and fuel cell applications.

これに対して、芳香族炭化水素系電解質膜は、ポリパーフロロカーボンスルホン酸電解質膜に比べると低コストである。しかし、燃料電池の高効率化,高出力密度化等による性能向上を図るためには、固体高分子電解質膜のイオン伝導抵抗を減少させ、イオン伝導度を向上させる必要がある。   In contrast, aromatic hydrocarbon electrolyte membranes are less expensive than polyperfluorocarbon sulfonic acid electrolyte membranes. However, in order to improve the performance by increasing the efficiency and the output density of the fuel cell, it is necessary to reduce the ionic conduction resistance of the solid polymer electrolyte membrane and improve the ionic conductivity.

固体高分子電解質膜のイオン伝導抵抗を減少する方法として、膜厚の低減がある。膜厚の低減は、膜の機械強度の低下,加工性・取扱性の低下等の問題が生じる。   As a method for reducing the ionic conduction resistance of the solid polymer electrolyte membrane, there is a reduction in film thickness. The reduction of the film thickness causes problems such as a decrease in the mechanical strength of the film and a decrease in workability and handleability.

このような問題を解決するため、補強材により電解質膜を補強する試みが種々なされており、例えば、特許文献1には多孔質基材を用いた高分子電解質複合膜が開示されている。   In order to solve such problems, various attempts have been made to reinforce the electrolyte membrane with a reinforcing material. For example, Patent Document 1 discloses a polymer electrolyte composite membrane using a porous substrate.

しかしながら、補強材が単一である場合には、燃料電池として連続使用した際の耐久性が必ずしも満足できるものではなかった。   However, when a single reinforcing material is used, the durability when continuously used as a fuel cell is not always satisfactory.

特開2003−41031号公報JP 2003-41031 A

本発明の目的は、耐久性に優れた固体高分子電解質膜及びそれを用いた燃料電池を提供することにある。   An object of the present invention is to provide a solid polymer electrolyte membrane excellent in durability and a fuel cell using the same.

本発明者らは鋭意検討の結果、固体高分子電解質と複数の多孔質膜からなる固体高分子電解質膜(固体高分子電解質複合膜)の新規な構造を発明するに至った。   As a result of intensive studies, the present inventors have invented a novel structure of a solid polymer electrolyte membrane (solid polymer electrolyte composite membrane) comprising a solid polymer electrolyte and a plurality of porous membranes.

本発明の代表的な実施態様は以下の通りである。   Exemplary embodiments of the present invention are as follows.

本発明の一実施態様である燃料電池用の固体高分子電解質膜は、燃料極と空気極との間に形成されるのものであって、この固体高分子電解質膜が、固体高分子電解質層と固体高分子電解質層とによって挟まれた、多孔内に固体高分子電解質が充填された、少なくとも2層以上の多孔質基材を有し、多孔質基材は、燃料極側の厚さが空気極側の厚さよりも厚いことを特徴とする。   A solid polymer electrolyte membrane for a fuel cell according to an embodiment of the present invention is formed between a fuel electrode and an air electrode, and the solid polymer electrolyte membrane is a solid polymer electrolyte layer. And at least two layers of porous substrates filled with a solid polymer electrolyte in the pores, and the porous substrate has a thickness on the fuel electrode side. It is characterized by being thicker than the thickness on the air electrode side.

そして、好ましくは、少なくとも2層以上の多孔質基材の間に、固体高分子電解質層が形成される。   Preferably, a solid polymer electrolyte layer is formed between at least two porous substrates.

また、燃料極と空気極との間に形成される燃料電池用の固体高分子電解質膜が、固体高分子電解質層,多孔質基材,固体高分子電解質層,多孔質基材,固体高分子電解質層の層構造を有し、多孔質基材は、多孔内に固体高分子電解質が充填され、燃料極側に形成される多孔質基材の厚さが空気極側に形成される多孔質基材の厚さよりも厚いことを特徴としてもよい。   In addition, a solid polymer electrolyte membrane for a fuel cell formed between a fuel electrode and an air electrode includes a solid polymer electrolyte layer, a porous substrate, a solid polymer electrolyte layer, a porous substrate, and a solid polymer. The porous substrate has a layer structure of an electrolyte layer, and the porous substrate is filled with a solid polymer electrolyte in the pores, and the porous substrate formed on the fuel electrode side has a thickness formed on the air electrode side It may be characterized by being thicker than the thickness of the substrate.

本発明によって、耐久性に優れた固体高分子電解質膜及びそれを用いた燃料電池を提供することができる。   According to the present invention, a solid polymer electrolyte membrane excellent in durability and a fuel cell using the same can be provided.

以下、実施例により本発明をさらに詳しく説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these.

本実施例で説明する燃料極と空気極との間に形成される燃料電池用の固体高分子電解質膜は、固体高分子電解質層,多孔質基材,固体高分子電解質層,多孔質基材,固体高分子電解質層の層構造を有し、多孔質基材は、多孔内に固体高分子電解質が充填され、燃料極側に形成される多孔質基材の厚さが空気極側に形成される多孔質基材の厚さよりも厚いことを特徴としている。   The solid polymer electrolyte membrane for a fuel cell formed between the fuel electrode and the air electrode described in this example is a solid polymer electrolyte layer, a porous substrate, a solid polymer electrolyte layer, and a porous substrate. , It has a layer structure of a solid polymer electrolyte layer, and the porous substrate is filled with a solid polymer electrolyte in the pores, and the thickness of the porous substrate formed on the fuel electrode side is formed on the air electrode side It is characterized by being thicker than the thickness of the porous substrate.

また、固体高分子電解質及び固体高分子電解質層は、ポリエーテルスルホンのスルホアルキル化物またはポリエーテルスルホンのスルホン化物であることが好ましい。   The solid polymer electrolyte and the solid polymer electrolyte layer are preferably polyethersulfone sulfoalkylates or polyethersulfone sulfonates.

また、こうした複合化された固体高分子電解質膜に、燃料極触媒層及び空気極触媒層を形成し、膜電極接合体を形成することも可能であり、更には、こうした膜電極接合体を搭載した燃料電池とすることも可能である。なお、燃料としてメタノール水溶液を用いた
DMFCとすることが好ましい。
It is also possible to form a membrane electrode assembly by forming a fuel electrode catalyst layer and an air electrode catalyst layer on such a composite solid polymer electrolyte membrane, and furthermore, mounting such a membrane electrode assembly. It is also possible to make a fuel cell. In addition, it is preferable to set it as DMFC using methanol aqueous solution as a fuel.

多孔質基材としては、ポリオレフィン多孔質膜であることが好ましい。   The porous substrate is preferably a polyolefin porous membrane.

さらに好ましくは、超高分子量ポリオレフィン樹脂を含有することである。超高分子量ポリオレフィン樹脂としては、エチレン,プロピレン,1−ブテン,4−メチル−1−ペンテン,1−ヘキセン等のオレフィンの単独重合体,共重合体、およびこれらの混合物等が挙げられ、これらの中では、得られる多孔質膜の高強度化の観点から、重量平均分子量1×106以上の超高分子量ポリエチレン樹脂が好ましく用いられる。 More preferably, it contains an ultrahigh molecular weight polyolefin resin. Examples of the ultrahigh molecular weight polyolefin resin include homopolymers and copolymers of olefins such as ethylene, propylene, 1-butene, 4-methyl-1-pentene, and 1-hexene, and mixtures thereof. Among them, an ultrahigh molecular weight polyethylene resin having a weight average molecular weight of 1 × 10 6 or more is preferably used from the viewpoint of increasing the strength of the resulting porous membrane.

他にも芳香族系高分子の多孔質膜を用いることもでき、例えば、ポリイミド,ポリスルホン等が挙げられ、単独またはポリオレフィン多孔質膜との併用が可能である。   In addition, a porous membrane of an aromatic polymer can be used, and examples thereof include polyimide, polysulfone, and the like, which can be used alone or in combination with a polyolefin porous membrane.

さらに、これらは予め公知の方法でスルホン化した多孔質膜を使用することも可能である。   Furthermore, it is possible to use a porous membrane sulfonated in advance by a known method.

本実施例で説明するポリオレフィン多孔質膜は、膜厚が3〜35μmであることが好ましい。   The polyolefin porous membrane described in this example preferably has a thickness of 3 to 35 μm.

膜厚が3μmより小さいと寸法変化を押さえることが難しくなり、複合化したことによる高強度化の効果が得にくくなる。   When the film thickness is smaller than 3 μm, it is difficult to suppress the dimensional change, and it becomes difficult to obtain the effect of increasing the strength due to the composite.

膜厚が35μmより大きいと固体高分子電解質膜の抵抗が大きくなり、燃料電池の性能が悪くなる。   When the film thickness is larger than 35 μm, the resistance of the solid polymer electrolyte membrane increases and the performance of the fuel cell deteriorates.

本実施例で説明するポリオレフィン多孔質膜は、空孔率が40〜90%であることが好ましい。   The polyolefin porous membrane described in this example preferably has a porosity of 40 to 90%.

空孔率が40%より小さいと固体高分子電解質膜の抵抗が大きくなり、燃料電池の性能が悪くなる。   When the porosity is less than 40%, the resistance of the solid polymer electrolyte membrane is increased, and the performance of the fuel cell is deteriorated.

空孔率が90%より大きいと寸法変化を押さえることが難しくなり、複合化したことによる高強度化の効果が得にくくなる。   When the porosity is larger than 90%, it is difficult to suppress the dimensional change, and it is difficult to obtain the effect of increasing the strength due to the composite.

ポリオレフィン多孔質膜の多孔質基材の多孔内に、固体高分子電解質を充填する方法やポリオレフィン多孔質膜と固体高分子電解質層とを複合化する方法としては、固体高分子電解質となる材料の溶液又は分散液を、ポリオレフィン多孔質膜に含浸させた後、乾燥し成膜を行う方法や、固体高分子電解質となる材料の溶液をポリオレフィン多孔質膜に塗布し、乾燥,成膜を行う方法や、ポリオレフィン多孔質膜に減圧下で固体高分子電解質となる材料の溶液を接触させ、その後常圧に戻して含浸させ、乾燥,成膜を行う方法等が挙げられる。   As a method for filling a solid polymer electrolyte in the pores of a porous substrate of a polyolefin porous membrane or a method for compounding a polyolefin porous membrane and a solid polymer electrolyte layer, the material used as the solid polymer electrolyte A method in which a polyolefin porous membrane is impregnated with a solution or dispersion and then dried to form a film, or a solution of a material to be a solid polymer electrolyte is applied to a polyolefin porous membrane, and then dried and formed into a film Alternatively, a method of bringing a polyolefin porous membrane into contact with a solution of a material that becomes a solid polymer electrolyte under reduced pressure, and then impregnating it by returning to normal pressure, followed by drying and film formation, and the like.

燃料極側に用いられるポリオレフィン多孔質膜の厚さ(tA )は、固体高分子電解質膜の厚さ(tC )に対して、15%〜95%であることが好ましい。この割合が15%より小さいと、ハンドリングが難しくなり、また、95%より大きいと、燃料極側の膨潤が大きくなるため、耐久性が必ずしも満足できるものではなくなる。なお、特に、好ましくは20%〜80%である。 The thickness (t A ) of the polyolefin porous membrane used on the fuel electrode side is preferably 15% to 95% with respect to the thickness (t C ) of the solid polymer electrolyte membrane. If this ratio is less than 15%, handling becomes difficult, and if it is more than 95%, the swelling on the fuel electrode side increases, so that the durability is not always satisfactory. In particular, it is preferably 20% to 80%.

ポリオレフィン多孔質膜については、例えば、2枚使用する場合、それぞれの空孔率は、異なっていても良い。この場合には、燃料極側に空気極側に比較して、空孔率の小さいポリオレフィン多孔質膜を配置し、燃料の透過を抑制することが好ましい。   For example, when two polyolefin porous membranes are used, the porosity of each may be different. In this case, it is preferable to dispose a polyolefin porous membrane having a lower porosity than the air electrode side on the fuel electrode side to suppress fuel permeation.

同様に、孔径の異なるものを使用しても良く、その場合には、燃料極側に空気極側に比較して、孔径の小さいポリオレフィン多孔質膜を配置し、燃料の透過を抑制することが好ましい。   Similarly, ones having different pore diameters may be used. In that case, a polyolefin porous membrane having a smaller pore diameter than that on the air electrode side may be disposed on the fuel electrode side to suppress fuel permeation. preferable.

また、固体高分子電解質及び固体高分子電解質層には、ポリエーテルスルホンのスルホアルキル化物またはポリエーテルスルホンのスルホン化物であることが好ましい。   The solid polymer electrolyte and the solid polymer electrolyte layer are preferably a polyethersulfone sulfoalkylated product or a polyethersulfone sulfonated product.

スルホアルキル化ポリエーテルスルホンとして、スルホメチル化ポリエーテルスルホン,スルホプロピル化ポリエーテルスルホン,スルホン化物として、スルホン化ポリエーテルスルホンなどが耐久性の点から好ましい。   As the sulfoalkylated polyethersulfone, sulfomethylated polyethersulfone, sulfopropylated polyethersulfone, and sulfonated product such as sulfonated polyethersulfone are preferable from the viewpoint of durability.

他の電解質及び電解質層としては、スルホン化ポリエーテルエーテルケトン,スルホン化ポリエーテルエーテルスルホン,スルホン化ポリスルホン,スルホン化ポリスルフィッド,スルホン化ポリフェニレン等のスルホン化エンジニアプラスチック系電解質材料,スルホアルキル化ポリエーテルエーテルケトン,スルホアルキル化ポリエーテルエーテルスルホン,スルホアルキル化ポリスルホン,スルホアルキル化ポリスルフィッド,スルホアルキル化ポリフェニレン等のスルホアルキル化エンジニアプラスチック系電解質材料等が用いられる。   Other electrolytes and electrolyte layers include sulfonated polyether ether ketone, sulfonated polyether ether sulfone, sulfonated polysulfone, sulfonated polysulfide, sulfonated polyphenylene and other sulfonated engineered plastic materials, sulfoalkylated polyether ethers Examples include sulfoalkylated engineered plastic electrolyte materials such as ketones, sulfoalkylated polyetherethersulfones, sulfoalkylated polysulfones, sulfoalkylated polysulfides, and sulfoalkylated polyphenylenes.

固体高分子電解質及び固体高分子電解質層のイオン交換容量としては、0.5〜2.0ミリ当量/g乾燥樹脂、更には0.7〜1.6ミリ当量/g乾燥樹脂の範囲が好ましい。スルホン酸当量がこの範囲より、低い場合にはイオン伝導抵抗が大きくなり、高い場合には水に溶解し易くなり好ましくない。   The ion exchange capacity of the solid polymer electrolyte and the solid polymer electrolyte layer is preferably in the range of 0.5 to 2.0 meq / g dry resin, more preferably 0.7 to 1.6 meq / g dry resin. . When the sulfonic acid equivalent is lower than this range, the ionic conduction resistance becomes large, and when it is high, the sulfonic acid equivalent is easily dissolved in water.

固体高分子電解質膜の厚みは、特に制限はないが、10〜200μmが好ましい。特に20〜100μmが好ましい。実用に耐える膜の強度を得るには10μmより厚い方が好ましく、膜抵抗の低減、つまり発電性能向上のためには200μmより薄い方が好ましい。最も好ましい厚さは30〜80μmである。   Although there is no restriction | limiting in particular in the thickness of a solid polymer electrolyte membrane, 10-200 micrometers is preferable. 20-100 micrometers is especially preferable. A thickness of more than 10 μm is preferable to obtain a membrane strength that can withstand practical use, and a thickness of less than 200 μm is preferable to reduce membrane resistance, that is, to improve power generation performance. The most preferred thickness is 30 to 80 μm.

ポリオレフィン多孔質膜、及び、固体高分子電解質や固体高分子電解質層の電解質材料には、必要に応じて酸化防止剤等の添加物を、目的を損なわない範囲で、添加することができる。   Additives such as antioxidants can be added to the polyolefin porous membrane and the electrolyte material of the solid polymer electrolyte or the solid polymer electrolyte layer as necessary within a range that does not impair the purpose.

なお、このような固体高分子電解質膜は、PEFCに用いた場合には、低加湿運転の場合などに用いることが可能である。   Such a solid polymer electrolyte membrane can be used in a low humidification operation when used in PEFC.

本形態によれば、メタノール燃料電池における燃料極側での電解質膜の膨潤を抑制することができるため、連続発電を行った場合においても耐久性の良好な固体高分子電解質膜を提供することができる。   According to this embodiment, since the swelling of the electrolyte membrane on the fuel electrode side in the methanol fuel cell can be suppressed, it is possible to provide a solid polymer electrolyte membrane having good durability even when continuous power generation is performed. it can.

更に、燃料極側から空気極側へのメタノール透過量を抑制できるため、発電電圧が高く、安定した発電が可能な固体高分子電解質膜を提供することができる。   Furthermore, since the amount of methanol permeation from the fuel electrode side to the air electrode side can be suppressed, it is possible to provide a solid polymer electrolyte membrane having a high power generation voltage and capable of stable power generation.

また、燃料極側の電極触媒層の厚さが空気極側に比べて極端に厚い場合においても、燃料極側の膨潤が抑制されていることから、電極層の剥離が生じにくい膜電極接合体を提供することができる。   In addition, even when the electrode catalyst layer on the fuel electrode side is extremely thicker than the air electrode side, the membrane electrode assembly is less prone to peeling of the electrode layer because swelling on the fuel electrode side is suppressed. Can be provided.

(固体高分子電解質膜の作製)
固体高分子電解質膜(電解質膜)の作製に先立って、スルホメチル化ポリエーテルスルホンSM−PES(1.5 ミリ当量/g)をN,N−ジメチルアセトアミドに溶解して
23重量%の電解質溶液を作製した。
(Preparation of solid polymer electrolyte membrane)
Prior to the production of the solid polymer electrolyte membrane (electrolyte membrane), sulfomethylated polyethersulfone SM-PES (1.5 meq / g) was dissolved in N, N-dimethylacetamide to prepare a 23 wt% electrolyte solution. Produced.

ガラス基板上でこの電解質溶液を流延塗布後、厚さ10μmのポリオレフィン多孔質膜をのせて含浸させた。   The electrolyte solution was cast on a glass substrate, and then impregnated with a polyolefin porous film having a thickness of 10 μm.

次に、この上に電解質溶液を流延塗布後、厚さ16μmのポリオレフィン多孔質膜をのせて含浸し、更にこの上に電解質溶液を流延塗布した。   Next, the electrolyte solution was cast on this, and then impregnated with a polyolefin porous film having a thickness of 16 μm. Further, the electrolyte solution was cast on this.

その後、90℃で30分間、次いで、120℃で30分間、加熱乾燥して溶液中の溶媒を除去して電解質膜を作製した。   Then, the electrolyte membrane was produced by removing the solvent in the solution by heating and drying at 90 ° C. for 30 minutes and then at 120 ° C. for 30 minutes.

得られた電解質膜の膜厚は、45μmであった。図1に、この電解質膜の断面構造図を示す。1は固体高分子電解質膜、2は電解質層、3は電解質が含浸された多孔質基材である。   The thickness of the obtained electrolyte membrane was 45 μm. FIG. 1 shows a cross-sectional structure diagram of the electrolyte membrane. Reference numeral 1 denotes a solid polymer electrolyte membrane, 2 denotes an electrolyte layer, and 3 denotes a porous substrate impregnated with an electrolyte.

(膜電極接合体の作製)
燃料極としてカーボンブラックにPtとRuとをそれぞれ25wt%担持した電極触媒を用い、空気極としてPtを50wt%担持した電極触媒を用いた。
(Production of membrane electrode assembly)
An electrode catalyst supporting 25 wt% of Pt and Ru on carbon black was used as the fuel electrode, and an electrode catalyst supporting 50 wt% of Pt was used as the air electrode.

この電極触媒に、ナフィオン溶液を電極触媒対ナフィオン溶液の重量比が1対9となる割合で秤量し、混合して電極触媒ペーストを作製した。この電極触媒ペーストを電解質膜にスプレー塗布後、加熱プレスして電極触媒層を形成した。その際、厚みが大きいポリオレフィン多孔質層に燃料極触媒層を形成し、厚みが小さいポリオレフィン多孔質層に空気極触媒層を形成した。   The electrode catalyst was weighed with a Nafion solution at a ratio of 1: 9 to the weight ratio of the electrode catalyst to the Nafion solution, and mixed to prepare an electrode catalyst paste. After spraying this electrode catalyst paste on the electrolyte membrane, it was heated and pressed to form an electrode catalyst layer. At that time, a fuel electrode catalyst layer was formed on the polyolefin porous layer having a large thickness, and an air electrode catalyst layer was formed on the polyolefin porous layer having a small thickness.

図2は、燃料電池発電装置単セルの断面図である。セパレータ7とセパレータ7との間に、燃料極側の拡散層6,燃料極電極4,固体高分子電解質膜1,空気極電極5,空気極側の拡散層6が形成されている。   FIG. 2 is a cross-sectional view of a single cell of a fuel cell power generator. Between the separator 7 and the separator 7, the diffusion layer 6 on the fuel electrode side, the fuel electrode 4, the solid polymer electrolyte membrane 1, the air electrode 5, and the diffusion layer 6 on the air electrode side are formed.

この際、燃料極電極4と空気極電極5との間に形成される燃料電池用の固体高分子電解質膜1は、固体高分子電解質層2,多孔質基材3,固体高分子電解質層2,多孔質基材3,固体高分子電解質層2の層構造を有している。   Under the present circumstances, the solid polymer electrolyte membrane 1 for fuel cells formed between the fuel electrode 4 and the air electrode 5 is the solid polymer electrolyte layer 2, the porous base material 3, the solid polymer electrolyte layer 2 , Porous substrate 3 and solid polymer electrolyte layer 2.

そして、多孔質基材3は、燃料極電極4側に形成される多孔質基材3の厚さが空気極電極5側に形成される多孔質基材3の厚さよりも厚い。   In the porous substrate 3, the thickness of the porous substrate 3 formed on the fuel electrode 4 side is thicker than the thickness of the porous substrate 3 formed on the air electrode 5 side.

(固体高分子電解質膜の作製)
実施例1において厚さ11μmのポリオレフィン多孔質膜をのせて含浸させた。次に、この上に電解質溶液を流延塗布後、厚さ16μmのポリオレフィン多孔質膜をのせて含浸し、更に、この上に電解質溶液を流延塗布した。
(Preparation of solid polymer electrolyte membrane)
In Example 1, a polyolefin porous membrane having a thickness of 11 μm was placed and impregnated. Next, the electrolyte solution was cast on this, and then impregnated with a polyolefin porous film having a thickness of 16 μm. Further, the electrolyte solution was cast on this.

(膜電極接合体の作製)
実施例1と同様の方法により作製した。その際、厚みが大きいポリオレフィン多孔質層側に燃料極触媒層を形成し、厚みが小さいポリオレフィン多孔質層側に空気極触媒層を形成した。
(Production of membrane electrode assembly)
It was produced by the same method as in Example 1. At that time, a fuel electrode catalyst layer was formed on the polyolefin porous layer side having a large thickness, and an air electrode catalyst layer was formed on the polyolefin porous layer side having a small thickness.

(固体高分子電解質膜の作製)
実施例1において厚さ10μmのポリオレフィン多孔質膜をのせて含浸させた。次に、この上に電解質溶液を流延塗布後、厚さ25μmのポリオレフィン多孔質膜をのせて含浸し、更に、この上に電解質溶液を流延塗布した。
(Preparation of solid polymer electrolyte membrane)
In Example 1, a polyolefin porous membrane having a thickness of 10 μm was placed and impregnated. Next, the electrolyte solution was cast on this, and then impregnated with a 25 μm-thick polyolefin porous membrane. Further, the electrolyte solution was cast on this.

(膜電極接合体の作製)
実施例1と同様の方法により作製した。その際、厚みが大きいポリオレフィン多孔質層側に燃料極触媒層を形成し、厚みが小さいポリオレフィン多孔質層側に空気極触媒層を形成した。
(Production of membrane electrode assembly)
It was produced by the same method as in Example 1. At that time, a fuel electrode catalyst layer was formed on the polyolefin porous layer side having a large thickness, and an air electrode catalyst layer was formed on the polyolefin porous layer side having a small thickness.

(固体高分子電解質膜の作製)
実施例1において電解質としてスルホン化ポリエーテルスルホンS−PES(1.3ミリ当量/g)を用いた以外は、実施例1と同様に固体高分子電解質膜を作製した。
(Preparation of solid polymer electrolyte membrane)
A solid polymer electrolyte membrane was prepared in the same manner as in Example 1 except that sulfonated polyethersulfone S-PES (1.3 meq / g) was used as the electrolyte in Example 1.

(膜電極接合体の作製)
実施例1と同様の方法により作製した。その際、厚みが大きいポリオレフィン多孔質層側に燃料極触媒層を形成し、厚みが小さいポリオレフィン多孔質層側に空気極触媒層を形成した。
(Production of membrane electrode assembly)
It was produced by the same method as in Example 1. At that time, a fuel electrode catalyst layer was formed on the polyolefin porous layer side having a large thickness, and an air electrode catalyst layer was formed on the polyolefin porous layer side having a small thickness.

〔比較例1〕
(固体高分子電解質膜の作製)
実施例1で作製した電解質溶液をガラス基板上に流延塗布し、その上に厚さ25μmのポリオレフィン多孔質膜をのせて含浸させた。次に、この上に電解質溶液を流延塗布した。その後、90℃で30分間、次いで、120℃で30分間、加熱乾燥して溶液中の溶媒を除去して電解質複合膜を作製した。得られた電解質複合膜の膜厚は49μmであった。
[Comparative Example 1]
(Preparation of solid polymer electrolyte membrane)
The electrolyte solution prepared in Example 1 was cast on a glass substrate, and a polyolefin porous film having a thickness of 25 μm was placed on the glass substrate and impregnated. Next, the electrolyte solution was cast and applied thereon. Then, the electrolyte composite membrane was produced by removing the solvent in the solution by heating and drying at 90 ° C. for 30 minutes and then at 120 ° C. for 30 minutes. The film thickness of the obtained electrolyte composite membrane was 49 μm.

(膜電極接合体の作製)
燃料極としてカーボンブラックにPtとRuとをそれぞれ25wt%担持した電極触媒を用い、空気極としてPtを50wt%担持した電極触媒を用いた。この電極触媒に、ナフィオン溶液を電極触媒対ナフィオン溶液の重量比が1対9となる割合で秤量し、混合して電極触媒ペーストを作製した。この電極触媒ペーストを電解質膜にスプレー塗布後、加熱プレスして電極触媒層を形成した。
(Production of membrane electrode assembly)
An electrode catalyst supporting 25 wt% of Pt and Ru on carbon black was used as the fuel electrode, and an electrode catalyst supporting 50 wt% of Pt was used as the air electrode. The electrode catalyst was weighed with a Nafion solution at a ratio of 1: 9 to the weight ratio of the electrode catalyst to the Nafion solution, and mixed to prepare an electrode catalyst paste. After spraying this electrode catalyst paste on the electrolyte membrane, the electrode catalyst layer was formed by heating and pressing.

〔比較例2〕
(固体高分子電解質膜の作製)
比較例1において厚さ16μmのポリオレフィン多孔質膜を用いた以外は比較例1と同様に電解質膜を作製した。電解質膜全体の厚さは51μmであった。
[Comparative Example 2]
(Preparation of solid polymer electrolyte membrane)
An electrolyte membrane was prepared in the same manner as in Comparative Example 1 except that a polyolefin porous membrane having a thickness of 16 μm was used in Comparative Example 1. The total thickness of the electrolyte membrane was 51 μm.

(膜電極接合体の作製)
比較例1と同様に電極触媒層を形成した。
(Production of membrane electrode assembly)
An electrode catalyst layer was formed in the same manner as in Comparative Example 1.

(DMFC電池性能評価)
実施例および比較例の電解質膜を用いた膜電極接合体をDMFC発電装置単セルに組み込んで電池性能を測定した。燃料として燃料極側に10wt%のメタノール水溶液を循環させ、空気極側に自然呼気形式で空気を供給した。電流密度50mA/cm2 の負荷をかけながら35℃で連続運転した。
(DMFC battery performance evaluation)
Membrane / electrode assemblies using the electrolyte membranes of Examples and Comparative Examples were incorporated into a single cell of a DMFC power generator and the battery performance was measured. As a fuel, a 10 wt% aqueous methanol solution was circulated on the fuel electrode side, and air was supplied to the air electrode side in a natural exhalation format. Continuous operation was performed at 35 ° C. while applying a load with a current density of 50 mA / cm 2 .

Figure 2008204928
Figure 2008204928

表1に実施例1〜4および比較例1〜2で作製した膜電極接合体を用いてDMFC連続発電試験を行った結果を示す。   Table 1 shows the results of a DMFC continuous power generation test using the membrane electrode assemblies produced in Examples 1-4 and Comparative Examples 1-2.

表1から明らかなように、実施例による固体高分子電解質膜を用いたDMFCは比較例による高分子電解質膜を用いたDMFCに比べて、連続発電後の電圧低下が少なく、優れた耐久性を示すことが明らかである。   As is clear from Table 1, the DMFC using the solid polymer electrolyte membrane according to the example has less voltage drop after continuous power generation and superior durability compared to the DMFC using the polymer electrolyte membrane according to the comparative example. It is clear to show.

本発明は、固体高分子電解質膜及びそれを用いた燃料電池に関するものであり、特に、イオン交換膜を電解質膜として用いる固体高分子形燃料電池(PEFC)やダイレクトメタノール型燃料電池(DMFC)に利用可能である。   The present invention relates to a solid polymer electrolyte membrane and a fuel cell using the same, and particularly to a polymer electrolyte fuel cell (PEFC) or a direct methanol fuel cell (DMFC) using an ion exchange membrane as an electrolyte membrane. Is available.

本形態に関わる固体高分子電解質膜の断面図。Sectional drawing of the solid polymer electrolyte membrane in connection with this form. 本形態に関わる燃料電池発電装置単セルの断面図。Sectional drawing of the fuel cell power generation device single cell in connection with this form.

符号の説明Explanation of symbols

1 固体高分子電解質膜
2 電解質層
3 多孔質基材
4 燃料極電極
5 空気極電極
6 拡散層
7 セパレータ
DESCRIPTION OF SYMBOLS 1 Solid polymer electrolyte membrane 2 Electrolyte layer 3 Porous base material 4 Fuel electrode 5 Air electrode 6 Diffusion layer 7 Separator

Claims (9)

燃料極と空気極との間に形成される燃料電池用の固体高分子電解質膜であって、
前記固体高分子電解質膜が、固体高分子電解質層と固体高分子電解質層とによって挟まれた、多孔内に固体高分子電解質が充填された、少なくとも2層以上の多孔質基材を有し、
前記多孔質基材は、前記燃料極側の厚さが前記空気極側の厚さよりも厚いことを特徴とする固体高分子電解質膜。
A solid polymer electrolyte membrane for a fuel cell formed between a fuel electrode and an air electrode,
The solid polymer electrolyte membrane has at least two layers of porous base materials sandwiched between a solid polymer electrolyte layer and a solid polymer electrolyte layer, and filled with a solid polymer electrolyte in a pore;
The porous base material has a thickness on the fuel electrode side larger than a thickness on the air electrode side.
請求項1に記載の固体高分子電解質膜であって、前記少なくとも2層以上の多孔質基材の間に、固体高分子電解質層が形成されることを特徴とする固体高分子電解質膜。   The solid polymer electrolyte membrane according to claim 1, wherein a solid polymer electrolyte layer is formed between the at least two porous substrates. 燃料極と空気極との間に形成される燃料電池用の固体高分子電解質膜であって、
前記固体高分子電解質膜が、固体高分子電解質層,多孔質基材,固体高分子電解質層,多孔質基材,固体高分子電解質層の層構造を有し、
前記多孔質基材は、多孔内に固体高分子電解質が充填され、前記燃料極側に形成される多孔質基材の厚さが前記空気極側に形成される多孔質基材の厚さよりも厚いことを特徴とする固体高分子電解質膜。
A solid polymer electrolyte membrane for a fuel cell formed between a fuel electrode and an air electrode,
The solid polymer electrolyte membrane has a layer structure of a solid polymer electrolyte layer, a porous substrate, a solid polymer electrolyte layer, a porous substrate, and a solid polymer electrolyte layer,
The porous substrate is filled with a solid polymer electrolyte in the pores, and the thickness of the porous substrate formed on the fuel electrode side is larger than the thickness of the porous substrate formed on the air electrode side. A solid polymer electrolyte membrane characterized by being thick.
前記多孔質基材が、ポリオレフィン多孔質膜であることを特徴とする請求項1又は請求項3に記載の固体高分子電解質膜。   The solid polymer electrolyte membrane according to claim 1 or 3, wherein the porous substrate is a polyolefin porous membrane. 前記固体高分子電解質が、ポリエーテルスルホンのスルホアルキル化物またはポリエーテルスルホンのスルホン化物であることを特徴とする請求項1又は請求項3に記載の固体高分子電解質膜。   The solid polymer electrolyte membrane according to claim 1 or 3, wherein the solid polymer electrolyte is a sulfoalkylated product of polyethersulfone or a sulfonated product of polyethersulfone. 前記固体高分子電解層が、ポリエーテルスルホンのスルホアルキル化物またはポリエーテルスルホンのスルホン化物であることを特徴とする請求項1又は請求項3に記載の固体高分子電解質膜。   The solid polymer electrolyte membrane according to claim 1 or 3, wherein the solid polymer electrolyte layer is a sulfoalkylated product of polyethersulfone or a sulfonated product of polyethersulfone. 請求項1又は請求項3の固体高分子電解質膜に、燃料極触媒層及び空気極触媒層を形成したことを特徴とする膜電極接合体。   A membrane electrode assembly, wherein a fuel electrode catalyst layer and an air electrode catalyst layer are formed on the solid polymer electrolyte membrane according to claim 1 or 3. 請求項7に記載の膜電極接合体を有することを特徴とする燃料電池。   A fuel cell comprising the membrane electrode assembly according to claim 7. 請求項8に記載の燃料電池であって、燃料がメタノール水溶液であることを特徴とする燃料電池。   The fuel cell according to claim 8, wherein the fuel is an aqueous methanol solution.
JP2007043129A 2007-02-23 2007-02-23 Solid polymer electrolyte membrane, and fuel cell using it Pending JP2008204928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007043129A JP2008204928A (en) 2007-02-23 2007-02-23 Solid polymer electrolyte membrane, and fuel cell using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007043129A JP2008204928A (en) 2007-02-23 2007-02-23 Solid polymer electrolyte membrane, and fuel cell using it

Publications (1)

Publication Number Publication Date
JP2008204928A true JP2008204928A (en) 2008-09-04

Family

ID=39782183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007043129A Pending JP2008204928A (en) 2007-02-23 2007-02-23 Solid polymer electrolyte membrane, and fuel cell using it

Country Status (1)

Country Link
JP (1) JP2008204928A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009022728A1 (en) * 2007-08-10 2009-02-19 Japan Gore-Tex Inc. Reinforced solid polymer electrolyte composite membrane, membrane electrode assembly for solid polymer fuel cell, and solid polymer fuel cell
JP2014099412A (en) * 2014-01-31 2014-05-29 Toyota Motor Corp Fuel cell
KR20150020712A (en) * 2013-04-22 2015-02-26 도오꾜오까고오교 가부시끼가이샤 Method for producing porous polyimide film, porous polyimide film and separator using same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009022728A1 (en) * 2007-08-10 2009-02-19 Japan Gore-Tex Inc. Reinforced solid polymer electrolyte composite membrane, membrane electrode assembly for solid polymer fuel cell, and solid polymer fuel cell
US8906573B2 (en) 2007-08-10 2014-12-09 W. L. Gore & Associates, Co., Ltd. Reinforced solid polymer electrolyte composite membrane, membrane electrode assembly for solid polymer fuel cell, and solid polymer fuel cell
KR20150020712A (en) * 2013-04-22 2015-02-26 도오꾜오까고오교 가부시끼가이샤 Method for producing porous polyimide film, porous polyimide film and separator using same
KR101670617B1 (en) * 2013-04-22 2016-10-28 도오꾜오까고오교 가부시끼가이샤 Method for producing porous polyimide film, porous polyimide film and separator using same
US9601739B2 (en) 2013-04-22 2017-03-21 Tokyo Ohka Kogyo Co., Ltd. Method for producing porous polyimide film, porous polyimide film and separator using same
US9911955B2 (en) 2013-04-22 2018-03-06 Tokyo Ohka Kogyo Co., Ltd. Method for producing porous polyimide film, porous polyimide film and separator using same
JP2014099412A (en) * 2014-01-31 2014-05-29 Toyota Motor Corp Fuel cell

Similar Documents

Publication Publication Date Title
JP4728208B2 (en) POLYMER ELECTROLYTE MEMBRANE FOR FUEL CELL AND FUEL CELL SYSTEM INCLUDING THE SAME
JP4023903B2 (en) Membrane / electrode assembly for polymer electrolyte fuel cells
JP2006114502A (en) Polymer electrolyte film for direct oxidation type fuel cell, its manufacturing method, and direct oxidation type fuel cell system including this
KR101135477B1 (en) A porous membrane and method for preparing thereof, polymer electrode membrane for fuel cell using the same, and fuel cell system comprising the same
JP2006019261A (en) Electrolyte membrane for fuel cell, and fuel cell including the same
JP4612569B2 (en) Membrane electrode structure for polymer electrolyte fuel cell
JP2012069536A (en) Polymer electrolyte film for direct oxidation type fuel cell, manufacturing method therefor, and direct oxidation type fuel cell system including the same
JP2009193825A (en) Composite electrolyte membrane and its manufacturing method
JP5165205B2 (en) Membrane electrode structure for polymer electrolyte fuel cell
KR20070019868A (en) Polymer electrolyte membrane for fuel cell, membrane-electrode assembly comprising the same, fuel cell system comprising the same, and method for preparing the same
KR20120128905A (en) Multi layer reinfored electrolyte membrane for solid polymer fuel cell, manufacturing method thereof, membrane-electrode assembly having the same and fuel cell having them
US10868311B2 (en) Membrane-electrode assembly for fuel cell, method for manufacturing same, and fuel cell system comprising same
JP4771702B2 (en) Polymer solid electrolyte membrane with reinforcing material
JP5189394B2 (en) Polymer electrolyte membrane
KR100658739B1 (en) Polymer membrane for fuel cell and method for preparating the same
JP2007234359A (en) Membrane electrode assembly for solid polymer fuel cell
JP2006269266A (en) Compound solid polyelectrolyte membrane having reinforcement material
JP2009021233A (en) Membrane/electrode conjugant, its manufacturing method, and solid high polymer fuel cell
JP2008204928A (en) Solid polymer electrolyte membrane, and fuel cell using it
JP2009021234A (en) Membrane/electrode conjugant, its manufacturing method, and solid high polymer fuel cell
JP2005216667A (en) Solid polymer electrolyte composite membrane, solid electrolyte composite membrane/electrode joint body and fuel cell using the same
WO2006019029A1 (en) Polymer electrolyte membrane, polymer film as material for same, method for producing electrolyte membrane, and solid polymer fuel cell using such electrolyte membrane
JP4672992B2 (en) Solid polymer electrolyte composite membrane, solid electrolyte composite membrane / electrode assembly, and fuel cell using the same
Kim et al. 10.36-polymers in membrane electrode assemblies
JP2007053034A (en) Membrane-electrode assembly, method of manufacturing membrane-electrode assembly, and solid polymer fuel cell using it