JP2002334702A - Gas diffusion electrode for solid polymer electrolyte membrane type fuel cell and its manufacturing method - Google Patents

Gas diffusion electrode for solid polymer electrolyte membrane type fuel cell and its manufacturing method

Info

Publication number
JP2002334702A
JP2002334702A JP2001137476A JP2001137476A JP2002334702A JP 2002334702 A JP2002334702 A JP 2002334702A JP 2001137476 A JP2001137476 A JP 2001137476A JP 2001137476 A JP2001137476 A JP 2001137476A JP 2002334702 A JP2002334702 A JP 2002334702A
Authority
JP
Japan
Prior art keywords
electrolyte membrane
polymer electrolyte
solid polymer
fuel cell
gas diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001137476A
Other languages
Japanese (ja)
Inventor
Mitsuaki Kato
充明 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2001137476A priority Critical patent/JP2002334702A/en
Publication of JP2002334702A publication Critical patent/JP2002334702A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrode for solid polymer electrolyte membrane type fuel cells capable of enhancing the characteristics of the electrode by securing continuous proton conduction paths while securing more triphasic interfaces serving as electrode reaction sites, and resultantly capable of economically enhancing the output performance of a fuel cell incorporating this electrode. SOLUTION: This gas diffusion electrode equipped with catalyst layers for sandwiching between them a solid polymer electrolyte membrane of the solid polymer electrolyte membrane type fuel cell is characterized in that the catalyst layers contain a compound made by introducing a proton-conductive functional group into a hydrocarbon resin.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体高分子電解質
膜型燃料電池用電極及びその製造方法に関する。
The present invention relates to an electrode for a solid polymer electrolyte membrane fuel cell and a method for producing the same.

【0002】[0002]

【従来の技術】従来、大気汚染防止のためのCO2排出
規制及び石油資源枯渇といった地球規模での環境・資源
問題に対処するため、クリーンでエネルギー密度が高
く、充電時間が不要とする固体高分子電解質型燃料電池
は最も脚光を浴びられ、日本を始め世界中の各国で急ピ
ッチに研究開発が進められている。
2. Description of the Related Art Conventionally, a solid polymer which is clean, has a high energy density and does not require a charging time in order to cope with global environmental and resource problems such as CO2 emission regulations for preventing air pollution and depletion of petroleum resources. Electrolyte-type fuel cells are the hottest spotlight, and research and development is being carried out at a rapid pace in Japan and other countries around the world.

【0003】固体高分子型燃料電池は、プロトン導電性
の固体高分子電解質膜をその構成部品として有すること
を特徴としており、水素等の燃料ガスと酸化ガスを電気
化学的に反応させることによって、その際に生ずる起電
力を得る装置である。
A polymer electrolyte fuel cell is characterized by having a proton conductive solid polymer electrolyte membrane as a component thereof, and by electrochemically reacting a fuel gas such as hydrogen with an oxidizing gas. This is a device for obtaining the electromotive force generated at that time.

【0004】燃料電池は、燃料ガスとして水素ガスを、
酸化ガスとして酸素を用いた際の電極反応は、アノード
極側では、 2H2→4H+ +4e- 反応式 1 なる反応が起こり、生成したプロトンは固体電解質膜の
中を通り、カソード極で、 4H+ +O2+4e-→2H2O 反応式 2 なる反応が起こり、両極間に起電力が生ずる。
A fuel cell uses hydrogen gas as a fuel gas,
In the electrode reaction when oxygen is used as the oxidizing gas, a reaction represented by 2H2 → 4H ++ 4e− reaction formula 1 occurs on the anode electrode side, and the generated proton passes through the solid electrolyte membrane, and 4H + + O2 + 4e- → 2H2O Reaction 2 occurs, and an electromotive force is generated between the two electrodes.

【0005】ところで、現段階では、燃料電池の実用化
には、また克服しなければならない幾つかの課題がまだ
残されている。
[0005] By the way, at this stage, there are still some problems to be overcome for practical use of fuel cells.

【0006】米国特許4876115号公報あるいは特
開平3−208260号公報に示されているように、現
在の電極触媒層の組成は、カーボンブラックに触媒であ
る白金を担持した材料、パーフルオロカーボンスルホン
酸系プロトン伝導性材料からなり、これらを混練した触
媒組成をカーボンペーパーなどの基材に塗布し、ガス拡
散電極が形成されている。
As shown in US Pat. No. 4,876,115 or JP-A-3-208260, the current composition of the electrode catalyst layer is a material in which platinum as a catalyst is supported on carbon black, a perfluorocarbon sulfonic acid-based material. A gas diffusion electrode is formed by applying a catalyst composition made of a proton conductive material and kneading them to a base material such as carbon paper.

【0007】また、電気化学、53、No.10、p8
12〜817(1985)「固体高分子電解質(Naf
ion)に接合する酸素極へのイオン交換樹脂の添加と
その電極特性」には、固体高分子電解質膜であるスチレ
ンジビニルベンゼンスルホン酸樹脂と、触媒金属を担持
したカーボン粉末とプロトン伝導体であるスチレンジビ
ニルベンゼンスルホン酸樹脂粉末とポリスチレン結合剤
との混合物を触媒層としたガス拡散電極とから形成され
ていることが開示されている。
Further, in Electrochemistry, 53, No. 10, p8
12-817 (1985) "Solid polymer electrolyte (Naf
The addition of an ion exchange resin to the oxygen electrode to be bonded to the ion-ion) and its electrode characteristics include “a styrene divinylbenzene sulfonic acid resin as a solid polymer electrolyte membrane, a carbon powder carrying a catalytic metal, and a proton conductor. It is disclosed that the gas diffusion electrode is formed from a mixture of styrene divinylbenzene sulfonic acid resin powder and a polystyrene binder as a catalyst layer.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、米国特
許4876115号公報あるいは特開平3−20826
0号公報において、燃料電池のガス拡散電極中のプロト
ン伝導性材料は水に溶けないようにしなければならず、
プロトン伝導性の官能基が多くあると水溶性になり、従
って、パーフルオロカーボンスルホン酸系プロトン伝導
性材料は、イオン交換容量を大きくすることができない
ため、電解質膜へのプロトンの移動が律速となり十分な
電流を取り出せない。
However, US Pat. No. 4,876,115 or JP-A-3-20826.
In Publication No. 0, the proton conductive material in the gas diffusion electrode of the fuel cell must be insoluble in water,
If there are many proton conductive functional groups, it becomes water-soluble, and therefore, the perfluorocarbon sulfonic acid-based proton conductive material cannot increase the ion exchange capacity. High current cannot be extracted.

【0009】また、電気化学、53、No.10、p8
12〜817(1985)に関しては、パーフルオロカ
ーボンスルホン酸系プロトン伝導性材料よりイオン交換
容量を大きくすることができるが、プロトン伝導体が粉
末であるため、粉末粒子の欠陥等で粉末粒子の接触不良
が生じ、その機能が十分に発揮できず、それゆえ、プロ
トンの移動が律速となり、プロトンが固体高分子電解質
膜まで到達せず、十分な電流を取り出せない。
Further, in Electrochemistry, 53, No. 10, p8
Regarding 12 to 817 (1985), the ion exchange capacity can be made larger than that of the perfluorocarbon sulfonic acid-based proton conductive material. However, since the proton conductor is a powder, poor contact of the powder particles due to defects of the powder particles and the like is caused. Occurs, and the function cannot be sufficiently exerted. Therefore, the movement of protons is rate-determining, the protons do not reach the solid polymer electrolyte membrane, and a sufficient current cannot be taken out.

【0010】このように、従来の技術は、触媒層中のプ
ロトン伝導体が粉末形状であったり、イオン交換容量が
大きくないために、触媒上の三相界面(水素ガス相、触
媒相、伝導性物質相)で発生したプロトンが固体高分子
電解質膜までプロトン伝導体中を移動する事が律速とな
り、その結果、十分な電流を取り出せない。よって、燃
料電池の出力性能を向上させるには、このプロトン伝導
体の特性を向上させる必要がある。
As described above, according to the conventional technique, since the proton conductor in the catalyst layer is in the form of a powder or does not have a large ion exchange capacity, the three-phase interface (hydrogen gas phase, catalyst phase, The rate at which the protons generated in the active substance phase) move through the proton conductor to the solid polymer electrolyte membrane is rate-determining, and as a result, a sufficient current cannot be taken out. Therefore, in order to improve the output performance of the fuel cell, it is necessary to improve the characteristics of the proton conductor.

【0011】この基本組成の触媒層には白金触媒、パー
フルオロカーボンスルホン酸系プロトン伝導材料が使用
されており、高コストの要因になっているが、白金触媒
はリサイクルと低使用量化の技術での低コスト化の可能
性が残されていている。
A platinum catalyst and a perfluorocarbon sulfonic acid-based proton conductive material are used in the catalyst layer having the basic composition, which causes high cost. The possibility of cost reduction remains.

【0012】しかしながら、プロトン伝導材料は、極め
て高価なパーフルオロカーボンスルホン酸樹脂を素原料
に、これを溶液化し製造されている。そのコストは白金
並みに高価な材料であり、現在、多くの燃料電池スタッ
ク及びガス拡散電極の開発メーカー各社主流の材料とし
て使用され、このままでは、燃料電池の低コスト化が困
難である。従って、プロトン伝導体の低コスト化が必要
である。
[0012] However, the proton conductive material is produced by using a very expensive perfluorocarbon sulfonic acid resin as a raw material and by dissolving it. The cost is a material as expensive as platinum, and is currently used as a mainstream material by many manufacturers of fuel cell stacks and gas diffusion electrodes, and it is difficult to reduce the cost of the fuel cell as it is. Therefore, it is necessary to reduce the cost of the proton conductor.

【0013】本発明は、上記課題を解決したもので、電
極反応サイトである三相界面をより多く確保しつつ連続
的なプロトン伝導路を確保するため電極の特性が向上す
ることができ、その結果、低コストで、この電極と組み
合わせた燃料電池の出力性能を格段に向上させることが
できる固体高分子電解質膜型燃料電池用電極及び燃料電
池を提供するものである。
The present invention has solved the above-mentioned problems, and can improve the characteristics of an electrode to secure a continuous proton conduction path while securing more three-phase interfaces as electrode reaction sites. As a result, an object of the present invention is to provide an electrode for a solid polymer electrolyte membrane fuel cell and a fuel cell which can remarkably improve the output performance of a fuel cell combined with this electrode at low cost.

【0014】[0014]

【課題を解決するための手段】上記技術的課題を解決す
るためになされた請求項1の発明は、固体高分子電解質
膜型燃料電池の固体高分子電解質膜を挟持する触媒層を
備えたガス拡散電極において、炭化水素系樹脂にプロト
ン伝導性官能基を導入した化合物を前記触媒層に含有し
たことを特徴とするガス拡散電極である。
SUMMARY OF THE INVENTION In order to solve the above technical problems, the invention of claim 1 is directed to a gas comprising a catalyst layer sandwiching a solid polymer electrolyte membrane of a solid polymer electrolyte membrane fuel cell. In the gas diffusion electrode, the catalyst layer contains a compound in which a proton conductive functional group is introduced into a hydrocarbon resin.

【0015】請求項1の発明により、電極反応サイトで
ある三相界面をより多く確保しつつ連続的なプロトン伝
導路を確保するため電極の特性が向上することができ、
その結果、低コストで、この電極と組み合わせた燃料電
池の出力性能を格段に向上させることができる固体高分
子電解質膜型燃料電池用電極を提供することが可能であ
る。
According to the first aspect of the invention, the characteristics of the electrode can be improved to secure a continuous proton conduction path while securing more three-phase interfaces as electrode reaction sites,
As a result, it is possible to provide an electrode for a solid polymer electrolyte membrane fuel cell, which can remarkably improve the output performance of a fuel cell combined with this electrode at low cost.

【0016】上記技術的課題を解決するためになされた
請求項2の発明は、固体高分子電解質膜型燃料電池の固
体高分子電解質膜を挟持するガス拡散電極の製造方法に
おいて、炭化水素系樹脂にプロトン伝導性官能基を導入
したモノマーを触媒層に混合・分散する工程と、該モノ
マーを重合し高分子量化する工程とからなることを特徴
とする固体高分子電解質膜型燃料電池用ガス拡散電極の
製造方法である。
In order to solve the above technical problems, the invention of claim 2 is directed to a method of manufacturing a gas diffusion electrode for sandwiching a solid polymer electrolyte membrane of a solid polymer electrolyte membrane fuel cell, the method comprising the steps of: Gas diffusion for a solid polymer electrolyte membrane fuel cell, comprising: mixing and dispersing a monomer having a proton-conductive functional group introduced into the catalyst layer in the catalyst layer; and polymerizing the monomer to increase the molecular weight. This is a method for manufacturing an electrode.

【0017】請求項2の発明により、電極反応サイトで
ある三相界面をより多く確保しつつ連続的なプロトン伝
導路を確保するため電極の特性が向上することができ、
その結果、低コストで、この電極と組み合わせた燃料電
池の出力性能を格段に向上させることができる固体高分
子電解質膜型燃料電池用電極の製造方法を提供すること
が可能である。
According to the second aspect of the present invention, the characteristics of the electrode can be improved to secure a continuous proton conduction path while securing more three-phase interfaces as electrode reaction sites,
As a result, it is possible to provide a method of manufacturing an electrode for a solid polymer electrolyte membrane fuel cell, which can significantly improve the output performance of a fuel cell combined with this electrode at low cost.

【0018】また、この製造方法は液状で触媒層に混合
・分散したのち、固体化している為、連続的なプロトン
伝導路を形成することができるという利点がある。
In addition, this manufacturing method has an advantage that a continuous proton conduction path can be formed since the liquid is mixed and dispersed in the catalyst layer and then solidified.

【0019】上記技術的課題を解決するためになされた
請求項3の発明は、固体高分子電解質膜型燃料電池の固
体高分子電解質膜を挟持する電極の製造方法において、
炭化水素系樹脂のモノマーを触媒層に混合・分散する工
程と、該モノマーを重合し高分子量化する工程と、前記
高分子にプロトン伝導性官能基を導入する工程とからな
る固体高分子電解質膜型燃料電池用ガス拡散電極の製造
方法である。
The invention according to claim 3, which has been made to solve the above technical problem, relates to a method for manufacturing an electrode sandwiching a solid polymer electrolyte membrane of a solid polymer electrolyte membrane fuel cell,
A solid polymer electrolyte membrane comprising: a step of mixing and dispersing a monomer of a hydrocarbon resin in the catalyst layer; a step of polymerizing the monomer to increase the molecular weight; and a step of introducing a proton conductive functional group into the polymer. 1 is a method for manufacturing a gas diffusion electrode for a fuel cell.

【0020】また、この製造方法は液状で触媒層に混合
・分散したのち、固体化している為、連続的なプロトン
伝導路を形成することができるという利点がある。
In addition, this manufacturing method has an advantage that a continuous proton conduction path can be formed since the liquid is mixed and dispersed in the catalyst layer and then solidified.

【0021】上記技術的課題を解決するためになされた
請求項4の発明は、前記プロトン伝導性官能基は、スル
ホン酸、カルボン酸、ホスホン酸、燐酸からなる酸基か
ら選択されることを特徴とする請求項1〜請求項3記載
の固体高分子電解質膜型燃料電池用ガス拡散電極及びそ
の製造方法である。
According to a fourth aspect of the present invention, which has been made to solve the above technical problem, the proton conductive functional group is selected from an acid group consisting of sulfonic acid, carboxylic acid, phosphonic acid and phosphoric acid. The gas diffusion electrode for a solid polymer electrolyte membrane fuel cell according to any one of claims 1 to 3, and a method for producing the same.

【0022】請求項4の発明により、プロトン伝導性を
発現させるという効果を提供できる。
According to the fourth aspect of the present invention, an effect of exhibiting proton conductivity can be provided.

【0023】上記技術的課題を解決するためになされた
請求項5の発明は、前記炭化水素系樹脂は、ポリスチレ
ン、ABS樹脂、SB樹脂、AS樹脂、AES樹脂、ス
チレンジビニルベンゼン共重合体、ポリカーボネート、
ポリエチレンテレフタレート、ポリアリレート、ポリス
ルホン、ポリエーテルスルホン、ポリフェニレンスルフ
ィド、ポリアミドイミド、ポリアミド、ポリイミド、ポ
リエーテル、ポリエーテルケトン、ポリエーテルエーテ
ルケトン、ポリベンズイミダゾール等の少なくとも炭素
と水素とからなる重合体であることを特徴とする請求項
1〜請求項3記載の固体高分子電解質膜型燃料電池用ガ
ス拡散電極及びその製造方法である。
The invention of claim 5 made in order to solve the above technical problem is characterized in that the hydrocarbon resin is made of polystyrene, ABS resin, SB resin, AS resin, AES resin, styrene divinylbenzene copolymer, polycarbonate ,
Polyethylene terephthalate, polyarylate, polysulfone, polyethersulfone, polyphenylene sulfide, polyamideimide, polyamide, polyimide, polyether, polyetherketone, polyetheretherketone, polybenzimidazole, etc. are polymers composed of at least carbon and hydrogen. The gas diffusion electrode for a solid polymer electrolyte membrane fuel cell according to any one of claims 1 to 3, and a method for producing the same.

【0024】請求項5の発明により、モノマーから重合
体を作ることができ、かつプロトン伝導性官能基を導入
することができるという効果を提供できる。
According to the fifth aspect of the present invention, it is possible to provide an effect that a polymer can be produced from a monomer and a proton conductive functional group can be introduced.

【0025】[0025]

【発明の実施の形態】以下、本発明について図面を参照
して説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings.

【0026】本発明は、触媒担持カーボン粒子、プロト
ン伝導性材あるいは必要に応じて撥水材であるポリテト
ラフルオロエチレンからなる固体高分子型燃料電池用ガ
ス拡散電極の触媒層において、プロトン伝導体である炭
化水素系樹脂にプロトン伝導性官能基を導入した化合物
のモノマーを触媒層に混合・分散した後、そのモノマー
を重合し高分子量化して作製することにより、電極反応
サイトである三相界面をより多く確保しつつ連続的なプ
ロトン伝導路を確保するため電極の特性が向上する。そ
の結果この電極と組み合わせた燃料電池の出力性能を格
段に向上させることができる発明である。
The present invention relates to a catalyst layer of a gas diffusion electrode for a polymer electrolyte fuel cell comprising a catalyst-carrying carbon particle, a proton conductive material or, if necessary, a polytetrafluoroethylene as a water repellent material. After mixing and dispersing in the catalyst layer a monomer of a compound having a proton-conductive functional group introduced into a hydrocarbon-based resin, the polymer is polymerized to have a high molecular weight, thereby producing a three-phase interface as an electrode reaction site. In order to secure a continuous proton conduction path while securing more, the characteristics of the electrode are improved. As a result, the invention is capable of significantly improving the output performance of a fuel cell combined with this electrode.

【0027】このガス拡散電極は、炭化水素系樹脂にプ
ロトン伝導性官能基を導入した化合物を前記触媒層に含
有したことを特徴とするガス拡散電極である。
This gas diffusion electrode is a gas diffusion electrode characterized in that a compound obtained by introducing a proton conductive functional group into a hydrocarbon resin is contained in the catalyst layer.

【0028】そのガス拡散電極の製造方法は、固体高分
子電解質膜型燃料電池の固体高分子電解質膜を挟持する
ガス拡散電極の製造方法において、炭化水素系樹脂にプ
ロトン伝導性官能基を導入したモノマーを触媒層に混合
・分散する工程と、該モノマーを重合し高分子量化する
工程から製造方法される。
The method for producing a gas diffusion electrode is the same as the method for producing a gas diffusion electrode sandwiching a solid polymer electrolyte membrane of a solid polymer electrolyte membrane fuel cell, except that a proton conductive functional group is introduced into the hydrocarbon resin. The production method includes a step of mixing and dispersing a monomer in the catalyst layer, and a step of polymerizing the monomer to increase the molecular weight.

【0029】また他の製造方法として、炭化水素系樹脂
のモノマーを触媒層に混合・分散する工程と、該モノマ
ーを重合し高分子量化する工程と、前記高分子にプロト
ン伝導性官能基を導入する工程から製造方法される。
Further, as another production method, a step of mixing and dispersing a monomer of a hydrocarbon resin in the catalyst layer, a step of polymerizing the monomer and increasing the molecular weight, and introducing a proton conductive functional group into the polymer. Manufacturing process.

【0030】ここで、プロトン伝導性官能基として、ス
ルホン酸、カルボン酸、ホスホン酸、燐酸のからなる酸
基を導入する。このうちスルホン酸基を必須官能基とす
る事が好ましい。なぜならばプロトンの解離定数が高
く、高いプロトン伝導性を有するという効果を有するか
らであるプロトン伝導体に用いる炭化水素系樹脂として
は、ポリスチレン、ABS樹脂、SB樹脂、AS樹脂、
AES樹脂、スチレンジビニルベンゼン共重合体、ポリ
カーボネート、ポリエチレンテレフタレート、ポリアリ
レート、ポリスルホン、ポリエーテルスルホン、ポリフ
ェニレンスルフィド、ポリアミドイミド、ポリアミド、
ポリイミド、ポリエーテル、ポリエーテルケトン、ポリ
エーテルエーテルケトン、ポリベンズイミダゾール等の
重合体が挙げられる。
Here, an acid group consisting of sulfonic acid, carboxylic acid, phosphonic acid and phosphoric acid is introduced as the proton conductive functional group. Of these, it is preferable to make the sulfonic acid group an essential functional group. Because the proton dissociation constant is high and has the effect of having high proton conductivity, hydrocarbon resins used for the proton conductor include polystyrene, ABS resin, SB resin, AS resin,
AES resin, styrene divinylbenzene copolymer, polycarbonate, polyethylene terephthalate, polyarylate, polysulfone, polyethersulfone, polyphenylene sulfide, polyamide imide, polyamide,
Examples include polymers such as polyimide, polyether, polyether ketone, polyether ether ketone, and polybenzimidazole.

【0031】この官能基を炭化水素系樹脂に導入する方
法に特に制限はない。図4の化学反応式のように、モノ
マーを重合して高分子樹脂にしたのち官能基を導入して
官能基を有する樹脂を合成してもよいが、好ましくは、
図3の化学反応式のように、樹脂モノマーに官能基を導
入した後、重合することによって官能基を有する高分子
樹脂を合成した方がよい。
There is no particular limitation on the method for introducing this functional group into the hydrocarbon resin. As shown in the chemical reaction formula in FIG. 4, a monomer having a functional group may be synthesized by polymerizing a monomer to form a polymer resin and then introducing a functional group.
It is preferable to synthesize a polymer resin having a functional group by introducing a functional group into a resin monomer and then polymerizing the resin as shown in the chemical reaction formula in FIG.

【0032】その理由は、重合体に官能基を導入するよ
りもモノマーに導入するほうが、容易であるからであ
る。
The reason is that it is easier to introduce a functional group into a monomer than into a polymer.

【0033】このプロトン伝導体を触媒層中に形成させ
る方法について特に制限はない。樹脂モノマーを触媒担
持カーボン粒子等の触媒層成分中に混合・分散したの
ち、触媒層を形成し、モノマーを重合し高分子量化する
か、または形成された触媒層上に樹脂モノマーをコーテ
ィングした後、そのモノマーを重合し高分子量化しても
よい。
The method for forming the proton conductor in the catalyst layer is not particularly limited. After mixing and dispersing the resin monomer in the catalyst layer components such as catalyst-supporting carbon particles, a catalyst layer is formed, and the monomer is polymerized to have a high molecular weight, or the resin monomer is coated on the formed catalyst layer. Alternatively, the monomer may be polymerized to have a high molecular weight.

【0034】(実施例1)図1(a)に示すように、ポ
リテロラフルオロエチレン(PTFE)粒子含有濃度が6
0%のディスパージョン原液(ダイキン工業株式会社,
POLYFLOND1グレード)をPTFE濃度が15
重量%になるように水で希釈した。この溶液中に厚さ1
80μmのカーボンペーパーCP(東レ株式会社製、T
GP−060)を浸した。
Example 1 As shown in FIG. 1 (a), the concentration of polyterafluoroethylene (PTFE) particles was 6%.
0% dispersion liquid (Daikin Industries,
POLYFLOND1 grade) with PTFE concentration of 15
It was diluted with water to give a weight%. Thickness 1 in this solution
80 μm carbon paper CP (Toray, Inc., T
GP-060).

【0035】続いて上記カーボンペーパーCPを溶液か
ら取り出し、80℃大気中で乾燥後(図1(b))、3
90℃×60分保持しPTFEを焼結し(図1
(c))、撥水処理されたカーボンペーパーを得た(図
1(d))。
Subsequently, the carbon paper CP was taken out of the solution and dried in the air at 80 ° C. (FIG. 1B).
Hold at 90 ° C for 60 minutes to sinter PTFE (Fig. 1
(C)) Water-repellent carbon paper was obtained (FIG. 1 (d)).

【0036】図2に示すように、白金濃度が40重量%
の白金担持カーボン(ジョンソンマッセイ社製、HIS
PEC4000)15gをメタノール115g、水11
5g中に均一分散した。
As shown in FIG. 2, the platinum concentration was 40% by weight.
Platinum-supported carbon (manufactured by Johnson Matthey, HIS
(PEC4000) 15 g of methanol 115 g, water 11
It was uniformly dispersed in 5 g.

【0037】次いで、この溶液中にスチレンスルホン酸
ソーダ10g、ジビニルベンゼン(DVB)1g、アゾ
ビスイソブチロニトリル(ABIN)0.1gを加え混
合・分散し、触媒ペーストを得た(図2)。なお上記化
学反応式は図3に示す反応で表される。
Next, 10 g of sodium styrenesulfonate, 1 g of divinylbenzene (DVB) and 0.1 g of azobisisobutyronitrile (ABIN) were added to the solution, mixed and dispersed to obtain a catalyst paste (FIG. 2). . The above chemical reaction formula is represented by the reaction shown in FIG.

【0038】この触媒ペーストを撥水処理カーボンペー
パーにドクターブレード法により白金担持量が0.2m
g/cm2になるように触媒層を形成した。続いて風乾
後、80℃×8時間保持し、モノマーを重合した。次に
水にて数回洗浄したのち、0.5mol/lの硫酸水溶
液に浸しスルホン酸基をH型に交換し、ガス拡散電極を
得た(図1(e))。
This catalyst paste was applied to water-repellent treated carbon paper by a doctor blade method so that the amount of platinum carried was 0.2 m.
The catalyst layer was formed so as to be g / cm2. Subsequently, after air-drying, the temperature was maintained at 80 ° C. × 8 hours to polymerize the monomer. Next, after washing several times with water, the resultant was immersed in a 0.5 mol / l aqueous solution of sulfuric acid to exchange sulfonic acid groups into H-type, thereby obtaining a gas diffusion electrode (FIG. 1 (e)).

【0039】このガス拡散電極で以下の方法で合成して
得られた高分子電解質膜を挟み、150℃、8MPa、
5分間熱プレスし、膜電極接合体を作製した。
A polymer electrolyte membrane obtained by the following method was sandwiched between the gas diffusion electrodes, and was placed at 150 ° C., 8 MPa,
By hot pressing for 5 minutes, a membrane electrode assembly was produced.

【0040】膜厚50μmのポリ(エチレンーテトラフ
ルオロエチレン)フィルムに20kGyのγ線を窒素
中、常温下で照射した後、フィルムをスチレンモノマ:
ジビニルベンゼン:キシレン=95:5:30(容積
部)の混合溶液中に60℃で2時間浸すことにより、ポ
リ(エチレンーテトラフルオロエチレン)にスチレン鎖
をグラフトした。フィルムを乾燥後、クロルスルホン酸
30容積部と1,2―ジクロロエタン100容積部の混
合中に、50℃、1時間浸した。乾燥後の膜を90℃の
新しい脱イオン水で2時間洗浄した。その膜の化学式
(ポリスチレンスルホン酸グラフト−ポリ(エチレン−
テトロフルオロエチレン))を図7に示す。
After irradiating a 50 μm-thick poly (ethylene-tetrafluoroethylene) film with 20 kGy γ-rays in nitrogen at room temperature, the film was treated with styrene monomer:
By immersing in a mixed solution of divinylbenzene: xylene = 95: 5: 30 (volume part) at 60 ° C. for 2 hours, a styrene chain was grafted on poly (ethylene-tetrafluoroethylene). After drying the film, the film was immersed in a mixture of 30 parts by volume of chlorosulfonic acid and 100 parts by volume of 1,2-dichloroethane at 50 ° C. for 1 hour. The dried membrane was washed with fresh deionized water at 90 ° C. for 2 hours. The chemical formula of the membrane (polystyrene sulfonic acid graft-poly (ethylene-
Tetrofluoroethylene)) is shown in FIG.

【0041】次に、この膜電極接合体を燃料電池単セル
に組み付け発電評価した。評価条件はセル温度75℃、
酸化剤ガスとして空気、燃料ガスとして純水素を用い、
これらの利用率が各々40%、80%、ガス圧は共に
0.25MPaで供給した。この際、酸化剤ガスには空
気量に対しモル比で0.04、燃料ガスには水素ガス量
に対しモル比で0.22の水蒸気を供給し加湿した。図
5にその評価結果を示す。
Next, this membrane electrode assembly was assembled into a single fuel cell and evaluated for power generation. Evaluation conditions were cell temperature 75 ° C,
Using air as oxidant gas and pure hydrogen as fuel gas,
The utilization rates were 40% and 80%, respectively, and the gas pressure was both supplied at 0.25 MPa. At this time, water vapor was supplied to the oxidizing gas at a molar ratio to the air amount of 0.04 and the fuel gas was supplied to the hydrogen gas at a molar ratio of 0.22 to the hydrogen gas amount for humidification. FIG. 5 shows the evaluation results.

【0042】(実施例2)実施例1と同じ白金担持カー
ボン15gをイソプロピルアルコール115g、水11
5g中に均一分散した触媒ペーストを、実施例1と同じ
撥水処理カーボンペーパーに実施例1と同じ方法で同じ
量の白金量となるように触媒層を形成した。
(Example 2) 15 g of platinum-supported carbon same as in Example 1 was mixed with 115 g of isopropyl alcohol and 11 g of water.
The catalyst layer uniformly dispersed in 5 g of the catalyst layer was formed on the same water-repellent carbon paper as in Example 1 by the same method as in Example 1 so as to have the same amount of platinum.

【0043】続いて、メタノール100g中にスチレン
スルホン酸ソーダ10g、ジビニルベンゼン1g、アゾ
ビスイソブチロニトリル0.1gを加え混合・分散した
溶液を、撥水処理カーボンペーパー上に形成した触媒層
表面に数回に分けて塗布・乾燥を繰り返した。その後、
80℃×8時間保持し、モノマーを重合しガス拡散電極
を得た。
Subsequently, a solution prepared by adding 10 g of sodium styrenesulfonate, 1 g of divinylbenzene, and 0.1 g of azobisisobutyronitrile to 100 g of methanol and mixing and dispersing the mixture was coated on the surface of the catalyst layer formed on the water-repellent carbon paper. Coating and drying were repeated several times. afterwards,
The temperature was maintained at 80 ° C. × 8 hours, and the monomer was polymerized to obtain a gas diffusion electrode.

【0044】実施例1と同じ電解質膜と上記電極を実施
例1と同じ条件で膜電極接合体を作製し、実施例1と同
じ評価条件で発電評価した。図5にその評価結果を示
す。
A membrane / electrode assembly was produced using the same electrolyte membrane and the electrodes as in Example 1 under the same conditions as in Example 1, and the power generation was evaluated under the same evaluation conditions as in Example 1. FIG. 5 shows the evaluation results.

【0045】(比較例)実施例1と同じ白金担持カーボ
ン15gと5重量%のイオン交換樹脂溶液(旭化成株式
会社製、SS−1080)180gをイソプロピルアル
コール24g、水24g中に均一分散し触媒ペーストを
得た。実施例1と同じ撥水処理カーボンペーパーに実施
例1と同じ方法で同じ量の白金量となるように触媒層を
形成し、ガス拡散電極を得た。なお上記イオン交換樹脂
の化学式は図6に示される化学式からなる。
Comparative Example 15 g of platinum-supported carbon and 180 g of a 5% by weight ion-exchange resin solution (SS-1080, manufactured by Asahi Kasei Corporation) as in Example 1 were uniformly dispersed in 24 g of isopropyl alcohol and 24 g of water to form a catalyst paste. I got A catalyst layer was formed on the same water-repellent carbon paper as in Example 1 by the same method as in Example 1 so as to have the same amount of platinum, and a gas diffusion electrode was obtained. The chemical formula of the ion exchange resin is the chemical formula shown in FIG.

【0046】高分子電解膜にNafion112(Du
Pont製)を用い、120℃、2MPa、5分間熱
プレスし、膜電極接合体を作製し、実施例1と同じ評価
条件で発電評価した。図5にその評価結果を示す。
The Nafion 112 (Du) was applied to the polymer electrolyte membrane.
(Pont), and hot pressed at 120 ° C., 2 MPa, for 5 minutes to produce a membrane-electrode assembly, and the power generation was evaluated under the same evaluation conditions as in Example 1. FIG. 5 shows the evaluation results.

【0047】図5は、出力電圧と電流密度との関係を表
すグラフで、このグラフからわかるように、実施例1及
び実施例2いずれも比較例と比較して出力電圧が高くな
っている。この理由は電極反応サイトである三相界面を
より多く確保しつつ連続的なプロトン伝導路を確保する
ため電極の特性が向上することができ、その結果、低コ
ストで、この電極と組み合わせた燃料電池の出力性能を
格段に向上させると考えられる。
FIG. 5 is a graph showing the relationship between the output voltage and the current density. As can be seen from this graph, the output voltage of each of Examples 1 and 2 is higher than that of the comparative example. The reason for this is that the characteristics of the electrode can be improved to secure a continuous proton conduction path while securing more three-phase interfaces, which are electrode reaction sites, and as a result, the fuel cost combined with this electrode can be reduced. It is thought that the output performance of the battery is significantly improved.

【0048】[0048]

【発明の効果】本発明の第1の発明は、固体高分子電解
質膜型燃料電池の固体高分子電解質膜を挟持する触媒層
を備えたガス拡散電極において、炭化水素系樹脂にプロ
トン伝導性官能基を導入した化合物を前記触媒層に含有
したことを特徴とするガス拡散電極であるので、電極反
応サイトである三相界面をより多く確保しつつ連続的な
プロトン伝導路を確保するため電極の特性が向上するこ
とができ、その結果、低コストで、この電極と組み合わ
せた燃料電池の出力性能を格段に向上させることができ
る固体高分子電解質膜型燃料電池用電極を提供すること
が可能である。
According to a first aspect of the present invention, there is provided a gas diffusion electrode provided with a catalyst layer sandwiching a solid polymer electrolyte membrane of a solid polymer electrolyte membrane fuel cell. Since it is a gas diffusion electrode characterized by containing a compound having introduced a group in the catalyst layer, to ensure a continuous proton conduction path while securing more three-phase interface is an electrode reaction site of the electrode The characteristics can be improved, and as a result, it is possible to provide an electrode for a solid polymer electrolyte membrane fuel cell that can significantly improve the output performance of a fuel cell combined with this electrode at low cost. is there.

【0049】さらに本発明の第2の発明は、固体高分子
電解質膜型燃料電池の固体高分子電解質膜を挟持するガ
ス拡散電極の製造方法において、炭化水素系樹脂にプロ
トン伝導性官能基を導入したモノマーを触媒層に混合・
分散する工程と、該モノマーを重合し高分子量化する工
程とからなることを特徴とする固体高分子電解質膜型燃
料電池用ガス拡散電極の製造方法であるので、電極反応
サイトである三相界面をより多く確保しつつ連続的なプ
ロトン伝導路を確保するため電極の特性が向上すること
ができ、その結果、低コストで、この電極と組み合わせ
た燃料電池の出力性能を格段に向上させることができる
固体高分子電解質膜型燃料電池用電極の製造方法を提供
することが可能である。また、この製造方法は液状で触
媒層に混合・分散したのち、固体化している為、連続的
なプロトン伝導路を形成することができるという利点が
ある。
Further, a second invention of the present invention relates to a method for producing a gas diffusion electrode sandwiching a solid polymer electrolyte membrane of a solid polymer electrolyte membrane fuel cell, wherein a proton conductive functional group is introduced into the hydrocarbon resin. Mixed monomer into the catalyst layer
A method for producing a gas diffusion electrode for a solid polymer electrolyte membrane fuel cell, which comprises a step of dispersing and a step of polymerizing the monomer to increase the molecular weight; As a result, the characteristics of the electrode can be improved to secure a continuous proton conduction path while securing a larger amount of fuel, and as a result, the output performance of the fuel cell combined with this electrode can be significantly improved at low cost. It is possible to provide a method for producing an electrode for a solid polymer electrolyte membrane fuel cell that can be used. In addition, this manufacturing method has an advantage that a continuous proton conduction path can be formed since the liquid is mixed and dispersed in the catalyst layer and then solidified.

【0050】さらに本発明の第3の発明は、固体高分子
電解質膜型燃料電池の固体高分子電解質膜を挟持する電
極の製造方法において、炭化水素系樹脂のモノマーを触
媒層に混合・分散する工程と、該モノマーを重合し高分
子量化する工程と、前記高分子にプロトン伝導性官能基
を導入する工程とからなることを特徴とする固体高分子
電解質膜型燃料電池用ガス拡散電極の製造方法であるの
で、上記第2の発明と同様、電極反応サイトである三相
界面をより多く確保しつつ連続的なプロトン伝導路を確
保するため電極の特性が向上することができ、その結
果、低コストで、この電極と組み合わせた燃料電池の出
力性能を格段に向上させることができる固体高分子電解
質膜型燃料電池用電極の製造方法を提供することが可能
である。また、この製造方法は液状で触媒層に混合・分
散したのち、固体化している為、連続的なプロトン伝導
路を形成することができるという利点がある。
Further, according to a third aspect of the present invention, there is provided a method for manufacturing an electrode sandwiching a solid polymer electrolyte membrane of a solid polymer electrolyte membrane fuel cell, wherein a monomer of a hydrocarbon resin is mixed and dispersed in a catalyst layer. Producing a gas diffusion electrode for a solid polymer electrolyte membrane fuel cell, comprising: a step of polymerizing the monomer to increase the molecular weight; and a step of introducing a proton conductive functional group into the polymer. Since the method is the same as in the second aspect, the characteristics of the electrode can be improved to secure a continuous proton conduction path while securing more three-phase interfaces that are electrode reaction sites, and as a result, It is possible to provide a method of manufacturing an electrode for a solid polymer electrolyte membrane fuel cell, which can significantly improve the output performance of a fuel cell combined with this electrode at a low cost. In addition, this manufacturing method has an advantage that a continuous proton conduction path can be formed since the liquid is mixed and dispersed in the catalyst layer and then solidified.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明実施例1の固体高分子電解質膜型燃料電
池用電極の製造方法の工程図
FIG. 1 is a process chart of a method for producing an electrode for a solid polymer electrolyte membrane fuel cell according to Example 1 of the present invention.

【図2】本発明実施例1の触媒ペーストの製造方法を示
す図
FIG. 2 is a diagram showing a method for producing a catalyst paste of Example 1 of the present invention.

【図3】本発明の実施例1の化学反応式を示す図FIG. 3 is a diagram showing a chemical reaction formula of Example 1 of the present invention.

【図4】本発明の別の実施例の化学反応式を示す図FIG. 4 is a diagram showing a chemical reaction formula according to another embodiment of the present invention.

【図5】本発明の実施例1と実施例2及び比較例の出力
電圧と電流密度の関係を表すグラフ
FIG. 5 is a graph showing the relationship between the output voltage and the current density in Examples 1 and 2 and Comparative Example of the present invention.

【図6】比較例のイオン交換樹脂の化学式を示す図FIG. 6 is a diagram showing a chemical formula of an ion exchange resin of a comparative example.

【図7】実施例1の高分子電解質膜の化学式を示す図FIG. 7 is a view showing a chemical formula of a polymer electrolyte membrane of Example 1.

【符号の説明】[Explanation of symbols]

CP カーボンペーパー CP carbon paper

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 固体高分子電解質膜型燃料電池の固体高
分子電解質膜を挟持する触媒層を備えたガス拡散電極に
おいて、炭化水素系樹脂にプロトン伝導性官能基を導入
した化合物を前記触媒層に含有したことを特徴とするガ
ス拡散電極。
In a gas diffusion electrode provided with a catalyst layer sandwiching a solid polymer electrolyte membrane of a solid polymer electrolyte membrane fuel cell, a compound obtained by introducing a proton conductive functional group into a hydrocarbon resin is used as the catalyst layer. A gas diffusion electrode comprising:
【請求項2】 固体高分子電解質膜型燃料電池の固体高
分子電解質膜を挟持するガス拡散電極の製造方法におい
て、炭化水素系樹脂にプロトン伝導性官能基を導入した
モノマーを触媒層に混合・分散する工程と、該モノマー
を重合し高分子量化する工程とからなることを特徴とす
る固体高分子電解質膜型燃料電池用ガス拡散電極の製造
方法。
2. A method for producing a gas diffusion electrode sandwiching a solid polymer electrolyte membrane of a solid polymer electrolyte membrane fuel cell, wherein a monomer obtained by introducing a proton conductive functional group into a hydrocarbon resin is mixed with the catalyst layer. A method for producing a gas diffusion electrode for a solid polymer electrolyte membrane fuel cell, comprising: a step of dispersing; and a step of polymerizing the monomer to increase the molecular weight.
【請求項3】 固体高分子電解質膜型燃料電池の固体高
分子電解質膜を挟持する電極の製造方法において、炭化
水素系樹脂のモノマーを触媒層に混合・分散する工程
と、該モノマーを重合し高分子量化する工程と、前記高
分子にプロトン伝導性官能基を導入する工程とからなる
ことを特徴とする固体高分子電解質膜型燃料電池用ガス
拡散電極の製造方法。
3. A method for producing an electrode sandwiching a solid polymer electrolyte membrane of a solid polymer electrolyte membrane fuel cell, comprising the steps of: mixing and dispersing a monomer of a hydrocarbon resin in a catalyst layer; and polymerizing the monomer. A method for producing a gas diffusion electrode for a solid polymer electrolyte membrane fuel cell, comprising: a step of increasing the molecular weight; and a step of introducing a proton conductive functional group into the polymer.
【請求項4】 前記プロトン伝導性官能基は、スルホン
酸、カルボン酸、ホスホン酸、燐酸からなる酸基から選
択されることを特徴とする請求項1〜請求項3記載の固
体高分子電解質膜型燃料電池用ガス拡散電極及びその製
造方法。
4. The solid polymer electrolyte membrane according to claim 1, wherein the proton conductive functional group is selected from an acid group consisting of sulfonic acid, carboxylic acid, phosphonic acid, and phosphoric acid. -Type gas diffusion electrode for fuel cell and method for producing the same.
【請求項5】 前記炭化水素系樹脂は、ポリスチレン、
ABS樹脂、SB樹脂、AS樹脂、AES樹脂、スチレ
ンジビニルベンゼン共重合体、ポリカーボネート、ポリ
エチレンテレフタレート、ポリアリレート、ポリスルホ
ン、ポリエーテルスルホン、ポリフェニレンスルフィ
ド、ポリアミドイミド、ポリアミド、ポリイミド、ポリ
エーテル、ポリエーテルケトン、ポリエーテルエーテル
ケトン、ポリベンズイミダゾール等の少なくとも炭素と
水素とからなる重合体であることを特徴とする請求項1
〜請求項3記載の固体高分子電解質膜型燃料電池用ガス
拡散電極及びその製造方法。
5. The method according to claim 1, wherein the hydrocarbon resin is polystyrene,
ABS resin, SB resin, AS resin, AES resin, styrene divinylbenzene copolymer, polycarbonate, polyethylene terephthalate, polyarylate, polysulfone, polyether sulfone, polyphenylene sulfide, polyamide imide, polyamide, polyimide, polyether, polyether ketone, 2. A polymer comprising at least carbon and hydrogen, such as polyetheretherketone and polybenzimidazole.
4. The gas diffusion electrode for a solid polymer electrolyte membrane fuel cell according to claim 3, and a method for producing the same.
JP2001137476A 2001-05-08 2001-05-08 Gas diffusion electrode for solid polymer electrolyte membrane type fuel cell and its manufacturing method Pending JP2002334702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001137476A JP2002334702A (en) 2001-05-08 2001-05-08 Gas diffusion electrode for solid polymer electrolyte membrane type fuel cell and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001137476A JP2002334702A (en) 2001-05-08 2001-05-08 Gas diffusion electrode for solid polymer electrolyte membrane type fuel cell and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2002334702A true JP2002334702A (en) 2002-11-22

Family

ID=18984577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001137476A Pending JP2002334702A (en) 2001-05-08 2001-05-08 Gas diffusion electrode for solid polymer electrolyte membrane type fuel cell and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2002334702A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100506096B1 (en) * 2003-10-27 2005-08-03 삼성에스디아이 주식회사 Polymer comprising terminal sulfonic acid group, and polymer electrolyte and fuel cell using the same
JP2005276602A (en) * 2004-03-24 2005-10-06 Aisin Seiki Co Ltd Membrane electrode assembly and solid polymer fuel cell
US20060008697A1 (en) * 2004-07-08 2006-01-12 Hae-Kyoung Kim Supported catalyst and fuel cell using the same
JP2006114229A (en) * 2004-10-12 2006-04-27 Konica Minolta Holdings Inc Electrode for fuel cell, the fuel cell using it, and manufacturing method of electrode catalyst for the fuel cell
JP2007504333A (en) * 2003-09-04 2007-03-01 ペミアス ゲーエムベーハー Proton conducting polymer membranes coated with a catalyst layer, membrane / electrode units and their use in fuel cells, wherein the polymer membrane comprises a phosphonic acid polymer
US8394506B2 (en) 2007-03-09 2013-03-12 Canon Kabushiki Kaisha Helical substituted polyacetylene structure, method for producing the same, device structure, ion transport film and gas separation film

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007504333A (en) * 2003-09-04 2007-03-01 ペミアス ゲーエムベーハー Proton conducting polymer membranes coated with a catalyst layer, membrane / electrode units and their use in fuel cells, wherein the polymer membrane comprises a phosphonic acid polymer
KR100506096B1 (en) * 2003-10-27 2005-08-03 삼성에스디아이 주식회사 Polymer comprising terminal sulfonic acid group, and polymer electrolyte and fuel cell using the same
JP2005276602A (en) * 2004-03-24 2005-10-06 Aisin Seiki Co Ltd Membrane electrode assembly and solid polymer fuel cell
US20060008697A1 (en) * 2004-07-08 2006-01-12 Hae-Kyoung Kim Supported catalyst and fuel cell using the same
JP2006114229A (en) * 2004-10-12 2006-04-27 Konica Minolta Holdings Inc Electrode for fuel cell, the fuel cell using it, and manufacturing method of electrode catalyst for the fuel cell
JP4591029B2 (en) * 2004-10-12 2010-12-01 コニカミノルタホールディングス株式会社 Method for producing electrode catalyst for fuel cell
US8394506B2 (en) 2007-03-09 2013-03-12 Canon Kabushiki Kaisha Helical substituted polyacetylene structure, method for producing the same, device structure, ion transport film and gas separation film

Similar Documents

Publication Publication Date Title
CA2567305C (en) Liquid composition, process for its production, and process for producing membrane-electrode assembly for polymer electrolyte fuel cells
JP3915846B2 (en) Electrolyte membrane for polymer electrolyte fuel cell, production method thereof, and membrane electrode assembly for polymer electrolyte fuel cell
CN102687328B (en) There is the composite proton conductive membranes of low degradability and comprise its membrane-membrane electrode for fuel cell assembly
JP4997971B2 (en) Electrolyte membrane for polymer electrolyte fuel cell, production method thereof and membrane electrode assembly for polymer electrolyte fuel cell
Chi et al. Enhancing membrane electrode assembly performance by improving the porous structure and hydrophobicity of the cathode catalyst layer
JP5498643B2 (en) POLYMER ELECTROLYTE MEMBRANE FOR FUEL CELL, ITS MANUFACTURING METHOD, AND FUEL CELL SYSTEM INCLUDING THE SAME
CN106856243B (en) Preparation method and application of ordered single electrode based on metal macrocyclic compound
Miyake et al. Reinforced polyphenylene ionomer membranes exhibiting high fuel cell performance and mechanical durability
KR100684734B1 (en) Polymer electrolyte for fuel cell, method of producing same and fuel cell apparatus comprising same
Kumar et al. Polypyrrole and polyaniline-based membranes for fuel cell devices: A review
JP5286651B2 (en) Liquid composition, process for producing the same, and process for producing membrane electrode assembly for polymer electrolyte fuel cell
JP2004022346A (en) Electrode catalyst for fuel cell, electrode for fuel cell and fuel cell using same
KR101002654B1 (en) Polymer membrane for fuelcell, method of preparing the same, membrane-electrode assembly comprising the same, and fuel cell system comprising the same
JP2007031718A5 (en)
JP2002334702A (en) Gas diffusion electrode for solid polymer electrolyte membrane type fuel cell and its manufacturing method
US20090291348A1 (en) Electrolyte membrane for fuel cell and method of manufacturing the same, membrane electrode assembly and fuel cell
JP2002305007A (en) Solid polymer type fuel cell
JP3467476B2 (en) Solid polymer electrolyte membrane electrode structure, method of manufacturing the same, and fuel cell using the same
JP2001126737A (en) Electrode for a fuel cell, method for preparing the fuel cell, and the fuel cell
Nguyen et al. A Comparative Study of Conditioning Methods for Hydrocarbon‐Based Proton‐Exchange Membrane Fuel Cells for Improved Performance
JP2002298858A (en) Solid macromolecule type fuel cell
JP4271390B2 (en) Method for producing electrode structure for polymer electrolyte fuel cell and polymer electrolyte fuel cell
KR20090016137A (en) Graft polymeric membranes, polymer electrolyte membranes formed thereform, and high temperature polymer electrolyte fuel cell comprising the same
JP2005174827A (en) Solid polymer electrolyte membrane, fuel cell using the same, and manufacturing method of them
Kumar et al. Conducting Polymers as Membrane for Fuel Cells