JP2006059551A - Polymetric solid electrolyte membrane having reinforcing material - Google Patents

Polymetric solid electrolyte membrane having reinforcing material Download PDF

Info

Publication number
JP2006059551A
JP2006059551A JP2004237218A JP2004237218A JP2006059551A JP 2006059551 A JP2006059551 A JP 2006059551A JP 2004237218 A JP2004237218 A JP 2004237218A JP 2004237218 A JP2004237218 A JP 2004237218A JP 2006059551 A JP2006059551 A JP 2006059551A
Authority
JP
Japan
Prior art keywords
solid electrolyte
electrolyte membrane
polymer
fluorine
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004237218A
Other languages
Japanese (ja)
Other versions
JP4632717B2 (en
Inventor
Yoshiyuki Ishii
義行 石井
Masaaki Sasayama
昌聡 笹山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2004237218A priority Critical patent/JP4632717B2/en
Publication of JP2006059551A publication Critical patent/JP2006059551A/en
Application granted granted Critical
Publication of JP4632717B2 publication Critical patent/JP4632717B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polymetric solid electrolyte membrane having improved durability at a high temperature. <P>SOLUTION: A fluorine-based polymetric solid electrolyte membrane has a porous aromatic series polyamide film that is subjected to at least one type of surface treatment selected from corona discharge treatment, ultraviolet irradiation treatment, and plasma treatment; and heat-treated at 120°C or higher. The fluorine-based polymetric solid electrolyte membrane contains a parfluorocarbonsulfone acid polymer and a basic polymer, and the total content of both of them is 1-50 vol.%. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、燃料電池用隔膜として有用なフッ素系高分子固体電解質膜に関する。   The present invention relates to a fluorine-based polymer solid electrolyte membrane useful as a fuel cell membrane.

近年、電解質として高分子固体電解質膜を用いた燃料電池が、小型軽量化が可能であり、かつ比較的低温でも高い出力密度が得られることから注目され、特に自動車用途に向けた開発が加速されている。
このような目的に用いられる高分子固体電解質膜材料には、優れたプロトン伝導度、適度な保水性、水素ガス、酸素ガス等に対するガスバリア性などが要求される。このような要件を満たす材料として、スルホン酸基やホスホン酸基を主鎖、あるいは側鎖の末端に有する高分子が種々検討され、例えば非特許文献1に記載されるように、スルホン化ポリスチレンなど多くの材料が提案されてきている。
In recent years, fuel cells using solid polymer electrolyte membranes as electrolytes have attracted attention because they can be reduced in size and weight, and high power density can be obtained even at relatively low temperatures, and development for automotive applications in particular has been accelerated. ing.
The polymer solid electrolyte membrane material used for such purposes is required to have excellent proton conductivity, appropriate water retention, gas barrier properties against hydrogen gas, oxygen gas, and the like. As materials satisfying such requirements, various polymers having a sulfonic acid group or a phosphonic acid group at the main chain or at the end of the side chain have been studied. For example, as described in Non-Patent Document 1, sulfonated polystyrene, etc. Many materials have been proposed.

しかし、実際の燃料電池運転条件下では、電極において高い酸化力を有する活性酸素種が発生し、特に長期に渡り燃料電池を安定に運転させるためには、このような過酷な酸化雰囲気下での耐久性が要求される。現在までに提案されている多くの炭化水素系材料は、燃料電池の運転の初期特性に関しては優れた特性を示すものが多いが、長期運転に関しては充分な耐性が示せない。
このため、現在、実用化に向けた検討としては、下記一般式(1):
However, under actual fuel cell operating conditions, active oxygen species with high oxidizing power are generated at the electrode, and in order to operate the fuel cell stably over a long period of time, it is necessary to operate under such a harsh oxidizing atmosphere. Durability is required. Many of the hydrocarbon-based materials that have been proposed so far often exhibit excellent characteristics with respect to the initial characteristics of the fuel cell operation, but do not exhibit sufficient resistance for long-term operation.
For this reason, the following general formula (1):

Figure 2006059551
(式中、mは0〜3、nは1〜5、k、lは1以上の整数で、1.5≦k/l≦14)
で表されるパーフルオロカーボンスルホン酸ポリマーが主に採用されている。
Figure 2006059551
(In the formula, m is 0 to 3, n is 1 to 5, k and l are integers of 1 or more, and 1.5 ≦ k / l ≦ 14)
The perfluorocarbon sulfonic acid polymer represented by the following is mainly employed.

これらのパーフルオロカーボンスルホン酸ポリマー膜は、骨格が全フッ素化されているために化学的に極めて高い耐久性を示し、先述の炭化水素系膜に比べ、より過酷な運転条件でも使用することが可能である。
しかし、これらのパーフルオロカーボンスルホン酸ポリマーは、ガラス転移点が実使用温度域に近いことが良く知られ、この結果、室温程度での運転では充分な物理強度をもつが、90℃以上の温度領域では物理強度が不十分である。
These perfluorocarbon sulfonic acid polymer membranes exhibit extremely high chemical durability due to the fully fluorinated skeleton, and can be used even in harsh operating conditions compared to the hydrocarbon membranes described above. It is.
However, it is well known that these perfluorocarbon sulfonic acid polymers have a glass transition point close to the actual use temperature range. Then, physical strength is insufficient.

実際に、よく研究に用いられるパーフルオロカーボンスルホン酸ポリマー膜として、Nafion(デュポン社製 登録商標)やFlemion(旭硝子社製 登録商標)などがあるが、これらの膜は充分な加湿環境の下で90℃を超えた範囲で運転しようとすると安定な発電ができず、また、長期における耐久性を発揮することができなかった。この耐久性については、高分子固体電解質膜の乾燥時と含水時の寸法変化が大きく局所的な歪が高分子膜の劣化や破壊の基点となるからである。
この課題を解決するために、PTFE(ポリテトラフルオロエチレン)多孔膜などで補強を施した膜(例えば特許文献1,2)も開発され、未補強の膜に比べると高い力学強度を発揮しているが、やはり90℃以上の高温での連続運転には耐えなかった。
Actually, there are Nafion (registered trademark made by DuPont) and Flemion (registered trademark made by Asahi Glass Co., Ltd.) as perfluorocarbon sulfonic acid polymer membranes often used for research, but these membranes are 90 under a sufficiently humidified environment. When trying to operate in the range exceeding ℃, stable power generation could not be performed and long-term durability could not be demonstrated. This durability is because the dimensional change between the polymer solid electrolyte membrane when it is dried and when it contains water is large, and the local strain becomes the starting point for deterioration and breakage of the polymer membrane.
In order to solve this problem, a membrane (for example, Patent Documents 1 and 2) reinforced with a PTFE (polytetrafluoroethylene) porous membrane or the like has also been developed, and exhibits higher mechanical strength than an unreinforced membrane. However, it could not withstand continuous operation at a high temperature of 90 ° C. or higher.

また、耐熱性と化学耐性に優れた補強材料として芳香族ポリアミド樹脂(アラミド)は不織布として種々の補強材料に用いられており、例えば特許文献3では、フッ素樹脂でコーテイングされた芳香族ポリアミド多孔性シートを有する高分子固体電解質膜が開示されているが、フッ素樹脂と芳香族ポリアミド樹脂との熱膨張係数の差とフッ素樹脂自身の表面自由エネルギーが低いためにコーテイングされたフッ素樹脂が剥離が生じてしまう等の問題があった。   In addition, aromatic polyamide resin (aramid) is used as a nonwoven fabric for various reinforcing materials as a reinforcing material excellent in heat resistance and chemical resistance. For example, in Patent Document 3, aromatic polyamide porous material coated with a fluororesin is used. Although a solid polymer electrolyte membrane having a sheet is disclosed, the coated fluororesin peels off due to the difference in thermal expansion coefficient between the fluororesin and the aromatic polyamide resin and the low surface free energy of the fluororesin itself. There was a problem such as.

特開平8―162132公報JP-A-8-162132 特公昭63―61337公報Japanese Patent Publication No. 63-61337 特開2001−113141公報JP 2001-113141 A O.Savadogo、 Jounal of New Materials for Electrochemical Systems I、47−66(1998)O. Savadogo, Journal of New Materials for Electrochemical Systems I, 47-66 (1998)

本発明は、90℃以上の高温でも含水時の寸法変化の少ない燃料電池用高分子固体電解質膜を提供するものである。   The present invention provides a polymer solid electrolyte membrane for a fuel cell with little dimensional change when containing water even at a high temperature of 90 ° C. or higher.

本発明者は上記課題を解決すべく、鋭意検討した結果、多数の孔が開けられ、かつ、表面処理を施した多孔性芳香族ポリアミドフィルムを補強材料として有する高分子固体電解質膜であって、かつ、上記高分子固体電解質膜が120℃以上の熱処理を施されている場合にのみ、これまで安定に使用できなかった高温の領域でも安定に使用可能であることを見出し本発明に至った。   As a result of intensive studies to solve the above problems, the inventor is a polymer solid electrolyte membrane having a porous aromatic polyamide film having a large number of holes and subjected to surface treatment as a reinforcing material, And only when the said polymer solid electrolyte membrane was heat-processed at 120 degreeC or more, it discovered that it could be used stably also in the high temperature area | region which could not be used stably until now, and came to this invention.

すなわち本発明は、
(1) コロナ放電処理、紫外線照射処理、プラズマ処理から選ばれた少なくとも1種類以上の表面処理が施された多孔性芳香族ポリアミドフィルムを有し、かつ、120℃以上の熱処理が施されたことを特徴とするフッ素系高分子固体電解質膜。
(2) 該フッ素系高分子固体電解質膜がパーフルオロカーボンスルホン酸ポリマー(a)と、塩基性重合体(b)を含有し、該(a)と該(b)全体の含有率が、該フッ素系高分子固体電解質膜中1〜50体積%であり、かつ、該(a)の含有率([(a)/((a)+(b))]×100)が50.00〜99.999質量%、該(b)の含有率([(b)/((a)+(b))]×100)が0.001〜50.00質量%である事を特徴とする(1)に記載のフッ素系高分子固体電解質膜。
(3) (1)又は(2)に記載のフッ素系高分子固体電解質膜を2枚以上積層させてなる事を特徴とするフッ素系高分子固体電解質膜積層体。
(4) (1)〜(3)のいずれかに記載のフッ素系高分子固体電解質膜或いはフッ素系高分子固体電解質膜積層体を介して、アノードとカソードが対向してなる膜/電極接合体。
(5) (4)に記載の膜/電極接合体を包含して成る事を特徴とする固体高分子型燃料電池に関する。
That is, the present invention
(1) Having a porous aromatic polyamide film that has been subjected to at least one surface treatment selected from corona discharge treatment, ultraviolet irradiation treatment, and plasma treatment, and has been subjected to heat treatment at 120 ° C. or higher. Fluoropolymer solid electrolyte membrane characterized by
(2) The fluoropolymer solid electrolyte membrane contains a perfluorocarbon sulfonic acid polymer (a) and a basic polymer (b), and the total content of the (a) and the (b) 1 to 50% by volume in the polymer solid electrolyte membrane, and the content of (a) ([(a) / ((a) + (b))] × 100) is 50.00 to 99.99. 999% by mass, content of (b) ([(b) / ((a) + (b))] × 100) is 0.001 to 50.00% by mass (1) 2. The fluorine-based polymer solid electrolyte membrane according to 1.
(3) A fluoropolymer solid electrolyte membrane laminate comprising two or more fluoropolymer solid electrolyte membranes according to (1) or (2) laminated.
(4) A membrane / electrode assembly in which the anode and the cathode are opposed to each other through the fluoropolymer solid electrolyte membrane or the fluoropolymer solid electrolyte membrane laminate according to any one of (1) to (3) .
(5) A polymer electrolyte fuel cell comprising the membrane / electrode assembly according to (4).

本発明のフッ素系高分子固体電解質膜は、95℃の湯浴処理前後でも高いプロトン伝導度を維持し、乾湿寸法変化が無いため、90℃以上の高温でも安定に作動可能な燃料電池とすることが可能となった。   The fluorine-based polymer solid electrolyte membrane of the present invention maintains a high proton conductivity even before and after a 95 ° C. bath treatment, and does not change in wet and dry dimensions. It became possible.

以下に本発明のフッ素系高分子固体電解質膜をより詳細に説明する。
本発明のフッ素系高分子固体電解質膜に補強材料として用いられる芳香族ポリアミドフィルムについて説明する。
本発明のフッ素系高分子固体電解質膜に補強材料として用いられる芳香族ポリアミドフィルムには、メタ配向型芳香族ポリアミドまたはパラ配向型ポリアミドが用いられる。特に好ましくは機械的強度、耐熱性の点からパラ配向型芳香族ポリアミドが用いられる。パラ配向型芳香族ポリアミドは、式(2)で表される3種類の繰り返し単位から選択された繰り返し単位より構成される単独重合体或いは共重合体である。但し、式(2)中(c)及び(d)を用いる場合は必ず他の繰り返し単位との共重合体となってポリアミド構造を形成する。
Hereinafter, the fluoropolymer solid electrolyte membrane of the present invention will be described in more detail.
The aromatic polyamide film used as a reinforcing material for the fluoropolymer solid electrolyte membrane of the present invention will be described.
For the aromatic polyamide film used as a reinforcing material for the fluoropolymer solid electrolyte membrane of the present invention, meta-oriented aromatic polyamide or para-oriented polyamide is used. Particularly preferred is para-oriented aromatic polyamide from the viewpoint of mechanical strength and heat resistance. The para-oriented aromatic polyamide is a homopolymer or copolymer composed of repeating units selected from the three types of repeating units represented by the formula (2). However, in the case of using (c) and (d) in the formula (2), it always becomes a copolymer with other repeating units to form a polyamide structure.

Figure 2006059551
Figure 2006059551

本発明において、良好な耐熱性を確保するためにはAr1 、Ar2 、およびAr3 は各々、いわゆる直線配向性の基である必要がある。ここで直線配向性とは、その分子鎖を成長させている結合が芳香族の反対方向に同軸叉は平行的に位置していることを意味する。
この様な2価の芳香族基の具体例としては、パラフェニレン、4、4’−ビフェニレン、1、4−ナフチレン、1、5−ナフチレン、2、5−ピリジレン等が挙げられる。それらはハロゲン、低級アルキル、ニトロ、メトキシ、シアノ基などの非活性基で1又は2以上置換されていてもよい。
また、これらの2価の芳香族として、式(3)で表される形の2価の基も挙げられる。
In the present invention, Ar 1 , Ar 2 , and Ar 3 must each be a so-called linear orientation group in order to ensure good heat resistance. Here, the linear orientation means that the bond growing the molecular chain is positioned coaxially or parallel to the opposite direction of the aromatic.
Specific examples of such a divalent aromatic group include paraphenylene, 4,4′-biphenylene, 1,4-naphthylene, 1,5-naphthylene, 2,5-pyridylene and the like. They may be substituted with one or more inactive groups such as halogen, lower alkyl, nitro, methoxy, cyano group.
Moreover, the bivalent group of the form represented by Formula (3) is also mentioned as these bivalent aromatics.

Figure 2006059551
Figure 2006059551

Xとしては具体的には、次式(4)などが挙げられる。

Figure 2006059551
式(2)のAr、ArおよびArは、いずれも2種以上であってもよく、また相互に同じであってもよい。 Specific examples of X include the following formula (4).
Figure 2006059551
Ar 1 , Ar 2 and Ar 3 in the formula (2) may all be two or more, or may be the same as each other.

本発明のフッ素系高分子固体電解質の補強材料に用いられる芳香族ポリアミドは、これまでに知られた方法により、各々の単位に対応するジアミン、ジカルボン酸、アミノカルボン酸より製造する事ができる。
具体的には、カルボン酸基をまず酸ハライド、酸イミダソライド、エステル等に誘導した後に、アミノ基と反応させる方法が用いられる方法が用いられ、重合の形式もいわゆる低温溶液重合法、界面重合法、溶融重合法、固相重合法等を用いることができる。
The aromatic polyamide used for the reinforcing material of the fluorine-based polymer solid electrolyte of the present invention can be produced from diamine, dicarboxylic acid, and aminocarboxylic acid corresponding to each unit by a conventionally known method.
Specifically, a method is used in which a carboxylic acid group is first derived into an acid halide, acid imidazolide, ester, etc., and then reacted with an amino group. The polymerization method is also a so-called low temperature solution polymerization method, interfacial polymerization method. Alternatively, a melt polymerization method, a solid phase polymerization method, or the like can be used.

本発明のフッ素系高分子固体電解質の補強材料に用いられる芳香族ポリアミドには、上記した以外の基が共重合されたり、他のポリマーがブレンドされたりしていてもよい。共重合に用いられる基として具体的には3,3’−ジアミノジフェニルエーテル、3,4−ジアミノジフェニルエーテル、3,3’−ジアミノ−4,4’ジクロロジフェニル、等が挙げられる。
本発明に用いられる補強材としての芳香族ポリアミドフィルムの製膜法としては、特に限定されないが湿式製膜、乾式製膜等一般的に用いられている方法が用いられる。
本発明のフッ素系高分子固体電解質が有する補強材は多孔性フィルムの態様で使用する事ができるので次に多孔性フィルムについて説明する。ここに、補強材は、本発明のフッ素系高分子固体電解質膜中に含有されているものをいい、補強材がフッ素系高分子固体電解質膜中に包埋されていることが好ましい。
In the aromatic polyamide used for the reinforcing material of the fluorine-based polymer solid electrolyte of the present invention, groups other than those described above may be copolymerized or other polymers may be blended. Specific examples of groups used for copolymerization include 3,3′-diaminodiphenyl ether, 3,4-diaminodiphenyl ether, 3,3′-diamino-4,4′dichlorodiphenyl, and the like.
A method for forming an aromatic polyamide film as a reinforcing material used in the present invention is not particularly limited, and generally used methods such as wet film formation and dry film formation are used.
Since the reinforcing material of the fluoropolymer solid electrolyte of the present invention can be used in the form of a porous film, the porous film will be described next. Here, the reinforcing material means that contained in the fluorine-based polymer solid electrolyte membrane of the present invention, and the reinforcing material is preferably embedded in the fluorine-based polymer solid electrolyte membrane.

本発明のフッ素系高分子固体電解質膜に補強材として用いられる多孔性フィルムは上述の芳香族ポリアミドからなる補強材料のフィルムを加工して用いる。
膜厚みは、0.1μm以上、20μm以下、好ましくは10μm以下である。膜厚が厚いほど、燃料電池としての初期特性は悪くなる。
本発明の多孔性フィルムの孔径は、直径として0.001μm〜500μmの範囲である事が好ましく、より好ましくは1μm〜450μmの範囲である。0.001μm未満では、フッ素系高分子固体電解質が十分に孔に充填されず、ボイドを形成してしまい、充分なイオン伝導性を達成できず好ましくない。一方500μmを超えると、補強材としての補強効果が十分に発揮できず好ましくない。
The porous film used as a reinforcing material for the fluoropolymer solid electrolyte membrane of the present invention is obtained by processing a reinforcing material film made of the above-mentioned aromatic polyamide.
The film thickness is 0.1 μm or more and 20 μm or less, preferably 10 μm or less. The thicker the film thickness, the worse the initial characteristics as a fuel cell.
The pore diameter of the porous film of the present invention is preferably in the range of 0.001 μm to 500 μm, more preferably in the range of 1 μm to 450 μm. If it is less than 0.001 μm, the fluorine-based polymer solid electrolyte is not sufficiently filled in the pores and voids are formed, so that sufficient ion conductivity cannot be achieved, which is not preferable. On the other hand, if it exceeds 500 μm, the reinforcing effect as a reinforcing material cannot be sufficiently exhibited, which is not preferable.

本発明のフッ素系高分子固体電解質に用いることのできる補強材としての多孔性フィルムの開孔率は、30%以上が好ましく、より好ましくは50%以上95%以下が好ましい。30%未満では、燃料電池としてのイオン伝導性に支障をきたし好ましくない。95%を超えると乾湿状態での寸法変化の抑制効果を得る事ができず好ましくない。
孔の形状としては、通常真円が用いられるが、特に長軸と短軸の比が1.1〜10の孔を用いると機械的強度を低下させることなく開孔率を向上させることができるため、イオン伝導性が確保できるので好ましい。
尚、長軸と短軸の比が1.1〜10の孔を有する多孔性フィルムの場合、フィルム中に存在する各々の孔は長軸、短軸の方向が各々配向していてもしていなくてもかまわない。
The porosity of the porous film as a reinforcing material that can be used for the fluoropolymer solid electrolyte of the present invention is preferably 30% or more, more preferably 50% or more and 95% or less. If it is less than 30%, the ion conductivity as a fuel cell is hindered, which is not preferable. If it exceeds 95%, the effect of suppressing the dimensional change in the wet and dry state cannot be obtained, which is not preferable.
As the shape of the hole, a perfect circle is usually used. However, when the hole having a major axis to minor axis ratio of 1.1 to 10 is used, the hole area ratio can be improved without reducing the mechanical strength. Therefore, it is preferable because ion conductivity can be secured.
In addition, in the case of a porous film having pores with a ratio of major axis to minor axis of 1.1 to 10, each hole present in the film may or may not have the major axis and minor axis directions oriented. It doesn't matter.

孔を開ける方法としては、打ち抜き、ドリル、炭酸ガスレーザー、エキシマーUVレーザ−等が挙げられるが特にこれらに限定されない。
具体的には、打ち抜きによる開孔では、多数の孔形状を形成した金型を取り付けたNC制御打ち抜き加工機が好適に用いられる。
ドリルについて説明すると、通常プリント配線板の穴あけ加工で使用されるNC制御ドリル加工機が好適に用いられる。
炭酸ガスレーザー、エキシマーUVレーザーについては、高密度プリント配線板であるビルドアッププリント配線板の穴あけ加工に用いられるレーザー加工機が好適に用いられる。
Examples of the method for forming a hole include punching, drilling, carbon dioxide laser, excimer UV laser, and the like, but are not limited thereto.
Specifically, for punching by punching, an NC control punching machine equipped with a die having a large number of hole shapes is preferably used.
Explaining the drill, an NC control drilling machine that is usually used for drilling a printed wiring board is preferably used.
As for the carbon dioxide laser and the excimer UV laser, a laser processing machine used for drilling a build-up printed wiring board that is a high-density printed wiring board is preferably used.

上記の開孔方法では、バッチ処理を行う事により、枚葉形状の芳香族ポリアミドフィルムを加工することができる。一方、芳香族ポリアミドフィルムがロール形状の場合は、穴あけ加工機のステージにフィルムを送り出して穴あけ加工を行う事によってロール形状の多孔性芳香族ポリアミドフィルムが得られる。
本発明のフッ素系高分子固体電解質に補強材として用いられる多孔性フィルムは表面処理されていることが特徴であるため、次に本発明で用いられる表面処理について説明する。
本発明で用いられる表面処理としては、コロナ放電処理、紫外線照射処理、プラズマ処理が挙げられる。中でも、生産性の面からコロナ放電処理が好ましい。
In the above opening method, a single wafer aromatic polyamide film can be processed by performing batch processing. On the other hand, when the aromatic polyamide film has a roll shape, a roll-shaped porous aromatic polyamide film can be obtained by feeding the film to a stage of a drilling machine and performing a drilling process.
Since the porous film used as a reinforcing material for the fluoropolymer solid electrolyte of the present invention is characterized by being surface-treated, the surface treatment used in the present invention will be described next.
Examples of the surface treatment used in the present invention include corona discharge treatment, ultraviolet irradiation treatment, and plasma treatment. Of these, corona discharge treatment is preferable from the viewpoint of productivity.

コロナ放電処理は電極とフィルム搬送用のロール間に交流又は直流の高電圧を印加して空気中でコロナ放電を発生させ、その中に本発明で用いることが可能な多孔性の芳香族ポリアミドフィルムを通過させることによってフィルム表面を処理するものであり、通常、ロールは金属ロール上にハイパロンゴム、EPT(エチレンプロピレンテルポリマー)、シリコンゴム等の誘電体やセラミックを被覆した誘電体ロールが用いられるが、芳香族ポリアミドフィルムでは誘電体を介さずに直接金属ロールを用いる事も可能である。
印加する電力は、フィルムの厚み、ポリマー組成、表面性等によっても異なり、条件を選定する必要があるが、通常30〜600W/m/分、好ましくは50〜300W/m/分の電力密度の範囲が用いられる。印加電力が低すぎると芳香族ポリアミドフィルムと高分子固体電解質の密着性が不十分となる。一方、印加電力が高すぎるとフィルムの特性を損ねたり、しわの発生があったり、表面粗さを損ねるなどの問題が発生する。
Corona discharge treatment is a porous aromatic polyamide film that can be used in the present invention, in which a high voltage of alternating current or direct current is applied between an electrode and a film conveying roll to generate corona discharge in the air. In general, the roll is a dielectric roll in which a metal roll is coated with a dielectric such as hyperon rubber, EPT (ethylene propylene terpolymer), silicon rubber, or ceramic. However, in the case of an aromatic polyamide film, it is also possible to use a metal roll directly without using a dielectric.
The power to be applied varies depending on the thickness of the film, the polymer composition, the surface property, etc., and it is necessary to select conditions, but usually 30 to 600 W / m 2 / min, preferably 50 to 300 W / m 2 / min. A range of densities is used. When the applied power is too low, the adhesion between the aromatic polyamide film and the polymer solid electrolyte becomes insufficient. On the other hand, when the applied power is too high, problems such as deterioration of film characteristics, wrinkles, and surface roughness occur.

次に本発明で用いることが可能な紫外線照射処理について説明する。
紫外線処理時に使用されるガスとしては、酸素、4フッ化炭素ガス、水素ガス、アルゴンガス、窒素ガス、アンモニアガス、ヘリウムガスなどを単独あるいは混合しても用いてもかまわない。もちろん、空気中での紫外線処理でもかまわない。照射される紫外線の波長は、400nm以下である。400nmを超えると体との接着強度が不十分となる。用いる紫外線照射ランプとしては、低圧水銀灯(紫外線波長:185nm及び254nm)、キセノンエキシマーランプ(紫外線波長172nm)などが好適に用いられる。
照射時の紫外線とフィルムの間隔は、好ましくは10cm以下、より好ましくは5cm以下、さらに好ましくは4cm以下である。10cmを超えると芳香族ポリアミドフィルムと高分子固体電解質との密着性が不十分となる。
Next, the ultraviolet irradiation treatment that can be used in the present invention will be described.
As the gas used in the ultraviolet treatment, oxygen, carbon tetrafluoride gas, hydrogen gas, argon gas, nitrogen gas, ammonia gas, helium gas or the like may be used alone or in combination. Of course, UV treatment in air is also acceptable. The wavelength of the irradiated ultraviolet light is 400 nm or less. If it exceeds 400 nm, the adhesive strength with the body becomes insufficient. As the ultraviolet irradiation lamp to be used, a low-pressure mercury lamp (ultraviolet wavelengths: 185 nm and 254 nm), a xenon excimer lamp (ultraviolet wavelength: 172 nm) and the like are preferably used.
The distance between the ultraviolet rays and the film during irradiation is preferably 10 cm or less, more preferably 5 cm or less, and still more preferably 4 cm or less. If it exceeds 10 cm, the adhesion between the aromatic polyamide film and the polymer solid electrolyte becomes insufficient.

紫外線処理時間としては、好ましくは0.01秒〜30分、より好ましくは0.1秒〜15分の範囲である。0.01秒を下回ると改質が不十分となる。一方、30分を越えると樹脂表面の劣化が進行する。
次に本発明で用いることが可能なプラズマ処理について説明する。
プラズマ処理に使用されるガスとしては、酸素ガス、4フッ化炭素ガス、水素ガス、アルゴンガス、窒素ガス、アンモニアガス、ヘリウムガスなどであり、単独で用いても混合して用いてもかまわない。
プラズマの方式としては、バレルタイプ、平行平板タイプが好ましく、また、処理モードとしては、HOT電極上に試料を設置するRIEモード、Ground電極上に試料を設置するPEモード、さらには、電極外部に試料を設置するリモート法などが好ましく用いられる。
The ultraviolet treatment time is preferably in the range of 0.01 seconds to 30 minutes, more preferably 0.1 seconds to 15 minutes. If less than 0.01 seconds, the modification becomes insufficient. On the other hand, when the time exceeds 30 minutes, the deterioration of the resin surface proceeds.
Next, plasma treatment that can be used in the present invention will be described.
The gas used for the plasma treatment is oxygen gas, carbon tetrafluoride gas, hydrogen gas, argon gas, nitrogen gas, ammonia gas, helium gas, etc., which may be used alone or in combination. .
As the plasma method, a barrel type or a parallel plate type is preferable, and as a processing mode, an RIE mode in which a sample is placed on a HOT electrode, a PE mode in which a sample is placed on a ground electrode, and further, outside the electrode A remote method for installing a sample is preferably used.

芳香族ポリアミドフィルムを補強材に用いる本発明においては、ロール品(連続膜)の処理が簡便な大気圧付近での圧力下でのプラズマ処理が好適に用いられる。ここでいう大気圧付近というのは、好ましくは20kPa〜200kPa、より好ましくは70kPa〜130kPaの範囲である。20kPaを下回ると反応槽を気密なものにしないと空気が流入してしまい処理できないという不都合が生じ、一方、200kPaを越えるとプラズマが不安定になり易いという不都合が生じる。
プラズマ処理時間としては、好ましくは0.01秒〜30分、より好ましくは0.1秒から15分の範囲である。0.01秒を下回ると改質が不十分となる。一方、30分を越えると樹脂表面の劣化が進行する。
In the present invention in which an aromatic polyamide film is used as a reinforcing material, plasma treatment under a pressure in the vicinity of atmospheric pressure, which is easy to treat a roll product (continuous film), is preferably used. Here, the vicinity of atmospheric pressure is preferably in the range of 20 kPa to 200 kPa, more preferably 70 kPa to 130 kPa. Below 20 kPa, if the reaction vessel is not made airtight, air will flow in and the processing will not be possible. On the other hand, if it exceeds 200 kPa, the plasma will tend to become unstable.
The plasma treatment time is preferably 0.01 seconds to 30 minutes, more preferably 0.1 seconds to 15 minutes. If less than 0.01 seconds, the modification becomes insufficient. On the other hand, when the time exceeds 30 minutes, the deterioration of the resin surface proceeds.

以上、本発明に用いることが可能な補強材の表面処理方法について説明したが、前述の表面処理は、その効果を高める目的で2種以上の表面処理方法を組み合わせる事も可能である。また、補強材としての芳香族ポリアミドフィルムと高分子固体電解質の密着性をより一層向上させることを目的として前述した表面処理を行う前に、サンドブラストやウエットブラスト等の表面粗化処理を行ってもよい。
本発明のフッ素系高分子固体電解質膜に用いる補強材としての芳香族ポリアミドフィルムは、前述のように、孔を開ける工程の後に表面処理工程を実施してもかまわず、表面処理を行ってから、孔を開けてもよいが、孔を開けてから表面処理をしたほうが好ましい。
As mentioned above, although the surface treatment method of the reinforcing material which can be used for this invention was demonstrated, the above-mentioned surface treatment can also combine 2 or more types of surface treatment methods in order to raise the effect. In addition, surface roughening treatment such as sand blasting or wet blasting may be performed before the surface treatment described above for the purpose of further improving the adhesion between the aromatic polyamide film as a reinforcing material and the polymer solid electrolyte. Good.
As described above, the aromatic polyamide film as a reinforcing material used for the fluoropolymer solid electrolyte membrane of the present invention may be subjected to a surface treatment step after the step of opening a hole, and after the surface treatment is performed. Although a hole may be formed, it is preferable to perform a surface treatment after forming the hole.

次に、本発明のフッ素系高分子固体電解質膜の電解質成分について説明する。
本発明で用いられる高分子固体電解質膜を構成する電解質成分は、パーフルオロカーボンスルホン酸ポリマーと、添加剤としての塩基性重合体とからなることを特徴とする。
そこで、先ず、パーフルオロカーボンスルホン酸ポリマーについて説明する。
パーフルオロカーボンスルホン酸ポリマーは具体的には、下記一般式(1)で表される。
Next, the electrolyte component of the fluoropolymer solid electrolyte membrane of the present invention will be described.
The electrolyte component constituting the solid polymer electrolyte membrane used in the present invention is characterized by comprising a perfluorocarbon sulfonic acid polymer and a basic polymer as an additive.
First, the perfluorocarbon sulfonic acid polymer will be described.
The perfluorocarbon sulfonic acid polymer is specifically represented by the following general formula (1).

Figure 2006059551
(式中、mは0〜3、nは1〜5、k、lは1以上の整数で、1.5≦k/l≦14)
このポリマーは、通常、パーフルオロビニルエーテルモノマーとテトラフルオロエチレン(TFE)を共重合して得られる熱可塑性の下記一般式(5)で表されるパーフルオロカーボンスルホニルフルオライドポリマーを加水分解反応を施すことによって得られる。
Figure 2006059551
(In the formula, m is 0 to 3, n is 1 to 5, k and l are integers of 1 or more, and 1.5 ≦ k / l ≦ 14)
This polymer is usually obtained by subjecting a thermoplastic perfluorocarbonsulfonyl fluoride polymer represented by the following general formula (5) obtained by copolymerizing a perfluorovinyl ether monomer and tetrafluoroethylene (TFE) to a hydrolysis reaction. Obtained by.

Figure 2006059551
(式中、mは0〜3、nは1〜5、k、lは1以上の整数で、1.5≦k/l≦14)
Figure 2006059551
(In the formula, m is 0 to 3, n is 1 to 5, k and l are integers of 1 or more, and 1.5 ≦ k / l ≦ 14)

次に塩基性重合体について説明する。
本発明のフッ素系高分子固体電解質膜では、特に塩基性重合体を電解質成分に添加剤として含有させることによって耐久性が飛躍的に向上する。本発明の高分子電解質膜に用いる塩基性重合体としては、特に限定されないが、窒素含有脂肪族塩基性重合体や窒素含有芳香族塩基性重合体が挙げられる。
Next, the basic polymer will be described.
In the fluorine-based polymer solid electrolyte membrane of the present invention, the durability is drastically improved particularly by adding a basic polymer as an additive to the electrolyte component. Although it does not specifically limit as a basic polymer used for the polymer electrolyte membrane of this invention, A nitrogen-containing aliphatic basic polymer and a nitrogen-containing aromatic basic polymer are mentioned.

窒素含有脂肪族塩基性重合体の例としては、ポリエチレンイミンが挙げられる。窒素含有芳香族塩基性重合体の例としては、ポリアニリン、及び複素環式化合物であるポリベンズイミダゾール、ポリピリジン、ポリピリミジン、ポリビニルピリジン、ポリイミダゾール、ポリピロリジン、ポリビニルイミダゾール等が挙げられる。この中でもポリベンズイミダゾールは耐熱性が高いことから特に好ましい。
ポリベンズイミダゾールとしては、化学式(6)、化学式(7)に表される化合物、化学式(8)で表されるポリ2,5−ベンズイミダゾール等が挙げられる。
Examples of nitrogen-containing aliphatic basic polymers include polyethyleneimine. Examples of the nitrogen-containing aromatic basic polymer include polyaniline and heterocyclic compounds such as polybenzimidazole, polypyridine, polypyrimidine, polyvinylpyridine, polyimidazole, polypyrrolidine, and polyvinylimidazole. Among these, polybenzimidazole is particularly preferable because of its high heat resistance.
Examples of polybenzimidazole include compounds represented by chemical formula (6) and chemical formula (7), and poly 2,5-benzimidazole represented by chemical formula (8).

Figure 2006059551
Figure 2006059551

Figure 2006059551
Figure 2006059551

Figure 2006059551
以上のようなポリベンズイミダゾールの中でも、下記式(9)で表されるポリ[2、2’−(m−フェニレン)−5,5’−ビベンゾイミダゾール]が特に好ましい。
Figure 2006059551
Among the polybenzimidazoles as described above, poly [2,2 ′-(m-phenylene) -5,5′-bibenzimidazole] represented by the following formula (9) is particularly preferable.

Figure 2006059551
Figure 2006059551

本発明の高分子固体電解質膜は、電解質組成物中に電解質であるパーフルオロカーボンスルホン酸ポリマー(a)と、添加剤である塩基性重合体(b)を含有し、該(a)と該(b)全体の含有率が、該フッ素系高分子固体電解質膜中1〜50体積%であり、かつ、該(a)の含有率([(a)/((a)+(b))]×100)が50.00〜99.999質量%、該(b)の含有率([(b)/((a)+(b))]×100)が0.001〜50.00質量%である事を特徴とする。
塩基性重合体(b)の含有率は、上記のように成分(a)と成分(b)の合計質量に対して0.001〜50.000質量%であり、好ましくは0.005〜20.000質量%、より好ましくは0.010〜10.000質量%、さらに好ましくは0.100〜5.000質量%、最も好ましくは0.100〜2.000質量%である。塩基性重合体(b)の含有率を上記の範囲(0.001〜50.000質量%)に設定することにより、良好なプロトン伝導度を維持したまま、高耐久性を有する高分子固体電解質膜を得ることができる。
The polymer solid electrolyte membrane of the present invention contains a perfluorocarbon sulfonic acid polymer (a) as an electrolyte and a basic polymer (b) as an additive in the electrolyte composition, and the (a) and (( b) The total content is 1 to 50% by volume in the fluoropolymer solid electrolyte membrane, and the content of (a) ([(a) / ((a) + (b))] × 100) is 50.00 to 99.999% by mass, and the content of (b) ([(b) / ((a) + (b))] × 100) is 0.001 to 50.00% by mass It is characterized by being.
The content rate of a basic polymer (b) is 0.001-50000 mass% with respect to the total mass of a component (a) and a component (b) as mentioned above, Preferably it is 0.005-20. 0.000% by mass, more preferably 0.010 to 10.000% by mass, still more preferably 0.100 to 5.000% by mass, and most preferably 0.100 to 2.000% by mass. By setting the content of the basic polymer (b) in the above range (0.001 to 50.000 mass%), a polymer solid electrolyte having high durability while maintaining good proton conductivity A membrane can be obtained.

本発明ではパーフルオロカーボンスルホン酸ポリマー(a)と塩基性重合体(b)が化学結合していてもかまわず、化学結合しているかどうかは、例えばフーリエ変換赤外分光光度計(Fourier-Transform Infrared Spectrome-ter)(以下、「FT−IR」と称する)により確認することができる。つまり、パーフルオロカーボンスルホン酸ポリマー(a)と塩基性重合体(b)からなる高分子固体電解質膜のFT−IR測定を行った時に、パーフルオロカーボンスルホン酸ポリマー(a)と塩基性重合体(b)のいずれか以外に由来する吸収ピークが観察されれば、化学結合していると判断できる。例えば、上記式(1)で表されるパーフルオロカーボンスルホン酸ポリマーと上記式(9)で表されるポリ[(2,2’−(m−フェニレン)−5,5’−ビベンゾイミダゾール)(以下、PBIと称する)とからなる本発明の高分子固体電解質膜の場合には、FT−IR測定を行うと、1460cm−1、1565cm−1、1635cm−1付近に吸収ピークが観察され、化学結合が存在することがわかる。 In the present invention, the perfluorocarbon sulfonic acid polymer (a) and the basic polymer (b) may be chemically bonded, and whether or not they are chemically bonded is determined, for example, by a Fourier-transform infrared spectrophotometer (Fourier-Transform Infrared Meter). Spectrome-ter) (hereinafter referred to as “FT-IR”). That is, when the FT-IR measurement of the polymer solid electrolyte membrane composed of the perfluorocarbon sulfonic acid polymer (a) and the basic polymer (b) was performed, the perfluorocarbon sulfonic acid polymer (a) and the basic polymer (b If an absorption peak derived from other than any of the above is observed, it can be determined that chemical bonding has occurred. For example, the perfluorocarbon sulfonic acid polymer represented by the above formula (1) and the poly [(2,2 ′-(m-phenylene) -5,5′-bibenzimidazole) represented by the above formula (9) ( hereinafter, the case of the solid polymer electrolyte membrane of the present invention consisting referred to as) and PBI is, when the FT-IR measurement, 1460cm -1, 1565cm -1, absorption peaks were observed around 1635 cm -1, chemical It can be seen that a bond exists.

本発明の高分子固体電解質膜の製造法は特に制限されないが、上記の電解質組成物であるパーフルオロカーボンスルホン酸ポリマー(a)と塩基性重合体(b)が水、アルコール類等のプロトン溶媒や、DMF(ジメチルホルムアミド)、DMAc(ジメチルアセトアミド)、DMSO(ジメチルスルホキサイド)等の極性非プロトン溶媒、或いは、その混合溶媒に溶解あるいは分散した混合液に補強材を浸漬し補強材の表面に電解質組成物を被覆する方法、あるいはあらかじめパーフルオロカーボンスルホン酸ポリマー(a)と塩基性重合体(b)の電解質組成物のフィルムを作成しておき、この2枚の高分子固体電解質フィルムで補強材である多孔性フィルムをはさみ、加熱、加圧する事により圧着させる方法等が挙げられる。尚、圧着させる際には、電解質組成物が多孔性フィルムの孔を充填するように加熱・加圧温度を調整することが必要である。   The production method of the polymer solid electrolyte membrane of the present invention is not particularly limited, but the perfluorocarbon sulfonic acid polymer (a) and the basic polymer (b), which are the above electrolyte compositions, are water, alcohols and other proton solvents, , A reinforcing material is immersed in a polar aprotic solvent such as DMF (dimethylformamide), DMAc (dimethylacetamide), DMSO (dimethylsulfoxide), or a mixed solution dissolved or dispersed in the mixed solvent. A method of coating the electrolyte composition or a film of the electrolyte composition of the perfluorocarbon sulfonic acid polymer (a) and the basic polymer (b) is prepared in advance, and the two polymer solid electrolyte films are used as a reinforcing material. And a method of pressure bonding by sandwiching a porous film, heating and pressurizing. In addition, when making it crimp, it is necessary to adjust heating and pressurization temperature so that electrolyte composition may fill the hole of a porous film.

以上のように、補強材である多孔性フィルムに電解質組成物が被覆あるいは加熱圧着された高分子固体電解質膜は引き続き熱処理される事を特徴とする。熱処理により多孔性フィルムと電解質組成物が強固に接着され、その結果機械的強度が安定化される。
熱処理温度は、好ましくは120℃以上300℃以下、更に好ましくは160℃以上である250℃以下である。
熱処理温度が低いと補強材である多孔性フィルムと電解質組成物間の密着力が確保できず好ましくない。一方、熱処理温度が高いと電解質組成物が変質する可能性があり好ましくない。熱処理の時間は、熱処理温度にもよるが、好ましくは5分以上3時間以下、更に好ましくは10分以上2時間以下である。
As described above, the solid polymer electrolyte membrane in which the electrolyte composition is coated or thermocompression bonded to the porous film as the reinforcing material is characterized in that it is subsequently heat treated. The porous film and the electrolyte composition are firmly bonded by the heat treatment, and as a result, the mechanical strength is stabilized.
The heat treatment temperature is preferably 120 ° C. or higher and 300 ° C. or lower, more preferably 160 ° C. or higher and 250 ° C. or lower.
If the heat treatment temperature is low, the adhesion between the porous film as the reinforcing material and the electrolyte composition cannot be secured, which is not preferable. On the other hand, if the heat treatment temperature is high, the electrolyte composition may be altered, which is not preferable. Although the heat treatment time depends on the heat treatment temperature, it is preferably 5 minutes or longer and 3 hours or shorter, more preferably 10 minutes or longer and 2 hours or shorter.

尚、電解質組成物のフィルムと補強材の多孔性フィルムを加熱・圧着してフッ素系固体高分子固体電解質膜を製造する場合、加熱温度を120℃以上に設定すれば、加熱・圧着と熱処理を同時に実施することが可能となる。
本発明のフッ素系高分子固体電解質膜においては、膜厚方向の断面の15μm´15μmの領域を透過型電子顕微鏡(以下、「TEM」と称する)で観察したときに電解質組成物を構成するパーフルオロカーボンスルホン酸ポリマーと塩基性重合体が海/島構造を示すことが好ましい。ここで言う海/島構造とは、染色処理を施さずに電子顕微鏡観察を行った時の電子顕微鏡像に黒い島粒子が灰色あるいは白色の海(連続相)に分散した状態のことを指す。島粒子の形状は、円形、楕円形、多角形、不定形など、特に限定されない。島粒子の直径(又は長径や最大径)は0.01〜10μmの範囲にある。海/島構造において、黒い島粒子のコントラストは主に塩基性重合体(b)に起因し、白色の海(連続相)の部分は主にパーフルオロカーボンスルホン酸ポリマー(a)に起因する。
In addition, when producing a fluorine-based solid polymer solid electrolyte membrane by heating and pressure-bonding the electrolyte composition film and the reinforcing material porous film, if the heating temperature is set to 120 ° C. or higher, the heating / pressure-bonding and heat treatment are performed. It becomes possible to carry out at the same time.
In the fluorine-based polymer solid electrolyte membrane of the present invention, when the 15 μm × 15 μm region of the cross section in the film thickness direction is observed with a transmission electron microscope (hereinafter referred to as “TEM”), the par It is preferred that the fluorocarbon sulfonic acid polymer and the basic polymer exhibit a sea / island structure. The sea / island structure here refers to a state in which black island particles are dispersed in a gray or white sea (continuous phase) in an electron microscopic image obtained by observation with an electron microscope without performing a staining treatment. The shape of the island particles is not particularly limited, such as a circle, an ellipse, a polygon, and an indeterminate shape. The diameter (or major axis or maximum diameter) of the island particles is in the range of 0.01 to 10 μm. In the sea / island structure, the contrast of the black island particles is mainly attributed to the basic polymer (b), and the white sea (continuous phase) part is mainly attributed to the perfluorocarbon sulfonic acid polymer (a).

海/島構造においては、海/島構造の島粒子の合計面積が、膜断面の該15μm´15μmの領域の0.1〜70%であることが好ましく、より好ましくは1〜70%であり、さらに好ましくは5〜50%である。また、海/島構造の島粒子の密度が、膜断面の該15μm´15μmの領域の1μm当たり0.1〜100個であることが好ましい。
このような海/島構造を有することは、塩基性重合体(b)を主体とする部分がパーフルオロカーボンスルホン酸ポリマー(a)を主体とする部分中に均一に微分散していることを表しており、より高い耐久性を得ることができる。
本発明の高分子固体電解質膜のイオン交換容量としては特に限定されないが、1g当たり0.50〜4.00ミリ当量が好ましく、より好ましくは0.83〜4.00ミリ当量、最も好ましくは1.00〜1.50ミリ当量である。より大きいイオン交換容量の高分子固体電解質膜を用いる方が、高温低加湿条件下においてより高いプロトン伝導性を示し、燃料電池に用いた場合、運転時により高い出力を得ることができる。
In the sea / island structure, the total area of the island particles of the sea / island structure is preferably 0.1 to 70%, more preferably 1 to 70% of the 15 μm′15 μm region of the membrane cross section. More preferably, it is 5 to 50%. Further, the density of island particles having a sea / island structure is preferably 0.1 to 100 per 1 μm 2 in the 15 μm′15 μm region of the film cross section.
Having such a sea / island structure indicates that the portion mainly composed of the basic polymer (b) is uniformly finely dispersed in the portion mainly composed of the perfluorocarbon sulfonic acid polymer (a). And higher durability can be obtained.
The ion exchange capacity of the polymer solid electrolyte membrane of the present invention is not particularly limited, but is preferably 0.50 to 4.00 milliequivalents per gram, more preferably 0.83 to 4.00 milliequivalents, and most preferably 1 0.001 to 1.50 milliequivalents. The use of a polymer solid electrolyte membrane having a larger ion exchange capacity exhibits higher proton conductivity under high temperature and low humidification conditions, and when used in a fuel cell, a higher output can be obtained during operation.

イオン交換容量は、以下の方法で測定することができる。まず、10cm程度に切り出した高分子固体電解質膜を110℃にて真空乾燥して、乾燥重量W(g)を求める。この膜を50mlの25℃飽和NaCl水溶液に浸漬してHを遊離させ、フェノールフタレインを指示薬として、0.01N水酸化ナトリウム水溶液で中和滴定を行い、中和に要したNaOHの等量M(ミリ等量)を求める。このようにして求めたMをWで割って得られる値がイオン交換容量(ミリ等量/g)である。また、WをMで割って1000倍した値が当量質量EWであり、イオン交換基1当量当りの乾燥質量グラム数である。
また、本発明の高分子固体電解質膜におけるパーフルオロカーボンスルホン酸ポリマー(a)と塩基性重合体(b)の状態は上述の要件を具備する限り特に限定されないが、例えば、成分(a)と成分(b)が単純に物理混合している状態でもよいし、成分(a)の少なくとも一部と成分(b)の少なくとも一部が互いに反応している状態(例えば、イオン結合して、酸塩基のイオンコンプレックスを形成している状態や、共有結合している状態)でもよい。
The ion exchange capacity can be measured by the following method. First, the polymer solid electrolyte membrane cut out to about 10 cm 2 is vacuum-dried at 110 ° C. to obtain a dry weight W (g). This membrane is immersed in 50 ml of a saturated NaCl aqueous solution at 25 ° C. to release H + , and neutralization titration is performed with 0.01 N sodium hydroxide aqueous solution using phenolphthalein as an indicator, and the equivalent amount of NaOH required for neutralization. Obtain M (millimeter equivalent). The value obtained by dividing M thus determined by W is the ion exchange capacity (milli equivalent / g). The value obtained by dividing W by M and multiplying by 1000 is the equivalent mass EW, which is the dry mass in grams per equivalent of ion-exchange groups.
Further, the state of the perfluorocarbon sulfonic acid polymer (a) and the basic polymer (b) in the polymer solid electrolyte membrane of the present invention is not particularly limited as long as the above requirements are satisfied. For example, the component (a) and the component (B) may be in a state of simple physical mixing, or in a state in which at least a part of component (a) and at least a part of component (b) are reacted with each other (for example, ionic bond, acid base A state of forming an ion complex or a state of covalent bonding).

以上本発明のフッ素系固体高分子固体電解質膜について説明したが。本発明のフッ素系高分子固体電解質膜は2層以上積層させることが可能である。積層時には上層と下層の多孔性フィルムの開口部を互いにずらす事によって、寸法変化やクロスリークをより効果的に抑制させる事が可能となるので好ましい。
本発明の高分子固体電解質膜を固体高分子形燃料電池に用いる場合、本発明の高分子固体電解質膜がアノードとカソードの間に密着保持されてなる膜/電極接合体(membrane/electrodeassembly)(以下、しばしば「MEA」と称する)として使用される。ここでアノードはアノード触媒層からなり、プロトン伝導性を有し、カソードはカソード触媒層からなり、プロトン伝導性を有する。また、アノード触媒層とカソード触媒層のそれぞれの外側表面にガス拡散層(後述する)を接合したものもMEAと呼ぶ。
The foregoing has described the fluorine-based solid polymer solid electrolyte membrane of the present invention. Two or more fluoropolymer solid electrolyte membranes of the present invention can be laminated. When laminating, it is preferable to shift the openings of the upper and lower porous films with respect to each other so that dimensional changes and cross leaks can be more effectively suppressed.
When the polymer solid electrolyte membrane of the present invention is used in a polymer electrolyte fuel cell, a membrane / electrode assembly (membrane / electrode assembly) in which the polymer solid electrolyte membrane of the present invention is held tightly between an anode and a cathode ( Hereinafter often referred to as "MEA"). Here, the anode is composed of an anode catalyst layer and has proton conductivity, and the cathode is composed of a cathode catalyst layer and has proton conductivity. Further, a gas diffusion layer (described later) joined to the outer surface of each of the anode catalyst layer and the cathode catalyst layer is also referred to as MEA.

アノード触媒層は、燃料(例えば水素)を酸化して容易にプロトンを生ぜしめる触媒を包含し、カソード触媒層は、プロトン及び電子と酸化剤(例えば酸素や空気)を反応させて水を生成させる触媒を包含する。アノードとカソードのいずれについても、触媒としては白金もしくは白金とルテニウム等を合金化した触媒が好適に用いられ、10〜1000オングストローム以下の触媒粒子であることが好ましい。また、このような触媒粒子は、ファーネスブラック、チャンネルブラック、アセチレンブラック、カーボンブラック、活性炭、黒鉛といった0.01〜10μm程度の大きさの導電性粒子に担持されていることが好ましい。触媒層投影面積に対する触媒粒子の担持量は、0.001mg/cm〜10mg/cm以下であることが好ましい。 The anode catalyst layer includes a catalyst that easily oxidizes fuel (for example, hydrogen) to easily generate protons, and the cathode catalyst layer reacts protons and electrons with an oxidizing agent (for example, oxygen or air) to generate water. Includes catalyst. For both the anode and the cathode, platinum or a catalyst in which platinum and ruthenium are alloyed is preferably used as the catalyst, and the catalyst particles are preferably 10 to 1000 angstroms or less. Such catalyst particles are preferably supported on conductive particles having a size of about 0.01 to 10 μm such as furnace black, channel black, acetylene black, carbon black, activated carbon, and graphite. The amount of catalyst particles supported relative to the projected area of the catalyst layer is preferably 0.001 mg / cm 2 to 10 mg / cm 2 or less.

さらにアノード触媒層とカソード触媒層は、パーフルオロカーボンスルホン酸ポリマーを含有することが好ましい。触媒層投影面積に対する担持量として、0.001mg/cm〜10mg/cm以下であることが好ましい。
MEAの作製方法としては、例えば、次のような方法が挙げられる。まず、パーフルオロカーボンスルホン酸ポリマーをアルコールと水の混合溶液に溶解したものに、触媒として市販の白金担持カーボン(例えば、田中貴金属(株)製TEC10E40E)を分散させてペースト状にする。これを2枚のPTFEシートのそれぞれの片面に一定量塗布して乾燥させて触媒層を形成する。次に、各PTFEシートの塗布面を向かい合わせにして、その間に本発明の高分子固体電解質膜を挟み込み、100〜200℃で熱プレスにより転写接合してから、PTFEシートを取り除くことにより、MEAを得ることができる。 当業者にはMEAの作製方法は周知である。MEAの作製方法は、例えば、JOURNAL OF APPLIED ELECTROCHEMISTRY,22(1992)p.1−7に詳しく記載されている。
Furthermore, the anode catalyst layer and the cathode catalyst layer preferably contain a perfluorocarbon sulfonic acid polymer. The supported amount relative to the projected area of the catalyst layer is preferably 0.001 mg / cm 2 to 10 mg / cm 2 or less.
As a method for manufacturing the MEA, for example, the following method can be given. First, commercially available platinum-supported carbon (for example, TEC10E40E manufactured by Tanaka Kikinzoku Co., Ltd.) as a catalyst is dispersed in a solution in which a perfluorocarbon sulfonic acid polymer is dissolved in a mixed solution of alcohol and water to form a paste. A certain amount of this is applied to one side of each of the two PTFE sheets and dried to form a catalyst layer. Next, the coated surfaces of the PTFE sheets are faced to each other, the polymer solid electrolyte membrane of the present invention is sandwiched between them, and transferred and bonded by hot pressing at 100 to 200 ° C., and then the PTFE sheet is removed, thereby removing the MEA. Can be obtained. A person skilled in the art knows how to make MEAs. The method for producing MEA is described in, for example, JOURNAL OF APPLIED ELECTROCHEMISTRY, 22 (1992) p. 1-7.

ガス拡散層としては、市販のカーボンクロスもしくはカーボンペーパーを用いることができる。前者の代表例としては、米国DE NORA NORTH AMERICA社製カーボンクロスE−tek,B−1が挙げられ、後者の代表例としては、CARBEL(登録商標、ジャパンゴアテックス(株))、東レ(株)製TGP−H、米国SPCTRACORP社製カーボンペーパー2050等が挙げられる。また、電極触媒層とガス拡散層が一体化した構造体は「ガス拡散電極」と呼ばれる。ガス拡散電極を本発明の高分子固体電解質膜に接合してもMEAが得られる。市販のガス拡散電極の代表例としては、米国DE NORA NORTH AMERICA社製ガス拡散電極ELAT(登録商標)(ガス拡散層としてカーボンクロスを使用)が挙げられる。   As the gas diffusion layer, commercially available carbon cloth or carbon paper can be used. Representative examples of the former include carbon cloth E-tek, B-1 manufactured by DE NORA NORTH AMERICA, USA. Representative examples of the latter include CARBEL (registered trademark, Japan Gore-Tex Co., Ltd.), Toray Industries, Inc. ) Manufactured by TGP-H, carbon paper 2050 manufactured by SPCTRACORP, USA, and the like. A structure in which the electrode catalyst layer and the gas diffusion layer are integrated is called a “gas diffusion electrode”. MEA can also be obtained by joining the gas diffusion electrode to the solid polymer electrolyte membrane of the present invention. A typical example of a commercially available gas diffusion electrode is a gas diffusion electrode ELAT (registered trademark) manufactured by DE NORA NORTH AMERICA (using carbon cloth as a gas diffusion layer).

上記MEAのアノードとカソードを高分子固体電解質膜の外側に位置する電子伝導性材料を介して互いに結合させると、作動可能な固体高分子形燃料電池を得ることができる。当業者には固体高分子形燃料電池の作成方法は周知である。固体高分子形燃料電池の作成方法は、例えば、FUEL CELL HANDBOOK(VAN NOSTRAND REINHOLD、A.J.APPLEBY et.al、ISBN 0−442−31926−6)、化学One Point,燃料電池(第二版),谷口雅夫,妹尾学編,共立出版(1992)等に詳しく記載されている。
電子伝導性材料としては、その表面に燃料や酸化剤等のガスを流すための溝を形成させたグラファイトまたは樹脂との複合材料、金属製のプレート等の集電体を用いる。上記MEAがガス拡散層を有さない場合、MEAのアノードとカソードのそれぞれの外側表面にガス拡散層を位置させた状態で単セル用ケーシング(例えば、米国エレクトロケム社製 PEFC単セル)に組み込むことにより固体高分子形燃料電池が得られる。
When the anode and cathode of the MEA are coupled to each other via an electron conductive material located outside the polymer solid electrolyte membrane, an operable polymer electrolyte fuel cell can be obtained. A person skilled in the art knows how to make a polymer electrolyte fuel cell. The polymer electrolyte fuel cell is prepared by, for example, FUEL CELL HANDBOOK (VAN NOSTRAND REINHOLD, AJ APPLEBY et.al, ISBN 0-442-31926-6), Chemical One Point, Fuel Cell (Second Edition). ), Masao Taniguchi, Manabu Senoo, Kyoritsu Shuppan (1992).
As the electron conductive material, a current collector such as a composite material of graphite or resin having a groove for flowing a gas such as fuel or oxidant on its surface, or a metal plate is used. When the MEA does not have a gas diffusion layer, the MEA is incorporated into a single cell casing (for example, PEFC single cell manufactured by Electrochem Inc., USA) with the gas diffusion layer positioned on the outer surface of each anode and cathode of the MEA. Thus, a polymer electrolyte fuel cell can be obtained.

高電圧を取り出すためには、上記のような単セルを複数積み重ねたスタックセルとして燃料電池を作動させる。このようなスタックセルとしての燃料電池を作成するためには、複数のMEAを作成してスタックセル用ケーシング(例えば、米国エレクトロケム社製 PEFCスタックセル)に組み込む。このようなスタックセルとしての燃料電池においては、隣り合うセルの燃料と酸化剤を分離する役割と隣り合うセル間の電気的コネクターの役割を果たすバイポーラプレートと呼ばれる集電体が用いられる。
燃料電池の運転は、一方の電極に水素を、他方の電極に酸素または空気を供給することによって行われる。燃料電池の作動温度は高温であるほど触媒活性が上がるために好ましい。通常は、水分管理が容易な50〜80℃で作動させることが多いが、80℃〜150℃で作動させることもできる。
In order to extract a high voltage, the fuel cell is operated as a stack cell in which a plurality of single cells as described above are stacked. In order to produce such a fuel cell as a stack cell, a plurality of MEAs are produced and assembled into a stack cell casing (for example, PEFC stack cell manufactured by US Electrochem Corp.). In such a fuel cell as a stack cell, a current collector called a bipolar plate is used which serves to separate the fuel and oxidant of adjacent cells and to serve as an electrical connector between the adjacent cells.
The fuel cell is operated by supplying hydrogen to one electrode and oxygen or air to the other electrode. The higher the operating temperature of the fuel cell, the higher the catalyst activity. Usually, it is often operated at 50 to 80 ° C., where moisture management is easy, but it can also be operated at 80 to 150 ° C.

以下、本発明を実施例に基いて詳細に説明する。   Hereinafter, the present invention will be described in detail based on examples.

[参考例1]フッ素系高分子固体電解質溶液の作成法
フッ素系高分子固体電解質として、[CFCF0.812−[CF−CF(−O−(CF−SOH)]0.188で表されるパーフルオロカーボンスルホン酸ポリマー(以下、「PFS」と称する)を用いて、PFS/PBI=100/1(質量比)のフッ素系高分子固体電解質溶液(キャスト液D)を以下のように製造した。
重量平均分子量が27000であるポリ[2,2’−(m−フェニレン)−5,5’−ビベンズイミダゾール](シグマアルドリッチジャパン(株)製、以下PBIと称する)をDMACとともにオートクレーブ中に入れて密閉し、200℃まで昇温して5時間保持した。その後、オートクレーブを自然冷却して、PBI/DMAC(ジメチルアセトアミド)=10/90(質量%)の組成のPBI溶液を得た。このPBI溶液の固有粘度は0.8(dl/g)であった。さらに、このPBI溶液をジメチルアセトアミドで10倍に希釈して、PBI/DMAC=1/99(質量%)の組成の前段階溶液Aを作製した。
As Reference Example 1 fluorine-based solid polymer electrolyte solution preparation method fluorine-based solid polymer electrolyte, [CF 2 CF 2] 0.812 - [CF 2 -CF (-O- (CF 2) 2 -SO 3 H)] A fluoropolymer solid electrolyte solution (cast solution) having a PFS / PBI = 100/1 (mass ratio) using a perfluorocarbonsulfonic acid polymer represented by 0.188 (hereinafter referred to as “PFS”). D) was prepared as follows.
Poly [2,2 ′-(m-phenylene) -5,5′-bibenzimidazole] having a weight average molecular weight of 27000 (manufactured by Sigma Aldrich Japan Co., Ltd., hereinafter referred to as PBI) is placed in an autoclave together with DMAC. And then heated up to 200 ° C. and held for 5 hours. Thereafter, the autoclave was naturally cooled to obtain a PBI solution having a composition of PBI / DMAC (dimethylacetamide) = 10/90 (mass%). The intrinsic viscosity of this PBI solution was 0.8 (dl / g). Further, this PBI solution was diluted 10-fold with dimethylacetamide to prepare a pre-stage solution A having a composition of PBI / DMAC = 1/99 (mass%).

次に、PFSの前駆体ポリマーとして、テトラフルオロエチレンとCF=CFO(CF−SOFとのパーフルオロカーボン重合体(MI:3.0)を製造した。この前駆体ポリマーを、水酸化カリウム(15質量%)とジメチルスルホキシド(30質量%)を溶解した水溶液中に、60℃で4時間接触させて、加水分解処理を行った。その後、60℃水中に4時間浸漬した。次に60℃の2N塩酸水溶液に3時間浸漬した後、イオン交換水で水洗、乾燥することで、イオン交換容量1.41ミリ当量/gのPFSを得た。 Next, a perfluorocarbon polymer (MI: 3.0) of tetrafluoroethylene and CF 2 ═CFO (CF 2 ) 2 —SO 2 F was produced as a PFS precursor polymer. The precursor polymer was subjected to a hydrolysis treatment by bringing it into contact with an aqueous solution in which potassium hydroxide (15% by mass) and dimethyl sulfoxide (30% by mass) were dissolved at 60 ° C. for 4 hours. Then, it was immersed in 60 degreeC water for 4 hours. Next, it was immersed in a 2N aqueous hydrochloric acid solution at 60 ° C. for 3 hours, then washed with ion-exchanged water and dried to obtain PFS having an ion-exchange capacity of 1.41 meq / g.

このPFSをエタノール水溶液(水:エタノール=50.0:50.0(質量比))とともにオートクレーブ中に入れて密閉し、180℃まで昇温して5時間保持した。その後、オートクレーブを自然冷却して、PFS:水:エタノール=5.0:47.5:47.5(質量%)の組成のポリマー溶液を得た。このポリマー溶液をエバポレータで減圧濃縮を行った後、水を添加してPFS/水=8.5/91.5(質量比)溶液を前段階溶液Bとして製造した。   This PFS was placed in an autoclave together with an aqueous ethanol solution (water: ethanol = 50.0: 50.0 (mass ratio)), sealed, heated to 180 ° C. and held for 5 hours. Thereafter, the autoclave was naturally cooled to obtain a polymer solution having a composition of PFS: water: ethanol = 5.0: 47.5: 47.5 (mass%). This polymer solution was concentrated under reduced pressure using an evaporator, and then water was added to prepare a PFS / water = 8.5 / 91.5 (mass ratio) solution as the pre-stage solution B.

得られた前段階溶液BにDMACを添加し、120℃で1時間還流した後、エバポレータで減圧濃縮を行って、PFS/DMAC=1.5/98.5(質量比)溶液を前段階溶液Cとして製造した。
次に40.0gの前段階溶液Cに6.5gの前段階溶液Aを添加し混合した後、68.9gの前段階溶液Bを加えて攪拌し、さらに80℃にて減圧濃縮してキャスト液Dを得た。このキャスト液中のPFSとPBIの濃度は、各々5.600質量%と0.056質量%であった。
After adding DMAC to the obtained pre-stage solution B and refluxing at 120 ° C. for 1 hour, the solution was concentrated under reduced pressure with an evaporator to obtain a PFS / DMAC = 1.5 / 98.5 (mass ratio) solution. Manufactured as C.
Next, after adding 6.5 g of the pre-stage solution A to 40.0 g of the pre-stage solution C and mixing, 68.9 g of the pre-stage solution B is added and stirred, and further concentrated under reduced pressure at 80 ° C. and cast. Liquid D was obtained. The concentrations of PFS and PBI in this casting solution were 5.600% by mass and 0.056% by mass, respectively.

[実施例1〜9]
10cm×10cmの枚葉の芳香族ポリアミドフィルム(商品名 アラミカ 帝人アドバンスドフィルム製)に孔を開けた。膜厚み、孔形状、配列、開孔率を表1に示す。次に、この所定の開孔率にした芳香族ポリアミドフィルムの両面にそれぞれ表面処理を施し補強材とした。実施例1〜3、及び9では、コロナ放電処理を施し、実施例4,5、6では紫外線照射を施し、実施例7,8ではプラズマ処理を多孔性芳香族ポリアミドフィルムの両面に施した。各表面処理条件を表1に示す。
[Examples 1 to 9]
A hole was made in a 10 cm × 10 cm sheet of aromatic polyamide film (trade name: Aramika Teijin Advanced Film). Table 1 shows the film thickness, hole shape, arrangement, and hole area ratio. Next, both surfaces of the aromatic polyamide film having the predetermined open area ratio were subjected to surface treatment to obtain a reinforcing material. In Examples 1 to 3 and 9, corona discharge treatment was performed, in Examples 4, 5 and 6, ultraviolet irradiation was performed, and in Examples 7 and 8, plasma treatment was performed on both surfaces of the porous aromatic polyamide film. Each surface treatment condition is shown in Table 1.

実施例1〜3、6〜8では、このようにして作成した多孔性フィルムを、参考例1で作成したフッ素系高分子固体電解質溶液、または、5質量%のNafion溶液(NafionTM/HO/イソプロパノール、米国Solution Technology、Inc.社製、当量質量EW(プロトン交換基1当量当りの乾燥質量グラム数)=1100)に浸漬し、フッ素系高分子固体電解質を被覆させ、室温で乾燥後、オーブンを用いて100℃で乾燥させることによって高分子固体電解質膜を作成した。
一方、実施例4、5では、あらかじめPTFEシートに前述の高分子溶液をキャストし、室温で乾燥後、オーブンを用いて100℃で1時間乾燥させることによって作成したフィルムにて、補強材としての多孔性芳香族ポリアミドフィルムを挟み込み、200℃1時間で真空プレスで成形することによって、高分子固体電解質膜を作成した。
In Examples 1 to 3 and 6 to 8, the porous film thus prepared was used as the fluorine-based polymer solid electrolyte solution prepared in Reference Example 1 or a 5% by mass Nafion solution (Nafion / H 2 O / isopropanol, manufactured by Solution Technology, Inc., USA, equivalent mass EW (dry mass in grams per equivalent of proton exchange groups = 1100), coated with a fluorine-based polymer solid electrolyte, and dried at room temperature The polymer solid electrolyte membrane was prepared by drying at 100 ° C. using an oven.
On the other hand, in Examples 4 and 5, the above polymer solution was cast in advance on a PTFE sheet, dried at room temperature, and then dried at 100 ° C. for 1 hour using an oven. A porous solid polyamide membrane was sandwiched and molded with a vacuum press at 200 ° C. for 1 hour to prepare a polymer solid electrolyte membrane.

また、実施例9では、実施例1と同様に多孔性フィルムをNafion溶液に浸漬させた後、室温で乾燥後、オーブンを用いて100℃で乾燥させた2枚の高分子固体電解質膜を多孔性フィルムの孔の位置が重なることなく互い違いになるようにずらして重ねて200℃1時間で真空プレスで成形することによって高分子固体電解質膜の積層体を作成した。表1に得られた高分子固体電解質膜の膜厚を示す。
このようにして作成した高分子固体電解質膜を以下の方法で評価したが、何れも良好な特性を示した。結果は表1に示す。
In Example 9, the porous polymer film was immersed in a Nafion solution as in Example 1, then dried at room temperature, and then dried at 100 ° C. using an oven. The laminated body of the polymer solid electrolyte membrane was prepared by shifting the positions of the holes in the conductive film so as to be staggered without overlapping and forming by a vacuum press at 200 ° C. for 1 hour. Table 1 shows the thickness of the polymer solid electrolyte membrane obtained.
The polymer solid electrolyte membrane thus prepared was evaluated by the following method, and all showed good characteristics. The results are shown in Table 1.

(プロトン伝導度)
高分子固体電解質膜を95℃の湯中で処理した後に、膨潤状態のまま幅1cm、長さ7cmに切出し、厚みT を測定した。このサンプルを膨潤状態のまま伝導度を測定する2端子式の伝導度測定セルに装着した。このセルを95℃のイオン交換水中に浸漬し、交流インピーダンス法により周波数10kHzにおける抵抗値Rを測定し、以下の式からプロトン伝導度σを算出した。
σ=L /(R ×T ×W )
σ:プロトン伝導度(S/cm)
T :厚み(cm)
R :抵抗値(Ω)
L :2端子間距離(=5cm)
W :サンプル幅(=1cm)
(乾湿寸法変化)
高分子固体電解質膜を5cm角に切り出し、95℃の湯中に5分間浸漬した。そして浸漬後の長さを浸漬前の長さで除してその変化を求めた。
(Proton conductivity)
After the polymer solid electrolyte membrane was treated in hot water at 95 ° C., it was cut into a width of 1 cm and a length of 7 cm in a swollen state, and the thickness T was measured. This sample was attached to a two-terminal conductivity measuring cell for measuring conductivity in a swollen state. This cell was immersed in 95 ° C. ion-exchanged water, the resistance value R at a frequency of 10 kHz was measured by the AC impedance method, and the proton conductivity σ was calculated from the following equation.
σ = L / (R × T × W)
σ: Proton conductivity (S / cm)
T: Thickness (cm)
R: Resistance value (Ω)
L: Distance between two terminals (= 5cm)
W: Sample width (= 1 cm)
(Change in wet and dry dimensions)
The polymer solid electrolyte membrane was cut into 5 cm square and immersed in 95 ° C. hot water for 5 minutes. And the length after immersion was divided | segmented by the length before immersion, and the change was calculated | required.

[比較例1、2]
表1に示すような構成で高分子固体電解質膜を作成した。比較例1は、補強材としての芳香族ポリアミドフィルムを用いず参考例1で製造したフッ素系高分子固体電解質溶液をキャスト法により作成したものである。比較例2は補強材としての多孔性芳香族ポリアミドフィルムに表面処理を施さなかった以外は実施例1と同様の方法で高分子固体電解質膜を製造したものである。
比較例1では、乾湿寸法変化が、20%となった。比較例2では芳香族ポリアミドフィルムと高分子固体電解質の間に剥離が生じた。
[Comparative Examples 1 and 2]
A polymer solid electrolyte membrane was prepared with the structure shown in Table 1. Comparative Example 1 was prepared by casting the fluoropolymer solid electrolyte solution produced in Reference Example 1 without using an aromatic polyamide film as a reinforcing material. In Comparative Example 2, a solid polymer electrolyte membrane was produced in the same manner as in Example 1 except that the porous aromatic polyamide film as a reinforcing material was not subjected to surface treatment.
In Comparative Example 1, the wet and dry dimensional change was 20%. In Comparative Example 2, peeling occurred between the aromatic polyamide film and the polymer solid electrolyte.

Figure 2006059551
Figure 2006059551

本発明は、高温耐久性の向上作用を示し、燃料電池用の高分子固体電解質膜として好適
である。
The present invention exhibits an effect of improving high temperature durability and is suitable as a polymer solid electrolyte membrane for a fuel cell.

Claims (5)

コロナ放電処理、紫外線照射処理、プラズマ処理から選ばれた少なくとも1種類以上の表面処理が施された多孔性芳香族ポリアミドフィルムを有し、かつ、120℃以上の熱処理が施されたことを特徴とするフッ素系高分子固体電解質膜。   It has a porous aromatic polyamide film that has been subjected to at least one surface treatment selected from corona discharge treatment, ultraviolet irradiation treatment, and plasma treatment, and has been subjected to a heat treatment at 120 ° C. or higher. Fluorine polymer solid electrolyte membrane. 該フッ素系高分子固体電解質膜がパーフルオロカーボンスルホン酸ポリマー(a)と、塩基性重合体(b)を含有し、該(a)と該(b)全体の含有率が、該フッ素系高分子固体電解質膜中1〜50体積%であり、かつ、該(a)の含有率([(a)/((a)+(b))]×100)が50.00〜99.999質量%、該(b)の含有率([(b)/((a)+(b))]×100)が0.001〜50.00質量%である事を特徴とする請求項1に記載のフッ素系高分子固体電解質膜。   The fluoropolymer solid electrolyte membrane contains a perfluorocarbon sulfonic acid polymer (a) and a basic polymer (b), and the total content of the (a) and the (b) is the fluoropolymer. It is 1 to 50% by volume in the solid electrolyte membrane, and the content of (a) ([(a) / ((a) + (b))] × 100) is 50.00 to 99.999% by mass The content of (b) ([(b) / ((a) + (b))] × 100) is 0.001 to 50.00% by mass. Fluorine polymer solid electrolyte membrane. 請求項1又は2に記載のフッ素系高分子固体電解質膜を2枚以上積層させてなる事を特徴とするフッ素系高分子固体電解質膜積層体。   A fluorine polymer solid electrolyte membrane laminate comprising two or more fluorine polymer solid electrolyte membranes according to claim 1 or 2 laminated. 請求項1〜3のいずれかに記載のフッ素系高分子固体電解質膜或いはフッ素系高分子固体電解質膜積層体を介して、アノードとカソードが対向してなる膜/電極接合体。   A membrane / electrode assembly in which an anode and a cathode are opposed to each other via the fluorine-based polymer solid electrolyte membrane or the fluorine-based polymer solid electrolyte membrane laminate according to any one of claims 1 to 3. 請求項4に記載の膜/電極接合体を包含してなる事を特徴とする固体高分子型燃料電池。   A polymer electrolyte fuel cell comprising the membrane / electrode assembly according to claim 4.
JP2004237218A 2004-08-17 2004-08-17 Fluoropolymer solid polymer electrolyte membrane, fluoropolymer solid polymer electrolyte membrane laminate, membrane / electrode assembly, and solid polymer fuel cell Expired - Fee Related JP4632717B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004237218A JP4632717B2 (en) 2004-08-17 2004-08-17 Fluoropolymer solid polymer electrolyte membrane, fluoropolymer solid polymer electrolyte membrane laminate, membrane / electrode assembly, and solid polymer fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004237218A JP4632717B2 (en) 2004-08-17 2004-08-17 Fluoropolymer solid polymer electrolyte membrane, fluoropolymer solid polymer electrolyte membrane laminate, membrane / electrode assembly, and solid polymer fuel cell

Publications (2)

Publication Number Publication Date
JP2006059551A true JP2006059551A (en) 2006-03-02
JP4632717B2 JP4632717B2 (en) 2011-02-16

Family

ID=36106868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004237218A Expired - Fee Related JP4632717B2 (en) 2004-08-17 2004-08-17 Fluoropolymer solid polymer electrolyte membrane, fluoropolymer solid polymer electrolyte membrane laminate, membrane / electrode assembly, and solid polymer fuel cell

Country Status (1)

Country Link
JP (1) JP4632717B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007109634A (en) * 2005-09-15 2007-04-26 National Institute For Materials Science Membrane for proton conductive fuel cell capable of operating under nonaqueous and high temperature condition and its manufacturing method
JP2007157637A (en) * 2005-12-08 2007-06-21 Toyota Motor Corp Reinforcement type solid polymer electrolyte membrane and its manufacturing method
WO2010067743A1 (en) * 2008-12-12 2010-06-17 株式会社クラレ Laminated electrolyte membrane, membrane-electrode assembly, and fuel cell

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0684528A (en) * 1992-09-02 1994-03-25 Fuji Electric Co Ltd Solid high polymer electrolyte type fuel cell
JP2000215903A (en) * 1999-01-25 2000-08-04 Toshiba Corp Solid high-molecular electrolyte type fuel cell
JP2001236973A (en) * 2000-02-23 2001-08-31 Toyota Central Res & Dev Lab Inc Solid high polymer electrolytic film and its production
JP2002083612A (en) * 2000-09-07 2002-03-22 Takehisa Yamaguchi Electrolyte film and its manufacturing method, and fuel cell and its manufacturing method
WO2002059996A1 (en) * 2001-01-26 2002-08-01 Toray Industries, Inc. Polymer electrolyte film and method for preparation of the same, and solid polymer type fuel cell using the same
JP2002216795A (en) * 2001-01-19 2002-08-02 Sony Corp Method of producing proton conductor membrane and method of producing fuel cell
JP2002358979A (en) * 2001-06-01 2002-12-13 Teijin Ltd Polymer solid electrolyte compound membrane

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0684528A (en) * 1992-09-02 1994-03-25 Fuji Electric Co Ltd Solid high polymer electrolyte type fuel cell
JP2000215903A (en) * 1999-01-25 2000-08-04 Toshiba Corp Solid high-molecular electrolyte type fuel cell
JP2001236973A (en) * 2000-02-23 2001-08-31 Toyota Central Res & Dev Lab Inc Solid high polymer electrolytic film and its production
JP2002083612A (en) * 2000-09-07 2002-03-22 Takehisa Yamaguchi Electrolyte film and its manufacturing method, and fuel cell and its manufacturing method
JP2002216795A (en) * 2001-01-19 2002-08-02 Sony Corp Method of producing proton conductor membrane and method of producing fuel cell
WO2002059996A1 (en) * 2001-01-26 2002-08-01 Toray Industries, Inc. Polymer electrolyte film and method for preparation of the same, and solid polymer type fuel cell using the same
JP2002358979A (en) * 2001-06-01 2002-12-13 Teijin Ltd Polymer solid electrolyte compound membrane

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007109634A (en) * 2005-09-15 2007-04-26 National Institute For Materials Science Membrane for proton conductive fuel cell capable of operating under nonaqueous and high temperature condition and its manufacturing method
JP2007157637A (en) * 2005-12-08 2007-06-21 Toyota Motor Corp Reinforcement type solid polymer electrolyte membrane and its manufacturing method
WO2010067743A1 (en) * 2008-12-12 2010-06-17 株式会社クラレ Laminated electrolyte membrane, membrane-electrode assembly, and fuel cell
JPWO2010067743A1 (en) * 2008-12-12 2012-05-17 株式会社クラレ Electrolyte laminated film, membrane-electrode assembly, and fuel cell

Also Published As

Publication number Publication date
JP4632717B2 (en) 2011-02-16

Similar Documents

Publication Publication Date Title
US7875392B2 (en) Polymer electrolyte membrane having high durability and method for producing the same
KR100717745B1 (en) A binder for fuel cell, compoaition for catalyst formation using the same, and a membrane electrode assembly for fuel cell, and preparation method thereof
JP5830386B2 (en) POLYMER ELECTROLYTE MEMBRANE FOR DIRECT OXIDATION FUEL CELL, ITS MANUFACTURING METHOD, AND DIRECT OXIDATION FUEL CELL SYSTEM INCLUDING THE SAME
WO2011046233A1 (en) Polymer electrolyte membrane, membrane-electrode assembly, and solid polymer fuel cell
KR100599774B1 (en) A membrane electrode assembly for fuel cell, a method for preparing the same and a fuel cell comprising the same
WO2004051776A1 (en) Solid polymer electrolytic film, solid polymer fuel cell employing it, and process for producing the same
KR20070056324A (en) Polymer electrolyte for fuel cell and fuel cell system comprising same
JP5008272B2 (en) Composite proton exchange membrane
JP7359139B2 (en) Laminated electrolyte membrane, membrane electrode assembly, water electrolysis type hydrogen generator, and method for manufacturing the laminated electrolyte membrane
KR20160120078A (en) Polymer electrolyte membrane for fuel cell and membrane-electrode assembly for fuel cell including the same
JP5693208B2 (en) Membrane-electrode assembly for fuel cell, manufacturing method of membrane-electrode assembly for fuel cell, fuel cell system, and stack for fuel cell
JP5557430B2 (en) PROTON CONDUCTIVE POLYMER ELECTROLYTE MEMBRANE, PROCESS FOR PRODUCING THE SAME, MEMBRANE-ELECTRODE ASSEMBLY USING THE SAME, AND POLYMER ELECTROLYTE FUEL CELL
JP4771702B2 (en) Polymer solid electrolyte membrane with reinforcing material
JP4836438B2 (en) Polymer electrolyte laminate film
JP2006269266A (en) Compound solid polyelectrolyte membrane having reinforcement material
EP2036927B1 (en) Ionic polymer particle dispersion liquid and method for producing the same
JP4632717B2 (en) Fluoropolymer solid polymer electrolyte membrane, fluoropolymer solid polymer electrolyte membrane laminate, membrane / electrode assembly, and solid polymer fuel cell
KR20090092592A (en) Method of preparing a membrane electrode assembly for fuel cell, Membrane electrode assembly prepared by the same and Fuel cell to which the method is applied
JP4798974B2 (en) Method for producing solid polymer electrolyte membrane
JP2008311146A (en) Membrane-electrode assembly, its manufacturing method, and solid polymer fuel cell
JP2006260901A (en) Complex membrane of fluorine-containing sulfonic acid polymer
JP2009187726A (en) Solid polyelectrolyte membrane, its manufacturing method, membrane electrode assembly for fuel cell, and fuel cell
KR20050036994A (en) Membranes for fuel cells
KR20090019175A (en) Method of preparing membrane-electrode assembly for fuel cell, and membrane-electrode assembly for fuel cell prepared thereby
JP2006185849A (en) Solid polymer electrolyte film for fuel cell and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070629

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100709

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101116

R150 Certificate of patent or registration of utility model

Ref document number: 4632717

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees