JP2007157580A - Light-emitting structural body and light-emitting element - Google Patents

Light-emitting structural body and light-emitting element Download PDF

Info

Publication number
JP2007157580A
JP2007157580A JP2005353492A JP2005353492A JP2007157580A JP 2007157580 A JP2007157580 A JP 2007157580A JP 2005353492 A JP2005353492 A JP 2005353492A JP 2005353492 A JP2005353492 A JP 2005353492A JP 2007157580 A JP2007157580 A JP 2007157580A
Authority
JP
Japan
Prior art keywords
light emitting
light
columnar
shape
emitting structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005353492A
Other languages
Japanese (ja)
Inventor
Ryota Ohashi
良太 大橋
Tomoyuki Oike
智之 大池
Tatsuya Iwasaki
達哉 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005353492A priority Critical patent/JP2007157580A/en
Priority to US11/564,385 priority patent/US7705533B2/en
Publication of JP2007157580A publication Critical patent/JP2007157580A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/86Vessels; Containers; Vacuum locks
    • H01J29/89Optical or photographic arrangements structurally combined or co-operating with the vessel
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/02Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of crystals, e.g. rock-salt, semi-conductors

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light-emitting material which improves a luminance by taking a light outside efficiently. <P>SOLUTION: A light-emitting layer is composed of a columnar portion 11 of a columnar structure like a cylindrical shape and a light-emitting portion 12 of a pyramid body like a conical shape. Efficiency for extracting light outside is improved by extracting light generated in the light-emitting portion 12 outside through the columnar portion 11. Desirably, a diameter of a conical bottom of the light-emitting portion 12 shall be 1 μm or less and a conical angle α shall be 30 to 90 degrees. Desirably, a diameter of the columnar portion 11 shall be 300 μm or less and 20 or more of the columnar members contact with the light-emitting portion 12. Moreover, desirably, a refractive index ratio n2/n1 between a refractive index n1 of the columnar portion and a refractive index n2 of the light-emitting portion shall be 1 or more. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は光を効率良く外部に取り出すことにより輝度の向上した発光構造体及び発光素子に関するものである。   The present invention relates to a light emitting structure and a light emitting element having improved luminance by efficiently extracting light to the outside.

発光機能を有する微粒子及び薄膜を用いたフラットパネルディスプレイディスプレイ(FPD)として、エレクトロルミネッセンス(EL)ディスプレイや電界放出ディスプレイ(FED)等が注目されている。ELディスプレイは自発光であること、完全固体型であるため耐環境性に優れているなどの特徴をもつ。   As a flat panel display (FPD) using fine particles and a thin film having a light emitting function, an electroluminescence (EL) display, a field emission display (FED), and the like are attracting attention. EL displays are self-luminous, and are completely solid, so they have excellent environmental resistance.

ELデバイスには無機材料における電界発光を用いた無機ELと、有機材料における電流注入発光を利用した有機ELとがある。一般的に、これらのEL素子において、素子の内部で発生した光のうち臨界角以上の角度で界面に入射する光は全反射されてしまうため、全ての光を外部に取り出すことは困難である。この光取り出し効率は素子を構成する材料に依存するが、一般的に20%程度である。光取り出し効率を向上させる手法としては、例えば、透明電極層と透明基板の間に低屈折率層を設ける方法(特許文献1)、透明電極を凹凸構造にする方法(特許文献2)等が提案されている。
特開2002-278477号公報 特開2004-296438号公報
EL devices include inorganic EL using electroluminescence in inorganic materials and organic EL using current injection light emission in organic materials. In general, in these EL elements, light incident on the interface at an angle greater than the critical angle out of the light generated inside the element is totally reflected, so that it is difficult to extract all the light to the outside. . The light extraction efficiency depends on the material constituting the element, but is generally about 20%. As a method for improving the light extraction efficiency, for example, a method of providing a low refractive index layer between the transparent electrode layer and the transparent substrate (Patent Document 1), a method of making the transparent electrode an uneven structure (Patent Document 2), etc. are proposed. Has been.
JP 2002-278477 A JP 2004-296438 A

しかしながら、上記手法のように低屈折率層や光散乱層を、基板や発光層といった必要構成要素以外に設けると、素子構造が複雑化することになり、製造プロセスが複雑化して発光素子の品質管理が難しくなる。また、製造コストが増加したりすることにつながる。   However, if the low refractive index layer and the light scattering layer are provided in addition to the necessary components such as the substrate and the light emitting layer as in the above method, the element structure becomes complicated, the manufacturing process becomes complicated, and the quality of the light emitting element is increased. Management becomes difficult. In addition, the manufacturing cost increases.

また一般に、発光部位に単結晶薄膜を用いた場合(図9(a))においては、量子効率に優れているが、光取り出し効率が20%程度に制限される。また大きなサイズの単結晶の作成が困難であるため高コストになる。   In general, when a single crystal thin film is used for the light emitting portion (FIG. 9A), the quantum efficiency is excellent, but the light extraction efficiency is limited to about 20%. Moreover, since it is difficult to produce a single crystal having a large size, the cost becomes high.

一方、発光部位に微結晶、もしくは微粒子を用いた従来の構成(図9(b))においては界面での光散乱により、光取り出し効率は増加する。しかし、同時に表面積増加により界面での非発光中心が増加するため量子効率が低下する。また比較的大きなサイズ(0.1μm以上)の微結晶を用いることで改善が成されるが、一般に表面が粗くなるため、薄膜デバイス化における障害となる。上記の課題は本発明の以下の構成および製法により解決できる。   On the other hand, in the conventional configuration using microcrystals or fine particles in the light emitting part (FIG. 9B), light extraction efficiency increases due to light scattering at the interface. However, at the same time, the non-luminous center at the interface increases due to the increase in surface area, so that the quantum efficiency decreases. Although improvement can be achieved by using microcrystals having a relatively large size (0.1 μm or more), since the surface is generally rough, it becomes an obstacle to the formation of a thin film device. The above problems can be solved by the following configuration and manufacturing method of the present invention.

このような技術的背景により、本発明は発光層自体が光取り出し効率を改善する構造を有する発光体構造と、その製法に関するものである。   With such a technical background, the present invention relates to a light emitting structure having a structure in which the light emitting layer itself improves the light extraction efficiency, and a method for manufacturing the same.

本発明の発光構造体は、下地面上に設けられた発光層を有し、該発光層が複数の発光部位と、該複数の発光部位間に設けられた複数の柱状部位とを備えた発光構造体であって、
前記発光部位は、前記下地面に平行な方向の断面積が、下地面側から該下地面側と反対の面側に向かって、又は該下地面側と反対の面側から該下地面側に向かって減少する立体形状をなし、
前記複数の柱状部位は、下地面に対して略垂直方向に伸び、
前記複数の柱状部位の内の少なくとも一部の柱状部位が前記発光部位に接しており、前記発光部位で発生した光が前記柱状部位を通して取り出されることを特徴とする発光構造体である。
The light emitting structure of the present invention has a light emitting layer provided on a base surface, and the light emitting layer includes a plurality of light emitting parts and a plurality of columnar parts provided between the plurality of light emitting parts. A structure,
The light emitting portion has a cross-sectional area in a direction parallel to the ground surface, from the ground surface side toward the surface opposite to the ground surface side, or from the surface side opposite to the ground surface side to the ground surface side. A three-dimensional shape that decreases toward the
The plurality of columnar portions extend in a direction substantially perpendicular to the base surface,
At least a part of the plurality of columnar portions is in contact with the light emitting portion, and light emitted from the light emitting portion is extracted through the columnar portion.

前記発光部位は錐体であることが望ましい。錐体とは、円錐、三角錐、四角錐、五角錐以上の角錐の他、円錐台、三角錐台、四角錐台、五角錐以上の角錐台を含むものである。ここで、本願において、略垂直とは、垂直と、基板に対して垂直な方向に対して傾いているが実質的に垂直と見なせる程度を包含する意である(以下、同様である)。発生した光が柱状部位から高効率の光取り出しがなされるために、20以上の柱状部位と接していることが好ましい。   The light emitting part is preferably a cone. The pyramid includes a cone, a triangular pyramid, a quadrangular pyramid, a pyramid of five or more pyramids, a truncated cone, a triangular frustum, a quadrangular pyramid, and a pyramid of five or more pyramids. Here, in the present application, the term “substantially perpendicular” means to include the degree of being perpendicular to the direction perpendicular to the substrate but being substantially perpendicular (the same applies hereinafter). In order for the generated light to be efficiently extracted from the columnar site, it is preferable to be in contact with 20 or more columnar sites.

ここで、発光層の厚さは厚さ5μm以下の薄膜であることが望ましい。ここで、発光部位が円錐状、正三角錐、又は正四角錐形以上の正角錐型形状(或いは円錐台状、正三角台錐、又は正四角錐台形以上の正角錐台型形状)である場合とする。そのときは、発光部位における下地面に対して平行な方向の断面の形状は、円の直径、正三角形の一辺の長さ又は正四角形以上の角型形状の対角線の長さが1μm以下であることが望ましい。また柱状部位が円錐状、正三角錐、又は正四角錐形以上の正角錐型形状(或いは円錐台状、正三角台錐、又は正四角錐台形以上の正角錐台型形状)である場合とする。そのときは、柱状部位における下地面に対して平行な方向の断面の形状は、円の直径、正三角形の一辺の長さ又は正四角形以上の正角型形状の対角線の長さが300nm以下であることが望ましい。   Here, the light emitting layer is preferably a thin film having a thickness of 5 μm or less. Here, it is assumed that the light-emitting portion has a conical shape, a regular triangular pyramid, or a regular pyramid shape that is greater than or equal to a regular pyramid shape (or a truncated cone shape, regular triangular pyramid shape, or a regular pyramid shape that is greater than or equal to a regular pyramid shape). . At that time, the shape of the cross section in the direction parallel to the base surface in the light emitting part is such that the diameter of the circle, the length of one side of the regular triangle, or the length of the diagonal line of the square shape of the regular square or more is 1 μm or less. It is desirable. Further, it is assumed that the columnar part has a conical shape, a regular triangular pyramid, or a regular pyramid shape greater than or equal to a regular pyramid shape (or a truncated cone shape, a regular triangular pyramid shape, or a regular pyramid shape that is greater than or equal to a regular pyramid shape). In that case, the shape of the cross section in the direction parallel to the base surface in the columnar part is that the diameter of the circle, the length of one side of the equilateral triangle, or the length of the diagonal line of the equilateral shape of the equilateral square or more is 300 nm or less. It is desirable to be.

また、発光部位が円錐状、正三角錐形、又は正四角錐形以上の正角錐型形状(或いは円錐台状、正三角台錐、又は正四角錐台形以上の正角錐台型形状)とみなすことができない場合もある。そのときは、発光部位における下地面に対して平行な方向の断面の大きさは、断面積が等しくなる円に換算したとき、その円の直径が1μm以下であることが望ましい。柱状部位が円錐状、正三角錐形、又は正四角錐形以上の正角錐型形状(或いは円錐台状、正三角台錐、又は正四角錐台形以上の正角錐台型形状)とみなすことができない場合もある。そのときは、柱状部位における前記下地面に対して平行な方向の断面の大きさは、断面積が等しくなる円に換算したとき、その円の直径が300nm以下であることが望ましい。また発光部から柱状部位に効果的に光取り出しが行われるよう柱状部位の屈折率n1と発光部位の屈折率n2との屈折率比n2/n1が1以上であることが好ましい。   In addition, the light emitting part cannot be regarded as a conical shape, a regular triangular pyramid shape, or a regular pyramid shape having a regular pyramid shape or more (or a truncated cone shape, a regular triangular pyramid shape, or a regular pyramid shape having a regular pyramid shape or more). In some cases. In that case, when the cross-sectional size in the direction parallel to the base surface in the light emitting portion is converted into a circle having the same cross-sectional area, the diameter of the circle is preferably 1 μm or less. In some cases, the columnar part cannot be regarded as a conical shape, a regular triangular pyramid shape, or a regular pyramid shape that is greater than or equal to a regular pyramid shape (or a truncated cone shape, regular triangular pyramid shape, or a regular pyramid shape that is greater than or equal to a regular pyramid shape). is there. In that case, when the size of the cross section in the direction parallel to the base surface in the columnar portion is converted into a circle having the same cross-sectional area, the diameter of the circle is preferably 300 nm or less. Further, the refractive index ratio n2 / n1 between the refractive index n1 of the columnar part and the refractive index n2 of the light emitting part is preferably 1 or more so that light is effectively extracted from the light emitting part to the columnar part.

また発光部位と柱状部位の材料の化学式が共にZnWO4であること、発光部位の結晶構造が単斜晶で、柱状部位の結晶構造が三斜晶であることが好ましい。 Moreover, it is preferable that the chemical formulas of the materials of the light emitting part and the columnar part are both ZnWO 4 , the crystal structure of the light emitting part is monoclinic, and the crystal structure of the columnar part is triclinic.

更に、発光材料としては酸化物である発光材料であることが好ましく、例えば酸化タングステンもしくは酸化亜鉛を含有するタングステン複合酸化物などが挙げられる。また前記発光材料の他の例としては発光部位として有機物を用いることも可能で、例えばFIrpic、Ir(ppy)3などの有機発光材料が挙げられる。 Furthermore, the light emitting material is preferably a light emitting material that is an oxide, such as tungsten composite oxide containing tungsten oxide or zinc oxide. In addition, as another example of the light emitting material, an organic substance can be used as a light emitting portion, and examples thereof include organic light emitting materials such as FIrpic and Ir (ppy) 3 .

本発明は上記の発光材料を用いた発光素子も提供する。特には無機EL素子、有機EL素子さらには有機・無機複合発光素子、FED用蛍光薄膜、放射線用シンチレータを提供する。   The present invention also provides a light emitting element using the above light emitting material. In particular, an inorganic EL element, an organic EL element, an organic / inorganic composite light emitting element, a fluorescent thin film for FED, and a scintillator for radiation are provided.

本発明は上記発光材料の製造方法も提供する。即ち、スパッタリング法により基板上に錐体状の発光部位とそれに接する柱状部位とから成る発光層を同時成膜する成膜方法である。   The present invention also provides a method for producing the light emitting material. In other words, this is a film forming method in which a light emitting layer composed of a cone-shaped light emitting portion and a columnar portion in contact therewith is simultaneously formed on a substrate by sputtering.

本発明によれば、光取り出し効率が改善され、かつ量子効率が高く輝度が向上された発光構造体、特に蛍光膜が得られる。前記発光構造体は、無機ELや有機ELの蛍光体膜に利用することが可能である。   According to the present invention, a light emitting structure, particularly a fluorescent film, with improved light extraction efficiency, high quantum efficiency and improved luminance can be obtained. The light emitting structure can be used for inorganic EL or organic EL phosphor films.

以下に本発明の実施形態に関わる発光材料について説明する。図1、図2に本発明における発光構造体、特に薄膜の発光構造体の例を模式的に示す。
図1(a)は本発明の発光部位が円錐状、光散乱部位となる柱状部位が円柱状である場合の薄膜の平面図であり、図1(b)はその断面図である。11は円柱状の柱状部位、12は円錐状の発光部位である。発光部位12で生じた光を柱状部位11を通して外部に取り出すことにより、外部光取り出し効率を向上させる。発光部位12の最適なサイズや形状は発光部位の種類や応用上の素子構成にも依存するが、円錐底部の直径が1μm以下で、円錐角αが30−90度であることが好ましい。また、柱状部位11の直径は300nm以下で、発光部位12に柱状部位11が20個以上接していることが好ましい。柱状部位11の接する数が20個より少なくなると柱状部位11を介して取り出される光量が少なくなるからである。また、円錐角αが30度より小さくなると柱状部位11を介して取り出される光量が少なくなり、90度を超えると複数の発光部位と接する柱状部位の面積が減少して柱状部位11を介して取り出される光量が少なくなる。図1に示すような構成にすることで、発光部位における高い量子効率と高い光取り出し効率を両立できる。これにより発光効率の高い蛍光薄膜となる。
Hereinafter, the light emitting material according to the embodiment of the present invention will be described. 1 and 2 schematically show an example of a light emitting structure according to the present invention, particularly a thin film light emitting structure.
FIG. 1A is a plan view of a thin film when the light emitting site of the present invention is conical and the columnar site serving as a light scattering site is cylindrical, and FIG. 1B is a cross-sectional view thereof. Reference numeral 11 denotes a cylindrical columnar part, and 12 denotes a conical light emitting part. External light extraction efficiency is improved by extracting light generated in the light emitting region 12 to the outside through the columnar region 11. The optimum size and shape of the light emitting portion 12 depends on the type of the light emitting portion and the applied element configuration, but it is preferable that the diameter of the cone bottom is 1 μm or less and the cone angle α is 30 to 90 degrees. Further, the diameter of the columnar portion 11 is preferably 300 nm or less, and it is preferable that 20 or more columnar portions 11 are in contact with the light emitting portion 12. This is because when the number of contact with the columnar portions 11 is less than 20, the amount of light extracted through the columnar portions 11 is reduced. In addition, when the cone angle α is smaller than 30 degrees, the amount of light extracted through the columnar part 11 decreases, and when it exceeds 90 degrees, the area of the columnar part in contact with the plurality of light emitting parts decreases and the light is extracted through the columnar part 11. Less light. By adopting the configuration as shown in FIG. 1, it is possible to achieve both high quantum efficiency and high light extraction efficiency at the light emitting site. Thereby, a fluorescent thin film with high luminous efficiency is obtained.

図2(a)は本発明の発光部位が六角錐状、柱状部位となる柱状部位が六角柱状である場合の薄膜の平面図であり、図2(b)はその断面図である。21は六角柱状の柱状部位、22は六角錐状の発光部位である。発光部位22で生じた光を柱状部位21を通して外部に取り出すことにより、外部光取り出し効率を向上させる。発光部位22の最適なサイズや形状は発光部位の種類や応用上の素子構成にも依存するが、六角錐底部の対角線が1μm以下で錐角αが30-90度であることが好ましい。柱状部位21の対角線は300nm以下で、発光部位22に柱状部位が20個以上接していることが好ましい。   FIG. 2A is a plan view of a thin film when the light emitting site of the present invention is a hexagonal pyramid and the columnar site that is a columnar site is a hexagonal column, and FIG. 2B is a cross-sectional view thereof. Reference numeral 21 denotes a hexagonal columnar portion, and 22 denotes a hexagonal pyramidal light emitting portion. External light extraction efficiency is improved by extracting light generated in the light emitting region 22 to the outside through the columnar region 21. The optimum size and shape of the light emitting portion 22 depends on the type of light emitting portion and the applied element configuration, but it is preferable that the diagonal line of the hexagonal pyramid base is 1 μm or less and the cone angle α is 30-90 degrees. It is preferable that the diagonal line of the columnar part 21 is 300 nm or less, and 20 or more columnar parts are in contact with the light emitting part 22.

図3は本実施形態の発光構造体を無機EL素子として用いる場合の構成例を示しており、光を基板側から取り出すタイプの交流駆動型無機EL素子の概念図である。31は電極層、32は誘電体層、33は発光部位、34は光散乱部位となる柱状部位、35は透明電極、36は基板、37は本実施形態に係わる発光構造体から成る蛍光薄膜層である。誘電体層32の一方が下地面となる。交流駆動型に用いられる誘電体層32としてはBaTiOなどの誘電体の薄膜が有効であり、その膜厚は10nm〜100μmの範囲であることが好ましい。光を基板側より光を取り出す場合は、発生した光が透過するように、透明電極35としてドーピングされたIn2O3 やSnO2、ZnO、ITO等の導電性を有する透明電極を用い、基板36は透明なガラスやプラスチックであることが好ましい。電極層31としてはAuやPt、Agなど各種の金属や合金、透明導電膜が利用可能である。ここで、各々の発光部位33が背面電極31側の誘電体層32と接する面積はせいぜい1μm2であり、背面電極31が誘電体層と接する面積に比べて極めて小さい領域である。このため、この発光素子は蛍光層に比較的大きな(数μm)結晶からなる発光部を有しているにも関わらず、上述のような構成により表面の平坦性に優れているという特徴がある。よって本発明の薄膜は、薄膜デバイスの蛍光層への適用に優れている。 FIG. 3 shows a configuration example in the case where the light emitting structure of the present embodiment is used as an inorganic EL element, and is a conceptual diagram of an AC driven inorganic EL element that takes out light from the substrate side. 31 is an electrode layer, 32 is a dielectric layer, 33 is a light emitting part, 34 is a columnar part that is a light scattering part, 35 is a transparent electrode, 36 is a substrate, and 37 is a fluorescent thin film layer made of a light emitting structure according to this embodiment. It is. One of the dielectric layers 32 becomes a base surface. A dielectric thin film such as BaTiO 3 is effective as the dielectric layer 32 used in the AC drive type, and the film thickness is preferably in the range of 10 nm to 100 μm. When extracting light from the substrate side, use a transparent electrode having conductivity such as In 2 O 3 or SnO 2 , ZnO, ITO doped as the transparent electrode 35 so that the generated light is transmitted, 36 is preferably transparent glass or plastic. As the electrode layer 31, various metals such as Au, Pt, and Ag, alloys, and a transparent conductive film can be used. Here, the area where each light emitting portion 33 is in contact with the dielectric layer 32 on the back electrode 31 side is at most 1 μm 2, which is an extremely small area compared to the area where the back electrode 31 is in contact with the dielectric layer. For this reason, this light-emitting element has a feature that the surface has excellent surface flatness due to the above-described configuration even though the fluorescent layer has a light-emitting portion made of a relatively large (several μm) crystal. . Therefore, the thin film of this invention is excellent in the application to the fluorescent layer of a thin film device.

以上説明した実施形態では、発光部位の底部の大きさ、及び柱状部位の断面の大きさの評価は、円形、六角形であったため直径又は対角線の長さとした。しかし、発光部位の底部、柱状部位の断面形状は特に限定されず、様々な形状であってよく、例えば六角形でも崩れた形状のものも含まれる。そこで、発光部位の底部の大きさ、及び柱状部位の断面の大きさの評価は、図17に示すように、所定の形状(ここでは六角形に記載してあるが、実際の形状は様々である)を円形状に換算して直径dを算出し、その円の直径を大きさの評価値とした。かかる評価方法によれば、種々の形状を円形に換算して評価ができる。   In the embodiment described above, the evaluation of the size of the bottom portion of the light emitting portion and the size of the cross section of the columnar portion is a circle or a hexagon, and thus is a diameter or a diagonal length. However, the cross-sectional shape of the bottom part of the light emitting part and the columnar part is not particularly limited, and may be various shapes, for example, a hexagonal shape that is broken. Therefore, the evaluation of the size of the bottom of the light emitting part and the size of the cross section of the columnar part is described in a predetermined shape (here, a hexagonal shape, as shown in FIG. 17, but the actual shape varies). The diameter d was calculated by converting it into a circular shape, and the diameter of the circle was used as the evaluation value of the size. According to this evaluation method, various shapes can be converted into a circle and evaluated.

本発明の発光構造体としては、図10に示す。下地面となる透明な基板100がある(必要に応じ、基板上に電極等が形成されるが、この場合電極等の表面が下地面となる)。基板上に発光部位101、柱状部位102からなる発光層を設け、透明基板100側から光を取り出す構成がある。この場合、発光層の両面から光を取り出すことも可能である。また、図11に示すように、不透明な基板(透明な基板であってもよく、また必要に応じ電極等が形成される。)100上に発光部位101、柱状部位102からなる発光層を設け、発光層の基板100側とは反対の面から光を取り出す構成がある。   The light emitting structure of the present invention is shown in FIG. There is a transparent substrate 100 serving as a lower ground (an electrode or the like is formed on the substrate if necessary, but in this case, the surface of the electrode or the like serves as a base surface). There is a configuration in which a light emitting layer including a light emitting portion 101 and a columnar portion 102 is provided on a substrate, and light is extracted from the transparent substrate 100 side. In this case, light can be extracted from both sides of the light emitting layer. In addition, as shown in FIG. 11, a light emitting layer including a light emitting portion 101 and a columnar portion 102 is provided on an opaque substrate 100 (which may be a transparent substrate, and an electrode or the like is formed if necessary) 100. There is a configuration in which light is extracted from a surface opposite to the substrate 100 side of the light emitting layer.

また、図12に示すように、発光部位は円板や六角形板等を面積が小さくなるように積み重ねたような形状(側面に段差を有する錐体形状)であってもよい。かかる形状では発光部位の側面の面積が増えて発光効率をより増大させることができる。ここでは6段の層を積層した例を示しているが必要に応じた段数が設定される。なお、図13に示すように、発光部位101の錐体の頂点が基板に接していなくともよく、図14に示すように、発光部位が円錐台や六角錐台のような台状形状であってもよい。   Further, as shown in FIG. 12, the light emitting part may have a shape (conical shape having a step on the side surface) in which discs, hexagonal plates, and the like are stacked so as to reduce the area. With such a shape, the area of the side surface of the light emitting part is increased, and the light emission efficiency can be further increased. Here, an example in which six layers are stacked is shown, but the number of steps is set as necessary. As shown in FIG. 13, the apex of the cone of the light emitting part 101 does not have to be in contact with the substrate. As shown in FIG. 14, the light emitting part has a trapezoidal shape such as a truncated cone or a hexagonal frustum. May be.

さらに、図15に示すように、発光部位の底部どうしが接していてもよい。発光部位が、正六角錐等の正角錐形状の場合、発光部位の底部どうしを隙間なく接するように配置することができる場合がある。この場合、発光部位が隙間無く配置されるので、より発光効率をあげることができる。   Furthermore, as shown in FIG. 15, the bottoms of the light emitting sites may be in contact with each other. When the light emitting part has a regular pyramid shape such as a regular hexagonal pyramid, the bottom part of the light emitting part may be arranged so as to contact each other without a gap. In this case, since the light emitting parts are arranged without a gap, the light emission efficiency can be further increased.

また、図16に示すように、発光部位301が断面が三角形の三角柱状(断面が台形形状であってもよい)で基板に対して、三角柱の側面が接するように配置することも可能である。図16においては柱状部位は省略されている。   In addition, as shown in FIG. 16, the light emitting portion 301 may have a triangular prism shape with a triangular cross section (the cross section may have a trapezoidal shape), and the side surface of the triangular prism may be in contact with the substrate. . In FIG. 16, the columnar portion is omitted.

以下に実施例をあげて、本発明を説明する。   Hereinafter, the present invention will be described with reference to examples.

[実施例1]
本実施例ではスパッタリング法を用いて、発光部位と柱状部位の化学式が共にZnWO4である例について図4を用いて説明する。本実施例では、結晶構造が単斜晶で基板から膜表面にかけて逆円錐状の形状を有する発光部位と、結晶構造が三斜晶系で直径約100nmの柱状部位から成る薄膜蛍光体を作成した。図4は本実施例で作成した薄膜蛍光体の模式図であり、図4(a)は平面構造、図4(b)は断面構造の模式図である。以下に示す工程により作成した。
[Example 1]
By sputtering in this embodiment will be described with reference to FIG. 4 for an example the chemical formula of the emission sites and the columnar portion is ZnWO 4 together. In this example, a thin-film phosphor having a light emitting portion having a monoclinic crystal structure and an inverted conical shape from the substrate to the film surface and a columnar portion having a crystal structure of triclinic system and a diameter of about 100 nm was prepared. . 4A and 4B are schematic views of the thin film phosphor prepared in this example. FIG. 4A is a schematic view of a planar structure, and FIG. 4B is a schematic view of a cross-sectional structure. It created by the process shown below.

RFスパッタリング法により、基板温度600℃のシリコン基板1上にZnOとWO3をターゲットとして同時スパッタし、膜厚700nmの蛍光薄膜を成膜した。図5に成膜時の基板−ターゲットの配置を示す。ターゲットとして直径2inch(インチ)のZnOターゲットとWO3ターゲットを、基板には4inchシリコン基板を用いた。2つのターゲットの入射方向を120度ずらし、また基板の垂直方向に対して20度傾け、その交差点を基板中心から上にずらした位置関係にして、出力はそれぞれ150W、150Wに設定し、40分間成膜を行った。作成した膜に波長254nmの紫外線を当てると青白い発光が観察された。 A fluorescent thin film having a thickness of 700 nm was formed on the silicon substrate 1 having a substrate temperature of 600 ° C. by RF sputtering and simultaneously sputtered with ZnO and WO 3 as targets. FIG. 5 shows the substrate-target arrangement during film formation. A ZnO target having a diameter of 2 inches (inches) and a WO 3 target were used as targets, and a 4 inch silicon substrate was used as the substrate. The incident direction of the two targets is shifted by 120 degrees, tilted by 20 degrees with respect to the vertical direction of the board, and the intersection is shifted upward from the center of the board, the output is set to 150 W and 150 W, respectively, for 40 minutes Film formation was performed. When the prepared film was irradiated with ultraviolet rays having a wavelength of 254 nm, pale blue light emission was observed.

最も蛍光強度が強い領域を、透過電子顕微鏡により平面構造と断面構造を観察した。すると、図4に示すように100nm程度の柱状の結晶部位が集合した構造を有する光散乱部位となる柱状部位41と、シリコン基板から逆円錐状に成長し膜表面での円錐部底面の直径が約1μmである大きな結晶構造を有する発光部位42から構成されていた。TEM-EDSによる組成分析を行ったところ柱状部位41と発光部位42はほぼ同一組成であった。またX線回折、及び電子線回折による解析から、柱状部位41は三斜晶系のZnWO4構造であり、大きな結晶からなる逆円錐状の発光部位42は単斜晶のZnWO4構造であった。これにより組成が同じで結晶構造のみが異なる発光部位と柱状部位から成る蛍光薄膜を作成できた。発光部位42の円錐角αが90度の場合は、発光部位42は約30の柱状部位41と接していた。 The planar structure and the cross-sectional structure of the region having the strongest fluorescence intensity were observed with a transmission electron microscope. Then, as shown in FIG. 4, the columnar portion 41 that is a light scattering portion having a structure in which columnar crystal portions of about 100 nm are gathered, and the diameter of the bottom of the cone portion on the film surface grows in an inverted cone shape from the silicon substrate. It was composed of a light emitting portion 42 having a large crystal structure of about 1 μm. When the composition analysis was performed by TEM-EDS, the columnar part 41 and the light emitting part 42 had almost the same composition. Further, from the analysis by X-ray diffraction and electron diffraction, the columnar portion 41 has a triclinic ZnWO 4 structure, and the inverted conical light-emitting portion 42 made of a large crystal has a monoclinic ZnWO 4 structure. . As a result, a fluorescent thin film composed of a light emitting portion and a columnar portion having the same composition but different only in the crystal structure was prepared. When the cone angle α of the light emitting part 42 was 90 degrees, the light emitting part 42 was in contact with about 30 columnar parts 41.

80keVの電子線照射によるTEM内でのカソードルミネッセンスの測定を行った結果を図6に示す。発光部位からの発光52は、発光部位からの出射に加え、光散乱部位となる柱状部位から取り出された光も加わるため、400-600nmにかけて強い発光を示した。一方、柱状部位からの発光51は柱状部位そのものからの発光が弱く、発光部位からの発光52に比べて約1/6倍の発光強度であった。また、発光部位42の円錐角αが約90度の領域において、最も強い発光が観察された。これは円錐角αの増加と共に発光部位42が柱状部位41と接する数が増加して、光取り出しが効率的に行われるようになると考えられる。その一方で、αが増加し過ぎる(α>90度)と発生した光が発光部位42と柱状部位41の界面で全反射される割合が大きくなるため、両者の兼ね合いから適当な角度αで光取り出し効率が最適になると考えられる。上述のような素子構造において、発光部位が大きいため微結晶を用いた場合に比べて界面での非発光再結合による損失が少なく量子効率に優れ、かつ単結晶を用いた場合に比べて発光部位42から効果的に光取り出しがなされる。そのため、高効率の発光素子を作成することができた。   FIG. 6 shows the results of cathodoluminescence measurement in a TEM by 80 keV electron beam irradiation. The light emission 52 from the light emitting part showed strong light emission from 400 to 600 nm because the light extracted from the columnar part as the light scattering part was added in addition to the emission from the light emitting part. On the other hand, light emission 51 from the columnar part was weak from the columnar part itself, and the light emission intensity was about 1/6 times that of light emission 52 from the light emission part. In addition, the strongest light emission was observed in the region where the cone angle α of the light emitting portion 42 was about 90 degrees. It is considered that the number of light emitting portions 42 contacting the columnar portion 41 increases as the cone angle α increases, so that light extraction can be performed efficiently. On the other hand, if α increases too much (α> 90 degrees), the ratio of total reflection of the generated light at the interface between the light emitting portion 42 and the columnar portion 41 increases. The extraction efficiency is considered to be optimal. In the device structure as described above, since the light emitting site is large, the loss due to non-radiative recombination at the interface is small compared to the case of using a microcrystal, and the quantum efficiency is excellent. The light is effectively extracted from 42. Therefore, a highly efficient light emitting element was able to be created.

[実施例2]
本実施例では発光部位に無機発光材料を用いた発光素子作成の実施例を示す。図7(a)〜(l)は本実施例の工程毎の断面図である。以下工程順に説明する。
[Example 2]
In this example, an example of manufacturing a light emitting element using an inorganic light emitting material in a light emitting portion is shown. 7A to 7L are cross-sectional views for each process of this example. This will be described in the order of steps.

(a)透明基板71上にITO膜70を形成し、(b)樹脂A(屈折率1.6)72を1μm塗布する。   (a) An ITO film 70 is formed on the transparent substrate 71, and (b) resin A (refractive index 1.6) 72 is applied by 1 μm.

(c)(d)モールド73(直径100nm、ピッチ200nm、高さ1μmの円柱状凸構造)によりプレスしてパターンを形成し、(e)樹脂B(屈折率1.3)74を塗布しパターン中に埋め込む。この樹脂Bが柱状部位を構成する。   (c) (d) A pattern is formed by pressing with a mold 73 (columnar convex structure having a diameter of 100 nm, a pitch of 200 nm, and a height of 1 μm), and (e) resin B (refractive index 1.3) 74 is applied to the pattern. Embed. This resin B constitutes a columnar part.

(f)ネガ型のフォトレジスト76を塗布し、(g)(h)パターンマスク75を用いて露光、現像しテーパ角度が90度になるようにエッチングする。ここで、パターンマスク75の形状を任意に選択することにより、発光部位の形状を自由に変化させることができる。例えばパターンマスク75が円形であれば円錐状に、多角形であれば多角錐状に、ライン状であれば三角溝に発光部位が設けられる形状になる。   (f) A negative photoresist 76 is applied, (g) (h) exposure and development are performed using the pattern mask 75, and etching is performed so that the taper angle is 90 degrees. Here, by arbitrarily selecting the shape of the pattern mask 75, the shape of the light emitting portion can be freely changed. For example, if the pattern mask 75 is circular, it has a conical shape, if it is polygonal, it has a polygonal pyramid shape.

樹脂A、Bに比べてエッチングレートが速いフォトレジスト76を選択することにより、樹脂A、Bがエッチングされる際にそれよりも速くフォトレジスト76がエッチングされるため、樹脂A、Bがテーパ状にエッチングされる。樹脂A、Bとフォトレジストのエッチングレート比を制御することによりテーパ角度を任意に制御できる。   By selecting the photoresist 76 that has a higher etching rate than the resins A and B, the photoresist 76 is etched faster when the resins A and B are etched. Therefore, the resins A and B are tapered. Is etched. The taper angle can be arbitrarily controlled by controlling the etching rate ratio between the resins A and B and the photoresist.

(i)CVD法、ゾルゲル法、スパッタ法等によりテーパ加工部位に蛍光体77を埋め込み(例えばZnS)、(j)残存フォトレジストを除去する。(k)誘電体厚膜78を形成後(l)電極79を形成し目的とする素子を作成する。   (i) Phosphor 77 is embedded in the tapered portion by CVD, sol-gel, sputtering, or the like (for example, ZnS), and (j) the remaining photoresist is removed. (k) After the dielectric thick film 78 is formed, (l) the electrode 79 is formed to produce a target element.

以上の手法により作製した発光素子は、発光部位で生成する光が柱状部位に取り出される。そして、柱状部位で全反射を繰り返し、光取り出し面に垂直に近い角度で入射するため全反射が抑えられ、光散乱部位となる柱状部位を有さない均一発光膜による発光素子に比べ1.5倍程度の外部発光効率が得られる。
[実施例3]
本実施例では実施例2と同様のプロセスで発光部位に有機発光材料を用いた発光素子作成の実施例を示す。図8(a)〜(k)は本実施例の工程毎の断面図である。以下工程順に説明する。
In the light-emitting element manufactured by the above method, light generated in the light-emitting portion is extracted to the columnar portion. And it repeats total reflection at the columnar part, and is incident at an angle close to perpendicular to the light extraction surface, so that total reflection is suppressed, and is about 1.5 times that of a light emitting device with a uniform light emitting film that does not have a columnar part that becomes a light scattering part. The external luminous efficiency can be obtained.
[Example 3]
In this example, an example of manufacturing a light-emitting element using an organic light-emitting material in a light-emitting portion in the same process as in Example 2 will be described. FIGS. 8A to 8K are cross-sectional views for each process of this example. This will be described in the order of steps.

(a)透明基板81上にITO膜80を形成し、(b)樹脂A(屈折率1.6)82を1μm塗布する。   (a) An ITO film 80 is formed on the transparent substrate 81, and (b) resin A (refractive index 1.6) 82 is applied by 1 μm.

(c)(d)モールド83(直径100nm、ピッチ200nm、高さ1μmの円柱状凸構造)によりプレスしてパターンを形成し、(e)樹脂B(屈折率1.3)84を塗布しパターン中に埋め込む。この樹脂Bが柱状部位を構成する。   (c) (d) A pattern is formed by pressing with a mold 83 (columnar convex structure having a diameter of 100 nm, a pitch of 200 nm, and a height of 1 μm), and (e) resin B (refractive index 1.3) 84 is applied to the pattern. Embed. This resin B constitutes a columnar part.

(f)ネガ型のフォトレジスト86を塗布し、(g)(h)パターンマスク85を用いて露光、現像しテーパ角度が90度になるようにエッチングする。ここで、パターンマスク85の形状を任意に選択することにより、発光部位の形状を自由に変化させることができる。例えばパターンマスク75が円形であれば円錐状に、多角形であれば多角錐状に、ライン状であれば三角溝に発光部位が設けられる形状になる。   (f) A negative photoresist 86 is applied, (g) (h) exposure and development are performed using the pattern mask 85, and etching is performed so that the taper angle is 90 degrees. Here, by arbitrarily selecting the shape of the pattern mask 85, the shape of the light emitting portion can be freely changed. For example, if the pattern mask 75 is circular, it has a conical shape, if it is polygonal, it has a polygonal pyramid shape.

樹脂A、Bに比べてエッチングレートが速いフォトレジスト86を選択することにより、樹脂A、Bがエッチングされる際にそれよりも速くフォトレジスト86がエッチングされるため、樹脂A、Bがテーパ状にエッチングされる。樹脂A、Bとフォトレジストのエッチングレート比を制御することによりテーパ角度を任意に制御できる。   By selecting a photoresist 86 that has a faster etching rate compared to resins A and B, the photoresist 86 is etched faster than that when the resins A and B are etched, so the resins A and B are tapered. Is etched. The taper angle can be arbitrarily controlled by controlling the etching rate ratio between the resins A and B and the photoresist.

(i)真空蒸着装置を用いてTPDを300Å蒸着して正孔輸送層を形成し、続いて有機材料発光層87としてAlqを前記TPD膜上に500Å蒸着させて電子輸送層兼発光層を形成し、(j)残存フォトレジストを除去する。(k)背面電極88としてAlを形成し目的とする素子を作成する。   (i) Using a vacuum deposition apparatus, deposit 300 TPD to form a hole transport layer, and subsequently form 500 q of Alq on the TPD film as an organic material light emitting layer 87 to form an electron transport layer and light emitting layer. (J) The remaining photoresist is removed. (k) Al is formed as the back electrode 88 to produce a desired element.

以上の手法により作製した発光素子は、発光部位で生成する光が柱状部位に取り出される。そして、柱状部位で全反射を繰り返し、光取り出し面に垂直に近い角度で入射するため全反射が抑えられる。これにより、光散乱部位となる柱状部位を有さない均一発光膜による発光素子に比べ1.2倍程度の外部発光効率が得られる。   In the light-emitting element manufactured by the above method, light generated in the light-emitting portion is extracted to the columnar portion. Then, total reflection is repeated at the columnar portion and incident at an angle close to perpendicular to the light extraction surface, so that total reflection is suppressed. As a result, an external light emission efficiency of about 1.2 times that of a light-emitting element using a uniform light-emitting film that does not have a columnar portion serving as a light scattering portion can be obtained.

本発明は、フラットパネルディスプレイディスプレイ(FPD)としてエレクトロルミネッセンス(EL)ディスプレイや電界放出ディスプレイ(FED)等の表示装置の発光層として用いることができる。   The present invention can be used as a light emitting layer of a display device such as an electroluminescence (EL) display or a field emission display (FED) as a flat panel display (FPD).

本発明の実施形態の発光構造体の、発光部位が円錐、柱状部位が円柱である場合の概略図である。It is the schematic when the light emission site | part of a light emitting structure of embodiment of this invention is a cone and a columnar site | part is a cylinder. 本発明の実施形態の発光構造体の、発光部位が多角錐、柱状部位が多角柱である場合の概略図である。It is the schematic when the light emission site | part of the light emission structure of embodiment of this invention is a polygonal pyramid, and a columnar site | part is a polygonal column. 本発明による発光素子の構成図である。It is a block diagram of the light emitting element by this invention. 実施例1で作成した発光材料の構成図である。1 is a configuration diagram of a light emitting material created in Example 1. FIG. 実施例1の成膜方法を示す概略図である。1 is a schematic view showing a film forming method of Example 1. FIG. 実施例1のカソードルミネッセンス測定結果である。3 is a result of cathodoluminescence measurement of Example 1. 無機発光材料を用いた発光素子の構成図である。It is a block diagram of the light emitting element using an inorganic luminescent material. 有機発光材料を用いた発光素子の構成図である。It is a block diagram of the light emitting element using an organic luminescent material. 従来の構成図である。It is a conventional block diagram. 本発明の他の実施形態の発光構造体の構成例を示す図である。It is a figure which shows the structural example of the light emitting structure of other embodiment of this invention. 本発明の他の実施形態の発光構造体の構成例を示す図である。It is a figure which shows the structural example of the light emitting structure of other embodiment of this invention. 本発明の他の実施形態の発光構造体の構成例を示す図である。It is a figure which shows the structural example of the light emitting structure of other embodiment of this invention. 本発明の他の実施形態の発光構造体の構成例を示す図である。It is a figure which shows the structural example of the light emitting structure of other embodiment of this invention. 本発明の他の実施形態の発光構造体の構成例を示す図である。It is a figure which shows the structural example of the light emitting structure of other embodiment of this invention. 本発明の他の実施形態の発光構造体の構成例を示す図である。It is a figure which shows the structural example of the light emitting structure of other embodiment of this invention. 本発明の他の実施形態の発光構造体の構成例を示す図である。It is a figure which shows the structural example of the light emitting structure of other embodiment of this invention. 発光部位又は柱状部位の大きさ評価の方法を示す図である。It is a figure which shows the method of the magnitude | size evaluation of a light emission site | part or a columnar site | part.

符号の説明Explanation of symbols

11,21,34,41 柱状部位(光散乱部位)
12,22,33,42 発光部位
31 電極
32 誘電体層
35 透明電極
36 基板
37 蛍光薄膜層
61 柱状部位からの発光
62 発光部位からの発光
70 ITO
71 透明基板
72 樹脂A
73 モールド
74 樹脂B
75 パターンマスク
76 フォトレジスト
77 蛍光体
78 誘電体厚膜
79 電極
80 ITO
81 透明基板
82 樹脂A
83 モールド
84 樹脂B
85 パターンマスク
86 フォトレジスト
87 有機材料発光層
88 電極
91 電極
92 絶縁層
93 誘電膜
94 発光層
95 透明電極
96 ガラス基板
11, 21, 34, 41 Columnar part (light scattering part)
12, 22, 33, 42 Luminescent site
31 electrodes
32 Dielectric layer
35 Transparent electrode
36 PCB
37 Fluorescent thin film layer
61 Light emission from columnar part
62 Light emission from light emitting part
70 ITO
71 Transparent substrate
72 Resin A
73 Mold
74 Resin B
75 Pattern mask
76 photoresist
77 phosphor
78 Dielectric thick film
79 electrodes
80 ITO
81 Transparent substrate
82 Resin A
83 Mold
84 Resin B
85 Pattern mask
86 photoresist
87 Organic material light emitting layer
88 electrodes
91 electrodes
92 Insulation layer
93 Dielectric film
94 Light-emitting layer
95 Transparent electrode
96 glass substrate

Claims (15)

下地面上に設けられた発光層を有し、該発光層が複数の発光部位と、該複数の発光部位間に設けられた複数の柱状部位とを備えた発光構造体であって、
前記発光部位は、前記下地面に平行な方向の断面積が、下地面側から該下地面側と反対の面側に向かって、又は該下地面側と反対の面側から該下地面側に向かって減少する立体形状をなし、
前記複数の柱状部位の内の少なくとも一部の柱状部位が前記発光部位に接しており、前記発光部位で発生した光が前記柱状部位を通して取り出されることを特徴とする発光構造体。
A light-emitting structure having a light-emitting layer provided on a lower ground, the light-emitting layer including a plurality of light-emitting portions and a plurality of columnar portions provided between the plurality of light-emitting portions,
The light emitting portion has a cross-sectional area in a direction parallel to the ground surface, from the ground surface side toward the surface opposite to the ground surface side, or from the surface side opposite to the ground surface side to the ground surface side. A three-dimensional shape that decreases toward the
At least a part of the plurality of columnar portions is in contact with the light emitting portion, and light generated at the light emitting portion is extracted through the columnar portion.
請求項1に記載の発光構造体において、前記複数の柱状部位が、下地面に対して略垂直方向に伸びていることを特徴とする発光構造体。   The light emitting structure according to claim 1, wherein the plurality of columnar portions extend in a direction substantially perpendicular to the base surface. 請求項1又は2に記載の発光構造体において、前記発光部位は錐体であることを特徴とする発光構造体。   3. The light emitting structure according to claim 1, wherein the light emitting part is a cone. 請求項1から3のいずれか1項に記載の発光構造体において、前記発光部位が20以上の前記柱状部位と接していることを特徴とする発光構造体。   The light emitting structure according to any one of claims 1 to 3, wherein the light emitting part is in contact with 20 or more columnar parts. 請求項1から4のいずれか1項に記載の発光構造体において、前記発光層の厚さは5μm以下であることを特徴とする発光構造体。   5. The light emitting structure according to claim 1, wherein the light emitting layer has a thickness of 5 μm or less. 請求項1から5のいずれか1項に記載の発光構造体において、前記発光部位における前記下地面に対して平行な方向の断面の形状は円状、正三角形又は正四角形以上の正角型形状で、円の直径、正三角形の一辺の長さ又は正四角形以上の正角型形状の対角線の長さが1μm以下であり、
前記柱状部位における前記下地面に対して平行な方向の断面の形状は、円状、正三角形、又は正四角形以上の正角型形状で、円の直径、正三角形の一辺の長さ又は正四角形以上の正角型形状の対角線の長さが300nm以下である発光構造体。
6. The light emitting structure according to claim 1, wherein a cross-sectional shape of the light emitting portion in a direction parallel to the base surface is a circular shape, a regular triangle, or a regular square shape that is equal to or more than a regular square. And the diameter of the circle, the length of one side of the regular triangle, or the length of the diagonal line of the regular shape of the regular square or more is 1 μm or less,
The shape of the cross section in the direction parallel to the base surface in the columnar part is a circle, a regular triangle, or a regular square shape that is equal to or greater than a regular square, and the diameter of the circle, the length of one side of the regular triangle, or a regular square A light-emitting structure having a diagonal length of 300 nm or less.
請求項1から5のいずれか1項に記載の発光構造体において、前記発光部位における前記下地面に対して平行な方向の断面の大きさは、断面積が等しくなる円に換算したとき、その円の直径が1μm以下であり、柱状部位における前記下地面に対して平行な方向の断面の大きさは、断面積が等しくなる円に換算したとき、その円の直径が300nm以下である発光構造体。   The light emitting structure according to any one of claims 1 to 5, wherein the size of a cross section in a direction parallel to the base surface in the light emitting portion is converted into a circle having an equal cross sectional area, A light emitting structure in which the diameter of a circle is 1 μm or less, and the size of a cross section in a direction parallel to the base surface in a columnar part is a circle having a diameter of 300 nm or less when converted to a circle having the same cross-sectional area body. 請求項3から7のいずれか1項に記載の発光構造体において、前記錐体の錐角が30度から90度の範囲にある発光構造体。   The light emitting structure according to any one of claims 3 to 7, wherein a cone angle of the cone is in a range of 30 degrees to 90 degrees. 請求項1から8のいずれか1項に記載の発光構造体において、前記柱状部位の屈折率n1と前記発光部位の屈折率n2との屈折率比n2/n1は、n2/n1>1である発光構造体。   The light emitting structure according to any one of claims 1 to 8, wherein a refractive index ratio n2 / n1 between a refractive index n1 of the columnar part and a refractive index n2 of the light emitting part is n2 / n1> 1. Luminescent structure. 請求項1から8のいずれか1項に記載の発光構造体において、前記発光部位と前記柱状部位の材料の化学式が共にZnWO4である発光構造体。 In the light-emitting structure according to any one of claims 1 8, the light emitting structure formula of the emission portion and the columnar portion of the material is ZnWO 4 together. 請求項10に記載の発光構造体において、前記発光部位の結晶構造が単斜晶である発光構造体。   The light emitting structure according to claim 10, wherein a crystal structure of the light emitting portion is a monoclinic crystal. 請求項10又は11に記載の発光構造体において、前記柱状部位の結晶構造が三斜晶である発光構造体。   12. The light emitting structure according to claim 10, wherein the columnar portion has a triclinic crystal structure. 基板上に錐体状の発光部位とそれに接する柱状部位なら成る膜の成膜方法において、
基板面に対して略垂直方向の第1の軸と、ターゲット面に対して略垂直方向の第2の軸とが交差するように、基板と複数のターゲットを配置する工程と、
前記基板上に前記複数のターゲットの材料を含む膜を形成する工程とを有することを特徴とする成膜方法。
In the method of forming a film consisting of a cone-shaped light emitting part and a columnar part in contact with it on a substrate,
Arranging the substrate and the plurality of targets such that a first axis substantially perpendicular to the substrate surface and a second axis substantially perpendicular to the target surface intersect;
Forming a film containing the plurality of target materials on the substrate.
請求項13に記載の成膜方法において、前記第1の軸と前記第2の軸との成す角度が略20度であることを特徴とする、三斜晶を含む膜の製造方法。   14. The method for producing a film containing triclinic crystal according to claim 13, wherein an angle formed by the first axis and the second axis is approximately 20 degrees. 基板上に発光部位と光散乱部位とを有する発光層を備え、
前記光散乱部位が複数の柱状部を含み、且つ、
前記基板面と垂直な位置にある前記発光層の断面において、前記発光部位の形状が三角形又は台形であることを特徴とする発光構造体。
Provided with a light emitting layer having a light emitting portion and a light scattering portion on a substrate,
The light scattering portion includes a plurality of columnar parts; and
In the cross section of the said light emitting layer in a position perpendicular | vertical to the said substrate surface, the shape of the said light emission site | part is a triangle or a trapezoid, The light emitting structure characterized by the above-mentioned.
JP2005353492A 2005-12-07 2005-12-07 Light-emitting structural body and light-emitting element Withdrawn JP2007157580A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005353492A JP2007157580A (en) 2005-12-07 2005-12-07 Light-emitting structural body and light-emitting element
US11/564,385 US7705533B2 (en) 2005-12-07 2006-11-29 Tapered light emitting structure and light emitting device having a columnar light extraction layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005353492A JP2007157580A (en) 2005-12-07 2005-12-07 Light-emitting structural body and light-emitting element

Publications (1)

Publication Number Publication Date
JP2007157580A true JP2007157580A (en) 2007-06-21

Family

ID=38134478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005353492A Withdrawn JP2007157580A (en) 2005-12-07 2005-12-07 Light-emitting structural body and light-emitting element

Country Status (2)

Country Link
US (1) US7705533B2 (en)
JP (1) JP2007157580A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7286271B2 (en) * 2002-05-13 2007-10-23 Transpacific Ip, Ltd. Scanning chassis with a light transparent slot
JP2015084000A (en) * 2012-02-07 2015-04-30 シャープ株式会社 Display element and illumination device
GB2526556A (en) * 2014-05-27 2015-12-02 Robert Murray-Smith A conformal electroluminescent device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4378891B2 (en) 2001-03-15 2009-12-09 パナソニック電工株式会社 Active matrix light emitting device and manufacturing method thereof
US7019447B2 (en) * 2002-03-26 2006-03-28 Canon Kabushiki Kaisha Optical-path changing apparatus, and light radiating apparatus
EP1603367B1 (en) * 2003-03-12 2015-09-09 Mitsubishi Chemical Corporation Electroluminescence device
JP2004296438A (en) 2003-03-12 2004-10-21 Mitsubishi Chemicals Corp Electroluminescent element

Also Published As

Publication number Publication date
US7705533B2 (en) 2010-04-27
US20070126351A1 (en) 2007-06-07

Similar Documents

Publication Publication Date Title
TW527848B (en) Light-emitting element and display device and lighting device utilizing thereof
TWI292678B (en) Top-emittierendes, elektrolumineszierendes bauelement mit zumindest einer organischen schicht
TWI565114B (en) Organic light emitting diode, manufacturing method of organic light emitting diode, image display device and lighting device
EP1385041B1 (en) A light-emitting device comprising porous alumina, and corresponding method of fabrication
US8921841B2 (en) Porous glass substrate for displays and method of manufacturing the same
JP2004273416A (en) Organic electric field luminous display device assembly
JP2006156400A (en) Organic electroluminescent element and its manufacturing method
JP2008066027A (en) Substrate having concavo-convex front surface, and organic el element using it
JP2005190931A (en) Electroluminescent element, and surface light source and display using it
JP2008541368A (en) Electroluminescence light source
JP2016174010A (en) Organic electroluminescent element
WO2011161998A1 (en) Organic el element
TW202018386A (en) Quantum dot display panel
JP2015090810A (en) El display device, and method of manufacturing el display device
JP6760570B2 (en) Light extraction substrate for organic light emitting device and organic light emitting device including this
KR101623093B1 (en) Organic Light Emitting Diodes(OLED) improved quantum efficiency with stochastic nanostructure and method of manufacturing this
JP2007157580A (en) Light-emitting structural body and light-emitting element
KR20120044675A (en) Organic light emitting devices having a light extracting layer and methods of fabricating the same
JP6187915B2 (en) Organic light emitting diode, method for manufacturing substrate for organic light emitting diode, image display device and lighting device
KR20140074446A (en) Light emitting device having improved light extraction efficiency and method of fabricating the same
JP6626570B2 (en) Organic light emitting device
JP2020017545A (en) Mold for manufacturing organic light emitting diode
TWI608645B (en) Planarized tco-based anode for oled devices, and/or methods of making the same
KR101104453B1 (en) Organic electro-luminescent device and fabricating method for the same
WO2004084259A2 (en) Organic light-emitting diode with improved light disengaging properties

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080207

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090303