JP2007109634A - Membrane for proton conductive fuel cell capable of operating under nonaqueous and high temperature condition and its manufacturing method - Google Patents

Membrane for proton conductive fuel cell capable of operating under nonaqueous and high temperature condition and its manufacturing method Download PDF

Info

Publication number
JP2007109634A
JP2007109634A JP2006227490A JP2006227490A JP2007109634A JP 2007109634 A JP2007109634 A JP 2007109634A JP 2006227490 A JP2006227490 A JP 2006227490A JP 2006227490 A JP2006227490 A JP 2006227490A JP 2007109634 A JP2007109634 A JP 2007109634A
Authority
JP
Japan
Prior art keywords
weight
polymer electrolyte
parts
membrane
electrolyte membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006227490A
Other languages
Japanese (ja)
Other versions
JP5062722B2 (en
Inventor
Zumitoku Kin
済徳 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2006227490A priority Critical patent/JP5062722B2/en
Publication of JP2007109634A publication Critical patent/JP2007109634A/en
Application granted granted Critical
Publication of JP5062722B2 publication Critical patent/JP5062722B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a membrane for a proton conductive fuel cell having high proton conductivity in a nonaqueous or low humidity and high temperature condition and being capable of applying to a fuel cell. <P>SOLUTION: A polymer electrolyte membrane for the fuel cell comprises processes for: (1) preparing a precursor (varnish) for a polymer electrolyte membrane by adding and mixing a varnish-like precursor for a polymer electrolyte obtained by mixing 20-200 pts.wt. benzimidazole (B) or 20-200 pts.wt. 1,2,4-triazole (C) to 100 pts.wt. perfluorocarbon sulfonic acid polymer (A) by using a solvent; (2) extending and spreading the varnish in a film state on a substrate; (3) heating to temperature vaporizing solvent and moisture; and (4) peeling off the polymer electrolyte membrane for the fuel cell formed on the substrate from the substrate, if necessary. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、無水・高温下で優れたプロトン(水素イオン)導電性を示すプロトン導電性燃料電池用膜、及びその製造方法に関するものである。   The present invention relates to a membrane for a proton conductive fuel cell that exhibits excellent proton (hydrogen ion) conductivity under anhydrous and high temperature, and a method for producing the same.

近年クリーンエネルギー、とりわけ燃料として水素ガスないし水素を含む炭化水素原料と、酸化剤として酸素ガスとを反応させて電力を得る燃料電池が注目されている。このような水素源及び酸素ガスを使ったポリマー電解質燃料電池(polymer electrolyte fuel cell;PEFC)は、クリーンで環境にやさしいエネルギー生産系及びエネルギー生産の高効率性のゆえに、次世代の強力なエネルギー生産系装置として注目され、燃料電池を構成するセルや、プロトン導電性高分子膜等、使用する材料としては安定で効率のいい材料、あるいは効率のいい材料の組み合わせ等システムの開発が求められている。   In recent years, attention has been focused on fuel cells that obtain electric power by reacting clean energy, particularly hydrocarbon raw materials containing hydrogen gas or hydrogen as a fuel, and oxygen gas as an oxidant. The polymer electrolyte fuel cell (PEFC) using such a hydrogen source and oxygen gas is the next generation of powerful energy production because of its clean and environmentally friendly energy production system and high efficiency of energy production. It is attracting attention as a system device, and there is a need to develop a system that uses stable and efficient materials, or a combination of efficient materials as the materials used, such as cells constituting fuel cells and proton conductive polymer membranes. .

ここに燃料電池とは、燃料および酸化剤に化学反応を起こさせて電気および水を発生させる電気化学装置と定義される。燃料電池に供給される典型的な燃料は水素であり、燃料電池に供給される典型的な酸化剤は酸素(または周囲の空気)である。燃料電池の作動条件および種類に応じて他の燃料または酸化剤が使用可能である。   Here, the fuel cell is defined as an electrochemical device that generates electricity and water by causing a chemical reaction between the fuel and the oxidant. A typical fuel supplied to the fuel cell is hydrogen and a typical oxidant supplied to the fuel cell is oxygen (or ambient air). Other fuels or oxidants can be used depending on the operating conditions and type of the fuel cell.

燃料電池の特徴としては、その反応プロセスが極めて高効率であること、特に、水素が直接燃料供給される燃料電池では、完全に無公害であることが挙げられる。燃料電池は、様々な大きさのスタックに容易に組み立てることができることから、小さな形態のものから比較的に広範囲、大規模に電力を作り出しえるものまで様々な形態が開発されている。そのため、各種産業分野のみならず、家庭用も含めて利用可能であり、今後おおいに発展が期待されている。   The characteristics of the fuel cell include that the reaction process is extremely efficient, and in particular, in a fuel cell directly supplied with hydrogen, it is completely pollution-free. Since fuel cells can be easily assembled into stacks of various sizes, a variety of forms have been developed, from small forms to those that can generate power on a relatively wide and large scale. Therefore, it can be used not only for various industrial fields but also for home use, and is expected to develop greatly in the future.

また、燃料電池の出力システムは、一つの電解質を共有するぞれぞれの電極界面で燃料および酸素に化学反応を起こさせることにより起電力を作り出す。例えば、プロトン交換膜燃料電池においては、電池構造には電解質として機能するだけでなく水素と酸素との混り合いを防ぐバリアとしても機能するプロトン交換膜が含まれている。市販されているプロトン交換膜の一つは、後述するようにナフィオン(Nafion:商標名)という名前で、デュポン社から販売されているパーフルオロスルホン酸ポリマー材料から作られているがこれに限定はされない。すなわち、プロトン交換膜は、他の市販ソースからも購入できる。理解しておくべきこととして、プロトン交換膜は、燃料電池のアノードおよびカソードを形成する二つの電極の間に、かつ二つの電極に接触して配置されている。   In addition, the output system of the fuel cell generates an electromotive force by causing a chemical reaction between fuel and oxygen at each electrode interface sharing one electrolyte. For example, in a proton exchange membrane fuel cell, the cell structure includes a proton exchange membrane that not only functions as an electrolyte but also functions as a barrier that prevents mixing of hydrogen and oxygen. One of the commercially available proton exchange membranes is made of a perfluorosulfonic acid polymer material sold by DuPont under the name Nafion (trade name) as will be described later. Not. That is, proton exchange membranes can be purchased from other commercial sources. It should be understood that the proton exchange membrane is positioned between and in contact with the two electrodes that form the anode and cathode of the fuel cell.

PEM型燃料電池の場合、第一の電極(アノード)に水素ガスが導入され、そこで水素ガスは触媒の存在下で電気化学的に反応を起こして電子とプロトンを生じる。電子は、第一の電極から第二の電極(カソード)へとこれら各電極を結合する電気回路を通って流れる。さらに、プロトンは、固体高分子電解質(プロトン交換膜)を通って第二の電極(カソード)へと流れる。同時に、酸素ガス(または空気)などの酸化剤が第二の電極に導入されて、そこで酸化剤は触媒の存在下で電気化学的に反応を起こして、電子回路を流れて来た電子およびプロトン(プロトン交換膜を通過して来た)と結合して水を形成する。この反応によって、電気が出力される。   In the case of a PEM type fuel cell, hydrogen gas is introduced into a first electrode (anode), where the hydrogen gas undergoes an electrochemical reaction in the presence of a catalyst to generate electrons and protons. The electrons flow from the first electrode to the second electrode (cathode) through an electrical circuit that couples each of these electrodes. Furthermore, protons flow through the solid polymer electrolyte (proton exchange membrane) to the second electrode (cathode). At the same time, an oxidant such as oxygen gas (or air) is introduced into the second electrode, where the oxidant reacts electrochemically in the presence of the catalyst, and the electrons and protons that have flowed through the electronic circuit. Combined with (which has passed through the proton exchange membrane) to form water. By this reaction, electricity is output.

従来設計されてきた燃料電池用高分子膜としては、前述したようにパーフルオロスルホン酸ポリマーの一種であるナフィオン(デュポン社の登録商標)膜を使用し、これを加湿条件下に組み込み、80℃以下で作動しうるように設計されたPEFCが用いられてきた。しかし、燃料電池としては高温で作動可能であり、CO毒に対する許容範囲を高めたものが要求され、高温度(100−200℃)で作動可能な燃料電池が強く要望されている。換言すれば、より高温度側で作動可能なPEFCは、COに対する白金電極の許容度を改善し、高効率で単純な熱管理及びコジェネレーションを可能にするものとして期待されている。   As a polymer membrane for a fuel cell that has been conventionally designed, a Nafion (registered trademark of DuPont), which is a kind of perfluorosulfonic acid polymer, is used as described above. PEFCs designed to work with: have been used. However, a fuel cell that can operate at a high temperature and has a higher tolerance for CO poison is required, and a fuel cell that can operate at a high temperature (100 to 200 ° C.) is strongly desired. In other words, PEFCs that can be operated at higher temperatures are expected to improve the tolerance of platinum electrodes for CO, enabling highly efficient and simple thermal management and cogeneration.

燃料電池では、プロトン導電性膜は、アノードで生じたプロトンをカソード側へ運ぶ役目がある。それゆえ、プロトン導電性膜は、ポリマー電解質燃料電池において鍵となる重要なものである。これまでに、イオン交換膜として、パーフルオロ化イオノマーやそのコンポジット、高分子/低分子のコンポジット、無機−有機のコンポジット等の電解質膜がいくつか知られている。   In a fuel cell, the proton conductive membrane serves to carry protons generated at the anode to the cathode side. Proton conducting membranes are therefore key and important in polymer electrolyte fuel cells. To date, several ion exchange membranes such as perfluorinated ionomers and their composites, polymer / low molecular composites, inorganic-organic composites, and the like are known.

しかし、これらの電解質膜は、高温で不安定な欠点、すなわち、100℃以上の高温で長時間にわたって使用すると、膜から水分が蒸発して含水率が低下してイオン伝導度が低下し、電圧が降下し、電池の性能が低下するとともに不可逆的反応によって分子構造の崩壊が起こり、プロトン導電性が減少して使えなくなる欠点があった。さらにこのよう燃料電池には、アノード(燃料極)でHは解離することなくHのまま通過してしまうことがあり、起電圧の低下や発電量の低下などの問題を招くことがあった。 However, these electrolyte membranes are unstable at high temperatures, that is, when used at a high temperature of 100 ° C. or higher for a long time, moisture evaporates from the membrane, the water content decreases, the ionic conductivity decreases, and the voltage decreases. As a result, the battery performance deteriorates and the irreversible reaction causes a collapse of the molecular structure, which decreases proton conductivity and makes it unusable. Furthermore, in such a fuel cell, H 2 may pass through H 2 without dissociating at the anode (fuel electrode), which may cause problems such as a decrease in electromotive voltage and a decrease in power generation amount. It was.

そこで、最近では、無水(又は低湿度)かつ高温度の条件で優れたプロトン導電性を有する電解質膜が得られれば上記問題が解決されるのではないかと考えられ、これらの観点から、高温で可動なPEFCへ応用するための酸−塩基複合電解質に焦点が当てられてきた(非特許文献1、ほか)。   Therefore, recently, it is considered that the above problem can be solved if an electrolyte membrane having excellent proton conductivity under anhydrous (or low humidity) and high temperature conditions is obtained. The focus has been on acid-base composite electrolytes for application to mobile PEFCs (Non-Patent Document 1, et al.).

一方、特許文献1に開示されているように、無水プロトン伝導を実現できる「第四級化」可能な第三級窒素原子をもつ有機アミン材料を、シリカなどのナノ微粒子状酸化物及び安定な結合剤(テフロンなど)と結合させることにより、無水で、高温度(190℃)においても作動するプロトン導電膜も得られている。   On the other hand, as disclosed in Patent Document 1, an organic amine material having a tertiary nitrogen atom capable of “quaternization” capable of realizing anhydrous proton conduction is made of a nanoparticulate oxide such as silica and a stable oxide. Proton conductive films that are anhydrous and operate even at high temperatures (190 ° C.) have been obtained by bonding with a binder (such as Teflon).

M. Yamada and I. Honma: Electrochim. Acta 48 (2003) 2411−2415M.M. Yamada and I.I. Honma: Electrochim. Acta 48 (2003) 2411-2415 特表2005−516345号公報JP-T-2005-516345

本発明においても上記要望に応え、無水(又は低湿度)かつ高温度(100〜180℃又はそれ以上の温度)の条件で優れたプロトン導電性を示し、メタノールやメタン等の水素源燃料が直接供給される直接燃料タイプの燃料電池にも利用され得る新規なプロトン導電性燃料電池用膜、並びにその製造方法を提供しようというものである。   Also in the present invention, in response to the above-mentioned demand, excellent proton conductivity is exhibited under conditions of anhydrous (or low humidity) and high temperature (temperature of 10 to 180 ° C. or higher), and hydrogen source fuels such as methanol and methane are directly used. It is an object of the present invention to provide a novel membrane for a proton conductive fuel cell that can also be used for a supplied direct fuel type fuel cell, and a method for producing the membrane.

そのため本発明者において、鋭意研究した結果、パーフルオロカーボンスルホン酸ポリマーに対して、ベンズイミダゾール(以下、Bzとも略す)または1,2,4-トリアゾールを特定割合配合し、得られたワニス状高分子コンポジットを、基板上に層状に展開・延伸し、加熱することによって、上記要望に応え得る膜、すなわち、無水・高温下に優れたプロトン(水素イオン)導電性を示すプロトン導電性燃料電池用膜が得られるとの知見を得、本発明は、この知見に基づいてなされたものである。すなわち、その構成は、以下(1)〜(6)項に記載する通りである。
(1) パーフルオロカーボンスルホン酸ポリマー(A)100重量部に対して、ベンズイミダゾール(B)20重量部〜200重量部、または1,2,4-トリアゾール(C)20重量部〜100重量部を配合したワニス状高分子電解質膜用前駆体を、基板上に層状に展開・延伸し、これを加熱して得られる燃料電池用高分子電解質膜。
(2) 膜厚が200μm以下である、上記(1)の燃料電池用高分子電解質膜。
(3) 膜厚が20μm〜200μmで、膜自体に自己支持性がある、上記(1)又は(2)の燃料電池用高分子電解質膜。
(4) 比導電率は、温度80〜200度にて0.001(S/cm)以上である、上記(1)〜(3)いずれかの燃料電池用高分子電解質膜。
(5) 次の工程を含んでなる燃料電池用高分子電解質膜の製造方法。
1.溶媒を用い、パーフルオロカーボンスルホン酸ポリマー(A)100重量部に対して、ベンズイミダゾール(B)20重量部〜200重量部、または1,2,4-トリアゾール(C)20重量部〜100重量部を添加・混合し、ワニス状高分子電解質膜用前駆体を調製する工程;
2.基板上に前記ワニスを膜状に展開・延伸する工程;
3.溶媒及び水分が揮散する温度に加熱する工程。
(6) 次の工程を含んでなる燃料電池用高分子電解質膜の製造方法。
1.溶媒を用い、パーフルオロカーボンスルホン酸ポリマー(A)100重量部に対して、ベンズイミダゾール(B)20重量部〜200重量部、または1,2,4-トリアゾール(C)20重量部〜100重量部を添加・混合し、ワニス状高分子電解質膜用前駆体を調製する工程;
2.基板上に前記ワニスを膜状に展開・延伸する工程;
3.溶媒及び水分が揮散する温度に加熱する工程。
4.基板上に形成された燃料電池用高分子電解質膜を基板から剥離する工程。
Therefore, as a result of intensive studies by the present inventors, varnish-like polymer obtained by blending a specific ratio of benzimidazole (hereinafter also abbreviated as Bz) or 1,2,4-triazole to perfluorocarbon sulfonic acid polymer. A membrane that can meet the above requirements by spreading, stretching and heating the composite in layers on a substrate, that is, a membrane for a proton conductive fuel cell that exhibits excellent proton (hydrogen ion) conductivity under anhydrous and high temperature conditions The present invention has been made based on this finding. That is, the configuration is as described in the following items (1) to (6).
(1) 20 parts by weight to 200 parts by weight of benzimidazole (B) or 20 parts by weight to 100 parts by weight of 1,2,4-triazole (C) with respect to 100 parts by weight of the perfluorocarbon sulfonic acid polymer (A). A polymer electrolyte membrane for a fuel cell obtained by spreading and stretching a blended precursor for a varnish-like polymer electrolyte membrane on a substrate in a layered form and heating it.
(2) The polymer electrolyte membrane for fuel cells according to (1), wherein the film thickness is 200 μm or less.
(3) The polymer electrolyte membrane for fuel cells according to (1) or (2) above, wherein the membrane itself has a film thickness of 20 μm to 200 μm and the membrane itself is self-supporting.
(4) The polymer electrolyte membrane for fuel cells according to any one of (1) to (3), wherein the specific conductivity is 0.001 (S / cm) or more at a temperature of 80 to 200 degrees.
(5) A method for producing a polymer electrolyte membrane for a fuel cell, comprising the following steps.
1. Using a solvent, 20 to 200 parts by weight of benzimidazole (B) or 20 to 100 parts by weight of 1,2,4-triazole (C) with respect to 100 parts by weight of the perfluorocarbon sulfonic acid polymer (A) Adding and mixing to prepare a precursor for a varnish-like polymer electrolyte membrane;
2. Developing and stretching the varnish into a film on a substrate;
3. A step of heating to a temperature at which the solvent and moisture are volatilized.
(6) A method for producing a polymer electrolyte membrane for a fuel cell, comprising the following steps.
1. Using a solvent, 20 to 200 parts by weight of benzimidazole (B) or 20 to 100 parts by weight of 1,2,4-triazole (C) with respect to 100 parts by weight of the perfluorocarbon sulfonic acid polymer (A) Adding and mixing to prepare a precursor for a varnish-like polymer electrolyte membrane;
2. Developing and stretching the varnish into a film on a substrate;
3. A step of heating to a temperature at which the solvent and moisture are volatilized.
4). The process of peeling the polymer electrolyte membrane for fuel cells formed on the board | substrate from a board | substrate.

本発明は、パーフルオロカーボンスルホン酸ポリマー(A)100重量部に対して、ベンズイミダゾール(B)20重量部〜200重量部、または1,2,4-トリアゾール(C)20重量部〜100重量部を配合したワニス状高分子電解質膜用前駆体を、基板上に層状に展開・延伸し、これを加熱して得られる燃料電池用高分子電解質膜、に関するものである。
これによって無水・高温で性能が劣化することなくプロトン導電性を有する、新規な燃料電池用高分子電解質膜が提供される。
The present invention relates to 20 to 200 parts by weight of benzimidazole (B) or 20 to 100 parts by weight of 1,2,4-triazole (C) with respect to 100 parts by weight of the perfluorocarbon sulfonic acid polymer (A). The present invention relates to a polymer electrolyte membrane for a fuel cell obtained by spreading and stretching a precursor for a varnish-like polymer electrolyte membrane blended with a layer on a substrate and heating the precursor.
As a result, a novel polymer electrolyte membrane for fuel cells is provided that has proton conductivity without degradation in performance at anhydrous and high temperatures.

また、本発明は、次の工程を含んでなる燃料電池用高分子電解質膜の製造方法、に関する。
(1)溶媒を用い、パーフルオロカーボンスルホン酸ポリマー(A)100重量部に対して、ベンズイミダゾール(B)20重量部〜200重量部、または1,2,4-トリアゾール(C)20重量部〜100重量部を添加・混合し、高分子電解質膜用前駆体(ワニス)を調製する工程;
(2)基板上に前記ワニスを膜状に展開・延伸する工程;
(3)溶媒及び水分が揮散する温度に加熱する工程。
このプロセスによって、基板の片面に高分子電解質膜が形成された燃料電池用高分子電解質膜付き基板が容易に得ることができる。
The present invention also relates to a method for producing a polymer electrolyte membrane for a fuel cell comprising the following steps.
(1) Using a solvent, benzoimidazole (B) 20 parts by weight to 200 parts by weight or 1,2,4-triazole (C) 20 parts by weight with respect to 100 parts by weight of the perfluorocarbon sulfonic acid polymer (A) Adding and mixing 100 parts by weight to prepare a polymer electrolyte membrane precursor (varnish);
(2) A step of spreading and stretching the varnish into a film on a substrate;
(3) A step of heating to a temperature at which the solvent and moisture are volatilized.
By this process, a substrate with a polymer electrolyte membrane for a fuel cell in which a polymer electrolyte membrane is formed on one surface of the substrate can be easily obtained.

さらにまた、本発明は、次の工程を含んでなる燃料電池用高分子電解質膜の製造方法、にも関する。
(1)溶媒を用い、パーフルオロカーボンスルホン酸ポリマー(A)100重量部に対して、ベンズイミダゾール(B)20重量部〜200重量部、または1,2,4-トリアゾール(C)20重量部〜100重量部を添加・混合し、高分子電解質膜用前駆体(ワニス)を調製する工程;
(2)基板上に前記ワニスを膜状に展開・延伸する工程;
(3)溶媒及び水分が揮散する温度に加熱する工程。
(4)基板上に形成された燃料電池用高分子電解質膜を基板から剥離する工程。
このプロセスによって、自己支持性のある燃料電池用高分子電解質膜を容易に得ることができる。
Furthermore, the present invention also relates to a method for producing a polymer electrolyte membrane for a fuel cell comprising the following steps.
(1) Using a solvent, benzoimidazole (B) 20 parts by weight to 200 parts by weight or 1,2,4-triazole (C) 20 parts by weight with respect to 100 parts by weight of the perfluorocarbon sulfonic acid polymer (A) Adding and mixing 100 parts by weight to prepare a polymer electrolyte membrane precursor (varnish);
(2) A step of spreading and stretching the varnish into a film on a substrate;
(3) A step of heating to a temperature at which the solvent and moisture are volatilized.
(4) The process of peeling the polymer electrolyte membrane for fuel cells formed on the board | substrate from a board | substrate.
By this process, a self-supporting polymer electrolyte membrane for fuel cells can be easily obtained.

本発明で得られる燃料電池用高分子電解質膜は、100〜200℃の高温度においても、10−3S/cm〜10−2S/cmの良好なプロトン導電性を示す。そのために、無水(又は低湿度)かつ高温度の条件で作動可能な燃料電池に応用することができる。
また、本発明の製造方法によって、燃料電池用高分子電解質膜付き基板又は(自己支持性を有する)燃料電池用高分子電解質膜を容易に、安価に製造することができる。
The polymer electrolyte membrane for fuel cells obtained by the present invention exhibits good proton conductivity of 10 −3 S / cm to 10 −2 S / cm even at a high temperature of 100 to 200 ° C. Therefore, it can be applied to a fuel cell that can operate under anhydrous (or low humidity) and high temperature conditions.
In addition, the production method of the present invention makes it possible to easily and inexpensively produce a substrate with a polymer electrolyte membrane for fuel cells or a polymer electrolyte membrane for fuel cells (having self-supporting properties).

以下、本発明を実施例、図面に基づいて詳細に説明する。ただし、これらの実施例は、発明を具体的に説明するために開示するものであって、本発明はこれらの実施例によって限定されない。   Hereinafter, the present invention will be described in detail with reference to examples and drawings. However, these examples are disclosed for specifically explaining the present invention, and the present invention is not limited to these examples.

本発明の燃料電池用高分子電解質膜は、上で述べた通り、パーフルオロカーボンスルホン酸ポリマー(酸成分;A)100重量部に対して、ベンズイミダゾール(塩基成分;B)20重量部〜200重量部、または1,2,4-トリアゾール(C)20重量部〜100重量部を配合したワニス状の高分子電解質膜用前駆体(混合液)を、基板上に層状に展開(延伸)し、これを加熱(溶媒及び水分を除去)して得られる燃料電池用高分子電解質膜、である。
ここで、「パーフルオロカーボンスルホン酸ポリマー」とは、高分子鎖内にC−F結合を含み、C−H結合を含まないポリマーで、かつスルホン酸基(−SOH)を有するポリマーをいい、例示すれば、ナフィオン(デュポン社の登録商標)である。図1に、ナフィオンの化学構造式を示すとともに、ベンズイミゾール(b)の化学構造式を示し、図6に1,2,4-トリアゾールの化学構造式を示した。
また、「基板」は、得られた燃料電池用高分子電解質膜の剥離を前提とするガラス板やポリフッ化エチレン(テフロン)板や金属板のような支持板でも構わないし、剥離を前提としない集電板(ガス流路を有する集電板)や、電極の役目を果たすパラジウム(水素吸蔵、水素化触媒)等でも構わない。このような場合は、燃料電池用高分子電解質膜の膜厚を50μm以下の薄さとすることができる。
As described above, the polymer electrolyte membrane for a fuel cell of the present invention has 20 to 200 parts by weight of benzimidazole (base component; B) with respect to 100 parts by weight of the perfluorocarbon sulfonic acid polymer (acid component; A). Or a varnish-like precursor for a polymer electrolyte membrane (mixed solution) containing 20 parts by weight to 100 parts by weight of 1,2,4-triazole (C) is developed (stretched) in layers on a substrate, This is a polymer electrolyte membrane for a fuel cell obtained by heating (removing the solvent and moisture).
Here, the “perfluorocarbon sulfonic acid polymer” refers to a polymer that includes a C—F bond and does not include a C—H bond in a polymer chain and has a sulfonic acid group (—SO 3 H). For example, Nafion (registered trademark of DuPont). FIG. 1 shows the chemical structural formula of Nafion, the chemical structural formula of benzimizole (b), and FIG. 6 shows the chemical structural formula of 1,2,4-triazole.
In addition, the “substrate” may be a glass plate, a polyfluorinated ethylene (Teflon) plate, a metal plate or the like on the premise that the obtained polymer electrolyte membrane for fuel cells is peeled off, and is not premised on peeling. A current collector plate (current collector plate having a gas flow path), palladium (hydrogen storage, hydrogenation catalyst) or the like serving as an electrode may be used. In such a case, the thickness of the polymer electrolyte membrane for a fuel cell can be reduced to 50 μm or less.

上記燃料電池用高分子電解質膜は、上で述べた通り、次の工程を経て製造することができる。
(1)溶媒を用い、パーフルオロカーボンスルホン酸ポリマー(A)100重量部に対して、ベンズイミダゾール(B)20重量部〜200重量部、または1,2,4-トリアゾール(C)20重量部〜100重量部を添加・混合し、高分子電解質膜用前駆体(ワニス)を調製する工程;
(2)基板上に前記ワニスを膜状に展開・延伸する工程;
(3)溶媒及び水分が揮散する温度に加熱する工程。
なお、上記工程(3)のあとに、基板から燃料電池用高分子電解質膜を剥離する工程を加えてもよい。そうすることで、基板の片面に高分子電解質膜が形成された燃料電池用高分子電解質膜付き基板を得ることもできるし、膜のみの(自己支持性がある)燃料電池用高分子電解質膜を得ることもできる。
前記酸成分と塩基成分との混合液を調製する場合の溶媒は、パーフルオロカーボンスルホン酸ポリマー又はベンズイミダゾールや1,2,4-トリアゾールを溶解し得る溶媒を用いることができる。ナフィオン(パーフルオロカーボンスルホン酸ポリマーの一種)の場合は、ナフィオン液(市販品)に含まれる溶媒(除去は不要)のほかに、これを希釈するためにイソプロパノール等の溶媒を用いることができる。ベンズイミダゾールや1,2,4-トリアゾールの溶媒としては、エタノール、メタノールやイソプロパノール等が使える。
As described above, the polymer electrolyte membrane for a fuel cell can be produced through the following steps.
(1) Using a solvent, benzoimidazole (B) 20 parts by weight to 200 parts by weight or 1,2,4-triazole (C) 20 parts by weight with respect to 100 parts by weight of the perfluorocarbon sulfonic acid polymer (A) Adding and mixing 100 parts by weight to prepare a polymer electrolyte membrane precursor (varnish);
(2) A step of spreading and stretching the varnish into a film on a substrate;
(3) A step of heating to a temperature at which the solvent and moisture are volatilized.
In addition, you may add the process of peeling the polymer electrolyte membrane for fuel cells from a board | substrate after the said process (3). By doing so, it is possible to obtain a substrate with a polymer electrolyte membrane for a fuel cell in which a polymer electrolyte membrane is formed on one side of the substrate, or a membrane-only polymer electrolyte membrane for a fuel cell having a self-supporting property. You can also get
As the solvent for preparing the mixed solution of the acid component and the base component, a perfluorocarbon sulfonic acid polymer or a solvent capable of dissolving benzimidazole or 1,2,4-triazole can be used. In the case of Nafion (a kind of perfluorocarbon sulfonic acid polymer), in addition to the solvent contained in the Nafion liquid (commercial product) (removal is not necessary), a solvent such as isopropanol can be used to dilute it. Ethanol, methanol, isopropanol, etc. can be used as a solvent for benzimidazole or 1,2,4-triazole.

パーフルオロカーボンスルホン酸ポリマー(酸成分;A)に対するベンズイミダゾール(塩基成分;B)の配合量は、前記酸成分(不揮発分基準)100重量部に対して20重量部〜200重量部(固体重量基準)、好ましくは50重量部〜200重量部、更に好ましくは100重量部〜200重量部である。前記塩基成分が20重量部未満では、高温(160〜200℃)側で、比導電率(比プロトン伝導度;比イオン導電率;比抵抗;(S/cm)、等ともいう。)の十分な向上が認められなく、200重量部を越えると均質な膜の形成が困難になる。
パーフルオロカーボンスルホン酸ポリマー(酸成分;A)に対する1,2,4-トリアゾール(塩基成分;C)の配合量は、前記酸成分(不揮発分基準)100重量部に対して20重量部〜100重量部(固体重量基準)、好ましくは100重量部である。前記塩基成分が100重量部未満では、高温(80〜160℃)側で、比導電率の十分な向上が認められなく、100重量部を越えると硬い膜になる。
The blending amount of benzimidazole (base component; B) with respect to the perfluorocarbon sulfonic acid polymer (acid component; A) is 20 to 200 parts by weight (solid weight basis) with respect to 100 parts by weight of the acid component (nonvolatile content basis). ), Preferably 50 to 200 parts by weight, more preferably 100 to 200 parts by weight. When the base component is less than 20 parts by weight, sufficient specific conductivity (specific proton conductivity; specific ionic conductivity; specific resistance; (S / cm), etc.) is sufficient on the high temperature (160 to 200 ° C.) side. However, when the amount exceeds 200 parts by weight, it is difficult to form a homogeneous film.
The blending amount of 1,2,4-triazole (base component; C) with respect to the perfluorocarbon sulfonic acid polymer (acid component; A) is 20 parts by weight to 100 parts by weight with respect to 100 parts by weight of the acid component (non-volatile basis). Parts (solid weight basis), preferably 100 parts by weight. When the basic component is less than 100 parts by weight, the specific conductivity is not sufficiently improved on the high temperature (80 to 160 ° C.) side, and when it exceeds 100 parts by weight, a hard film is formed.

燃料電池用高分子電解質膜の膜厚は、好ましくは200μm以下とする。膜厚の下限は破損しない限り極く薄くてもよく、nmオーダーであってもよい。200μmを越えると、電解質膜の抵抗が大きくなり好ましくない傾向になる。また、基板からの剥離を前提とする燃料電池用高分子電解質膜の膜厚は、自己支持性を持たせるために、20μm〜200μmが好ましく、基板からの剥離を前提としない燃料電池用高分子電解質膜の膜厚は、自己支持性を要しないので50μm以下の薄さにすることができる。下限は破損しない限り極く薄くてもよく、nmオーダーであってもよい。   The thickness of the polymer electrolyte membrane for fuel cells is preferably 200 μm or less. The lower limit of the film thickness may be very thin as long as it is not damaged, and may be on the order of nm. If it exceeds 200 μm, the resistance of the electrolyte membrane increases, which tends to be undesirable. In addition, the thickness of the polymer electrolyte membrane for fuel cells on the premise of peeling from the substrate is preferably 20 μm to 200 μm in order to provide self-supporting properties, and the polymer for fuel cells not premised on peeling from the substrate. The thickness of the electrolyte membrane can be reduced to 50 μm or less because self-supporting properties are not required. The lower limit may be extremely thin as long as it is not damaged, and may be on the order of nm.

また、本発明の燃料電池用高分子電解質膜が、燃料電池用として高温(100〜200℃程度)側でも作動可能であるためには、その比導電率(S/cm)は、温度100〜200度にて0.001(S/cm)以上であることが好ましく、更には0.01(S/cm)以上であることが好ましく、更には高いほど好ましい。   In addition, in order that the polymer electrolyte membrane for a fuel cell of the present invention can be operated on a high temperature (about 100 to 200 ° C.) side for a fuel cell, the specific conductivity (S / cm) is 100 to 100 ° C. It is preferably 0.001 (S / cm) or more at 200 degrees, more preferably 0.01 (S / cm) or more, and even higher the better.

実施例1;
(1)燃料電池用高分子電解質膜の調製
原料の一つのナフィオン液(5%溶液)はElectrochem Co., Ltd.から購入したものを用いた。また、別の原料のベンズイミダゾール(C;MW=118.14)はAlfa Co., Ltd.から購入したもの(固体)を用いた。
ナフィオン及びベンズイミダゾールを5:1の重量比で含む高分子電解質膜用前駆体(ワニス)は、「ナフィオン液」(5%溶液)の3g(ナフィオン0.15g含有)とイソプロパノール(希釈用)15mlとの混合液(以下、ナフィオン希釈液)に、ベンズイミダゾール0.03g(イソプロパノール3mlに溶かしたもの)溶液を加え、両者を混ぜて調製した。ナフィオン及びベンズイミダゾールを5:5の重量比で含む高分子電解質膜用前駆体(ワニス)は、ナフィオン希釈液3g(ナフィオン0.15g含有)に、ベンズイミダゾール0.15g(イソプロパノール3mlに溶かしたもの)溶液を加え、両者を混ぜて調製した。ナフィオン及びベンズイミダゾールを5:10の重量比で含む高分子電解質膜用前駆体(ワニス)は、ナフィオン希釈液3g(ナフィオン0.15g含有)に、ベンズイミダゾール0.3g(イソプロパノール3mlに溶かしたもの)溶液を加え、両者を混ぜて調製した。比較(対照)としては、上記ナフィオン希釈液(ベンズイミダゾール無添加)を用いた。
得られた高分子電解質膜用前駆体(ワニス)の所定量をペトリ皿に流し込み、乾燥状態で、60℃で1日間加熱処理し、膜を生成させた(均質な膜が得られた)。更に100℃で1日間加熱処理し、残存溶媒と水分子とを完全に除去して、本発明の燃料電池用高分子電解質膜(コンポジット膜ともいう;白色不透明又は白色半透明)を得た。得られた膜の厚みはペトリ皿に流し込んだ容積に依存したが、53−154μmの範囲であった。なお本明細書で、「%」とは、特に断らない限り、重量(wt)%を意味する。
Example 1;
(1) Preparation of polymer electrolyte membrane for fuel cell One Nafion solution (5% solution) as a raw material was manufactured by Electrochem Co. , Ltd., Ltd. The one purchased from is used. Another raw material benzimidazole (C 7 H 6 N 2 ; MW = 118.14) is Alfa Co. , Ltd., Ltd. The one purchased from (solid) was used.
A precursor for a polymer electrolyte membrane (varnish) containing Nafion and benzimidazole in a weight ratio of 5: 1 is 3 g of Nafion liquid (5% solution) (containing 0.15 g of Nafion) and 15 ml of isopropanol (for dilution). A solution of 0.03 g of benzimidazole (dissolved in 3 ml of isopropanol) was added to a mixed solution (hereinafter referred to as Nafion diluted solution), and both were mixed to prepare. A precursor for a polymer electrolyte membrane (varnish) containing Nafion and benzimidazole in a weight ratio of 5: 5 was dissolved in 3 g of Nafion diluted solution (containing 0.15 g of Nafion) in 0.15 g of benzimidazole (3 ml of isopropanol). ) Solution was added and both were prepared. A precursor for a polymer electrolyte membrane (varnish) containing Nafion and benzimidazole at a weight ratio of 5:10 was dissolved in 3 g of Nafion diluted solution (containing 0.15 g of Nafion) in 0.3 g of benzimidazole (3 ml of isopropanol). ) Solution was added and both were prepared. As a comparison (control), the above Nafion diluted solution (no benzimidazole added) was used.
A predetermined amount of the obtained precursor (varnish) for polymer electrolyte membrane was poured into a petri dish and heat-treated at 60 ° C. for 1 day in a dry state to form a membrane (a homogeneous membrane was obtained). Further, heat treatment was carried out at 100 ° C. for 1 day to completely remove the residual solvent and water molecules, thereby obtaining a polymer electrolyte membrane for fuel cells of the present invention (also referred to as a composite membrane; white opaque or white translucent). Although the thickness of the obtained film was dependent on the volume poured into the Petri dish, it was in the range of 53-154 μm. In the present specification, “%” means weight (wt)% unless otherwise specified.

(2)得られたコンポジット膜の評価
コンポジット膜および比較品における分子構造は、分解能4cm−1のダイヤモンド減衰全反射プリズム(diamond attenuated total reflection)付きIR分析で調べた。図2がその結果である。リキャスト(recast)ナフィオンフィルム((b)のBz:0%の比較品)の場合、水の吸収[ν O−H(3458cm−1)、δ O−H(1630cm−1)]、及びH(1720cm−1)が見られる。これは水の遊離とともに分解して共存するRSO と結合し、膜における脱水の進行とともにRSOHが生じたことを示唆している。
他方、ナフィオン−Bzコンポジット膜は(いずれの場合も)ナフィオン及びBzの各々の吸収ピークが見られる。ナフィオン−Bzコンポジット膜におけるBzのN−H(3100cm−1)、C−N(1620cm−1)、C−C(1454cm−1)及びN−H(748cm−1)結合である。ナフィオン−Bzコンポジット膜はO−HやHのような水の吸収を示していない。しかし、脱プロトン化されたSO ピークは(ナフィオン−Bzコンポジット生成後も)残っている。それゆえに、プロトンは酸残基からBzの塩基サイトへ移動し、ベンズイミダゾールのプロトン化と、スルホン化されたアニオンの形成とを引き起こし、それがこれらの分子にイオンチャンネルを形成するクーロン引力を生じさせると考えられる。
(2) Evaluation of the obtained composite film The molecular structure of the composite film and the comparative product was examined by IR analysis with a diamond attenuated total reflection prism having a resolution of 4 cm −1 . FIG. 2 shows the result. Recast (recast) Nafion film: For (Bz in (b) 0% comparative product), the absorption of water [ν O-H (3458cm -1 ), δ O-H (1630cm -1)], and H 3 O + (1720 cm −1 ) is seen. This RSO 3 coexisting decomposed with liberation of water - bound to suggest that RSO 3 H occurs with the progress of dehydration in the membrane.
On the other hand, the Nafion-Bz composite film has (in each case) absorption peaks of Nafion and Bz. N—H (3100 cm −1 ), C—N (1620 cm −1 ), C—C (1454 cm −1 ) and N—H (748 cm −1 ) bonds of Bz in the Nafion-Bz composite film. The Nafion-Bz composite membrane does not show water absorption like O—H or H 3 O + . However, SO 3 deprotonated - peak remains (after the generation Nafion -Bz composite also). Therefore, the protons migrate from the acid residue to the Bz base site, causing benzimidazole protonation and the formation of sulfonated anions, which cause the Coulomb attractive force to form ion channels in these molecules. It is thought to let you.

コンポジット膜および比較膜の熱安定性は、熱天秤分析(thermogravimetric analysis)TG/DTA6200(SII Co., Ltd.)により行った。サンプルは、窒素雰囲気下に室温から500℃まで、5℃/minの昇温速度で加熱した。図3は、コンポジット膜および比較膜のTGの結果であり、図4は、コンポジット膜および比較膜のDTAの結果である。リキャスト(recast)ナフィオン膜(i)における100℃以下での重量損失は、スルホン酸基に結合した水の脱着及びコンポジット膜に吸収された空気中の水の脱着と関係している。また、リキャスト(recast)ナフィオン膜(i)の重量損失は、320℃から390℃のあいだで急に減少しており、これはポリマーの完全な分解の前のスルホン酸基の分解に基づくものである。一方、コンポジット膜((ii)〜(iv))の熱挙動は、リキャスト(recast)ナフィオン膜(i)と非常に類似しており、ナフィオン5wt%−1wt%Bzのコンポジット膜(ii)では、リキャスト(recast)ナフィオン膜(i)よりも少し右にシフトしている。更に、ナフィオン5wt%−10wt%Bzのコンポジット膜(iv)では、200℃から300℃のあいだで大きな重量損失がみられるが、これは膜中のBzの融解(吸熱ピークから160−170℃)に基づくと考えられる。   The thermal stability of the composite membrane and the comparative membrane was determined by thermogravimetric analysis TG / DTA6200 (SII Co., Ltd.). The sample was heated from room temperature to 500 ° C. in a nitrogen atmosphere at a rate of 5 ° C./min. FIG. 3 shows the TG results of the composite film and the comparative film, and FIG. 4 shows the DTA results of the composite film and the comparative film. The weight loss below 100 ° C. in the recast Nafion membrane (i) is related to the desorption of water bound to the sulfonic acid groups and the desorption of water in the air absorbed by the composite membrane. In addition, the weight loss of the recast Nafion membrane (i) decreased sharply between 320 ° C. and 390 ° C., which was based on the decomposition of the sulfonic acid groups prior to the complete decomposition of the polymer. is there. On the other hand, the thermal behavior of the composite membrane ((ii) to (iv)) is very similar to the recast Nafion membrane (i). In the composite membrane (ii) of Nafion 5 wt% -1 wt% Bz, The recast Nafion membrane (i) is slightly shifted to the right. Further, in the composite film (iv) of Nafion 5 wt% -10 wt% Bz, a large weight loss is observed between 200 ° C. and 300 ° C., which is the melting of Bz in the film (160-170 ° C. from the endothermic peak). Based on

コンポジット膜および比較膜のプロトン導電性は、2端子インピーダンス分光器(two−terminal impedance spectroscopy)(SI 1260 Impedance Analyzer、Solatron) によって測定した。得られた膜を二つのリング型金板状のブロッキング電極(面積:約0.2cm)の間に挟んだ。インピーダンスの測定のためには、振動数の範囲を1Hzから1MHzまでとし、ピーク間電位差(peak−to−peak voltage)は100mVとした。プロトン導電性は、乾燥(非湿)窒素の気流下に、200℃まで上げて測定した。図4は、コンポジット膜および比較膜(Bz:0%)の温度vs比導電率をプロットしたグラフである(アレニウスのプロットは図示せず)。プロトン導電性は、一般的にはアレニウスの法則に従うが、このことはプロトン導電性が熱的活性化プロセスに支配されることを示している。十分に加湿された条件での比較膜(Bz:0%)の比導電率は、0.1S/cm(<90℃)程度であることはよく知られているが、無水条件下では10−6S/cm程度で、温度依存性は少ない。一方、ナフィオン−Bzコンポジット膜の比導電率は、温度を上げるにつれ上昇し、ナフィオン5wt%−5wt%Bzのコンポジット膜(iii)で3.6×10−3S/cm(温度:180℃)、ナフィオン5wt%−10wt%Bzのコンポジット膜(iv)で1.4×10−2S/cm(温度:160℃)を示した。また、各々の活性化エネルギーは、ナフィオン5wt%−1wt%Bz及びナフィオン5wt%−5wt%Bzコンポジット膜で各々1.4eVであり、ナフィオン5wt%−10wt%Bzコンポジット膜で2.4eVで、前2者よりも高い値であった。これは、プロトン化されたプロトンがナフィオンのスルホン基とBzの塩基部位の特別な位置を維持するプロトン導電経路の差異に基づくからであろう。 The proton conductivity of the composite membrane and the comparative membrane was measured by a two-terminal impedance spectrometer (SI 1260 Impedance Analyzer, Solatron). The resulting film two ring gold plate blocking electrodes: sandwiched between (area about 0.2 cm 2). For measuring impedance, the frequency range was 1 Hz to 1 MHz, and the peak-to-peak voltage was 100 mV. Proton conductivity was measured by raising the temperature to 200 ° C. in a dry (non-wet) nitrogen stream. FIG. 4 is a graph plotting the temperature vs. specific conductivity of the composite film and the comparative film (Bz: 0%) (Arrhenius plot not shown). Proton conductivity generally follows Arrhenius law, which indicates that proton conductivity is governed by a thermal activation process. Comparison films sufficiently humidified conditions: specific conductivity of (Bz 0%) is, 0.1 S / cm but is well known to be about (<90 ℃), in anhydrous conditions 10 - It is about 6 S / cm and has little temperature dependence. On the other hand, the specific conductivity of the Nafion-Bz composite film increases as the temperature is increased, and 3.6 × 10 −3 S / cm (temperature: 180 ° C.) in the composite film (iii) of Nafion 5 wt% -5 wt% Bz. The composite film (iv) of Nafion 5 wt% -10 wt% Bz showed 1.4 × 10 −2 S / cm (temperature: 160 ° C.). The activation energies of each of the Nafion 5 wt% -1 wt% Bz and Nafion 5 wt% -5 wt% Bz composite films are 1.4 eV, and the Nafion 5 wt% -10 wt% Bz composite films are 2.4 eV, respectively. It was higher than the two. This may be because the protonated protons are based on differences in proton conduction pathways that maintain a special position of the Nafion sulfone group and the Bz base site.

実施例2;
(1)燃料電池用高分子電解質膜の調製
原料の一つのナフィオン液(5%溶液)はElectrochem Co., Ltd.から購入したものを用いた。また、別の原料の1,2,4-トリアゾール(C233;MW=69.07)はAldrich Co.,Ltd.から購入したもの(固体)を用いた。
ナフィオン及び1,2,4-トリアゾールを5:1の重量比で含む高分子電解質膜用前駆体(ワニス)は、「ナフィオン液」(5%溶液)の3g(ナフィオン0.15g含有)に、1,2,4-トリアゾール0.03g(イソプロパノール0.4mlに溶かしたもの)溶液を加え、両者を混ぜて調製した。ナフィオン及び1,2,4-トリアゾールを5:2の重量比で含む高分子電解質膜用前駆体(ワニス)は、ナフィオン希釈液3g(ナフィオン0.15g含有)に、1,2,4-トリアゾール0.06g(イソプロパノール0.4mlとメタノール0.2mlに溶かしたもの)溶液を加え、両者を混ぜて調製した。ナフィオン及び1,2,4-トリアゾールを5:5の重量比で含む高分子電解質膜用前駆体(ワニス)は、ナフィオン希釈液3g(ナフィオン0.15g含有)に、1,2,4-トリアゾール0.15g(イソプロパノール0.4mlとメタノール0.2mlに溶かしたもの)溶液を加え、両者を混ぜて調製した。
得られた高分子電解質膜用前駆体(ワニス)の所定量をテフロン皿に流し込み、乾燥状態で、60℃で1日間加熱処理し、膜を生成させ(均質な膜が得られた)、本発明の燃料電池用高分子電解質膜(コンポジット膜ともいう;透明または白色不透明又は白色半透明)を得た。得られた膜の厚みはテフロン皿に流し込んだ容積に依存したが、70−110μmの範囲であった。
(2)得られたコンポジット膜の評価
Example 2;
(1) Preparation of polymer electrolyte membrane for fuel cell One Nafion solution (5% solution) as a raw material was manufactured by Electrochem Co. , Ltd., Ltd. The one purchased from is used. Another raw material 1,2,4-triazole (C 2 H 3 N 3 ; MW = 69.07) is available from Aldrich Co. , Ltd., Ltd. The one purchased from (solid) was used.
A precursor for a polymer electrolyte membrane (varnish) containing Nafion and 1,2,4-triazole at a weight ratio of 5: 1 was added to 3 g of Nafion liquid (5% solution) (containing 0.15 g of Nafion). A solution was prepared by adding 0.03 g of 1,2,4-triazole (dissolved in 0.4 ml of isopropanol) and mixing both. A precursor for a polymer electrolyte membrane (varnish) containing Nafion and 1,2,4-triazole in a weight ratio of 5: 2 was added to 3 g of Nafion diluted solution (containing 0.15 g of Nafion), 1,2,4-triazole. A solution of 0.06 g (dissolved in 0.4 ml of isopropanol and 0.2 ml of methanol) was added, and both were mixed to prepare. A precursor for a polymer electrolyte membrane (varnish) containing Nafion and 1,2,4-triazole at a weight ratio of 5: 5 was added to 3 g of Nafion diluted solution (containing 0.15 g of Nafion), 1,2,4-triazole. A 0.15 g solution (dissolved in 0.4 ml of isopropanol and 0.2 ml of methanol) was added, and both were mixed to prepare.
A predetermined amount of the obtained precursor for the polymer electrolyte membrane (varnish) is poured into a Teflon dish and heat-treated at 60 ° C. for 1 day in a dry state to form a membrane (a homogeneous membrane was obtained). A polymer electrolyte membrane for a fuel cell of the invention (also referred to as a composite membrane; transparent, white opaque, or white translucent) was obtained. The thickness of the obtained film was in the range of 70 to 110 μm, although it depended on the volume poured into the Teflon dish.
(2) Evaluation of the obtained composite film

コンポジット膜および比較膜のプロトン導電性は、実施例1に記述した方法と同様に測定した。図7は、コンポジット膜の温度vs比導電率をプロットしたグラフである(アレニウスのプロットは図示せず)。ナフィオン−1,2,4-トリアゾールコンポジット膜の比導電率は、温度を上げるにつれ上昇し、ナフィオン5wt%−5wt%1,2,4-トリアゾールのコンポジット膜(iii)で2.3×10−2S/cm(温度:160℃)を示した。また、各々の活性化エネルギーは、ナフィオン5wt%−1wt%1,2,4-トリアゾール及びナフィオン5wt%−2wt%1,2,4-トリアゾールコンポジット膜で各々0.9eVであり、ナフィオン5wt%−5wt%1,2,4-トリアゾールコンポジット膜で0.3eVであった。これは、ナフィオンのスルホン基に対するの塩基部位の特別な位置を1,2,4-トリアゾールのプロトンの数が増えることによりキャリア濃度や移動度の増加に基づくからであろう。プロトン導電性は、一般的にはアレニウスの法則に従うが、このことはプロトン導電性が熱的活性化プロセスに支配されることを示している。十分に加湿された条件でのNafion膜の比導電率は、0.1S/cm(<90℃、0.02eV)程度であることはよく知られている。加湿条件でのNafion膜のプロトンは水とともに膜のクラスター構造(プロトン伝導channel)内で非常に低いエネルギーで移動し、かつ高い伝導度を示す。一方、無加湿条件下でのプロトンは加湿条件のようなプロトンを運ぶ伝導パスができず伝導度は非常に低くなる。しかしながら、酸のナノクラスタ構造に、Bzや1,2,4-トリアゾールのような有機モノマーを導入しプロトン伝導パスを作ると、無加湿でも高いプロトン伝導性を持つ伝導体の実現が可能である(図8参照)。 The proton conductivity of the composite membrane and the comparative membrane was measured in the same manner as described in Example 1. FIG. 7 is a graph plotting the temperature vs. specific conductivity of the composite film (Arrhenius plot not shown). The specific conductivity of Nafion-1,2,4-triazole composite membrane increases with increasing temperature, and 2.3 × 10 −2 S for Nafion 5 wt% -5 wt% 1,2,4-triazole composite membrane (iii). / Cm (temperature: 160 ° C.). The activation energy of each of Nafion 5 wt% -1 wt% 1,2,4-triazole and Nafion 5 wt% -2 wt% 1,2,4-triazole composite film is 0.9 eV, and Nafion 5 wt% -5 wt%. % 1,2,4-triazole composite film was 0.3 eV. This may be because the special position of the base site relative to the sulfone group of Nafion is based on an increase in carrier concentration and mobility by increasing the number of protons of 1,2,4-triazole. Proton conductivity generally follows Arrhenius law, which indicates that proton conductivity is governed by a thermal activation process. It is well known that the specific conductivity of the Nafion film under sufficiently humidified conditions is about 0.1 S / cm (<90 ° C., 0.02 eV). The protons of the Nafion membrane under humidified conditions move with water at a very low energy within the membrane cluster structure (proton conduction channel) and show high conductivity. On the other hand, the proton under the non-humidified condition cannot have a conduction path for carrying the proton as in the humidified condition, and the conductivity becomes very low. However, by introducing an organic monomer such as Bz or 1,2,4-triazole into the acid nanocluster structure to create a proton conduction path, it is possible to realize a conductor with high proton conductivity even without humidification. (See FIG. 8).

産業状の利用可能性Industrial applicability

燃料電池は、今後ますます必要とされ、おおいに発展が期待される。それにつれて使用条件は、白金CO毒を排除する意味で、今後ますます高温、長時間使用に耐えられるものが求められる。従来のプロトン伝導性燃料電池膜は、精々実用的には80℃くらいまでであり、上記要請に応えることができなかった。高温作動しうる無水・高温燃料電池用高分子膜も提案されているが、まだ緒についたばかりであり信頼性において充分と言えるものではなかった。本発明によって、無水・高温の環境下で長時間作動し得る、耐久性のあるプロトン導電性燃料電池膜を公知の材料から安価、且つ容易に得ることが可能としたものでその意義は極めて大きい。今後、各種燃料電池設計においておおいに利用され、高出力燃料電池を低コストで提供するのにおおいに寄与するものと期待される。   Fuel cells will be increasingly required in the future, and are expected to develop greatly. Along with this, the use conditions are required to withstand higher temperatures and longer use in the future in order to eliminate platinum CO poison. Conventional proton conductive fuel cell membranes are practically up to about 80 ° C., and cannot meet the above requirements. A polymer membrane for anhydrous / high-temperature fuel cells that can operate at high temperatures has also been proposed, but it has only just begun and has not been sufficiently reliable. According to the present invention, a durable proton conductive fuel cell membrane that can operate for a long time in an anhydrous / high temperature environment can be obtained inexpensively and easily from a known material, and its significance is extremely large. . In the future, it will be used in various fuel cell designs and is expected to contribute to providing high-power fuel cells at low cost.

(a)ナフィオンの分子構造、(b)ベンズイミダゾール(Bz)の分子構造。(A) Molecular structure of Nafion, (b) Molecular structure of benzimidazole (Bz). (a)純Bz、(b)リキャスト(recast)ナフィオン膜(Bz:0%)、(c)ナフィオン5wt%−1wt%Bzのコンポジット膜、(d)ナフィオン5wt%−5wt%Bzのコンポジット膜、(e)ナフィオン5wt%−10wt%Bzのコンポジット膜、の各々のIRスペクトラム。(A) pure Bz, (b) recast Nafion membrane (Bz: 0%), (c) Nafion 5 wt% -1 wt% Bz composite membrane, (d) Nafion 5 wt% -5 wt% Bz composite membrane, (E) IR spectrum of each of Nafion 5 wt% -10 wt% Bz composite film. (i)リキャスト(recast)ナフィオン膜(Bz:0%)、(ii)ナフィオン5wt%−1wt%Bzのコンポジット膜、(iii)ナフィオン5wt%−5wt%Bzのコンポジット膜、(iv)ナフィオン5wt%−10wt%Bzのコンポジット膜、の各々のTG。(I) Recast Nafion membrane (Bz: 0%), (ii) Nafion 5 wt% -1 wt% Bz composite membrane, (iii) Nafion 5 wt% -5 wt% Bz composite membrane, (iv) Nafion 5 wt% TG for each of the 10 wt% Bz composite films. (i)リキャスト(recast)ナフィオン膜(Bz:0%)、(ii)ナフィオン5wt%−1wt%Bzのコンポジット膜、(iii)ナフィオン5wt%−5wt%Bzのコンポジット膜、(iv)ナフィオン5wt%−10wt%Bzのコンポジット膜、の各々のDTA。(I) Recast Nafion membrane (Bz: 0%), (ii) Nafion 5 wt% -1 wt% Bz composite membrane, (iii) Nafion 5 wt% -5 wt% Bz composite membrane, (iv) Nafion 5 wt% DTA of each of the 10 wt% Bz composite films. (i)リキャスト(recast)ナフィオン膜(Bz:0%)、(ii)ナフィオン5wt%−1wt%Bzのコンポジット膜、(iii)ナフィオン5wt%−5wt%Bzのコンポジット膜、(iv)ナフィオン5wt%−10wt%Bzのコンポジット膜、の温度vs伝導性をプロットしたグラフ。(I) Recast Nafion membrane (Bz: 0%), (ii) Nafion 5 wt% -1 wt% Bz composite membrane, (iii) Nafion 5 wt% -5 wt% Bz composite membrane, (iv) Nafion 5 wt% A graph plotting the temperature vs. conductivity of a composite film of −10 wt% Bz. 1,2,4-トリアゾールの分子構造。Molecular structure of 1,2,4-triazole. (i)ナフィオン5wt%−1wt%1,2,4-トリアゾールのコンポジット膜、(ii)ナフィオン5wt%−2wt%1,2,4-トリアゾールのコンポジット膜、(iii)ナフィオン5wt%−5wt%1,2,4-トリアゾールのコンポジット膜、の温度vs伝導性をプロットしたグラフ。(I) Nafion 5 wt% -1 wt% 1,2,4-triazole composite film, (ii) Nafion 5 wt% -2 wt% 1,2,4-triazole composite film, (iii) Nafion 5 wt% -5 wt% 1 The graph which plotted the temperature vs. conductivity of a 2,4-triazole composite film. ナノクラスタ構造に導入されたプロトン伝導パスにより無加湿プロトン伝導体モデルで、ナノクラスタとしてNafion高分子を利用し、無加湿プロトン伝導パスとしてBzまたは1,2,4-トリアゾールを利用したモデル。Non-humidified proton conductor model with proton conduction path introduced into nanocluster structure, using Nafion polymer as nanocluster and Bz or 1,2,4-triazole as non-humidified proton conduction path.

Claims (6)

パーフルオロカーボンスルホン酸ポリマー(A)100重量部に対して、ベンズイミダゾール(B)20重量部〜200重量部、または1,2,4−トリアゾール(C)20重量部〜100重量部を配合したワニス状高分子電解質膜用前駆体を基板上に層状に展開・延伸し、これを加熱して得られる燃料電池用高分子電解質膜。   Varnish in which 20 parts by weight to 200 parts by weight of benzimidazole (B) or 20 parts by weight to 100 parts by weight of 1,2,4-triazole (C) is blended with 100 parts by weight of the perfluorocarbon sulfonic acid polymer (A). A polymer electrolyte membrane for a fuel cell obtained by spreading and stretching a precursor for a polymer electrolyte membrane in layers on a substrate and heating the precursor. 膜厚が200μm以下である、請求項1の燃料電池用高分子電解質膜。   The polymer electrolyte membrane for fuel cells according to claim 1, wherein the thickness is 200 μm or less. 膜厚が20μm〜200μmで、膜自体に自己支持性がある、請求項1又は2の燃料電池用高分子電解質膜。   The polymer electrolyte membrane for a fuel cell according to claim 1 or 2, wherein the membrane has a thickness of 20 µm to 200 µm and the membrane itself has a self-supporting property. 比導電率は、温度80〜200度にて0.001(S/cm)以上である、請求項1〜3いずれかの燃料電池用高分子電解質膜。   The polymer electrolyte membrane for fuel cells according to any one of claims 1 to 3, wherein the specific conductivity is 0.001 (S / cm) or more at a temperature of 80 to 200 degrees. 次の工程を含んでなる燃料電池用高分子電解質膜の製造方法。
(1)溶媒を用い、パーフルオロカーボンスルホン酸ポリマー(A)100重量部に対して、ベンズイミダゾール(B)20重量部〜200重量部、または1,2,4−トリアゾール(C)20重量部〜100重量部を添加・混合し、ワニス状高分子電解質膜用前駆体を調製する工程;
(2)基板上に前記ワニスを膜状に展開・延伸する工程;
(3)溶媒及び水分が揮散する温度に加熱する工程。
A method for producing a polymer electrolyte membrane for a fuel cell, comprising the following steps.
(1) Using a solvent, benzoimidazole (B) 20 parts by weight to 200 parts by weight or 1,2,4-triazole (C) 20 parts by weight with respect to 100 parts by weight of the perfluorocarbon sulfonic acid polymer (A) Adding and mixing 100 parts by weight to prepare a varnish-like polymer electrolyte membrane precursor;
(2) A step of spreading and stretching the varnish into a film on a substrate;
(3) A step of heating to a temperature at which the solvent and moisture are volatilized.
次の工程を含んでなる燃料電池用高分子電解質膜の製造方法。
(1)溶媒を用い、パーフルオロカーボンスルホン酸ポリマー(A)100重量部に対して、ベンズイミダゾール(B)20重量部〜200重量部、または1,2,4−トリアゾール(C)20重量部〜100重量部を配合したワニス状高分子電解質用前駆体を添加・混合し、ワニス状高分子電解質膜用前駆体を調製する工程;
(2)基板上に前記ワニスを膜状に展開・延伸する工程;
(3)溶媒及び水分が揮散する温度に加熱する工程。
(4)基板上に形成された燃料電池用高分子電解質膜を基板から剥離





A method for producing a polymer electrolyte membrane for a fuel cell, comprising the following steps.
(1) Using a solvent, benzoimidazole (B) 20 parts by weight to 200 parts by weight or 1,2,4-triazole (C) 20 parts by weight with respect to 100 parts by weight of the perfluorocarbon sulfonic acid polymer (A) Adding and mixing a varnish-shaped polymer electrolyte precursor containing 100 parts by weight to prepare a varnish-shaped polymer electrolyte membrane precursor;
(2) A step of spreading and stretching the varnish into a film on a substrate;
(3) A step of heating to a temperature at which the solvent and moisture are volatilized.
(4) Peeling the polymer electrolyte membrane for fuel cells formed on the substrate from the substrate





JP2006227490A 2005-09-15 2006-08-24 Membrane for proton conductive fuel cell operable under anhydrous and high temperature, and method for producing the same Expired - Fee Related JP5062722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006227490A JP5062722B2 (en) 2005-09-15 2006-08-24 Membrane for proton conductive fuel cell operable under anhydrous and high temperature, and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005269282 2005-09-15
JP2005269282 2005-09-15
JP2006227490A JP5062722B2 (en) 2005-09-15 2006-08-24 Membrane for proton conductive fuel cell operable under anhydrous and high temperature, and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007109634A true JP2007109634A (en) 2007-04-26
JP5062722B2 JP5062722B2 (en) 2012-10-31

Family

ID=38035324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006227490A Expired - Fee Related JP5062722B2 (en) 2005-09-15 2006-08-24 Membrane for proton conductive fuel cell operable under anhydrous and high temperature, and method for producing the same

Country Status (1)

Country Link
JP (1) JP5062722B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008084701A1 (en) * 2007-01-10 2008-07-17 Asahi Glass Company, Limited Solid polymer electrolyte membrane and membrane electrode assembly for solid polymer fuel cell
JP2009158373A (en) * 2007-12-27 2009-07-16 Samsung Sdi Co Ltd Polyelectrolyte for fuel cell and manufacturing method therefor, membrane electrode assembly, and fuel cell
WO2011034179A1 (en) * 2009-09-18 2011-03-24 旭化成イーマテリアルズ株式会社 Electrolyte emulsion and process for producing same
JP2013256641A (en) * 2012-05-16 2013-12-26 National Institute For Materials Science Perfluorosulfonic acid polymer-azole-acid blend membrane and manufacturing method therefor, perfluorosulfonic acid polymer-azole blend membrane, manufacturing method therefor, and proton exchange membrane fuel cell
JP2015525946A (en) * 2012-06-27 2015-09-07 アカル エネルギー リミテッド Fuel cells for use at high temperatures and pressures

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002105220A (en) * 2000-09-29 2002-04-10 Toshiba Corp Ion conductive membrane and fuel cell using it
JP2003242997A (en) * 1999-09-30 2003-08-29 Toshiba Corp Manufacturing method of ion conductive membrane
JP2004185891A (en) * 2002-12-02 2004-07-02 National Institute Of Advanced Industrial & Technology Anhydrous proton conduction film and fuel cell using the same
JP2005108588A (en) * 2003-09-30 2005-04-21 Asahi Kasei Corp Electrode catalyst layer for fuel cell
JP2006024389A (en) * 2004-07-06 2006-01-26 Asahi Kasei Chemicals Corp Polymer solid electrolyte film with high temperature resistance
JP2006059551A (en) * 2004-08-17 2006-03-02 Asahi Kasei Chemicals Corp Polymetric solid electrolyte membrane having reinforcing material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003242997A (en) * 1999-09-30 2003-08-29 Toshiba Corp Manufacturing method of ion conductive membrane
JP2002105220A (en) * 2000-09-29 2002-04-10 Toshiba Corp Ion conductive membrane and fuel cell using it
JP2004185891A (en) * 2002-12-02 2004-07-02 National Institute Of Advanced Industrial & Technology Anhydrous proton conduction film and fuel cell using the same
JP2005108588A (en) * 2003-09-30 2005-04-21 Asahi Kasei Corp Electrode catalyst layer for fuel cell
JP2006024389A (en) * 2004-07-06 2006-01-26 Asahi Kasei Chemicals Corp Polymer solid electrolyte film with high temperature resistance
JP2006059551A (en) * 2004-08-17 2006-03-02 Asahi Kasei Chemicals Corp Polymetric solid electrolyte membrane having reinforcing material

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5347508B2 (en) * 2007-01-10 2013-11-20 旭硝子株式会社 Solid polymer electrolyte membrane and membrane electrode assembly for polymer electrolyte fuel cell
WO2008084701A1 (en) * 2007-01-10 2008-07-17 Asahi Glass Company, Limited Solid polymer electrolyte membrane and membrane electrode assembly for solid polymer fuel cell
US8178257B2 (en) 2007-01-10 2012-05-15 Asahi Glass Company, Limited Polymer electrolyte membrane and membrane/electrode assembly for polymer electrolyte fuel cell
JP2009158373A (en) * 2007-12-27 2009-07-16 Samsung Sdi Co Ltd Polyelectrolyte for fuel cell and manufacturing method therefor, membrane electrode assembly, and fuel cell
CN102498168B (en) * 2009-09-18 2014-09-10 旭化成电子材料株式会社 Electrolyte emulsion and process for producing same
CN102498168A (en) * 2009-09-18 2012-06-13 旭化成电子材料株式会社 Electrolyte emulsion and process for producing same
JP5461566B2 (en) * 2009-09-18 2014-04-02 旭化成イーマテリアルズ株式会社 Electrolyte emulsion and method for producing the same
WO2011034179A1 (en) * 2009-09-18 2011-03-24 旭化成イーマテリアルズ株式会社 Electrolyte emulsion and process for producing same
US9133316B2 (en) 2009-09-18 2015-09-15 Asahi Kasei E-Materials Corporation Electrolyte emulsion and process for producing same
US9406958B2 (en) 2009-09-18 2016-08-02 Asahi Kasei Kabushiki Kaisha Electrolyte emulsion and process for producing same
US9627702B2 (en) 2009-09-18 2017-04-18 Asahi Kasei Kabushiki Kaisha Electrolyte emulsion and process for producing same
JP2013256641A (en) * 2012-05-16 2013-12-26 National Institute For Materials Science Perfluorosulfonic acid polymer-azole-acid blend membrane and manufacturing method therefor, perfluorosulfonic acid polymer-azole blend membrane, manufacturing method therefor, and proton exchange membrane fuel cell
JP2015525946A (en) * 2012-06-27 2015-09-07 アカル エネルギー リミテッド Fuel cells for use at high temperatures and pressures
JP2018152347A (en) * 2012-06-27 2018-09-27 アカル エネルギー リミテッド Fuel cells for use at elevated temperatures and pressures
JP2020123572A (en) * 2012-06-27 2020-08-13 ユニバーシティ オブ チェスター Redox fuel cell and use thereof
JP7040805B2 (en) 2012-06-27 2022-03-23 ユニバーシティ オブ チェスター Redox fuel cell and its use

Also Published As

Publication number Publication date
JP5062722B2 (en) 2012-10-31

Similar Documents

Publication Publication Date Title
US8552075B2 (en) Low permeability composite proton exchange membrane including organic-inorganic hybrid
US8313873B2 (en) Polymer membrane for a fuel cell, a method of preparing the same, and a membrane-electrode assembly fuel cell system comprising the same
CN101999188B (en) Proton conductive polymer electrolyte membrane, process for producing the proton conductive polymer electrolyte membrane, and membrane-electrode assembly and polymer electrolyte fuel cell using the proton conductive polymer electrolyte membrane
JP5062722B2 (en) Membrane for proton conductive fuel cell operable under anhydrous and high temperature, and method for producing the same
JP2018116935A (en) Formation of active layer with improved performance
Kim et al. High proton conductivity and low fuel crossover of polyvinylidene fluoride–hexafluoro propylene–silica sulfuric acid composite membranes for direct methanol fuel cells
JP2008130460A (en) Polymer electrolyte membrane and membrane electrode assembly for polymer electrolyte fuel cell
KR101085358B1 (en) Hydrocarbon membranes comprising silane compound, method for manufacturing the same, mea and fuel cell using the same
JP2007503707A (en) Fullerene electrolytes for fuel cells
JP4870360B2 (en) FUEL CELL ELECTRODE, FUEL CELL, AND METHOD FOR PRODUCING FUEL CELL ELECTRODE
US9368821B2 (en) Composite electrolyte membrane for fuel cell, method for producing the electrolyte membrane and fuel cell including the electrolyte membrane
JP2005228588A (en) Proton conductor and electrochemical device
JPWO2002058177A1 (en) PROTON CONDUCTOR MEMBRANE, PROCESS FOR PRODUCING THE SAME, FUEL CELL WITH PROTON CONDUCTOR MEMBRANE, AND PROCESS FOR PRODUCING THE SAME
EP2202830A1 (en) Membrane electrode assembly and fuel cell
JP2007520852A (en) High-temperature proton conducting polymer membrane, method for producing the same, membrane-electrode assembly using the same, and fuel cell including the same
Jalani Development of nanocomposite polymer electrolyte membranes for higher temperature PEM fuel cells
US20060141317A1 (en) Proton conductor, polymer electrolyte comprising the same and fuel cell employing the polymer electrolyte
CN1195337C (en) Self-humidifying solid electrolyte composite membrane and manufacturing process thereof
JP2006236927A (en) Membrane electrode junction for solid polymer fuel cell
JP2002334702A (en) Gas diffusion electrode for solid polymer electrolyte membrane type fuel cell and its manufacturing method
JP2006261043A (en) Polymer membrane electrode assembly and polyelectrolyte type fuel cell using this
JP5604818B2 (en) Ion conductive composite, membrane electrode assembly (MEA), and electrochemical device
US9379404B2 (en) Electrolyte membrane for fuel cell, electrode for fuel cell, and fuel cell employing the same
Anis et al. Electrical spectroscopy studies of organic/inorganic nano composites
JP2008186715A (en) Solid polymer fuel cell, and its operation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120802

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees